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Department of Thermo and Fluid Dynamics, mately constant and given hy,=0.21+0.01. Using this and the integral momentum
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more, the conditions for equilibrium similarity and the value aof.flare shown to be in
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1 Introduction 1 dP,
Nsep—

Turbulent boundary layer separation is a very important area of pv dx 2)
research, particularly in the design of airfoils, diffusers and so on. )

The strongest possible adverse pressure gradient is maintainedstgad of the usual Prantdl variables, and »/u, . These scal-

that airfoils can achieve maximum lift or a diffusers can obtaif1gs are known as the “Stratford variables,” and clearly are nec-
maximum pressure recovery. If separation occurs, however,egsary because of the vanishing of the shear stress at separation
causes many new complications. For example, separation redu@s Tennekes and Lumley 19720] or from more recent per-

the lift of an airfoil, and it will also increase the required size of gPectives, George and Castillo 1903], Skote and Henningson
diffuser. Separation in a turbulent boundary layer is very complebd2].) These near wall results are not of interest in this paper
and it happens as a process instead of a single event as in Which chuses on the outer boundary layer and its implications for
laminar case, Simpson et 4l,2] and Kline et al[3] etc. In the Separation. ) ) ) )

1980s the extensive work of Simpsf4] led to new insight and In the 1960s and 1970s Kline and his co-investigators estab-

definitions for separation in the turbulent boundary layer. Some bghed correlation parameters for separation in terms of the shape
the most relevant definitions are: factor,H, and the ratio of displacement thickness to the boundary

- . layer thicknessg, /6. In particular, Sandborn and Klifé3] sug-
* Incipient Detachmer(ﬂD): the reverse flow occurs occasmnallyggsted that theéghape fgctor at separation was giverE] b]y, g
about 1% of the time.

Intermittent Transitory DetachmefiffD): the reverse flow oc- 1

curs about 20% of the time. H=1+ 1575 3)
Transitory DetachmenfTD): the instantaneous back flow oc- *

curs 50% of the time. _ where 8, /6 must be determined at the point of separation. They
DetachmentD): it occurs when the time averaged wall sheaf; ther showed that the shape factor is 2.7 at the Intermittent
stress Is zero. Transitory DetachmentTD) position. In subsequent work, Kline,
Recent experimental dafa,5,6] suggests that the location whereBardina and Strawh3] developed a one parameter model and
the instantaneous back flow coefficient is about 50% correspor@gicluded that the shape factor was giventby 2.7 at the ITD

to the position where the average skin friction is zero. position andH=4.0 at the separation position.

Many researchers have tried to investigate this process, to charThere are a number of other empirical separation criteria which
acterize separation, and to predict the detachment position. Tayve been proposed. Sajben and Lfad] assumed that detach-
classic log-law for the velocity profile does not work for the sepanent occurs where the normalized specific momentum defect
ration flow since the velocity scaling,., is zero at the separation reaches a maximum as a function of the shape factor; they found
position, Driver[7] and Schofield8]. In the 1950s, Stratforfd] a value of the shape factor of 2.7 for ITD turbulent boundary
introduced an empirical criterion based on the pressure coefficiémyer. Cebeci and Bradshalt5] have reported that separation
to predict the point of separation. He further argued that the inni@kes place when the values kffall in the range of 1.&H,

(or near wall velocity profiles should be scaled using: <2.4. By contrast, Senoo and NigHi6] proposed that:
_rdpr. ) Hoep= 1.8+ 7.5%* (4)
sep p dx sep

for flow in diffusers, wherdV is the passage width at the point of

separation, and, is determined at the point of separation as well.

