
Fast Quadratic Discriminant Analysis Using GPGPU
for Sea Ice Forecasting

Shadi Alawneh, Carl Howell and Martin Richard
C-CORE

Robert A. Bartlett Building, Morrissey Road

St. John’s, NL, CAN, A1B 3X5

Email: {shadi.alawneh, carl.howell, martin.richard}@c-core.ca

Abstract—General Purpose computing on Graphics Processor
Units (GPGPU) brings massively parallel computing (hundreds of
compute cores) to the desktop at a reasonable cost, but requires
that algorithms be carefully designed to take advantage of this
power. The present work explores the possibilities of CUDA
(NVIDIA Compute Unified Device Architecture) using GPGPU
for Quadratic Discriminant (QD) analysis. QD analysis is a
form of multivariate statistical analysis that can be applied to
forecasting seasonal sea ice freeze-up and break-up. The forecast
problem is formulated as a classification problem, with two
classes (e.g., “ice” and “no ice”) and the objective of the analysis
is to decide which of the classes best describes the ice/no ice
condition at a particular geographic point on a specified date.
We have conducted experiments to measure the performance
of the GPU with respect to the serial CPU, parallel CPU
(OpenMP), MATLAB, MATLAB (Parallel for) implementations.
The experiments consist of implementing a serial CPU, parallel
CPU (OpenMP), MATLAB, MATLAB (Parallel for) and GPU
versions of the QD analysis algorithm and executing all versions
on several data sets to compare the performance. Our results
show speed up of up to 426 times, reducing the elapsed time
from over 15 hours to about 2 minutes.

Keywords—GPGPU; CUDA; QD.

I. INTRODUCTION

“Commodity computer graphics chips, known generically
as Graphics Processing Units or GPUs, are probably todays
most powerful computational hardware for the dollar. Re-
searchers and developers have become interested in harnessing
this power for general-purpose computing, an effort known
collectively as GPGPU (for General-Purpose computing on
the GPU).”[1] GPUs are particularly attractive for many ge-
ometric problems, not only because they provide tremendous
computational power at a very low cost, but also because this
power/cost ratio is increasing much faster than for traditional
CPUs.

A reason for this is a fundamental architectural difference:
CPUs are optimized for high performance on sequential code,
with many transistors dedicated to extracting instruction-level
parallelism with techniques such as branch prediction and
out-of-order execution. On the other hand, the highly data-
parallel nature of graphics computations enables GPUs to use
additional transistors more directly for computation, achieving
higher arithmetic intensity with the same transistor count.[1]
Many other computations found in modelling and simulation
problems are also highly data-parallel and therefore can take
advantage of this specialized processing power.

Hence, in this research we are trying to use the benefit of
the high performance of the GPU to implement a fast algorithm
for QD analysis, which can be used in sea ice forecasting.
Our goal in this paper is to study the cost of implementing
a QD analysis algorithm in CUDA and its benefits in terms
of performance against an equivalent CPU and MATLAB
implementation.

A. Application of QD Analysis

The quantity and scale of offshore oil and gas reservoirs
on the Arctic Shelf is resulting in increased activity above the
Arctic Circle. Exploration and production north of the Arctic
Circle comprise a plethora of challenges beyond traditional
offshore operations; one notable challenge consists of a short-
ened operating season resulting from the presence of sea ice.
When considering the sensitivity of drilling operations to the
presence of sea ice, sea ice studies are paramount to ensuring
safe and viable operations.

C-CORE has developed a sea ice forecasting methodology
that uses a statistical model. This forecast model can simulate
the timing of sea ice break-up, predict open water conditions
and demonstrate its forecasting capability for operations rel-
evant to activities in the Arctic that are sensitive to sea ice
coverage. We are using the GPGPU to implement some of
the numerical models in this forecasting methodology. The
statistical model was developed to forecast freeze-up and
break-up dates at key locations within the Arctic. Modeling
the freeze-up and break-up in a given ice season follows a
multi-node based QD statistical model.

