
Implementation and Performance of a
GPU-Based Monte-Carlo Framework for

Determining Design Ice Load

Sara Ayubian
Computer Science Department

Memorial University of Newfoundland, C-CORE
St. John’s, NL, Canada
Email: sa7818@mun.ca

Martin Richard
Civil Engineering Department

Memorial University of Newfoundland
St. John’s, NL, Canada

Email: martin.richard@c-core.ca

Shadi Alawneh

Electrical and Computer Department
Oakland University
Rochester, MI, USA

Email: shadialawneh@oakland.edu

Jan Thijssen
C-Core

St. John’s, NL, Canada
Email: jan.thijssen@c-core.ca

Abstract—Modern Graphics Processing Units (GPUs) with
massive number of threads and many-core architecture support
both graphics and general purpose computing. NVIDIA’s
compute unified device architecture (CUDA) takes advantage of
parallel computing and utilizes the tremendous power of GPUs.
The present study demonstrates a high performance computing
(HPC) framework for a Monte-Carlo simulation to determine
design sea ice loads which is implemented in both GPU and CPU.
Results show a speedup of up to 130 times for the 4 Tesla K80
GPUs over an optimized CPU OpenMP implementation and
speedup of up to 8 times for the 4 Tesla K80 over a single Tesla
K80 GPU implementation. The elapsed time of the different
implementations has been reduced from about 2.5 hours to 0.7
seconds.

Keywords-GPGPU; CUDA; Monte-Carlo.

I. INTRODUCTION

General purpose graphics processing unit (GPGPU) is one of
the best methodologies to introduce high performance
computing (HPC). A computer can be utilized with GPUs to
execute massive concurrent computations, and to achieve
efficient implementation [1]. A GPU is made of thousands of
cores which are responsible for handling many tasks
concurrently, while a CPU has a few cores for the serial part
of the program [2].

In the present study describes, the interaction between sea
ice and vertically sided structures are simulated, with the goal
of finding the maximum annual force over 10,000 years while
considering wind, current and kinetic energy in the
calculation. Each force involves different random parameters
that require a random number generator (RNG) algorithm to
calculate their appropriate distributions. Therefore, using an
efficient algorithm, such as Monte Carlo, for generating

random numbers helps to simulate the complex sea ice load
scenario. This experiment was simulated over 1,000,000 years
rather than 10,000 years, in order to achieve a stable result. As
this experiment is difficult and time consuming, it would be
effective to use a parallel environment such as, compute
unified device architecture (CUDA) interface programming on
Graphic processing unit (GPU), and to calculate the speedup
over central processing unit (CPU) implementations.
The goal is to analyze the performance results between GPUs

and CPUs when both are used for the processing of the same
algorithm, and speedup interpretation of the optimized
implementations.

II. RELATED WORKS

A. GPU Vs. CPU
One of the differences between a GPU and a CPU is the way

they process tasks. For instance, a CPU with fewer cores is
responsible for the sequential part of the program, while a
GPU consists of thousands of smaller cores designed for
performing multiple tasks concurrently [16]. In order to
compare the performance of a GPU and a CPU, one needs to
come up with a ratio illustrating which implementation is
faster. Therefore, measuring the elapsed time of the
implementation helps to evaluate the performance of an
implemented algorithm. For example, speedup is a ratio that
can be calculated by dividing the elapsed time of a parallel
algorithm over the sequential algorithm [17]. When parallel
computing involves large-scale data, having the highest
speedup becomes increasingly important for scientific
computations [18]. Speedup of a parallel computation is
defined as , where is the sequential time and is the
parallel time to solve the problem using p processors [19]. For
instance, an article related to the GPU accelerated Monte

