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Abstract—Modern Graphics Processing Units (GPUs) with 
massive number of threads and many-core architecture support 
both graphics and general purpose computing. NVIDIA’s 
compute unified device architecture (CUDA) takes advantage of 
parallel computing and utilizes the tremendous power of GPUs. 
The present study demonstrates a high performance computing 
(HPC) framework for a Monte-Carlo simulation to determine 
design sea ice loads which is implemented in both GPU and CPU. 
Results show a speedup of up to 130 times for the 4 Tesla K80 
GPUs over an optimized CPU OpenMP implementation and 
speedup of up to 8 times for the 4 Tesla K80 over a single Tesla 
K80 GPU implementation. The elapsed time of the different 
implementations has been reduced from about 2.5 hours to 0.7 
seconds.

Keywords-GPGPU; CUDA; Monte-Carlo. 

I. INTRODUCTION

General purpose graphics processing unit (GPGPU) is one of 
the best methodologies to introduce high performance 
computing (HPC). A computer can be utilized with GPUs to 
execute massive concurrent computations, and to achieve 
efficient implementation [1]. A GPU is made of thousands of 
cores which are responsible for handling many tasks 
concurrently, while a CPU has a few cores for the serial part 
of the program [2]. 

In the present study describes, the interaction between sea 
ice and vertically sided structures are simulated, with the goal 
of finding the maximum annual force over 10,000 years while 
considering wind, current and kinetic energy in the 
calculation. Each force involves different random parameters 
that require a random number generator (RNG) algorithm to 
calculate their appropriate distributions. Therefore, using an 
efficient algorithm, such as Monte Carlo, for generating 

random numbers helps to simulate the complex sea ice load 
scenario. This experiment was simulated over 1,000,000 years 
rather than 10,000 years, in order to achieve a stable result. As 
this experiment is difficult and time consuming, it would be 
effective to use a parallel environment such as, compute 
unified device architecture (CUDA) interface programming on 
Graphic processing unit (GPU), and to calculate the speedup 
over central processing unit (CPU) implementations.
The goal is to analyze the performance results between GPUs 

and CPUs when both are used for the processing of the same 
algorithm, and speedup interpretation of the optimized 
implementations.

II. RELATED WORKS

A. GPU Vs. CPU
One of the differences between a GPU and a CPU is the way 

they process tasks. For instance, a CPU with fewer cores is 
responsible for the sequential part of the program, while a 
GPU consists of thousands of smaller cores designed for 
performing multiple tasks concurrently [16]. In order to 
compare the performance of a GPU and a CPU, one needs to 
come up with a ratio illustrating which implementation is 
faster. Therefore, measuring the elapsed time of the 
implementation helps to evaluate the performance of an 
implemented algorithm. For example, speedup is a ratio that 
can be calculated by dividing the elapsed time of a parallel 
algorithm over the sequential algorithm [17]. When parallel 
computing involves large-scale data, having the highest 
speedup becomes increasingly important for scientific 
computations [18]. Speedup of a parallel computation is 
defined as  , where is the sequential time and is the 
parallel time to solve the problem using p processors [19].  For 
instance, an article related to the GPU accelerated Monte 
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Carlo simulation of Brownian motors dynamics with CUDA 
had a speedup of about 3,000 compared to that if a typical 
CPU. Furthermore, there is no optimization in this study for 
comparing a GPU efficient code against a CPU optimized 
implementation [20]. There are many studies that have been 
done to accelerate the speedup of GPUs over CPUs. Recently, 
an article reported a speedup of up to 426 times over a 
MATLAB (matrix laboratory) implementation of quadratic 
discriminant analysis by using CUDA application using a 
GPU. The authors also compared the performance of GPU 
against the optimized CPU and achieved a speedup of up to 23 
times [14].  Performance analysis has been done on the Finite-
Difference Time-Domain (FDTD) method on a GPU, and a 
speedup of up to 64 times have been achieved. In this study, 
theoretical prediction of high performance agreed with the 
experimental result, which suggested a suitable optimization 
method for the best performance. This indicates that GPGPU 
has potential for improving the processing time of highly 
parallel algorithms [21]. For example, research has been done 
to demonstrate the performance benefit of the GPGPUs for 
simulating a ship operating in pack ice, and found that GPUs 
have the potential to reduce computational time significantly 
[22]. Therefore, one way to understand the high performance 
result of a GPU over multicore CPUs is to execute a 
performance analysis and apply optimization techniques for 
both GPUs and CPUs. It is also possible to recommend a new 
set of architectural attributes which improve architectural 
efficiency [6]. 