II. METHODOLOGY

A. QD Approach

QD analysis is a form of multivariate statistical analysis
that can be applied to forecasting. Other multivariate ap-
proaches in the literature include Principal Component Analy-
sis and Linear Discriminant (LD) Analysis. When some form
of validation data exists, as in the case here with Synthetic
Aperture Radar (SAR) derived ice charts, it is recommended
that a supervised pattern recognition approach be used, such
as the LD and QD. The QD process is used in this paper.
The forecast problem is formulated as a classification problem,
with two classes (e.g., “ice” and “no ice”) and the objective
of the analysis is to decide which of the classes best describes
the ice/no ice condition at a particular geographic point on a
specified date. The mathematics of the approach is structured

2015 IEEE 17th International Conference on High Performance Computing and Communications (HPCC), 2015 IEEE 7th

International Symposium on Cyberspace Safety and Security (CSS), and 2015 IEEE 12th International Conf on Embedded Software

and Systems (ICESS)

978-1-4799-8937-9/15 $31.00 © 2015 IEEE

DOI 10.1109/HPCC-CSS-ICESS.2015.26

1585

to consider a large number of potential input variables that
have been measured in prior years of observations and to
select a subset of those variables that develops the most
accurate classification decisions. The classification decision is
a mathematical distance in multidimensional space from two
classes, “ice” or “no ice”. An unknown (potentially future
forecasting) event with the minimum distance to either the
“ice” or “no ice” classes will be assigned to the best fit
(minimum distance) class.

The sub-sections in this section provide an overview of how
the QD approach is used in this paper. Additional details on
the general QD method can be found in [2], or other sources
that address the use of multivariate approaches to forecasting.

1) Description and Equations: From a high level, the QD
approach has two models: an ice model and an open water
model. For a particular area, features that correlate with the
presence of ice and open water are used to develop the
QD models. Future events can then be forecasted by using
the available seven day forecast environmental data. These
environmental data inputs, when used in the QD models, are
used to calculate the distance measured from the ice and open
water models. The set of inputs that produces the minimum
distance to sea ice or open water are labeled as such.

More formally, a supervised statistical based discrimination
approach is presented to forecast sea ice from open water
in the Arctic. This approach uses features that are extracted
from sea ice charts, modeled reanalysis environmental data,
and physically modeled ice thickness. These features are then
used to build (or train) quadratic discriminant (QD) models
representing open water and sea ice classes. Features such
as air temperature, sea surface temperature, and accumulated
freezing degree days are utilized in the model training phase.

The approach taken here uses grid nodes. Each node has
a unique set of freeze-up and break-up models. Features
that have been identified as dominant in supporting forecast
optimization will be used in the training phase of algorithm
development. Sea ice prior probabilities based on location and
Julian day will be used as bias factors in the QD to favor the
presence or absence of sea ice. The QD model is built using
data from the past 20 years.

In optimizing a supervised discrimination model for differ-
entiating open water from sea ice, three fundamental method-
ologies were considered. These were the discrimination func-
tion itself, feature selection (optimization), and performance
evaluation. Here, an overview of these ideas is presented,
including the specific methods of quadratic discriminant (QD),
limited exhaustive search (LES), sequential forward selection
(SFS), and re-substitution.

Bayesian decision theory is the fundamental statistical
approach when solving pattern recognition problems [2]. It
follows from the assumption of general multivariate normal
density and Bayesian minimum error decision criteria that the
maximum likelihood QD function has the form of:

gi(x) = − 1
2 (x− μ)t

∑−1
(x− μ)− n

2 ln(2π)− 1
2 ln |

∑ |+ ln(P (wi)) (1)

Here x is the sample column vector of length n, μ is
the mean sample column vector of length n,

∑
is the nn

covariance matrix, P (wi) is the prior probability, and |∑ |
and

∑−1
are its determinant and inverse, respectively.

The QD models (gi(x)) for each class are built by esti-
mating the population mean and covariance from the known
training data. This way, online classification of an unknown
sample can be evaluated using the distance from each (gi(x)).
The class function which produces the maximum scalar value
(minimum distance from class) is the class assignment for the
unknown sample [3].