Commibuted by the Fluids Endineering Division f biication in oA A similar empirical form, which shows a linear relationship be-
ontributed by the Fluids Engineering Division for publication in NAL ; ; :

OF FLUIDS ENGINEERING. Manuscript received by the Fluids Engineering DivisiontweenH and Xw, Can be found in the experiment carried out by

October 4, 2001; revised manuscript received November 8, 2003. Associate Edilg€ngel and Fernholg5] (and more recently by Gustavssfiv])
T. B. Gatski. as:

and the inner length scaled using
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H~2.2+ 1.4y, (5) adverse pressure gradig®PG) and favorable pressure gradient
(FPQ@. In this paper only the adverse pressure gradient results will

whereys, is the back flow coefficient and its value is between 0.28€ considered.

and 0.70 for this experiment. Meanwhile, Dengel and Fernfiglz ~ FOr @ 2-D, incompressible boundary layer that is statistically
showed that the shape factéf is 2.85-0.1% at x,,—50% Steéady in the mean the boundary layer equation footiter flow

where the boundary layer is presumed to separate whero (valid fory/6>0.1 typically reduces to:

(detachmer)t ou U 1dP 9 9

Schofield [8] proposed a separation criterion based on theU — +V—=—=——+ —[—(uv)]+ — [(v2) —(u?],
Schofield-Perry analysil8], and found a shape factor of 3.3 at  9X 9y p dx dy X
the separation position. His results, however, were partially based (6)

on the measurements by Simpson and his collabordtb® \yhereu—U.,, (uv)—0 asy—o, (u?) and(v2)—0 asy— as

which misidentified the location of transitory detachment, at leags|l. This equation, together with the continuity equation, de-

according to Dengel and Fernhdld]. Alving and FernholZ6]  gcripes the flow exactly in the limit of infinite Reynolds number as

made 5|m_|lar measurements as Denge[ and Fgrrﬂﬁr}lior the long asy>100v/u, ory*>100 typically. It is important to note

asymmetric boundary layer with separation. Their results are cqfy; after flow separates, the boundary layer thickness may grow

sistent with each other, yielding shape factors of 2285l and  yragtically, and the boundary layer simplifications are not accurate

2.76 for Dengel and Fernho[5] and Alving and Fernhol6], any longer. Note that the normal stresses compon@rits(v2)

reﬁ_p;]ectlv?_ly. i f wh " . t ave been retained because in APG flows, particularly those ap-

. € entiré question of where separalion occurs experimenta Voaching separation, their contributions are about 88#hpson

is considerably complicated by the fact that the skin friction i t al.[4], Dengel and Ferhol5], Alving and FernholZ6], Els-

vehry h?hrd t%detertmlne W'th'n the bou_lr_wr(]jarr)]/ Itayt_ar, and even vtvor grry et al[22]). The component Reynolds stress equations must

‘t’)v en the slear_s :etss ;stnear ZE€ro. the 0 l-W|_rte ane;_rlmms ?r. 83 be included in the analysis, but have not been written here
een he classical tool to measure the velocily profiie, but g, .o they are the same as for the zero-pressure gradient boundary

directional insensitivity limits its application in separating flowsi er and have been considered in detail elsewkiefeGeorge

for it cannot measure the back-flow velocity accurately. In the p d Castillo 199723]) '

two decalijes, éhe adve_nt Oftne";’ an(tj m(k))rte.premse me?jsurltng gfaChl'he outer scales of the turbulent boundary layer equations must

nlfqtl;es a %\?’e many '|1nv<_es 'Iga orssc_) 0 a;lnza nevg L:E e(;_s andifg getermined from an equilibrium similarity analysis of the gov-

of the problém In a physical way. impsph,2] use ne direc- erning equations and boundary conditions, and can not be chosen

tionally sensitive laser anemometer to measure the |nstantane8 iori. George and Castil23] applied this concept to the outer

flow direction near the separation region. Dengel and Ferr{Bjlz boundary layer equations for the ZPG flow, and determined that

and Alving and Fernhpl26] presented pulsed-wire measurementy .~ o0 velocity and Reynolds shear stress scale Withand