Based on a previous study, the present study will investigate 
whether there is a significant speedup of a standard code for 
the Monte Carlo simulation of sea ice load on a GPU by using 
CUDA programming over CPU implementations. The 
significant speedup that came after using different types of 
GPUs expands on the range of problems solvable by using 
probabilistic simulations [20].

B. Monte Carlo Simulations
The Monte Carlo simulations, as a broad class of 

computational algorithms, are used in many different areas 
[23]. Monte Carlo simulations are used when we have some 
applications with uncertain inputs, and for high dimensional 
problems with many degrees of freedom. The stages used to 
improve performance in Monte Carlo simulations are fairly 
simple, flexible, and highly scalable, and can reduce complex 
and large models to a set of basic interactions which could be 
implemented efficiently [24]. A typical Monte Carlo 
simulation consist of four steps: (1) defining a domain of 
possible inputs; (2) generating random number; (3) performing 
a deterministic computation on the environmental inputs; and 
(4) aggregating the results. For instance, these steps apply for 
calculating the value of π. First, consider a circle inscribed in a 
unit square. Second, generate uniformly scatter dots over the 
square. Next, count the scatter dots inside the square and the 
circle. Finally, the ratio of number of dots inside the circle and 
the square is approximately equal to π/4 ( 

) and multiply the result by 4 to 
estimate π [25]. 

Monte Carlo methods are also helpful for simulating real-
life random system and deterministic numerical computations 
[26].  Mathematical optimization is one of the indisputable 
aspects of Operation Research and Industrial Engineering. 
Monte Carlo techniques have been applied for providing the 
optimal design, scheduling and handling of industrial systems. 
This method is also helpful for the direct simulation of the 
process of neutron transport in physical processes, and for the 
study of chemical kinetics by means of stochastic simulation 
[27][28]. Monte Carlo methods are also effective in 
probability theory, statistical physics and computer science for 
studying the properties of random structures such as the Ising 
model, the Potts model and classical models of 
ferromagnetism [29].

Randomized algorithms, which means the use of a random 
number generator (RNG) in an algorithm, are very important 
in tackling those difficult computational problems through the 
use of the Monte Carlo method [30]. Parallel computing and 
especially those that are embarrassingly parallelizable would 
be suitable fit for certain inherently parallelizable Monte Carlo 
methods. Therefore, there is relatively little work needed in 
order to solve the problem efficiently in the parallel Monte 
Carlo framework [31]. As the Monte Carlo method is simple 
and applicable, it continues to be one of the most useful 
achievements in scientific computing. Maybe the next 
generation of this method will bring important tools for 
solving more complex optimization problems in statistics, 
mathematics, engineering, and the physical and computer 
sciences.

C. CUDA Programming
Compute unified device architecture (CUDA) is a parallel 
computing platform and programming interface that is an 
appropriate environment for using Monte Carlo simulation. 
The CUDA program have a basic flow such as initializing an 
array of data in the host, copying the array from the host to the
CUDA device, operating on the array of data by CUDA 
device, and copying the array back to the host.

CUDA random number generator (CURAND) and Thrust 
are C++ template libraries in the CUDA toolkit. These 
libraries include containers (e.g.thrust::host_vector and 
thrust::device_vector), iterators (pointer to array elements) and 
algorithms (e.g. reduction, transformation, sums and sorting) 
are suitable for conducting Monte Carlo simulation using GPU 
[29]. Researchers also took advantage of the computational 
performance of GPUs to simulate rarefied flows involving real 
gas effects by internal relaxation and chemical reactions using 
the direct simulation Monte Carlo (DSMC). This method 
achieved HPC which partially alleviated the main limitation of 
long computational run-times [32]. 