2) Feature Selection Methods: One of the fundamental
challenges in statistical pattern recognition is to determine
which features should be employed for the best classification
results [4]. Feature selection can be defined as follows: given a
set of candidate features, select a subset that performs the best
under a classification system [5]. Feature selection algorithms
will not only reduce the cost of running a classification
algorithm by reducing the feature space, but can also provide
a better classification model due to the statistically favored
feature space that better fits the pattern recognition problem
[6]. In this work, we have used the limited exhaustive search
(LES).

The LES is simply the exhaustive search (ES) algorithm
with a time stop criteria as opposed to the evaluation of all
combinations. The LES was inspired by the fact that the lower
feature spaces can be evaluated exhaustively with reasonable
computation times as the bulk of computational load exist in
evaluating the higher order feature spaces. As well, the LES
supports limited data sets that would potentially suffer from
the curse of dimensionality [3].

3) QD-LES Evaluation Method: It is important to estimate
the classifier performance for evaluation and prediction pur-
poses. Three main methods for performance estimation are
re-substitution, hold out, and cross validation [4]. For re-
substitution, all samples are used to train the classifier and
to test its performance. The hold out method separates all
samples into two groups, a training set and a test set. The
cross-validation method iteratively divides all samples into two
groups, a training set and a test set. For each iteration of cross-
validation, a subset of data is extracted for training, and the
remaining sample(s) are used for testing. The testing is such
that each sample is tested only once during the entire process.
The size of the testing subset can be as low as one sample.
The cross-validation one sample testing method is commonly
known as the leave-one-out (hold out) method [4].

The re-substitution method results in an optimistically
biased estimate for performance and should only be used when
the sample size is sufficiently large. The hold out method is
unbiased; however, all samples are not used in the training
phase and as such could decrease the overall potential for
classification. The cross-validation method is essentially an
unbiased measure for most applications; however, recalculation
of the classification model for each sample test creates a
substantial computational effort compared to the hold out and
re-substitution measures [4].

Considering the cross-validation method for our work here,
correlation between samples being “left out” and those in-
cluded in testing needs to be given some special consideration.
For example, if “leave one out” cross validation was employed,

1586

the “leave one out” day may be highly correlated with both
the before and after days. It is believed that “leave one out”
in such instances would produce very similar results to that
of re-substitution method. Hence, there would be substantially
more work with no or limited gain.

In this work, we have employed the re-substitution method
which maximizes the quality of the data when training each
QD node. We have employed a quality control process that
minimizes any over fitting problems that can occur with re-
substitution such as selecting lower dimensionality QD’s. As
well, for non-trivial class separation problems there are times
that the optimized feature set actually contain a feature that
supports the highest accuracy but does not support a stable
algorithm. In such occurrences, these features are removed and
the next highest ranking feature set is selected.

B. Stream Processing

The basic programming model of traditional GPGPU is
stream processing, which is closely related to SIMD1. A
uniform set of data that can be operated upon in parallel
is called a stream. The stream is processed by a series of
instructions, called a kernel [7]. Stream processing is a very
simple and restricted form of parallel processing that avoids
the need for explicit synchronization and communication man-
agement. It is especially designed for algorithms that require
significant numerical processing over large sets of similar data
(data parallelism) and where computations for one part of
the data only depend on ‘nearby’ data elements. In the case
of data dependencies, recursion or random memory accesses
stream processing becomes not reasonable [7], [8]. Computer
graphics processing is well suited to this, where vertices’s,
fragments and pixels can be processed independently of each
other, with clearly defined directions and address spaces for
memory accesses. The stream processing programming model
allows for more throughput oriented processor architectures.
For example, without data dependencies caches can be reduced
in size and the transistors can be used for ALUs instead. Fig.
1 shows a simple model of a modern CPU and a GPU. The
CPU uses a high proportion of its transistors for controls and
caches while the GPU uses them for computation (ALUs).