2017 International Conference on High Performance Computing & Simulation

978-1-5386-3250-5/17 $31.00 © 2017 IEEE

DOI 10.1109/HPCS.2017.27

109

Carlo simulation of Brownian motors dynamics with CUDA
had a speedup of about 3,000 compared to that if a typical
CPU. Furthermore, there is no optimization in this study for
comparing a GPU efficient code against a CPU optimized
implementation [20]. There are many studies that have been
done to accelerate the speedup of GPUs over CPUs. Recently,
an article reported a speedup of up to 426 times over a
MATLAB (matrix laboratory) implementation of quadratic
discriminant analysis by using CUDA application using a
GPU. The authors also compared the performance of GPU
against the optimized CPU and achieved a speedup of up to 23
times [14]. Performance analysis has been done on the Finite-
Difference Time-Domain (FDTD) method on a GPU, and a
speedup of up to 64 times have been achieved. In this study,
theoretical prediction of high performance agreed with the
experimental result, which suggested a suitable optimization
method for the best performance. This indicates that GPGPU
has potential for improving the processing time of highly
parallel algorithms [21]. For example, research has been done
to demonstrate the performance benefit of the GPGPUs for
simulating a ship operating in pack ice, and found that GPUs
have the potential to reduce computational time significantly
[22]. Therefore, one way to understand the high performance
result of a GPU over multicore CPUs is to execute a
performance analysis and apply optimization techniques for
both GPUs and CPUs. It is also possible to recommend a new
set of architectural attributes which improve architectural
efficiency [6].

Based on a previous study, the present study will investigate
whether there is a significant speedup of a standard code for
the Monte Carlo simulation of sea ice load on a GPU by using
CUDA programming over CPU implementations. The
significant speedup that came after using different types of
GPUs expands on the range of problems solvable by using
probabilistic simulations [20].

B. Monte Carlo Simulations
The Monte Carlo simulations, as a broad class of

computational algorithms, are used in many different areas
[23]. Monte Carlo simulations are used when we have some
applications with uncertain inputs, and for high dimensional
problems with many degrees of freedom. The stages used to
improve performance in Monte Carlo simulations are fairly
simple, flexible, and highly scalable, and can reduce complex
and large models to a set of basic interactions which could be
implemented efficiently [24]. A typical Monte Carlo
simulation consist of four steps: (1) defining a domain of
possible inputs; (2) generating random number; (3) performing
a deterministic computation on the environmental inputs; and
(4) aggregating the results. For instance, these steps apply for
calculating the value of π. First, consider a circle inscribed in a
unit square. Second, generate uniformly scatter dots over the
square. Next, count the scatter dots inside the square and the
circle. Finally, the ratio of number of dots inside the circle and
the square is approximately equal to π/4 (

) and multiply the result by 4 to
estimate π [25].

Monte Carlo methods are also helpful for simulating real-
life random system and deterministic numerical computations
[26]. Mathematical optimization is one of the indisputable
aspects of Operation Research and Industrial Engineering.
Monte Carlo techniques have been applied for providing the
optimal design, scheduling and handling of industrial systems.
This method is also helpful for the direct simulation of the
process of neutron transport in physical processes, and for the
study of chemical kinetics by means of stochastic simulation
[27][28]. Monte Carlo methods are also effective in
probability theory, statistical physics and computer science for
studying the properties of random structures such as the Ising
model, the Potts model and classical models of
ferromagnetism [29].

Randomized algorithms, which means the use of a random
number generator (RNG) in an algorithm, are very important
in tackling those difficult computational problems through the
use of the Monte Carlo method [30]. Parallel computing and
especially those that are embarrassingly parallelizable would
be suitable fit for certain inherently parallelizable Monte Carlo
methods. Therefore, there is relatively little work needed in
order to solve the problem efficiently in the parallel Monte
Carlo framework [31]. As the Monte Carlo method is simple
and applicable, it continues to be one of the most useful
achievements in scientific computing. Maybe the next
generation of this method will bring important tools for
solving more complex optimization problems in statistics,
mathematics, engineering, and the physical and computer
sciences.

C. CUDA Programming
Compute unified device architecture (CUDA) is a parallel
computing platform and programming interface that is an
appropriate environment for using Monte Carlo simulation.
The CUDA program have a basic flow such as initializing an
array of data in the host, copying the array from the host to the
CUDA device, operating on the array of data by CUDA
device, and copying the array back to the host.