Another application of GPU-based Monte Carlo simulation 
in CUDA programming evaluated light-skin diffuse 
reflectance spectra for Multi-Layered Media. The speedup for 
this case was 71.19 times and varied across the wavelengths 
[33].

Another study implemented the Dose Planning Method 
(DPM) Monte Carlo calculation package in CUDA on a Tesla 
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C1060 GPU, and reached a speedup of up to 6 times against a 
2.27GHz Xeon CPU processor [34]. Study of sea ice scenarios 
has gained more importance lately, and there are many 
researchers working on the simulation of sea ice load. 
However, while a new chapter of knowledge in this field has 
been opened, there is still much to learn about the 
implementation of sea ice load scenarios especially in an 
efficient and high speed environment, which is needed to 
achieve HPC. 

D. Sea Ice Load 
Engineers work with different types of environmental inputs 

to estimate probabilistic distributions of sea ice parameters in 
order to simulate the interaction between sea ice and offshore 
structures. Monte Carlo simulations have been applied to 
model the impact forces between sea ice and offshore 
structures. However, these previous applications did not run 
the Monte Carlo simulation on a GPU [35].

Sea ice load scenarios are complex and difficult to simulate 
because of numerous unpredicted situations that happen in an 
environment.  For instance, the type of ice, structures and 
environmental factors vary over the course of the simulation. 
Also, finding an efficient way to simulate sea ice load 
scenarios is time consuming with engineering tools (e.g. 
MATLAB). Therefore, it is significant to come up with an 
idea to implement this complex model in a parallel 
environment such as CUDA application programming 
interface and use a robust Monte Carlo algorithm to achieve 
HPC.

III. METHODOLOGY

A. Interaction Model
When ice moves and interacts with a structure, it can create 
huge forces. The present scenario is based on an offshore 
structure that encounters many ice floes during its lifetime, 
and therefore needs to be designed to withstand the possible 
ice forces. Once the interaction starts, the initial kinetic energy 
of the ice floe is decreased by ice failing at the ice-structure         
interface and driving force is added from surrounding ice and 
effects from wind and currents. Starting with the initial kinetic 
energy (m (Kg) is the mass and v (m/s) is the 
impact velocity) minus the dissipated crushing energy plus the 
floe driving forces, one can calculate the remaining kinetic 
energy after each meter of crushing. Once the kinetic energy is 
depleted, there will be no further crushing of this floe. The 
impacting floe will eventually rotate and clear around the 
structure, either because of the initial eccentricity unequally 
loading across the back or a change in drift direction. The 
maximum load is determined for the part of the floe that is 
crushed, and likely to originate from the thickest or widest part 
of the floe and ridge. Table. I shows the fixed and the 
distributed parameters needed to calculate the maximum force 
between ice and an offshore structure. In this scenario, user-
defined cumulative distribution functions are used for ice 
thickness, ridge thickness, and impact velocity. 

Consideration is given to the ice types likely to be present, as 
thicker ice features may arrive over time. The force due to 
wind and currents are generally much smaller than ridging 
forces associated with surrounding ice, but may play a role 
when surrounding ice is not present. When considering the 
wedges of rubble behind the impacting floe, the wind and 
current forces on the rubble field are included with the driving 
force. The load on structure due to the surrounding ice based 
on ISO 19906 is modeled as:

           

The distribution of wind speed follows a Weibull distribution 
and the current velocity is assumed 3.3 percent of the wind 
velocity.
In equation (2) is floe surface area, is air 
density, =0.01 is drag coefficient, and is wind 
velocity. While in (3), is floe surface area, 

is sea water density, =0.004, and is 
current velocity. In ISO 19906, the ice ridging force on the 
back of a feature due to surrounding ice is approximated as:

In equation (4) is the unit driving force and is the 
diameter of the floe. In equation (5), and t is 
uniformly distributed between 0.5 and 1 (m). The global 
average pressure  , as used for this experiment, is as 
follows:

Where is the ice thickness (m), , is an ice 
strength coefficient, is structure width, and 

. At 
the start of each year, the number of impacts are determined, 
and for each impact the relevant parameters and resulting 
impact loads are determined. The ice force during the 
interaction between ridge and level sea ice and the vertical 
sided structure is determined as:

Following equations 2, 3, 4, 5, 6 and 7 the maximum load on 
the structure can be calculated (equation 1).
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B. Simulation Process
One of the processes of implementing and designing a model 
of a real or an abstract system is numerical computer 
simulation. In order to understand the statistical behavior of 
the system, it is possible to conduct numerical experiments on 
the model. We can use random values with a specific 
probability distribution for a sampling experiment. This is a 
Monte-Carlo type simulation, a broad class of numerical 
algorithms that can be helpful to solve complicated systems 
and predict future behavior of the model. The present study 
has different types of fixed and distributed parameters. Those 
distributed ones follow specific probability distributions and 
they are dependent upon the use of random numbers. 
Generally a Monte-Carlo type simulation is well suited for 
modelling sea ice loads as it allows for capturing the random 
nature of the parameters and processes involved. The goal is to 
find the maximum annual force between sea ice and a vertical 
structure corresponding to a probability of 1 in 10,000. 
Therefore, this study simulates an order of magnitude years 
(e.g. 1,000,000) to find stable results. By using Monte-Carlo 
techniques and breaking the problem into smaller pieces, 
implementation of each interaction model is much easier. 
Based on the number of simulated years, one can use 
individual simulations or a series of iterations. In each 
iteration, there are several types of distributions that need to be 

calculated based on the generated random numbers as shown 
in Fig. 1. The present scenario tracks and stores the maximum 
ice forces for each interaction in each year, with associated 
parameters, as shown in Fig. 2 and calls for the use of the 
Monte-Carlo technique to determine the extreme loads 
between ice and structure as shown in Fig. 3.

C. GPU Implementation of Parallel Algorithm
While parallel computing gained more importance in 
programming, engineers recognize the future need of new 
processing architecture in which it is important to build a 
market before achieving that processing architecture.
In 1999, NVIDIA introduced GeForce 256 as the world’s first 

GPU with sophisticated single-core design rather than a chip-
scale parallel processor. In the multi-core era, GPU 
architecture is not only a powerful graphics engine, but also 
has high number of parallel processors, which becomes 
increasingly important [8]. There was always the challenge of 
programing thousands of parallel threads, but it is more 
difficult to have insight into the performance bottlenecks on a 
GPU to improve application performance. The architecture of 
the modern GPU improved in a different way than that of the 
CPU and also the GPU has become a general purpose 
architecture [9].
Also a Monte-Carlo method has become more interesting as 
computers became more powerful. As the main concern of this 
experiment involved with random number generation (RNG) 
for complex sea ice scenario, it is indisputable to use an 
efficient parallel algorithm on a GPU to save a lot of time. 
Therefore, they can increase the speed of parallel processes 
and improve the performance results for different applications. 
In that way computers send each process to different 
processors, with each performing a calculation in parallel. 
Sometimes upgrading a system gives additional power in the 
simulation process. A parallel algorithm divides that problem 
into discrete and smaller problems that can be solved 
concurrently and all those tasks can be done simultaneously in 
multiple processors [10].

Parameter Symbol Unit Unit Value or Distribution Type

Structure Width

Level Ice Thickness User-Defined
Ridge Thickness User-Defined

Ridge Length Uniform (lower=50 (m), upper=300 (m))

Floe Encounter Rate Gamma (mean=50 (m) , Std=30, lower=10 (m), upper=150 (m))

Ridge Encounter Rate Every Second Floe

Floe Diameter Exponential (mean=300, Std=100, lower=10, upper=inf)

Ice Strength Uniform (lower=1.8, upper=2.8)
Mass

Impact Velocity v User-Defined

Wind Velocity Weibull(mean=6, Std=3, a=6.774 (m) , b=2.1013 (m))