Fig. 1. Simple comparison of a CPU and a GPU [9]

C. CUDA

CUDA is a comprehensive software and hardware architec-
ture for GPGPU that was developed and released by Nvidia in
2007. It is Nvidia’s move into GPGPU and High-Performance

1Single Instruction Multiple Data, in the Flynn’s taxonomy of computer
architectures

Computing (HPC), combining huge programmability, perfor-
mance, and ease of use. A major design goal of CUDA is to
support heterogeneous computations in a sense that serial parts
of an application are executed on the CPU and parallel parts
on the GPU[10]. A general overview of CUDA is illustrated
in Fig. 2.

Fig. 2. CUDA overview [11]

Nowadays, there are two distinct types of programming
interfaces supported by CUDA. The first type is using the
device level APIs (left part of Fig. 2) in which we could use
the GPGPU standard DirectX Compute by using the high level
shader language (HLSL) to implement compute shaders. The
second standard is OpenCL created by the Khronos Group (as
is OpenGL). OpenCL kernels are written in OpenCL C. The
two approaches don’t depend on the particular GPU hardware
so they can be used with GPUs from different vendors. In
addition to that, there is a third device-level approach through
low-level CUDA programming which directly uses the driver.
One advantage for this approach is it gives us a lot of control
but this approach is complicated because it is low-level (it in-
teracts with binaries or assembly code). Another programming
interface is the language integration programming interface
(right column of Fig. 2). As explained in [11], it is better to
use the C runtime for CUDA, which is a high-level approach
that requires less code and is easier to program and debug.
This approach also supports other high-level languages such
as Fortran, Java, Python, or .NET through bindings. Therefore,
in this work we have used the C runtime for CUDA.

The CUDA programming model, as discussed in [12],
suggests a helpful way to solve a problem by splitting it
in two steps: Firstly into coarse independent sub-problems
(grids) and then into finer sub-tasks that can be executed
cooperatively (thread blocks). The programmer writes a serial
C for CUDA program which invokes parallel kernels (functions
written in C). The kernel is usually executed as a grid of thread
blocks. In each block the threads work together through barrier
synchronization and they have access to a shared memory
that is only visible to the block. Each thread in a block has
a different thread ID and each grid consists of independent
blocks, each of which has a different block ID. Grids can
be executed either independently or dependently. Independent

1587

grids can be executed in parallel provided that the hardware
being used supports executing concurrent grids. Dependent
grids can only be executed sequentially. There is an implicit
barrier that ensures that all blocks of a previous grid have
finished before any block of the new grid is started. In our
work, we have two kernels that train all data.

D. QDA Flowchart

Fig. 3 shows the high level flow of the QDA algorithm.
At the beginning the CPU reads the point matrix data and
divides it into two matrices (ice and no ice). The covariance
matrix and mean for the ice and no ice matrices are calculated.
Then, the number of combinations (n) is calculated based
on the evaluation features space dimension (s) and number
of features (nf)as shown in equation 2. The ice and no ice
matrices are transferred into the GPU. The parameters for ice
and no ice matrices are calculated and sent into the GPU. After
that the GPU takes over the main work of the QDA. In our
implementation, we have two kernels to train the ice and no ice
matrices (“computeIce”, “computeNoIce”). These two kernels
are executed simultaneously on the GPU using streams. We
have assigned one thread for each row in the ice and no ice
matrices. Finally, the number of ice and no ice detected are
transferred back to the CPU to calculate the accuracy of the
QDA classifier. This process is repeated until the number of
combinations is completed.

n =

s∑

i=1

nf !

((nf − i)! ∗ i!) (2)

III. EXPERIMENT PROCEDURE

The problem explored in this paper is to develop an
implementation of the QD analysis using GPGPU approach
with CUDA. We have implemented a serial CPU, parallel
CPU (OpenMP - 12 cores), MATLAB, MATLAB (Parallel for
- 12 cores) and GPU solutions and have run all algorithms
using a data set of 4 points and each point is 2880 x 51
matrix for different space dimensions (1, 2, 3, 4, 5) and we
have measured the speed-up. To show the scalability of the
parallel implementation we also have run the serial CPU,
MATLAB, and GPU on a data set of one point with different
matrix sizes (2880 x 51, 5760 x 51, 11520 x 51) for a space
dimension of 4 and then we have measured the speed-up. We
didn’t compare the MATLAB (Parallel for) and parallel CPU
(OpenMP) approaches for the data set of one point becasue
they are used only to parallelize the execution of multiple
points.

