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Abstract. A similarity analysis has been developed for a 2D forced convection
turbulent boundary layer with and without a pressure gradient. Two new inner
and outer temperature scalings are derived by means of similarity analysis of the
equations of motion. The new scalings will be verified by the experimental data
with adverse pressure gradient, favourable pressure gradient and zero pressure
gradient respectively. It will be shown that the mean temperature profiles
are dependent on the external pressure gradient and the upstream conditions.
However, using the new scaling in inner variables or in outer variables, the
temperature profiles collapse into a single curve. Thus, the true asymptotic
solution for the temperature field exists even at a finite Péclet number. These
results are confirmed by using the existing experimental data and compared with
the results from various scalings. The asymptotic temperature profile or the self-
similar profile found in the present analysis is in agreement with the fact that an
asymptotic velocity profile exists if the mean velocity deficit profile is normalized
by the Zagarola and Smits scaling (Zagarola and Smits 1998 J. Fluid Mech. 373
33–79).

PACS numbers: 47.27.Te, 47.27.Ak, 47.27.Eq
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1. Introduction

Heat transfer in turbulent boundary layers plays a crucial role in industrial applications. For
example, hot gases flowing over a turbine’s cooler blade, air flowing over computer chips, etc,
all involve the interaction of heat transfer and momentum transport between the fluid and the
solid surface at different temperatures. It is of great interest to understand the physics of this
interaction between scales for the temperature field and the velocity field, particularly the scales
of the nonlinear turbulent quantities. In order to determine these scales, a similarity analysis will
be applied to the equations of motion for a 2D, steady on the mean, incompressible flow with
constant fluid properties.

Experiments on heat transfer in turbulent boundary layers are rather complex and difficult
to control due to the interaction between the temperature field and the velocity field according
to Kader [2]. Based on the Spalding analysis [3], the Reynolds analogy has been widely applied
to investigate the heat transfer in turbulent boundary layers. By assuming an analogy between
the heat transfer and momentum transport, a convenient approach has been established to study
the forced convection turbulent boundary layer. However, the Reynolds analogy is a very rough
method which breaks down when there is an external pressure gradient imposed in the outer
flow, especially for an adverse pressure gradient (APG) flow. Moreover, many investigators,
such as Blackwell et al [4] and Ayala et al [5] have shown that the turbulent Prandtl number,
Prt, is not a constant across the turbulent boundary layer, especially for those flows subject to an
external pressure gradient. This is contrary to the implications of the Reynolds analogy. Many
advanced methods based on the Reynolds analogy have been proposed, and special efforts have
been made to improve the turbulent Prandtl number Prt. However, there are no satisfying results
yet, particularly in the scaling laws.

Similar to the standard law of the wall and the velocity defect law for the inner and outer
velocity profiles in turbulent boundary layers, a thermal law of the wall and a thermal defect law
have been presented for the inner and outer temperature profiles respectively [6]. However, the
thermal law of the wall was born with the faults of the classical ‘log-law’. For instance, there is
only a single temperature scale for both the inner and outer flow. Furthermore, the thermal law
of the wall cannot describe the thermal boundary layer subject to the APG according to Perry et
al [7]. Also, it does not take into account the Péclet number, Pe, effects.

In 1966, Perry et al [7] presented an inverse half-power law for the temperature profile in the
APG turbulent boundary layer using dimensionless analysis. However, this law cannot describe
the heat transfer in the outer region of the boundary layer. In 1976, Perry and Hoffman [8] initially
analysed the scaling for temperature fluctuations of the zero pressure gradient (ZPG) boundary
layer. In 1991, Kader’s investigation [2] made a significant contribution to this field. First, he
considered the effect of Prandtl number, Pr, on the temperature profile. Second, two different
scalings were proposed instead of one, as suggested in the classical approach for the inner and the
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outer thermal boundary layer respectively. However, his analysis did not apply to a sharp variation
of the wall temperature. Most recently, Volino and Simon [9] proposed a formulation for the
velocity profile and the temperature profile in the turbulent boundary layer subject to a pressure
gradient. They showed that their new formulation deviated from the standard law of the wall,
but it was still in agreement with the experimental data studied. However, this agreement was
only applicable for the inner thermal boundary layer region. Most of the previous investigations
except those by Kader [2] and Perry et al [7] did not answer the question of how to scale the
temperature profile. Instead they simply took the friction temperature, Tτ , as the temperature
scale for both the inner and outer thermal boundary layer. Moreover, this single temperature scale
approach failed to collapse the data in APG flows. In 1997, George et al [10] applied a similarity
analysis to study the forced convection turbulent boundary layer. Two different scalings were
proposed for both the inner and the outer temperature profiles respectively. However, their results
were not verified for the pressure gradient (PG) boundary layer. More importantly, the effects
of the PG and upstream conditions were not considered in their analysis. Therefore, the goal
of this investigation is to apply the ‘equilibrium similarity analysis’ proposed by George and
Castillo [11] and Castillo and George [12] to study forced convection turbulent boundary layers.
Attention will be given to forced convection turbulent boundary layers with and without PG.
Using the existing experimental data, comparisons of different scalings will be performed.