Current Velocity 3.3 % of Wind Velocity

TABLE I. MODEL PARAMETERS

Figure 1. Driving Force on Thick Floe due to Surrounding Ice

112



D. CUDA Programming on Tesla K80
The present study uses CUDA environment on the NVIDIA 
Tesla K80 GPU in order to accelerate our most demanding 
HPC in the simulation of the ice load scenario. This chip helps 
us to crunch large data and accelerate algorithms that can be 
10 times faster than optimized CPU implementations. In order 
to fully leverage the computational resources of the GPU with 
minimal effort, CUDA must scale hundreds of cores and 
thousands of threads. CUDA can use both CPU and GPU as 
separate devices to do simultaneous computations without 
contention from memory resources. Serial portions of 
applications run in the CPU or the host while parallel portions 
of code are executed on the GPU or the device as 
computational kernels. CUDA threads are extremely 
lightweight in terms of the creation of overhead and switching. 
Thousands of CUDA threads can be created in just a few 
cycles. As a result, there is no creation overhead to be 
amortized over the execution of a kernel. So the kernel 
consists of just a few lines of code, resulting in performance 
gains. One of the basic tenants of achieving good performance 
in CUDA is to exploit the nature of the lightweight thread by 
launching kernels with thousands of concurrent threads. 
Each thread has an ID and when threads run the code, they 
transfer different works and control decisions. While threads 
are executing independent works, they can pass their elements 
to a function, and store the result of an output array by reusing 
thread ID [11]. The present scenario assigns one thread to each 
year, therefore, there exist one million thread responsible for 
calculation of maximum force between sea ice and a vertical 
structure in parallel.
Monte-Carlo simulation applies in each thread to generate 
random numbers and pass them to the appropriate function 

which is defined in a specific kernel in order to calculate the 
maximum annual force. There exists GPU optimized libraries, 
data structure and algorithms such as CURAND and CUDA 
Thrust to fasten the process of this implementation. 

E. CUDA Libraries
The present scenario shows the application of the two most 
important libraries in CUDA. The most important part of 
many scientific and functional applications is the generation of 
random numbers. The NVIDIA CUDA random number 
generator library (CURAND) focuses on the efficient 
generation of pseudo-random and quasi-random numbers [12]. 
It has a flexible interface which allows the user to use random 
number generator (RNG) algorithms either in the CPU or the 
GPU. It means CURAND includes two pieces: a device (GPU) 
header file and a library on the host (CPU). For a device 
generation of random numbers, the actual work occurs on the 
GPU [13]. The user can copy random numbers back to the 
host for further processing or call on their own kernels to use 
the random numbers. However, for the CPU generation of 
random numbers, all of the work is done on the host and they
would be stored in host memory [12]. The CUDA toolkit 
includes another library named Thrust that is a C++ template. 
Thrust is a high-level interface that simulates the basic 
algorithms on the GPU. It defines two vector templates: host-
vector and device vector. Thrust contains data parallel 
primitives such as sort, scan, and transform so the programmer 
can freely write just a few lines of code and reduce the 
operations significantly with regards to multi-core CPUs and 
create the most efficient implementation [13].
There are general guideline principles for using GPU-Based 
Monte-Carlo simulation especially in CUDA environment. 
Not only is this method of simulation efficient for the present 
scenario, it is also really robust. Here is one of the examples of 
kernel function used to calculate the wind speed based on the 
Weibull distribution by CURAND library. 

Figure 3. Probabilistic Framework of Load Characteristics

Figure 2. Monte Carlo Framework
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The following code shows how maximum annual force is 
calculated by using the Monte-Carlo simulation using CUDA 
Thrust library on a single GPU. 

Random numbers are generated in parallel and data is stored 
on the GPU directly. Function evaluation and aggregation are 
done on the GPU using parallel constructs and highly GPU-
optimized algorithms.

IV. EXPERIMENT PROCEDURES

The present study focuses on the calculation of the 
maximum annual force between sea ice and a vertical sided 
structure using Monte Carlo simulation on the GPU. Monte 
Carlo simulations are ideally suited to GPU implementation 
and have been found to offer significant speedup over single 
CPU implementation in various lines of research [6]. 