CUDA random number generator (CURAND) and Thrust
are C++ template libraries in the CUDA toolkit. These
libraries include containers (e.g.thrust::host_vector and
thrust::device_vector), iterators (pointer to array elements) and
algorithms (e.g. reduction, transformation, sums and sorting)
are suitable for conducting Monte Carlo simulation using GPU
[29]. Researchers also took advantage of the computational
performance of GPUs to simulate rarefied flows involving real
gas effects by internal relaxation and chemical reactions using
the direct simulation Monte Carlo (DSMC). This method
achieved HPC which partially alleviated the main limitation of
long computational run-times [32].

Another application of GPU-based Monte Carlo simulation
in CUDA programming evaluated light-skin diffuse
reflectance spectra for Multi-Layered Media. The speedup for
this case was 71.19 times and varied across the wavelengths
[33].

Another study implemented the Dose Planning Method
(DPM) Monte Carlo calculation package in CUDA on a Tesla

110

C1060 GPU, and reached a speedup of up to 6 times against a
2.27GHz Xeon CPU processor [34]. Study of sea ice scenarios
has gained more importance lately, and there are many
researchers working on the simulation of sea ice load.
However, while a new chapter of knowledge in this field has
been opened, there is still much to learn about the
implementation of sea ice load scenarios especially in an
efficient and high speed environment, which is needed to
achieve HPC.

D. Sea Ice Load
Engineers work with different types of environmental inputs

to estimate probabilistic distributions of sea ice parameters in
order to simulate the interaction between sea ice and offshore
structures. Monte Carlo simulations have been applied to
model the impact forces between sea ice and offshore
structures. However, these previous applications did not run
the Monte Carlo simulation on a GPU [35].

Sea ice load scenarios are complex and difficult to simulate
because of numerous unpredicted situations that happen in an
environment. For instance, the type of ice, structures and
environmental factors vary over the course of the simulation.
Also, finding an efficient way to simulate sea ice load
scenarios is time consuming with engineering tools (e.g.
MATLAB). Therefore, it is significant to come up with an
idea to implement this complex model in a parallel
environment such as CUDA application programming
interface and use a robust Monte Carlo algorithm to achieve
HPC.

III. METHODOLOGY

A. Interaction Model
When ice moves and interacts with a structure, it can create
huge forces. The present scenario is based on an offshore
structure that encounters many ice floes during its lifetime,
and therefore needs to be designed to withstand the possible
ice forces. Once the interaction starts, the initial kinetic energy
of the ice floe is decreased by ice failing at the ice-structure
interface and driving force is added from surrounding ice and
effects from wind and currents. Starting with the initial kinetic
energy (m (Kg) is the mass and v (m/s) is the
impact velocity) minus the dissipated crushing energy plus the
floe driving forces, one can calculate the remaining kinetic
energy after each meter of crushing. Once the kinetic energy is
depleted, there will be no further crushing of this floe. The
impacting floe will eventually rotate and clear around the
structure, either because of the initial eccentricity unequally
loading across the back or a change in drift direction. The
maximum load is determined for the part of the floe that is
crushed, and likely to originate from the thickest or widest part
of the floe and ridge. Table. I shows the fixed and the
distributed parameters needed to calculate the maximum force
between ice and an offshore structure. In this scenario, user-
defined cumulative distribution functions are used for ice
thickness, ridge thickness, and impact velocity.

Consideration is given to the ice types likely to be present, as
thicker ice features may arrive over time. The force due to
wind and currents are generally much smaller than ridging
forces associated with surrounding ice, but may play a role
when surrounding ice is not present. When considering the
wedges of rubble behind the impacting floe, the wind and
current forces on the rubble field are included with the driving
force. The load on structure due to the surrounding ice based
on ISO 19906 is modeled as:

The distribution of wind speed follows a Weibull distribution
and the current velocity is assumed 3.3 percent of the wind
velocity.
In equation (2) is floe surface area, is air
density, =0.01 is drag coefficient, and is wind
velocity. While in (3), is floe surface area,

is sea water density, =0.004, and is
current velocity. In ISO 19906, the ice ridging force on the
back of a feature due to surrounding ice is approximated as:

In equation (4) is the unit driving force and is the
diameter of the floe. In equation (5), and t is
uniformly distributed between 0.5 and 1 (m). The global
average pressure , as used for this experiment, is as
follows:

Where is the ice thickness (m), , is an ice
strength coefficient, is structure width, and

. At
the start of each year, the number of impacts are determined,
and for each impact the relevant parameters and resulting
impact loads are determined. The ice force during the
interaction between ridge and level sea ice and the vertical
sided structure is determined as:

Following equations 2, 3, 4, 5, 6 and 7 the maximum load on
the structure can be calculated (equation 1).