for the separated region and down&?tream of reat@achmen_t reg'Ela'déldx respectively. Unlike the Reynolds shear stresses, the
The PIV has also begun to be applied to separation stydigs * ’ ) i ; '
Angele and Muhamad-Klingmari19]). Even so, there are Reynolds normal stresses scale with. Castillo and Georgg21]

still many questions(especially theoreticalthat remain to be extended this simila_rity analysis to include pressure gra_dient

answered. boundary layers. Their approach and results can be summarized as
The primary goal of this paper is to describe how some receflows:

theoretical advancements in the understanding of turbulent boundSimiIarity Solution Profiles. The basic assumption is that it

ary layers lead to a simple separation criterion which is in reasqg- nossible to express any dependent variable, in this case the

able agreement with measurements, as well as the results frgifier geficit velocity,U—U.,, the outer Reynolds shear stress
some other investigators. The detached separation of the ste ), and the outer'ReynoI]ds normal stresseg), (v?) as a '

flow is the main focus in this investigatidief. Simpson’s defini- duct of two functions: i
tions [2,4,20). Attention will be given to only the 2-D steady product ot two functions; €.,

turbulent boundary layer in which the flow is not affected by the U—U.=Ug(X)fop(V, 87 A;%); (7)
turbulence intensity of the free stream. Surface curvature or B

roughness are also presumed not present in the problem. In brief, —(UU) =Rso(X)Top(V, 67 A;%); (8)
the separation is presumed to be caused by the strong adverse 5 ) —

pressure gradient alone. () = (U =Rno(X)Topn(Y, 87 A *); 9)

The equilibrium similarity analysis of Castillo and Geoif@4] whereU.,, R.,, Ry, are the outer velocity scale, the outer Rey-
for the pressure gradient boundary layers will be applied t0 thg|gs shear stress scale, and the Reynolds normal stress differ-
outer part of adverse pressure gradient boundary layers upstreame all of which depend only on Note that all of thesenustbe
of and up to separation. These results will thgn be combjned Wiltermined from the boundary layer and Reynolds stress equa-
the integral momentum boundary layer equation to obtain a sepgs together with the appropriate boundary conditions. The ar-
ration criterion. This separation criterion surprisingly appears Buments inside the similarity function$gy, 1 op, andr o) rep-
be both quite simple and universal. resent the outer similarity coordinatg/=y/ds, the local

Reynolds number dependends,= u, /v, the pressure gradient
parameter,A, and any possible dependence on the upstream

2 Review of the CastilldGeorge Analysis conditions,”, respectively.

Castillo and Georgé21] have set forth in detail the case for Asymptotic Invariance Principle: AIP.  This principle can
considering the outer part of most turbulent boundary layers to be simply stated as follows: since in the limit as the-Re the
equilibrium similarity boundary layers.Surprisingly, the experi- outer boundary layer equations become independent of the local
mental data suggest that only three values of the pressure gradR@ynolds number, therefore any solution to them must also be-
similarity parameterA (defined beloy, appear to describe all of come asymptotically independent 6f. Thus, in this limit, Eq.
the flows considered—one each for zero pressure gradi®&®), (7)—Eq.(9) must become independent of local Reynolds number;

i.e.,
The term equilibrium similarity should not be confused with the ‘equilibrium’ S —
boundary layer of Clauser. The Clauser analysis has much more restrictive criteria fop(Yv 6 ,A,*)—>f0pw(y,A,*), (10)
and is based on approximate equations truncated at first order@h,. , whereas the — o
Castillo/George analysis is valid to third order. Fop(Y, 8 A %) =T e (VLA %), (12)
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ropn(YaJr;A;*)"ropnw(IAu*); (12) 6 dUoo

A=—- ———— ——=constant (20)
as 6" —w. The subscripte is used to distinguish these infinite U..déldx dx
Reynolds number solutions from the finite Reynolds number pra: consequence of this is that fok#0, the imposed pressure
files used in Eq(7)-Eq. (9). gradient,dP,,/dx, controls the growth rate of an equilibrium