2. The similarity analysis

According to the similarity analysis for the turbulent boundary layer with ZPG proposed by
George and Castillo [11] and with PG by Castillo and George [12], the scales for both the
inner and outer flows are dictated by equations of motion and their boundary layer conditions
alone. Since in the limit as Re → ∞, the boundary layer equations become independent of
Re; therefore, any scale or function representing the boundary layer solutions must also be
independent of the local Re. (This is the asymptotic invariance principle (AIP) proposed by
George and Castillo [11].) Hence, in this limit, the inner and outer scales of the turbulent
boundary layer will be determined.

Castillo and George [12] have shown that the outer mean deficit velocity profiles and the
outer Reynolds shear stresses are scaled with U∞ and U2

∞dδ/dx respectively. Moreover, the
Reynolds normal stresses in outer variables are scaled only with U2

∞. Using a similar approach
to the inner momentum equation, it has been shown that the velocity profiles and Reynolds
stresses are scaled with the friction velocity, uτ and u2

τ respectively, which are the same as those
in the classical theory. Therefore, the overlap region is characterized by two different velocity
scales instead of one as suggested in the classical view.

A similar approach will be used here for the forced convection turbulent boundary layer in
order to determine the scales for the temperature field and the corresponding constraints. The
turbulent boundary layer under consideration is a 2D, steady state on the mean, incompressible
flow with heat transfer between the wall and the free stream. The physical properties, such as
density, ρ, kinematic viscosity, ν, and thermal diffusivity, a, are assumed to be constant within
the small range of temperature difference studied here. Integrating the inner energy equation
and applying the corresponding boundary layer conditions at the wall yield the integral form of
the inner energy equation, which is given as

− qw

ρcp

= a
∂T

∂y
− 〈tv〉. (1)
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The outer energy equation is given by

U
∂T

∂x
+ V

∂T

∂y
=

∂

∂y
[−〈tv〉]. (2)

The related boundary layer conditions are

y → 0, T → Tw; 〈tv〉 → 0; a
∂T

∂y

∣∣∣∣
y=0

= − qw

ρcp

; (3)

y → ∞, T → T∞; 〈tv〉 → 0. (4)

The above equations can describe the energy transport in the turbulent boundary layer exactly
in the limit as Pe → ∞ [13].

2.1. Similarity analysis for the inner flow

Solutions for the inner thermal profiles and the inner turbulent heat flux are sought of the following
forms:

Tw − T = Tsi(x)gsi(y+
T , δ+

T , P r, ∗) (5)
−〈vt〉 = Fsi(x)hsi(y+

T , δ+
T , P r, ∗) (6)

where Tsi(x) and Fsi(x) are the unknown inner temperature scale and inner turbulent flux scale
respectively, which will be determined from the inner energy equation and its boundary layer
conditions. The variables inside the similarity functions gsi and hsi represent the inner similarity
length scale, y+

T , the local Péclet number dependence, δ+
T , the Prandtl number, Pr, and any

possible dependence on the upstream conditions, ∗.
The Stanton number is defined as St = (qw/ρCpU∞(Tw − T∞)), and the skin friction

coefficient is defined as Cf/2 = τw/ρU2
∞. Notice that the heat flux on the wall, qw, in the

thermal boundary layer corresponds to the wall shear stress, τw, in the momentum boundary
layer. Therefore, the Stanton number is very similar to the skin friction coefficient. However,
the Stanton number and the skin friction coefficient behave very differently with the change of
strength of PG in the outer flow, which has been presented by Blackwell et al [4] for APG flow
and Kays and Crawford [14] for favourable pressure gradient (FPG) flow. For instance, for a
strong APG flow, the skin friction decreases with increasing strength of PG. Nonetheless, the
Stanton number will increase slightly provided that the heat flux on the wall is constant. In the
similarity analysis of the momentum equation, the inner length scale y+ can be written in terms
of the skin friction coefficient and free stream velocity as

y+ =
Uτy

ν
=

U∞y

ν

√
Cf

2
. (7)