The performance of MATLAB is compared with CUDA in
this paper to show the engineers who are using MATLAB that
they can achieve a significant performance improvement from
using GPGPU approach with CUDA.

We have used Intel(R) Xeon(R) CPU E5-2620 @2.10GHz
and a GPU GeForce GTX TITAN Black card. This card has
2880 processor cores, 889 MHz processor clock and 336
GB/sec memory bandwidth.

Fig. 3. QDA flowchart

A. Results

The significant performance improvement that is achieved
in this paper by going from CPUs to GPUs is due to the nature
of the problem (highly data-parallel) which is a good fit for
the GPUs and the kernels are embarrassingly parallel.

Fig. 4 shows elapsed time of serial CPU, parallel CPU
(OpenMP), MATLAB, MATLAB (Parallel for) and GPU so-
lutions using a data set of 4 points and each point is 2880 x
51 matrix for different space dimensions (1, 2, 3, 4, 5). As we
see in Fig. 4 we can tell that the GPU approach gets faster
than the other approaches as the space dimension increases.

Fig. 5 shows the speed up of the GPU approach using a
data set of 4 points and each point is 2880 x 51 matrix for
different space dimensions (1, 2, 3, 4, 5) As we see in Fig. 5
we can tell that the speed up increases as the space dimension
increases.

Fig. 6 shows elapsed time of serial CPU, MATLAB, and
GPU solutions using a data set of one point with different
matrix sizes (2880 x 51, 5760 x 51, 11520 x 51) for a space
dimension of 4. As we see in Fig. 6 we can tell that the GPU
approach gets faster than the other approaches as the matrix
size increases.

Fig. 7 shows the speed up of the GPU approach using a

1588

data set of one point with different matrix sizes (2880 x 51,
5760 x 51, 11520 x 51) for a space dimension of 4. As we see
in Fig. 7 we can tell that the speed up increases as the matrix
size increases.

Fig. 4. Elapsed time for serial CPU, parallel CPU (OpenMP), MATLAB,
MATLAB (Parallel for) and GPU solutions on a data set of 4 points.

Fig. 5. GPU approach speed up using a data set of 4 points.

Fig. 6. Elapsed time for serial CPU, MATLAB and GPU solutions on a data
set of one point with different matrix sizes.

IV. RELATED WORK

Graphics Processing Units (GPUs) have a large number of
high-performance cores that are able to perform high com-
putation and data throughput. Nowadays, GPUs have support
for accessible programming interfaces and industry-standard
languages such as C. Hence, these chips have the ability
to perform more than the specific graphics computations for
which they were designed. Developers who uses GPUs to

Fig. 7. GPU approach speed up using a data set of one point.

implement their applications often achieve speedups of orders
of magnitude vs. optimized CPU implementations [14].

There are several advantages of GPGPU that make it partic-
ularly attractive: Recent graphics architectures provide tremen-
dous memory bandwidth and computational horsepower. The
performance of the graphics hardware increases more rapidly
than that of CPUs because of semiconductor capability, driven
by advances in fabrication technology, increases at the same
rate for both platforms.

QD analysis is one of the classification machine learning
algorithms. GPGPU approach has been recently applied in the
classification machine learning field by several researchers.
Clustering strategies and the computation of a k-nearest neigh-
bor similarity classifier is presented in [15]. A Geometrical
Support Vector Machine classifier has also been implemented
using GPGPU [16]. It extends different GPGPU implementa-
tions for Neural Networks [17]. In this paper, we propose a
fast GPGPU implementation for the QD analysis which can
be used in sea ice forecasting. We weren’t able to find other
state-of-the-art implementation of QD analysis using limited
exhaustive search for feature selection that we can compare
our GPU implementation against.