111

B. Simulation Process
One of the processes of implementing and designing a model
of a real or an abstract system is numerical computer
simulation. In order to understand the statistical behavior of
the system, it is possible to conduct numerical experiments on
the model. We can use random values with a specific
probability distribution for a sampling experiment. This is a
Monte-Carlo type simulation, a broad class of numerical
algorithms that can be helpful to solve complicated systems
and predict future behavior of the model. The present study
has different types of fixed and distributed parameters. Those
distributed ones follow specific probability distributions and
they are dependent upon the use of random numbers.
Generally a Monte-Carlo type simulation is well suited for
modelling sea ice loads as it allows for capturing the random
nature of the parameters and processes involved. The goal is to
find the maximum annual force between sea ice and a vertical
structure corresponding to a probability of 1 in 10,000.
Therefore, this study simulates an order of magnitude years
(e.g. 1,000,000) to find stable results. By using Monte-Carlo
techniques and breaking the problem into smaller pieces,
implementation of each interaction model is much easier.
Based on the number of simulated years, one can use
individual simulations or a series of iterations. In each
iteration, there are several types of distributions that need to be

calculated based on the generated random numbers as shown
in Fig. 1. The present scenario tracks and stores the maximum
ice forces for each interaction in each year, with associated
parameters, as shown in Fig. 2 and calls for the use of the
Monte-Carlo technique to determine the extreme loads
between ice and structure as shown in Fig. 3.

C. GPU Implementation of Parallel Algorithm
While parallel computing gained more importance in
programming, engineers recognize the future need of new
processing architecture in which it is important to build a
market before achieving that processing architecture.
In 1999, NVIDIA introduced GeForce 256 as the world’s first

GPU with sophisticated single-core design rather than a chip-
scale parallel processor. In the multi-core era, GPU
architecture is not only a powerful graphics engine, but also
has high number of parallel processors, which becomes
increasingly important [8]. There was always the challenge of
programing thousands of parallel threads, but it is more
difficult to have insight into the performance bottlenecks on a
GPU to improve application performance. The architecture of
the modern GPU improved in a different way than that of the
CPU and also the GPU has become a general purpose
architecture [9].
Also a Monte-Carlo method has become more interesting as
computers became more powerful. As the main concern of this
experiment involved with random number generation (RNG)
for complex sea ice scenario, it is indisputable to use an
efficient parallel algorithm on a GPU to save a lot of time.
Therefore, they can increase the speed of parallel processes
and improve the performance results for different applications.
In that way computers send each process to different
processors, with each performing a calculation in parallel.
Sometimes upgrading a system gives additional power in the
simulation process. A parallel algorithm divides that problem
into discrete and smaller problems that can be solved
concurrently and all those tasks can be done simultaneously in
multiple processors [10].

Parameter Symbol Unit Unit Value or Distribution Type

Structure Width

Level Ice Thickness User-Defined
Ridge Thickness User-Defined

Ridge Length Uniform (lower=50 (m), upper=300 (m))

Floe Encounter Rate Gamma (mean=50 (m) , Std=30, lower=10 (m), upper=150 (m))

Ridge Encounter Rate Every Second Floe

Floe Diameter Exponential (mean=300, Std=100, lower=10, upper=inf)

Ice Strength Uniform (lower=1.8, upper=2.8)
Mass

Impact Velocity v User-Defined

Wind Velocity Weibull(mean=6, Std=3, a=6.774 (m) , b=2.1013 (m))