Hence when choosing the length scale y+
T for the inner energy equation, the Stanton number will

be used to take the place of the skin friction coefficient as

y+
T =

U∞y

ν

√
St, (8)

which is a reasonable assumption since the Stanton number includes all the heat transfer
information.
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In the limit as Pe → ∞, the similarity solutions of equations (5) and (6) are independent
of the local Péclet number, δ+

T , as required by the AIP. Thus, equations (5) and (6) reduce to

Tw − T = Tsi(x)gsi∞(y+
T , P r, ∗) (9)

−〈vt〉 = Fsi(x)hsi∞(y+
T , P r, ∗) (10)

where gsi∞ and hsi∞ are the asymptotic profiles for the mean temperature and the turbulent heat
flux respectively. Notice that the upstream conditions, ∗, have been retained here because they
may influence the shape of the profiles even in this limit. Substituting these asymptotic similarity
solutions into the inner energy equation (1), the inner energy equation is written in similarity
form as [

U∞Tsi
a

ν

√
St

]
gsi∞ + [Fsi]hsi∞ =

[
− qw

ρcp

]
. (11)

Full similarity exists only if all the terms in the square brackets have the same x dependence;
therefore, they must evolve together. In other words, they must be proportional to each other,
such as [

U∞Tsi
a

ν

√
St

]
∼ [Fsi] ∼

[
− qw

ρcp

]
. (12)

Consequently, the scales for the inner mean temperature and the inner turbulent heat flux are
given as

Tsi = Pr
√

St(Tw − T∞), (13)

Fsi = − qw

ρcp

. (14)

Obviously, the inner temperature scale is different from the classical scale. In the classical
method, analogous to the friction velocity, uτ , the inner mean temperature scale is given by the
friction temperature, Tτ , defined as

Tτ =
qw

ρcpuτ

, (15)

and the inner length scale is given as

y+ =
yuτ

ν
. (16)

The friction velocity in the above equations is determined from the wall shear stress as u2
τ = τw/ρ.

This is indeed the Reynolds analogy of the law of the wall, but it breaks down when an external
PG is imposed on the flow. George et al [10] used a similar analysis as the one mentioned
above. However, they adopted a different inner length scale and therefore obtained a different
temperature scale. Here we call this the George–Wosnik–Castillo (GWC) scaling to make
reference to the authors. Table 1 shows the comparison of various results for the inner temperature
scaling from various investigations. The first row represents the classical scaling using Reynolds
analogy, the second row shows the GWC scaling using similarity analysis and the last row shows
the scaling from the present analysis. Notice that both the inner length scale and the inner
temperature scale are different for all three theories. In addition, it is obvious that the inner
temperature scaling of the new theory contains the effects of the Prandtl number and the Stanton
number. A comparison between these scales will be shown in the subsequent sections.
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Table 1. The comparisons of different inner temperature scalings.

Theory Inner similarity length scale y+
T Inner temperature scale: Tsi

Reynolds analogy y+
T = y+ =

yuτ

ν
Tsi = Tτ =

qw

ρCpuτ

GWC y+
T =

yqw/ρCp

α(Tw − T∞)
Tsi = Tw − T∞

Present analysis y+
T =

yU∞
ν

√
St Tsi = Pr(Tw − T∞)

√
St

2.2. Similarity analysis for the outer flow

The outer scales for the temperature defect and the turbulent heat flux can be determined using
the similarity analysis of the outer boundary layer equations. The outer solutions of the energy
equation can be sought in the forms of

T − T∞ = Tso(x)gso(yT , δ+
T , P r, ∗) (17)

−〈vt〉 = Fso(x)hso(yT , δ+
T , P r, ∗) (18)

where yT = y/δT is the outer similarity length scale and δT is the outer length scale, which
could be defined in terms of the thermal boundary layer thickness or the enthalpy thickness. The
similarity functions gso and hso are the outer temperature profile and the turbulent heat flux profile,
respectively. The arguments inside the functions gso and hso represent the local Péclet number
dependence given by δ+

T , the local Prandtl number, Pr, effects and any possible dependence
on the upstream conditions ∗. The unknown outer temperature scale and the unknown outer
turbulent heat flux scale are given as Tso and Fso, respectively. These unknown scales depend
on x only and must be determined from the outer thermal equation.