For achieving a high level of confidence with this simulation 
technique, this scenario was simulated over 1,000,000 years in 
the CUDA environment. Large and parallelizable 
environment of this scenario call for the use of a GPU, with 
thousands of cores, in order to perform many calculations 
simultaneously. This method examined the sea ice load in 5 
cases starting from 10,000, 50,000, 100,000, 500,000, and 
1,000,000 years, and assigned one CUDA thread for each 
year. Therefore, 1,000,000 threads are working to calculate the 
maximum annual force between sea ice and a vertical sided 
structure over 1,000,000 years.

The present study has certain variables in the model with 
certain probability distributions. After performing sampling 
experiment upon the model, it is required to create a stochastic 
simulation of the system behavior which is called Monte Carlo 
simulation. Therefore, RNG algorithm could be used to 
generate random number for the specific probability 
distribution of the parameter. MRG32k3a is one of the high 
quality random number generator used in this study. 

After defining the number of years, the thrust library in 
CUDA uses its device vector to call maxAnnualForce(N), 
and then floe encounter, floe diameter, wind speed, level ice 

thickness, ridge thickness, and impact velocity are calculated 
using the CURAND library. Thrust uses its 
counting_iterator to define the index of a thread and to 
transform the result of each thread’s calculation from device 
memory (device_vector) to the host memory 
(host_vector). Therefore the threads will be emptied after 
transforming each result to the host memory, and the Monte 
Carlo framework will be updated in each year to generate 
random numbers based on the ice characteristics.

The reason for choosing this Tesla K80 GPU was that, this 
GPU allows large data sets to be processed, and accelerates 
algorithms up to 10 times faster than optimized CPU 
implementations. If the boost clock is enabled automatically, 
each GPU works independently, which can be useful for this 
scenario with many headrooms in the workload.

The goal of this study is not only to find the maximum 
annual force for the sea ice on an offshore structure, but to 
interpret the behavior of the GPU and the multi-GPU against 
the optimized CPU implementations.

V. Performance Results
When parallel computing involves large-scale data, having the 
highest speedup becomes increasingly important in scientific 
computations. 
There are three types of speedups based on its linearity: sub-
linear, linear and super-linear. With efficient utilization of 
resources by multiprocessors, we may observe super-linear 
speedup which means the speedup with p processors is greater 
than p [14].  It is noteworthy that different GPUs need to 
communicate to transfer data between cores, and if the 
communication cost of the problem is large, achieving even 
linear speedup would be impossible. Next, using different 
memory utilization causes a reduction in performance, because 
multiple GPUs distribute the application’s data on different 
GPUs. Finally, by having heterogeneous devices with different 
capabilities, one should not expect to have a linear speedup, 
meaning the speedup is equal to the number of processors 
[15].
This study uses Tesla K80 GPU which uses dual GPU design. 
It means there are 2 GPUs for a Tesla K80 and 8 GPUs for 4 
Tesla K80 which work on this implementation simultaneously. 
A comparison happens when there are optimized version of 
both implementations on GPUs and CPU. Therefore, speedup 
are given for those optimized versions of implementations on 
both GPUs and CPU. Fig. 4 shows a speedup of up to 8 when 
comparing optimized implementation of 4 GPU Tesla K80 
against the GPU Tesla K80. It also demonstrates a speedup of 
up to 130 for 4 Tesla K80 GPUs against optimized CPU 
OpenMP Implementation. 
Fig.5 shows the elapsed time of different implementations 
reduced from about 2.5 hours to 0.7 seconds. These 
implementations include 4 Tesla K80 GPUs, single Tesla K80 
GPU, serial CPU, parallel CPU (OpenMP). The simulation has 
been done by the GPU, multi-GPU, serial CPU, and parallel 
CPU (Open MP) implementations.  The types of available 
GPU, multi-GPU, and CPU used in this study are Tesla K80, 4 
Tesla K80s, and Intel Xeon R E5-2630 respectively.