Current Velocity 3.3 % of Wind Velocity

TABLE I. MODEL PARAMETERS

Figure 1. Driving Force on Thick Floe due to Surrounding Ice

112

D. CUDA Programming on Tesla K80
The present study uses CUDA environment on the NVIDIA
Tesla K80 GPU in order to accelerate our most demanding
HPC in the simulation of the ice load scenario. This chip helps
us to crunch large data and accelerate algorithms that can be
10 times faster than optimized CPU implementations. In order
to fully leverage the computational resources of the GPU with
minimal effort, CUDA must scale hundreds of cores and
thousands of threads. CUDA can use both CPU and GPU as
separate devices to do simultaneous computations without
contention from memory resources. Serial portions of
applications run in the CPU or the host while parallel portions
of code are executed on the GPU or the device as
computational kernels. CUDA threads are extremely
lightweight in terms of the creation of overhead and switching.
Thousands of CUDA threads can be created in just a few
cycles. As a result, there is no creation overhead to be
amortized over the execution of a kernel. So the kernel
consists of just a few lines of code, resulting in performance
gains. One of the basic tenants of achieving good performance
in CUDA is to exploit the nature of the lightweight thread by
launching kernels with thousands of concurrent threads.
Each thread has an ID and when threads run the code, they
transfer different works and control decisions. While threads
are executing independent works, they can pass their elements
to a function, and store the result of an output array by reusing
thread ID [11]. The present scenario assigns one thread to each
year, therefore, there exist one million thread responsible for
calculation of maximum force between sea ice and a vertical
structure in parallel.
Monte-Carlo simulation applies in each thread to generate
random numbers and pass them to the appropriate function

which is defined in a specific kernel in order to calculate the
maximum annual force. There exists GPU optimized libraries,
data structure and algorithms such as CURAND and CUDA
Thrust to fasten the process of this implementation.

E. CUDA Libraries
The present scenario shows the application of the two most
important libraries in CUDA. The most important part of
many scientific and functional applications is the generation of
random numbers. The NVIDIA CUDA random number
generator library (CURAND) focuses on the efficient
generation of pseudo-random and quasi-random numbers [12].
It has a flexible interface which allows the user to use random
number generator (RNG) algorithms either in the CPU or the
GPU. It means CURAND includes two pieces: a device (GPU)
header file and a library on the host (CPU). For a device
generation of random numbers, the actual work occurs on the
GPU [13]. The user can copy random numbers back to the
host for further processing or call on their own kernels to use
the random numbers. However, for the CPU generation of
random numbers, all of the work is done on the host and they
would be stored in host memory [12]. The CUDA toolkit
includes another library named Thrust that is a C++ template.
Thrust is a high-level interface that simulates the basic
algorithms on the GPU. It defines two vector templates: host-
vector and device vector. Thrust contains data parallel
primitives such as sort, scan, and transform so the programmer
can freely write just a few lines of code and reduce the
operations significantly with regards to multi-core CPUs and
create the most efficient implementation [13].
There are general guideline principles for using GPU-Based
Monte-Carlo simulation especially in CUDA environment.
Not only is this method of simulation efficient for the present
scenario, it is also really robust. Here is one of the examples of
kernel function used to calculate the wind speed based on the
Weibull distribution by CURAND library.

Figure 3. Probabilistic Framework of Load Characteristics

Figure 2. Monte Carlo Framework

113

The following code shows how maximum annual force is
calculated by using the Monte-Carlo simulation using CUDA
Thrust library on a single GPU.

Random numbers are generated in parallel and data is stored
on the GPU directly. Function evaluation and aggregation are
done on the GPU using parallel constructs and highly GPU-
optimized algorithms.

IV. EXPERIMENT PROCEDURES

The present study focuses on the calculation of the
maximum annual force between sea ice and a vertical sided
structure using Monte Carlo simulation on the GPU. Monte
Carlo simulations are ideally suited to GPU implementation
and have been found to offer significant speedup over single
CPU implementation in various lines of research [6].