In the limit as Re → ∞ or Pe → ∞, the momentum equation and the energy equation are
independent of Re or Pe as required by AIP. Hence, in this limit, the outer solution forms of the
energy equation are reduced to

T − T∞ = Tso(x)gso∞(yT , P r, ∗) (19)
−〈vt〉 = Fso(x)hso∞(yT , P r, ∗), (20)

where the ∞ is used to represent the asymptotic profiles of gso∞ and hso∞, which are independent
of Re or Pe. Notice that the upstream dependence has been retained because the flow may depend
on it even in this limit.

Also, similar forms exist for the velocity deficit profile and the Reynolds shear stress profile
given as

U∞ − U = Uso(x)fop∞(y, Λ; ∗) (21)

−〈uv〉 = Rso(x)rop∞(y, Λ; ∗), (22)

where Uso = U∞ and Rso = U2
∞dδ/dx have been determined by the similarity analysis of

Castillo and George [12]. Substituting these asymptotic similarity solutions of equations (19)–
(22) into the outer energy equation (2), and using the continuity equation to get the V component,
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the outer energy equation is written in the similarity form as[
δT

Tso

dTso

dx

]
(1 + fop∞)gso∞ −

[
dδT

dx

]
yT (1 + fop∞)g′

so∞

−
[

δ

U∞

dU∞
dx

]
y
(
1 +

∫ y

0
fop∞ dỹ

)
g′

so∞

+
[

dδ

dx

]
y
(
fop∞ +

∫ y

0
fop∞ dỹ

)
g′

so∞ ==
[

Fso

U∞Tso

]
h′

so∞. (23)

As in the inner similarity analysis, the terms in the square brackets depend on x, and full
similarity exists only if those terms have the same x dependence. Consequently, they must be
proportional to each other. Thus,

δT

Tso

dTso

dx
∼ δ

U∞

dU∞
dx

∼ dδT

dx
∼ dδ

dx
∼ Fso

U∞Tso

. (24)

Taking the similarity of the last two terms yields

Fso ∼ U∞Tso
dδ

dx
. (25)

Matching the inner and outer heat flux and Reynolds shear stress in the limit as Pe → ∞, the
outer temperature scale can be obtained as

Tso ∼ St

Cf/2
(Tw − T∞) (26)

which has been shown by George et al [10]. Notice that this new outer scaling was obtained
in the limit as Pe → ∞ or Re → ∞. In this limit, the flow loses its dependence on Re or Pe.
Therefore, at finite Re or Pe, the temperature profiles should not be expected to collapse to one
single curve. In addition, the flow may still be affected by the upstream conditions even in this
limit. Now it will be of great interest to look for the real asymptotic solution so that the effects
of the upstream condition and Reynolds number dependence can be removed even if at finite
Reynolds number or Péclet number.

2.2.1. The new outer temperature scaling. Zagarola and Smits [1] have shown that the outer
velocity scaling for the pipe flow is U∞δ∗/δ. Later on, Castillo [15] got exactly the same outer
velocity scaling for the PG turbulent boundary layer using similarity analysis. He showed that
this new velocity scaling could remove the effects of the different upstream conditions, Reynolds
number dependence, and the PG effects on the outer flow. Thus, the true asymptotic velocity
profile for the ZPG, APG and FPG flow was found. Now the attention will be focused on seeking
the proper outer temperature scaling such that the true asymptotic temperature profile is found.

We assume that the outer temperature deficit profile of equation (17) can be rewritten as

T − T∞ = T̃so(x, δ+
T , ∗)g̃so∞(yT ). (27)

The new unknown temperature scale, T̃so, needs to be determined using similarity analysis,
and g̃so∞ represents the true asymptotic temperature function. Notice that the new unknown
temperature scale T̃so includes the effects of upstream conditions and Péclet number, and g̃so∞
depends on yT only.
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The so-called thermal displacement thickness, δ∗
T , is defined as

δ∗
T =

∫ ∞

0

T − T∞
Tw − T∞

dy. (28)

Substituting equation (27) into the definition of the thermal boundary layer thickness, it follows
that [

δ∗
T

δT

]
=

[
T̃so(x, δ+, ∗)

Tw − T∞

] ∫ 1

0
g̃so∞ dyT . (29)

For the similarity solutions to exist, the bracketed terms should have the same x dependence,
thus,

δ∗
T

δT

∼ T̃so(x, δ+, ∗)
Tw − T∞

. (30)

Hence the new outer temperature scaling is given as

T̃so(x, δ+, ∗) = (Tw − T∞)
δ∗
T

δT

. (31)

Interestingly, this outer temperature scaling is very similar to the outer Zagarola/Smits velocity
scaling U∞δ∗/δ, and should contain the effects of the unknown upstream conditions and the
Péclet number effect as well. Then, the true asymptotic temperature profile should exist if this
new temperature profile scale is correct.

