&

UNIVERSITY

Abstract |

The ice floe simulator, built as part of the STePS? project', models
the movement of floating ice floes as they interact with each other
and around impeding structures. The application utilizes Gen-
eral Purpose Graphical Processor Unit (GPGPU) computing us-
ing Nvidias CUDA libraries to take advantage of the high number
of cores in CUDA enabled GPUs and to compute the movement
of ice floes in hyper-real-time. This poster and demo illustrates
current work in this project and highlights what is being done to
increase both the speed and size of ice field simulations.

‘ 1. Hyper-Real-Time Simulation |

The lce Simulation Viewer is an attempt to provide accurate sim-
ulation results for realistic ice fields. In order to be effective at
providing useful information quickly enough to be acted on, these
simulations need to be computed in hyper-real-time. To accom-
plish this, the Ice Floe Simulator has taken advantage of General
Purpose Graphical Processing Unit (GPGPU) computing to uti-
ize the large number of processing cores on current Graphics
Processing Unit (GPU) devices to perform large amounts of cal-
culations in parallel. The Ice Floe Simulator uses NVIDIA’s CUDA
libraries to get optimum performance using CUDA enabled GPUs.

‘ 2. Simulator Sructure |

The Ice Simulation Viewer has been built using the Qt framework
In order to take advantage of its various libraries and cross plat-
form capabilities. The simulator has an interface that a user can
interact with in order to load files, load simulations, load images,
edit properties, or create simulations. These functions are com-
pleted by seperate processes which use inter process communi-
cation via TCP sockets to comunicate with the simulator interface.
The entire Ice Flow Simulator is composed of three distinct pro-
cesses in a client server model that comminicate in this way and
can be labeled as the Simulator, Server, and Engine. Fig. 1 show
the three processes and how they relate to each other in the Ice
Floe Simulator.

Figure 1: Internal Structure of Simulator

The Engine process [1] in the Ice Simulation Viewer is solely re-
sponsible for creating the simulation based on the parameters
it recieves from the Simulator. To do this, the engine uses the
NVIDIA developed CUDA libraries to use GPGPU computing on

Ice Floe Simulator

a CUDA enabled GPU. These GPU’s contain hundreds of CUDA
cores with the upper range models containg as much has a cou-
ple thousand. Fig. 2 shows the internal flow of the Engine pro-
cess and how it relates to the GPU device.

Start
simulation

L4 = GPU device
Fezad theics
floss data
orsats
4‘ neishbours list
Initizlize the kemsl
simmlation l.
parameters and
the numhber af P test intersadian
iterations () Simne =k and find
¥ —* onGPU § callision
_ r25ponse kemd
=1
: :
Sand datato Crat npdated datz from l
GPU GPU and store it Wa updats kemel
- gzt the datz every nth :
¥ T tim= step ;
i<=n e T LT L L L LI LT LLLERRLEER L

T i=i+]

End af
simuolation

Figure 2: Engine Flow Chart[1]

The Server process acts as a buffer for the communication that is
being sent from the Engine process and the Simulator process.
This means that the Simulator can play a partial simulation from
the engine while stile continuing to load more of the simulation
from the Engine. The Server process is also responsible for im-
porting files.

‘ 3. Features |

The Ice Simulation Viewer can be used to play and generate 2D
simulations of ice pan movement and interaction with structures.
These simulations take a variety of variable parameters, such as
the water drag coefficient, wind direction and force, and simula-
tion time step that the user can specify for their own simulation.
Each simulation can be exported to an xml based .ice file that
contains all the information for the simulation, and which can be
imported back into the simulator to be played again. Fig. 3 shows
a sample of an .ice file. Each object tag represents one ice floe,
and contains its location, velocity, and thickness.

<coordinates> §37.525024 187.0079%6 853.070007 1852.086502 B584.359985 177.165497 1020.49:

<coordinates> 313.394501 3.007529%97 325.221008 2.04834509 332.717499% 12.48584%4 326.1200

Figure 3: Sample ice File Code

The play back of a simulation can be paused and played, and the
view of the ice field rotated or panned. Ice floes can be selected
from the ice field and the floe properties are displayed for the user
to see. Fig. 4 shows the ship being selected in the midde of a

Thttp://www.engr.mun.ca/research/Steps2.php

Steven Chaulk, Shadi Alawneh, Dennis Peters, Haochen Zhang, Claude Daley, and Gary Blades

Faculty of Engineering and Applied Science, Memorial University of Newfoundland, St. John's, NL, Canada
{steven.chaulk, shadi.alawneh, dpeters, hz3030, cdaley, gblades}@mun.ca

paused simulation; its properties are displayed in the top left of
the screen.

Properties

& X \View Controls g x F X
Floe index: a Z00M
[=] -
Velocity (x) (m/s):
Velocity (y) (m/s):

Figure 4: Running an Ice Floe Simulation

‘ 4. Ice Floe Breaking |

A new mechanic that has been implemented into the physical
model is the breaking of any ice floe into two seperate ice floes.
This event is cause by the application of force to the ice floe, such
as a moving structure, and is triggered when the force applied is
large enough. This works by creating a new ice floe within the
shape of the original, and reshaping the original ice floe to form
the remaining area. One ice floe receives a new index while the
other will retain the index of the original ice floe. See Fig. 6

Figure 5: Ice Floes Before Breaking: 22

Figure 6: Ice Floes After Breaking: 24

Figure 6 above shows the ice field after a structure has moved
through it with sufficient force to cause an ice floe to break apart.

~STePS2

5. Multi Platform Use |

Currently the Ice Floe Simulator is being expanded to work on dif-
ferent platforms using varying CUDA enabled GPUs and operat-
ing systems. Supported operating systems for the Ice Simulation
Viewer include Windows 7 and OSX.

‘ 6. Results |

We have used several systems to successfully run the simulator
including:

1. Intel(R) Xeon(R) CPU @2.27GHz (2 processors) and a GPU
Tesla C2050. This card has 448 processor cores, 1.15 GHz
processor core clock and 144 GB/sec memory bandwidth.

2. Intel(R) Core(TM) i5-2500k CPU @3.30GHz (4 processors)
with a NVIDIA GTX 580 GPU that has 512 processor cores,

1.54 GHz processor core clock and 192.4 GB/sec memory
bandwidth.

3. Intel(R) with a NVIDIA GTX 650M GPU that has 384 processing
cores and 80 GB/sec memory bandwidth.

7. Future Work |

nvestigation is being done into utilizing multple GPU'’s to perform
simulation calculations [2]. Also, minor adjustments need to be
made in order to make the user interface more intuative and less
redundant.

‘ 8. ACKNOWLEDGMENTS |

This research has been done under STePS? project and was
supported by: ABS, Atlantic Canada Opportunities Agency, BMT
Fleet Technology, Husky QOil Operations Ltd, Research and De-
velopment Council, Newfoundland and Labrador and Samsung
Heavy Industries.

‘ References |

[1] Shadi Alawneh and Dennis Peters, “Ice simulation using
gpgpu,” Iin Proceedings of the 2012 IEEE 14th International
Conference on High Performance Computing and Commu-
nication & 2012 IEEE 9th International Conference on Em-
bedded Software and Systems, Washington, DC, USA, 2012,
HPCC ’12, pp. 425-431, IEEE Computer Society.

[2] Xiaogian Men and Dennis Peters, “Particle simulation using
serial,gpu and distributed approaches,” in In Proceedings of
Newfoundland Electrical and Computer Engineering Confer-
ence (NECEC 2013), IEEE, St. John’s, NL, Canada, Nov 2013.