For achieving a high level of confidence with this simulation
technique, this scenario was simulated over 1,000,000 years in
the CUDA environment. Large and parallelizable
environment of this scenario call for the use of a GPU, with
thousands of cores, in order to perform many calculations
simultaneously. This method examined the sea ice load in 5
cases starting from 10,000, 50,000, 100,000, 500,000, and
1,000,000 years, and assigned one CUDA thread for each
year. Therefore, 1,000,000 threads are working to calculate the
maximum annual force between sea ice and a vertical sided
structure over 1,000,000 years.

The present study has certain variables in the model with
certain probability distributions. After performing sampling
experiment upon the model, it is required to create a stochastic
simulation of the system behavior which is called Monte Carlo
simulation. Therefore, RNG algorithm could be used to
generate random number for the specific probability
distribution of the parameter. MRG32k3a is one of the high
quality random number generator used in this study.

After defining the number of years, the thrust library in
CUDA uses its device vector to call maxAnnualForce(N),
and then floe encounter, floe diameter, wind speed, level ice

thickness, ridge thickness, and impact velocity are calculated
using the CURAND library. Thrust uses its
counting_iterator to define the index of a thread and to
transform the result of each thread’s calculation from device
memory (device_vector) to the host memory
(host_vector). Therefore the threads will be emptied after
transforming each result to the host memory, and the Monte
Carlo framework will be updated in each year to generate
random numbers based on the ice characteristics.

The reason for choosing this Tesla K80 GPU was that, this
GPU allows large data sets to be processed, and accelerates
algorithms up to 10 times faster than optimized CPU
implementations. If the boost clock is enabled automatically,
each GPU works independently, which can be useful for this
scenario with many headrooms in the workload.

The goal of this study is not only to find the maximum
annual force for the sea ice on an offshore structure, but to
interpret the behavior of the GPU and the multi-GPU against
the optimized CPU implementations.

V. Performance Results
When parallel computing involves large-scale data, having the
highest speedup becomes increasingly important in scientific
computations.
There are three types of speedups based on its linearity: sub-
linear, linear and super-linear. With efficient utilization of
resources by multiprocessors, we may observe super-linear
speedup which means the speedup with p processors is greater
than p [14]. It is noteworthy that different GPUs need to
communicate to transfer data between cores, and if the
communication cost of the problem is large, achieving even
linear speedup would be impossible. Next, using different
memory utilization causes a reduction in performance, because
multiple GPUs distribute the application’s data on different
GPUs. Finally, by having heterogeneous devices with different
capabilities, one should not expect to have a linear speedup,
meaning the speedup is equal to the number of processors
[15].
This study uses Tesla K80 GPU which uses dual GPU design.
It means there are 2 GPUs for a Tesla K80 and 8 GPUs for 4
Tesla K80 which work on this implementation simultaneously.
A comparison happens when there are optimized version of
both implementations on GPUs and CPU. Therefore, speedup
are given for those optimized versions of implementations on
both GPUs and CPU. Fig. 4 shows a speedup of up to 8 when
comparing optimized implementation of 4 GPU Tesla K80
against the GPU Tesla K80. It also demonstrates a speedup of
up to 130 for 4 Tesla K80 GPUs against optimized CPU
OpenMP Implementation.
Fig.5 shows the elapsed time of different implementations
reduced from about 2.5 hours to 0.7 seconds. These
implementations include 4 Tesla K80 GPUs, single Tesla K80
GPU, serial CPU, parallel CPU (OpenMP). The simulation has
been done by the GPU, multi-GPU, serial CPU, and parallel
CPU (Open MP) implementations. The types of available
GPU, multi-GPU, and CPU used in this study are Tesla K80, 4
Tesla K80s, and Intel Xeon R E5-2630 respectively.

__device__user_data_t
ran_weibul(curandStateMRG32k3a_t
*localState, const user_data_t a,const user_data_t b)
{
user_data_t r = curand_uniform(localState);
return a * pow(-log(r), (1 / b));
}

int main(){
size_t N = 1000000; //Number of years
thrust::device_vector<yearResult> maxAnnualForce(N);
thrust::counting_iterator<unsigned int> index(0);

thrust::transform(index,index+N,maxAnnualForce.begin(
),MaxForces())
thrust::host_vector<yearResult> m = maxAnnualForce;
}

114

The computational time for 4 GPUs is approximately the same
as single GPU for 10,000 year s, because the number of
threads is less than the total number of CUDA cores.
Therefore, as expected, the present study did not use the full
efficiency of the cores on the GPUs. However, when
considering 50, 000 years and more, the computation time for
4 GPUs was less than for a single GPU because it did not use
the full efficiency of the cores on the GPUs.