2.2.2. Comparisons of the various outer scalings. As mentioned previously, the outer scaling
in the classical view is determined using the Reynolds analogy. Since in the classical theory
a single velocity scaling is assumed, the mean velocity deficit profiles are normalized by the
friction velocity, given as

U∞ − U

uτ

(x) = fo(y). (32)

Therefore, in a similar manner, the outer mean temperature profiles are normalized by the inner
friction temperature, Tτ , given by

T∞ − T

Tτ

(x) = fo(yT ) (33)

where Tτ is given as qw/ρCpuτ . Table 2 summarizes the outer temperature scaling from various
theories. The first row shows the classical scaling by Reynolds analogy, the second row shows
the results from the similarity analysis of GWC and the third row shows the new scaling from
the present investigation. The outer length scale is the same for all three theories, whereas the
temperature scales are quite different from each other.

3. Experimental data

Different experimental data will be used to compare the classical scaling, the GWC scaling and
the current scaling for both the inner and the outer temperature profiles. Here, we include the
ZPG experimental data of Blackwell et al [4] and the ZPG data of Blom [16] with two different
free stream speeds of 6 and 10 m s−1 (fixed upstream conditions). For the measurements by
Blom [16], the first 1 m of the test section was not heated, while at the leading edge the boundary
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Table 2. The comparisons of different outer temperature scales.

Theory Outer similarity length scale: yT Outer temperature scale: Tso(x)

Reynolds analogy yT =
y

δT
Tso = Tτ =

qw

ρCpuτ

GWC yT =
y

δT
Tso = (Tw − T∞)

St

Cf/2

Present analysis yT =
y

δT
Tso = (Tw − T∞)

δ∗
T

δT

layer was tripped using a tripping wire of cylindrical shape with a diameter of 3 mm. Thus,
the momentum boundary layer begins earlier than the thermal boundary layer, which will affect
the temperature profile in the outer region as shown in subsequent sections. Meanwhile, we
study the APG experimental data of Orlando et al [17] with a PG power of m = −0.275 and
Blackwell et al [4] with m = −0.2 and −0.15. These APG experiments were performed such
that a power relationship between the free stream velocity and the streamwise distance exists,
U∞ ∼ xm, where the power coefficient, m, represents the strength of the PG. The experimental
data from Orlando et al [17] have a power coefficient m = −0.275, and therefore the strongest
APG, followed by those of Blackwell et al [4] with m = −0.2 and −0.15. In addition, each
experimental data has almost the same fixed wind tunnel speed, Uo (upstream conditions), of
9.74, 10.1, 11.1 m s−1 for Blackwell et al [4] with m = 0, −0.15 and −0.2 respectively. The
strong APG data of Orlando et al [17] have a fixed wind tunnel speed Uo of 11.6 m s−1. The
maximum Reynolds number based on the momentum thickness, Rθ, achieved from the data
considered in this investigation is about 3000, while the lowest is around 550.

Furthermore, Thielbahr et al [18] provided the temperature data for the FPG turbulent
boundary layer with 0 ≤ K ≤ 1.45×10−6 (K is a PG parameter, defined as (ν/U2

∞)(dU∞/dx),
where K > 0 denotes acceleration). The upstream speed is 12.45 , 10.34 and 7.5 m s−1 for the
corresponding K of 0.57 × 10−6, 0.77 × 10−6 and 1.45 × 10−6 respectively. A 9.525 mm wide
strip of coarse grit garnet paper (carborundum type 50) was used to trip the flow to form the
turbulent boundary layer.

4. Results

Comparisons among the three different scalings in inner and outer variables for the ZPG, FPG,
and APG forced convection flow will be made herein. The effects of the PG and upstream
conditions will be analysed using the existing data.