The Transformed Equations. Substituting Eq(10)—Eq. (12) similgr_ity boundary layer. Eq. 20 can be integrated directly to
into Eq. (6) and clearing terms yields: obtain:

—1/A
s dU, [U.| & dUg 5 dUg| , [U.ds o~U ™, (21)
Ug, dx | Ug/Ug dx op=t Ug, dx | °* |Ug,dx so there must be a power law relation between the free stream
velocity and the boundary layer thickness. Therefore, an equilib-
N 6 dU. d_5+ 6 dUg, o Y oy rium similarity boundary layer exists only if the experimental data
Ug, dx YTops dx * Ug, dx | °P op=(Y)dY in log-log plot show a linear relation between the boundary layer
thickness(e.g., 8 g9 OF 8595 and the free-stream velocityJ(, or
Rsol 5 dRy, Rno d&|__, more typically Ugqq9. There are virtually no measurements for
=5z [Tope | 7727 55| Topr=— | 772 72| YV opre (13)  which this is not easily testei®5].
Us, us, dx Ug, dx

From the perspective of the Castilo/George analysis outlined
where the term involving-dP. /dx has been cancelled by theabove, an “equilibrium” boundary layer is one wherd
pU..dU.. /dx term from Euler's equation for the external flow. =constant and~U;Y". Since it is the free stream velocity,..

¢ (ordP./dx), which is usually imposed on the boundary layer by

type of “equilibrium” similarity solutions suggested in Georgeexternalimean.s, this is a restrictive. constraint®ms a conse-
[24], all the terms in the governing equations must maintain tHf/€nce it provides a powerful experimental test of the theory, and
same relative balance as the flow develops. Thegalibrium IS most easily demonstrated by the linear relationship between
similarity solutions exist only if all the square bracketed term®9(U=) and loﬁ’@' fFlgubre %1 ]Eaken ft;on;(:astll(ljo agd Geo;%i],
have the same-dependence and are independent of the similari§/'°Vs €xamples for both favorablePQG and advers¢APG)

coordinatey. Thus, the bracketed terms must remain proportionf€Ssure gradient boundary layers. All of the existing experimen-
to each other as the flow develops: i.e. tal data show similar behavior. Thus, by the Castillo/George cri-

terion, it appears that most pressure gradient boundary layer are in
s dUg, 6 dU, U,| 6 dUg,, dé [U.,\déd equilibrium. In the following section the same test will be applied
Uy, dx Ug, dx  |Ug/Ug dx  dx | Ug)dx to boundary layers with eventual separation and reattachment.

The Equilibrium Similarity Conditions.  For the particula

S0 _mor% = “mo (14) 3 Boundary Layers With Eventual Separation

Figure 2 shows the equilibrium condition of Iddy) versus

where ~’ means ‘has the samedependence as’. log(6,6: ,6) for the experimental measurements of Schubauer and
It is clear that(just as for the zero pressure gradient boundatylebanoff[26], Newman[27], Ludweig and Tillmanr{28], Sim-

layen, full similarity (of the “equilibrium-type”) is possible only pson et al[1,2], Alving and Fernhol£6], all of which were made

if in boundary layers which separated. The linear fit for these mea-

surements continues to and sometimes even after the separation

Uso~Ue, (1%) point. Note the close correspondence between the slopes of the
ds ds plots usingé and 6, and a correspondence that does not hold for
Reo~UZ—~U2— (16) &, for these separating flows.
dx dx : . :
Unfortunately there is no explicit relation betwe#nand &,
and although an implicit one can be derived using the momentum
) integral equation and additional assumptions about the velocity
Rno~Us. 7) profiles(cf. George and Castill23]). For all the adverse pressure

Note that both the Reynolds shear and normal stress scalings 8g#flient boundary layers considerahd as will be shown latgr
be shown to be consistent with the Reynolds stress equatighs A4, to within the experimental error, where
themselvegcf. George and Castillp23]). P dp.. 6 du,