__device__user_data_t 
ran_weibul(curandStateMRG32k3a_t
*localState, const user_data_t a,const user_data_t b) 
{ 
user_data_t r = curand_uniform(localState); 
return a * pow(-log(r), (1 / b)); 
} 

int main(){ 
size_t N = 1000000;  //Number of years 
thrust::device_vector<yearResult> maxAnnualForce(N);  
thrust::counting_iterator<unsigned int> index(0); 
  
thrust::transform(index,index+N,maxAnnualForce.begin(
),MaxForces())  
thrust::host_vector<yearResult> m = maxAnnualForce; 
} 
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The computational time for 4 GPUs is approximately the same 
as single GPU for 10,000 year s, because the number of 
threads is less than the total number of CUDA cores. 
Therefore, as expected, the present study did not use the full 
efficiency of the cores on the GPUs. However, when 
considering 50, 000 years and more, the computation time for 
4 GPUs was less than for a single GPU because it did not use 
the full efficiency of the cores on the GPUs.

VI. CONCLUSION

The present study demonstrates a significant speedup for the 
complex simulation of the sea ice load. It is known that 
running a Monte-Carlo simulation requires a long execution 
time, but using powerful computers with recent GPUs 
decreases the computation time of the optimized 
implementation. It is also possible to increase throughput by 
running many independent computations simultaneously. 
There are always multicore processor markets to offer 
different types of devices and architectures, which make 
improvements in efficiency of the implementation. Therefore, 
our implementation is more optimistic than previously thought 
by using the art of parallel programming on a GPU, using 
recent devices that are more efficient and running highly 
optimized version of implementations.

VII. FUTURE WORKS

The present study demonstrates a significant computational 
speedup for complex simulation of the sea ice load. The 
question now becomes how to achieve even better speedup 
and performance results. First, it is known that running a 
Monte Carlo simulation requires a long execution time, but 
using powerful computers with recent GPUs decreases the 
computation time of the optimized implementation. Next, 
understanding the basic idea of performance in a parallel 
environment is required. For instance, it is possible to improve 
throughput of the program by running the computation many 

times in many available processors. Although it takes a lot of 
work for the programmer to run an efficient code on multi-
processors, it is worthwhile to get a substantial speedup for 
individual jobs. Therefore, it is possible to run the 
computation faster than before and measure the speedup and 
efficiency at the end. Finally, one can achieve a massive size 
up for a computation and run the computation on larger 
problems. One needs to measure the efficiency of computation 
and use a weak scaling test to see how large a problem one can 
efficiently run. For instance, the present scenario runs the 
program from 10,000 to 1,000,000 years. It should be clear 
that one can use any combination of methods to run the project
faster in a parallel environment [14].
The present study only focused on one complex scenario 
which was the interaction between ridge-level sea ice and a 
vertical offshore structure when wind, currents, and kinetic 
energy are involved. There will be other factors that cause this 
interaction to be different than before. It is helpful to be 
familiar with the different characteristics of sea ice and 
explore efficient ways such as the Monte Carlo simulation to 
implement different scenarios. With the help of the
performance analysis explained in the result section, one can 
improve an implementation by running the computation on a 
large scale, or with many processors. This can be helpful in 
making an efficient implementation and reaching a significant 
speedup. Also, finding a way to predict the efficiency of future 
scenarios by this implementation would help to save more 
time and energy. For example, when estimating the speedup of 
4 GPUs based on the simulation’s behavior, it is possible to 
predict what happens if there are more GPUs. Throughput is 
one of the key elements in performance analysis. If we 
consider n number of computations in a problem, how much 
faster can one run the project? This can be calculated by 
dividing the number of computation to unit times. If a 
programmer designs a problem by independent computations, 

Figure 5. Elapsed TimeFigure 4. Speedup Comparison of Optimized Implementations
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throughput can be increased by running them alongside each 
other simultaneously, which is limited only by the number of 
processors [15]. The present scenario contains a huge number 
of computations making it difficult to estimate the throughput 
of the code. Therefore, it is possible that this research can be 
continued in the future. The other method in performance 
analysis is to calculate the efficiency of the implementation 
with many processors that can be obtained by , where
is speedup and is the number of available processors [15]. If 

= 1, it means we have 100 % efficiency.Therefore, 
improving the computational efficiency by means of parallel 
computation on the GPU, increases the throughput and 
speedup. Estimating the efficiency of the code will present 
opportunities for future research. With the help of this research 
and performance analysis, future studies related to the 
simulation of parallel algorithms on GPUs will become much 
easier to work with and can usher in a new chapter of high 
performance computing in this era.
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