4.1. The inner temperature profiles

Figure 1 shows the inner temperature profiles in semi-log scale for all the ZPG data discussed
above. Note that the data have different upstream conditions (i.e. in this case wind tunnel speed).
Figure 1(a) shows the profiles normalized by the classical scaling. Figure 1(b) shows the same
ZPG experimental data, but these data are now normalized by the GWC scaling. Figure 1(c)
shows the profiles normalized by the new scaling. Notice that using the new inner scaling,
the profiles collapse into one single curve, regardless of the difference in the upstream speeds.
Moreover, the classical scaling collapses the data better than the GWC scaling.
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Figure 1. Comparisons of different inner scalings for the ZPG flow. (a) Scaling
using Reynolds analogy. (b) Scaling using the GWC analysis. (c) Scaling from
the present analysis.

Figure 2 shows the APG experimental data of Orlando et al [17] and Blackwell et al [4]
in semi-log scale. Clearly, the new scaling shown in figure 2(c) collapses the data into a single
curve. Furthermore, the new scaling successfully removes the effects of the external PGs and
the upstream conditions. The success of this scaling is more evident for the APG data than for
the ZPG data. In addition, notice that the Reynolds analogy fails to collapse the APG data as
shown in figure 2(a). Furthermore, using the classical scaling, it is clear that the temperature
profiles collapse for a given set of upstream conditions (such as wind tunnel speed) and for a
given strength of PG, but these profiles collapse to a different curve. In addition, the collapse
of the profiles using the GWC scaling is far better than using the classical scaling, but it is less
satisfying than using the present scaling. Consequently, it means that at least for APG flows
without separation, the inner flow is independent of the PG. In fact, Castillo [19] showed that as

Journal of Turbulence 4 (2003) 006 (http://jot.iop.org/) 10



JoT
 4 (2003) 006

Asymptotic solutions in forced convection turbulent boundary layers

(YU∞/ν)St
(T

-T
∞
)/

(T
w
-T

∞
)

10–2 10–1 100 101 102 103
0

1

Blackwell 1972 APG m=-0.2 Uo=11.1 m/s Reθ=1718--4533
Blackwell 1972 APG m=-0.15 Uo=10.1 m/s Reθ=2008--3734
Orlando 1974 APG m=-0.275 Uo=11.6 m/s Reθ=3061--5517

0.8

1.2

0.6

0.4

0.2

Y+

(T
w
-T

)/
T τ

10–1 100 101 102 103 104

0

5

10

15

20

25
Blackwell 1972 APG m=-0.2 Uo=11.1 m/s Reθ=1718--4533
Blackwell 1972 APG m=-0.15 Uo=10.1 m/s Reθ=2008--3734
Orlando 1974 APG m=-0.275 Uo=11.6 m/s Reθ=3061--5517

YU∞/νSt-1/2

(T
w
-T

)/
[P

r(
T w

-T
∞
)S

t1/
2 ]

10–2 10–1 100 101 102 103 104 105
0

5

10

15

20

25

30
Blackwell 1972 APG m=-0.15 Uo=10.1 m/s Reθ=2008--3734
Blackwell 1972 APG m=-0.2 Uo=11.1 m/s Reθ=1718--4533
Orlando 1974 APG m=-0.275 Uo=11.6 m/s Reθ=361--5517

(a) (b)

(c)

Figure 2. Comparisons of different inner scalings for the APG flow. (a)Scaling
using Reynolds analogy. (b) Scaling using the GWC analysis. (c) Scaling from
the present analysis.

long as the boundary layer did not approach the separation point, the inner flow was not affected
by the external PG.

Obviously, the similarity analysis presented here works very well for the ZPG and APG
turbulent boundary layer with heat transfer. Subsequently, it should work for the FPG turbulent
boundary layer as well. Figure 3 shows Thielbahr et al ’s FPG data using the three different
scalings mentioned before. Clearly, using the new scaling as shown in figure 3(c), the data
collapse better than using the other two scalings as shown in figures 3(a) and (b). However,
for the FPG data, the advantages of the new scaling are not as obvious as for the ZPG data
and APG data, which may be explained by the measurements themselves. First, notice that for
this measurement, the pressure parameter K, defined as (ν/U2

∞)(dU∞/dx), is changing from
0.57 × 10−6 to 1.45 × 10−6. Second, the upstream velocity varies from 7.5 to 12.45 m s−1.
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Figure 3. Comparisons of different inner scalings for the FPG flow. (a) Scaling
using Reynolds analogy. (b) Scaling using the GWC analysis. (c) Scaling from
the present analysis.