Thus, the outer equations do admit to full similarity solutions in ANy=—mr——— = ——> (22)
the limit of infinite Reynolds numbeand these solutions deter- pUzdo/dx dx U.de/dx dx

mine the outer scalesNo other choice of scales can producend theg is the momentum thickness. Most importantly, for all the
profiles (of the assumed foriwhich are asymptotically indepen- houndary layers considered,, also appears to be a single con-
dent of the local Reynolds number, at least unless they reducestant. Thus, at least for these boundary layers, the additional semi-

these scales in the limit. empirica| re|ation,
The Pressure Gradient Parameter for Equilibrium Flows. g~U_ YA (23)
Besides the similarity conditions for the mean velocity and Rey- o
nolds stresses, there exist other constraints. In particular, is at least approximately valid. Clearly this is satisfied for the APG
data of Fig. 2.
d_5~ i du.. _ § dP, (18) Table 1 lists all the linear fit results of Fig. 2. It is clear that
dx U, dx pU2 dx’ there is a good linear relationship between the Ubg(and both

log(#) and log), exactly like the APG boundary layers which did
not separate. Thus, even though the boundary layer approaches
rE’eparation, the outer flow apparently tends to remain in equilib-
rium similarity, and its state can be characterized by either

It follows from Eq.(18) that A = const is a necessary condition for
equilibrium similarity to exist, where the pressure gradient para
eter A is defined as:

) dpP, Ay, at least until the boundary layer equations themselves break
A= “UZdsldx W:constant (19)  down. This is important, since ttteorydepends only o, and
ple 6 can only be inferred from the momentum integfef. George
or equivalently, and Castillo23]). Note that the average valde=0.23 is slightly
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0.40 Cq

dshaw: Mi de
Qoo Ma AP = g1 (2HH)A,L. (25)

< Bradshaw: Mod APG
#-Clauser: Mod APG . .. . .
+Ludwieg & Tilmann: Very Strong APG (event. separation) Using the definition for separation by Simpd@), the mean shear

0.20 x_. ey A stressC;=0 but d¢/dx+0 at the same point. Then the above
\ Fit: -0.22(3/0) + 0215 integral boundary layer equatiat separationreduces to,

L 1
s Hoep= 1= 2. (26)
X 0

o

Q

o
T

This form of the integral equation would be of little use if it was
not for the fact that the log-log plots show that the equilibrium
similarity theory appears to describe the outer boundary layer al-
: most and perhaps beyond separation with a constant valye,
=0.21*+0.01. It follows immediately that the value of the shape
factor at separation is given bise~=2.76-0.23. This is an
amazingly simple result, and is determined entirely by the equi-
040 ‘ ‘ librium similarity of the outer boundary layer, with no assump-
0.0 1.0 20 30 tions at all about the inner part.

log, (/6 Table 2 shows the shape factor at separation from various ex-
periments cited previously, along with the present similarity
0.5 ; . T analysis results for shape factor. The experimental values are
@ Herring & Norbury: Mild FPG [ those provided by the original authors even though the methods of
OLudwieg & Tillmann: Mod FPG / J determination varied. Notice that the experimental data studied

109,0(U./U,)

-0.20 -

¢ Herring & Norbury: Strong FPG . . .
% Kline ot al.: Mild FPG ﬁ here include the classical experimental data of Schubauer and
/
P
Y

Klebanoff[26], Newman[27], and Ludweig and Tillmanf28], in
which they use hot-wire as a measurement tool. Because of direc-
. tional insensitivity of hot-wire, they could not give an exact de-
scription of separation location in the flow. Therefore, only the
last measured position is shown here, which could be regarded as
the intermittent separation point. Simpsg2,1] used an LDA
measured the velocity profile in the separation region, and the
intermittent detachment region was interpolated from the experi-
mental data. Alving and Fernho|8] used an asymmetric bound-
ary layer flow with eventual separation and reattachment region,
and a pulse-wire to measure the back flow.