V. CONCLUSION

The paper introduces the basics of GPGPU and presents
the stream processing programming model and the traditional
GPGPU approach along with CUDA and the programming
model. The experiment proved performance benefits for QD
analysis. It is clear that GPGPU has the potential of signifi-
cantly improving the processing time of highly data parallel
algorithms.

VI. FUTURE WORK

Further development and optimization are needed for a
large number of points. One way to achieve a fast QD analysis
for a large number of points is to use multiple GPUs. Also,
applying the QD analysis in other applications will be a next
step in this research.

REFERENCES

[1] J. D. Owens, D. Luebke, N. Govindaraju, M. Harris, J. Krger,
A. Lefohn, and T. J. Purcell, “A survey of general-purpose computation
on graphics hardware,” Computer Graphics Forum, vol. 26, no. 1, pp.
80–113, 2007.

1589

[2] R. Duda, P. Hart, and D. Stork, Pattern Classification. Wiley, 2001.

[3] C. Howell, “Iceberg and ship detection and classification in single, dual
and quad polarized synthetic aperture radar,” Master Thesis, Memorial
University of Newfoundland, St. John’s, NL, 2008.

[4] S. J. Raudys and A. K. Jain, “Small sample size effects in statistical
pattern recognition: Recommendations for practitioners,” IEEE Trans.
Pattern Anal. Mach. Intell., vol. 13, no. 3, pp. 252–264, Mar. 1991.
[Online]. Available: http://dx.doi.org/10.1109/34.75512

[5] A. Jain and D. Zongker, “Feature selection: Evaluation, application,
and small sample performance,” IEEE Trans. Pattern Anal. Mach.
Intell., vol. 19, no. 2, pp. 153–158, Feb. 1997. [Online]. Available:
http://dx.doi.org/10.1109/34.574797

[6] A. Jain and B. Chandrasekaran, Dimensionality and Sample Size Con-
siderations in Pattern Recognition Practice. North–Holland, 1982,
vol. 2, ch. 39, pp. 835–855.

[7] J. Owens, “Streaming architectures and technology trends,” in GPU
Gems 2, M. Pharr, Ed. Addison Wesley, Mar. 2005, ch. 29, pp. 457–
470.

[8] I. Buck, T. Foley, D. Horn, J. Sugerman, K. Fatahalian, M. Houston, and
P. Hanrahan, “Brook for gpus: stream computing on graphics hardware,”
in SIGGRAPH ’04: ACM SIGGRAPH 2004 Papers. New York, NY,
USA: ACM Press, 2004, pp. 777–786.

[9] Nvidia, “Cuda programming guide v2.3.1,” 2009.

[10] ——, “Cuda development tools v2.3. getting started,” 2009.

[11] ——, “Cuda architecture overview v1.1. introduction & overview,”
2009.

[12] J. Nickolls, I. Buck, M. Garland, and K. Skadron, “Scalable parallel
programming with cuda,” Queue, vol. 6, pp. 40–53, March 2008.

[13] Nvidia, “Geforce gtx titan black,”
http://www.geforce.com/hardware/desktop-gpus/geforce-gtx-titan-
black/product-images.

[14] “Gpgpu website,” http://www.gpgpu.org/.

[15] V. Garcia, E. Debreuve, and M. Barlaud, “Fast k nearest neighbor search
using gpu,” in Computer Vision and Pattern Recognition Workshops,
2008. CVPRW ’08. IEEE Computer Society Conference on, June 2008,
pp. 1–6.

[16] M. Wolfe, “Implementing the pgi accelerator model,” in Proceedings
of the 3rd Workshop on General-Purpose Computation on
Graphics Processing Units, ser. GPGPU ’10. New York,
NY, USA: ACM, 2010, pp. 43–50. [Online]. Available:
http://doi.acm.org/10.1145/1735688.1735697

[17] D. Yudanov, M. Shaaban, R. Melton, and L. Reznik, “Gpu-based
simulation of spiking neural networks with real-time performance amp;
high accuracy,” in Neural Networks (IJCNN), The 2010 International

Joint Conference on, July 2010, pp. 1–8.

1590