In addition, for this experiment, only the thermal data were measured, while the hydrodynamic
data were interpolated from Julien’s experiment [20], which involved isothermal FPG flows only
under the same test conditions. Furthermore, the boundary layer in the FPG flow is very thin
compared with one in the ZPG or APG flow, which thus makes it more difficult to obtain accurate
results.

Figure 4 combined ZPG experimental data of figure 1, APG data of figure 2 and FPG data of
figure 3. As before, the classical scaling profiles are shown in figure 4(a) while the GWC scaling
is shown in figure 4(b). The data show an obvious dependence on the PG and the upstream
conditions using the classical scaling or the GWC scaling. However, using the new scaling
as shown in figure 4(c), all the data nearly collapse into one single curve, regardless of the
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Figure 4. Comparisons of different inner scalings for the ZPG, APG and FPG
flow. (a) Scaling using Reynolds analogy. (b) Scaling using the GWC analysis.
(c) Scaling from the present analysis.

strength of the PG and the upstream conditions. Therefore, it is possible to find the asymptotic
profile sought in the previous sections at finite Reynolds number, but only when the profiles are
normalized with the new scaling.

4.2. Outer temperature profiles

The ZPG experimental data of Blackwell et al [4] and Blom [16] shown in figure 1 are now
normalized in outer variables using the classical scaling, the GWC scaling, and the new scaling
as shown in figures 5(a)–(c) respectively. Notice that using the classical scaling and the GWC
scaling, the data of Blom [16] with a fixed wind tunnel speed of 10 and 6 m s−1 cannot collapse

Journal of Turbulence 4 (2003) 006 (http://jot.iop.org/) 13



JoT
 4 (2003) 006

Asymptotic solutions in forced convection turbulent boundary layers

Y/δT

(T
-T

∞
)/

(T
w

-T
∞
)(

C
f/

2S
t)

0 1
0

1
Blackwell 1972 ZPG Uo=9.74 m/s Reθ=816--2805
Blom 1970 ZPG Uo=10 m/s Reθ=1724--2332
Blom 1970 ZPG Uo=6 m/s Reθ=1184--1613

Y/δT

(T
-T

∞
)/

T τ

0 1
0

5

10

15

20
Blackwell 1972 ZPG Uo=9.74 m/s Reθ=816--2805
Blom 1970 ZPG Uo=10 m/s Reθ=1724--2332
Blom 1970 ZPG Uo=6 m/s Reθ=1184--1613

Y/δT

(T
-T

∞
)/

[(
T w

-T
∞
)δ

T
*

/δ
T]

0 1
0

2

4

6

8
Blackwell 1972 ZPG Uo=9.74 m/s Reθ=515--2805
Blom 1970 ZPG Uo=6 m/s Reθ=1184--1613
Blom 1970 ZPG Uo=10 m/s Reθ=1724--2332

0.8

0.6

0.4

0.2

0.5 1.50.5 1.5

0.5 1.5

(a) (b)

(c)

Figure 5. Comparisons of different outer scalings for the ZPG flow. (a) Scaling
using Reynolds analogy. (b) Scaling using the GWC analysis. (c) Scaling from
the present analysis.

into a single curve. However, using the new scaling, these two experimental data collapse, but
to a different curve from the profile of the Blackwell et al ZPG [4]. This could be explained by
the fact that for the experimental data of Blom [16], the thermal boundary layer develops later
than the momentum boundary layer. The delay for the thermal boundary layer therefore affected
the outer temperature profile, which has been presented by Kays and Crawford [14].

Figure 6 includes all the APG experimental data of Blackwell et al [4] and Orlando et al [17].
Clearly, the profiles using the classical scaling or the GWC scaling collapse the experimental data
but to different curves, depending on the strength of the external PG. However, using the new
scaling shown in figure 6(c), the profiles collapse into a single curve regardless of the strengths
of the PG and the upstream conditions. Thus, the outer asymptotic profile for APG flows is
found even at finite Reynolds number.