Comparing the experimental result with the current result, the
new result is remarkably successful, especially given the uncer-

tainty of the data, both foA , and the value oH at separation. In

-0~10.0 015 10 15 20 ad_dition, n_o_tice that we are _seeking the shape factor_ at the sepa-
ration position. However, this result seems to describe the ITD

+ Kline et al.: Strong FPG
- == Fit: 1.915(8/0) -1.98
0.3 [— Fit: 1.915(5/6)-1.83

109,,(U./U)

01+

100,,(8/8) position for the some of classical experiments. For the relatively
Fig. 1 Top: Plots of U, versus &gy for APG data. Bottom : new experiments, this value proves very succe_ssful. .
Plots of U, versus &y for FPG data. Both plots are normalized It should be noted that the value af,=0.21 is a composite
with U.,,; and @, for first measured location. The data have been value obtained by regression fits to many data sets as shown in
normalized by the free stream velocity and the momentum Table 2 and Fig. 3. The success of this value is illustrated by
thickness at the most upstream position. figures in this paper. The individual estimates, however, varied by

as much ast0.01 from the composite value. Thus, the individual
estimates ofHg, could also vary as 286H.,<3.0. This is a
large range indeed, and certainly spans the range of the experi-

higher than the value of 0.22 for equilibrium adverse pressuUfgantal values in the table. Clearly, there is a demand for new

gradient boundary layer suggested by Castillo and Gef8F  eyperiments to determine whether the values\gfand Hsepare
and slightly higher than the average of thg values. universal, or whether the differences are real.

Figure 3, shows the same experimental data of Fig. 2. but noWre proposed theoretical value is very close to some of the
characterized with the single average value\gf=0.21. Clearly, Previous empirical results discussed earlier.
ac-

all the measurements with eventual separation can also be charac- } ] )
terized by a Single Va|ue. If the Constancy Of th|s Va|ue was not’aF”St, the proposed Shape faCtor IS consistent Wlth the result by

surprise before, its applicability to these boundary layers certainggndborn and Klin¢13], Eq. 3, which shows that the incipient
is. separation occurs whed, /5se=0.43 andHge,=2.7. Working

backwards, the uncertainty range ldf from the present theory
using the data cited above suggests #id5 at separation should
4 The Integral Momentum Equation and the Separa- be in the range of 0.3835*/5<0.5. The relation between the
tion Criterion present theory and the Sandborn/Kline correlation can best seen
by plotting H versuss* /&8 as shown in Fig. 4. The vertical lines

The integral boundary layer equation can be written as show the range of the Sandborn/Kline values, the horizontal lines

C; dé 0 dP, the uncertainty range ¢ from the present theory. The top plot in
25 " ax (2tH) 502 dx (24)  Fig. 4. shows all the equilibrium turbulent boundary layers with

very strong adverse pressure gradi¢?6,29,30,31,3R but with-
This can be rewritten using the definition for the pressure parammdt separation. It is obvious that all of these measurements are
eterA, as: below the separation zone. The bottom plot in Fig. 4. shows all the
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Fig. 2 Equilibrium boundary layers with eventual separation: log-log plots of U,

versus 0, o, and é.

experiments with separation. The separated or intermittent sepzgent is shown to be 2.7. Notice that the intermittent detachment
ration positions have been circled. It is clear that most of thesere refers toy,,=5%—20% instead ofy,,=20% by Simpson
points fall into the separation region, which is remarkable considt a|.[2].

ering the difficulty of the actual measurement. Therefore, Fig. 4.Thjrq, this investigations is also in agreement with the recent
provides a useful picture to describe the separation zone, and %%'dy by Sajben and Liad4]. They assumed that the normalized

phasizes that separation in the turbulent boundary layer is perh . . )
a process instead of a single evéas indicated by Simpsdr2]). %Bgctmc mtgmentl;_mhdefect _reac:le”s a mammur; vtalt:_?Datwc_:ltﬁtach
» Second, this result agrees with Kline et g8] one-parameter ment position, which expermentaily corresponds 1o

correlation prediction. The shape factor at the intermittent detachi-2-7- ) ) ) ) )
¢ Forth, this result is consistent with the latest experimental data

for separation by Alving and Fernho|8]. Using a pulse-wire as
Table 1 The pressure parameter for turbulent boundary layers the_ measqrgment tool, _a shape Tact(?r _Of 2.78 is found at the sepa-
with separation ration position. Also this result is within the range of 2:88.1
reported by the Dengel and Fernh¢&.