Journal of Turbulence 4 (2003) 006 (http://jot.iop.org/) 14



JoT
 4 (2003) 006

Asymptotic solutions in forced convection turbulent boundary layers

T
(T

-T
∞)

/(
T w

-T
∞)

(C
f/

2S
t)

0 1
0

1

Blackwell 1972 APG m=-0.2 Uo=11.1 m/s Reθ=1718--4533
Blackwell 1972 APG m=-0.15 Uo=10.1 m/s Reθ=2008--3734
Orlando 1974 APG m=-0.275 Uo=11.6 m/s Reθ=3061--5517

Y/δ Y/δT

(T
-T

∞)
/T

τ

0 1
0

2

4

6

8

10

12

14

16

18

20
Blackwell 1972 APG m=-0.15 Uo=10.1 m/s Reθ=2008--3734
Blackwell 1972 APG m=-0.2 Uo=11.1 m/s Reθ=1718--4533
Orlando 1974 APG m=-0.275 Uo=11.6 m/s Reθ=3061--5517

Y/δT

(T
-T

∞
)/

[(
T w

-T
∞
)δ

T* /δ
T]

1
0

0

2

4

6

8
Blackwell 1972 APG m=-0.2 Uo=11.1 m/s Reθ=1718--4533
Blackwell 1972 APG m=-0.15 Uo=10.1 m/s Reθ=2008--3734
Orlando 1974 APG m=-0.275 Uo=11.6 m/s Reθ=3061--5517

0.5 1.5

1.5

0.5

0.5 1.5

0.5 1.5

(a)

(c)

(b)

Figure 6. Comparisons of different outer scalings for the APG flow. (a) Scaling
using Reynolds analogy. (b) Scaling using the GWC analysis. (c) Scaling from
the present analysis.

Figure 7 shows the FPG experimental data from figure 3. Using the new scaling shown in
figure 7(c), the data collapse better than using the classical scaling shown in figure 7(a) and the
GWC scaling shown in figure 7(b).

Figure 8 shows the above ZPG, APG and FPG experimental data plotted together in outer
variables. Evidently, all APG profiles collapse to the same curve, and all the FPG collapse to
another curve. For the ZPG profile, the Blackwell ZPG profiles collapse to one curve, which is
almost the same profile as the APG data. However, the Blom data collapse to a totally different
curve from the Blackwell ZPG because of the unheated section. This unheated region has a direct
influence on the outer flow but not on the inner flow as shown in figure 1(c), which further shows
that the importance of the upstream conditions in the outer flow. The results shown here using
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Figure 7. Comparisons of different outer scalings for the FPG flow. (a) Scaling
using Reynolds analogy. (b) Scaling using the GWC analysis. (c) Scaling from
the present analysis.

the classical scaling or the GWC scaling are consistent with the observations of Castillo and
Walker [21]. They showed that the mean velocity deficit profiles normalized by U∞ collapsed
as long as the wind tunnel speed (upstream conditions) was kept fixed. However, each profile
collapses to a different curve depending on the upstream conditions. They further showed that the
Reynolds number dependence observed in the boundary layer was mainly due to changes in the
upstream conditions. Notice that the new scaling removes the effect of the upstream conditions
and the strength of PG in the boundary layer, contrary to the classical scaling. This result is
consistent with the recent findings by Castillo and George [12], Castillo and Walker [21] and
Walker and Castillo [22], which showed that there are only three velocity profiles in turbulent
boundary layers: one for ZPG, one for FPG and one for APG.
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Figure 8. Comparisons of different outer scalings for the ZPG, APG and FPG
flow. (a) Scaling using Reynolds analogy. (b) Scaling using the GWC analysis.
(c) Scaling from the present analysis.

5. Conclusion

New inner and outer temperature scalings are derived for a 2D forced convection turbulent
boundary layer subject to external PG using similarity analysis of the equations of motion. The
new scalings were compared with the classical scaling and the GWC scaling.

It is shown that both the inner and outer flows are affected by the external PG and the
upstream conditions such as the wind tunnel speed. However, when the experimental data are
normalized by the new scaling in inner variables Tsi = Pr(Tw − T∞)

√
St or in outer variables

Tso = (Tw −T∞)δ∗
T /δT , the effects of PG and upstream conditions are completely removed from

the profiles. The fact that the inner profiles collapse to one single curve for all the ZPG, APG
and FPG flows means that the inner flow is nearly independent of the PG, contrary to the outer
flow where the shape of those profiles are different. Consequently, the external PG has more
influence on the outer flow than on the inner flow.
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Moreover, using the new scalings, the profiles collapse into a single curve; thus, the
asymptotic profiles for the thermal boundary layer are found even at finite Reynolds number and
finite Péclet number. In summary, the similarity analysis applied to forced convection boundary
layers enables us to find the true asymptotic solutions in thermal boundary layers, and it provides
new insight into the effects of the upstream conditions and PG on the downstream flow.
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