Experimentgseparatioh A, A As,

Newman[27] 0223 0228 0212 Finally, in addition tp the e)_<per|mental eyldence cited above,
Ludweig & Tillmann [28] 0.194 0.213 0171 there are a number of indirect inferences which can be made from
Alving & Fernholz[6] 0.212 0.226 0.219  industrial practice and from laboratory experiments in which the
g:mgggg g: g:% 8:%1;' 83% 0137 poundary layers did not separate. For example, one common de-
Schubauer & Klebanoff26] 0.213 0.257 0.174 sign criterion for industrial turbine designers to avoid separation
R.M.S. 0.210.01 0.230.02 0.1%£0.03  on compressor blades is twt allow the shape factor to exceed

- : 2.5 (Hall [29]. Another example is the recent experiment of Els-
* g5 is used instead 0fyg
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Fig. 3 Equilibrium boundary layers with eventual separation: log-log plots of U,

versus éand 6.

berry et al[22] that created an equilibrium boundary layer on the The outer part of separating boundary layers are also equilib-
verge of separation, but found it necessary to keep the shape fiagm similarity boundary layers characterized by a constant pres-

tor below 2.6. sure parameters.
e The pressure parametar, is nearly same for all the APG flows
5 Summary and Conclusions with eventual separation; in particulay,,=0.21+0.01.
Using the RANS equations and similarity analysis, it wa$ It is possible to characterize boundary layers at separation by
shown that: Hsep=2.76+0.23. This value of shape factor is in close agree-

Table 2 The values for the shape factor H

1

Experiment Ay Hsep H= X, 2 Position Boundary layer description
Schubauer & Klebanoff13] 0.21 2.84 2.76 the last point airfoil type flow-hot-wire
Newman[27] 0.22 2.46 2.55 the last point airfoil type flow-hot-wire
Ludwieg & Tillmann [28] 0.19 2.04 3.26 the last point diverging channel flow-hot-wire
Simpson et al[1] 0.21 2.62 2.76 ITD airfoil type flow-LDA
Simpson et al[2] 0.21 2.97 2.76 ITD airfoil type flow-LDA
Alving & Fernholz[6] 0.21 2.78 2.76 Detachment asymmetric flow-Pulse-wire
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4.0 ' Nomenclature

I
2 e Lo eong AT U L 1 H = shape factor
v (a1 & Krogstad stong near separaf .
[ B doueikiensmians ! Hsep = shape factor at separation
§ G Maion 470 ! Ry, = outer Reynolds stress scale
U mmssraresrs : : Usep = Velocity at separation
B0 = m = m e e - - - U, = unknown outer velocity scale
U, = free stream velocity
Sgparation Zone U.—U = velocity deficit
_ frinti ; 2 _
I Femmm-m-m=--- ---4 u, = friction velocity, uy =7,/p

*

A pressure parameterslpU2ds/dx)(dP., /dx)
6 = boundary layer thicknesgyg
0

201 | i = momentum thicknesg,;(U/U..)(1—U/U.)dy
t As, = pressure parameters( /pU2d s, /dx)(dP.,/dx)

6, = displacement thicknesgg(1—U/U..)dy

1
I
|
|
< - 1
- &Jff’ ! A, = pressure parametergfpU2d6/dx)(dP., /dx)
I
1
|

R ) 1 ( 6, = momentum thickness at first measured position
195 0.1 0.2 0.3 0.4 0.5 0.6 * = (unknown dependence on upstream conditions
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