VI. CONCLUSION

The present study demonstrates a significant speedup for the
complex simulation of the sea ice load. It is known that
running a Monte-Carlo simulation requires a long execution
time, but using powerful computers with recent GPUs
decreases the computation time of the optimized
implementation. It is also possible to increase throughput by
running many independent computations simultaneously.
There are always multicore processor markets to offer
different types of devices and architectures, which make
improvements in efficiency of the implementation. Therefore,
our implementation is more optimistic than previously thought
by using the art of parallel programming on a GPU, using
recent devices that are more efficient and running highly
optimized version of implementations.

VII. FUTURE WORKS

The present study demonstrates a significant computational
speedup for complex simulation of the sea ice load. The
question now becomes how to achieve even better speedup
and performance results. First, it is known that running a
Monte Carlo simulation requires a long execution time, but
using powerful computers with recent GPUs decreases the
computation time of the optimized implementation. Next,
understanding the basic idea of performance in a parallel
environment is required. For instance, it is possible to improve
throughput of the program by running the computation many

times in many available processors. Although it takes a lot of
work for the programmer to run an efficient code on multi-
processors, it is worthwhile to get a substantial speedup for
individual jobs. Therefore, it is possible to run the
computation faster than before and measure the speedup and
efficiency at the end. Finally, one can achieve a massive size
up for a computation and run the computation on larger
problems. One needs to measure the efficiency of computation
and use a weak scaling test to see how large a problem one can
efficiently run. For instance, the present scenario runs the
program from 10,000 to 1,000,000 years. It should be clear
that one can use any combination of methods to run the project
faster in a parallel environment [14].
The present study only focused on one complex scenario
which was the interaction between ridge-level sea ice and a
vertical offshore structure when wind, currents, and kinetic
energy are involved. There will be other factors that cause this
interaction to be different than before. It is helpful to be
familiar with the different characteristics of sea ice and
explore efficient ways such as the Monte Carlo simulation to
implement different scenarios. With the help of the
performance analysis explained in the result section, one can
improve an implementation by running the computation on a
large scale, or with many processors. This can be helpful in
making an efficient implementation and reaching a significant
speedup. Also, finding a way to predict the efficiency of future
scenarios by this implementation would help to save more
time and energy. For example, when estimating the speedup of
4 GPUs based on the simulation’s behavior, it is possible to
predict what happens if there are more GPUs. Throughput is
one of the key elements in performance analysis. If we
consider n number of computations in a problem, how much
faster can one run the project? This can be calculated by
dividing the number of computation to unit times. If a
programmer designs a problem by independent computations,

Figure 5. Elapsed TimeFigure 4. Speedup Comparison of Optimized Implementations

115

throughput can be increased by running them alongside each
other simultaneously, which is limited only by the number of
processors [15]. The present scenario contains a huge number
of computations making it difficult to estimate the throughput
of the code. Therefore, it is possible that this research can be
continued in the future. The other method in performance
analysis is to calculate the efficiency of the implementation
with many processors that can be obtained by , where
is speedup and is the number of available processors [15]. If

= 1, it means we have 100 % efficiency.Therefore,
improving the computational efficiency by means of parallel
computation on the GPU, increases the throughput and
speedup. Estimating the efficiency of the code will present
opportunities for future research. With the help of this research
and performance analysis, future studies related to the
simulation of parallel algorithms on GPUs will become much
easier to work with and can usher in a new chapter of high
performance computing in this era.

REFERENCES

[1] Boz, A. “Massively parallel Monte Carlo simulation using GPU”. 2011.
[2] NVIDIA Corporation. “NVIDIA on GPU computing and the difference
between GPUs and CPUs”. 2016c.
[3] National Research Council. “The Future of Computing Performance:
Game Over or Next Level”. National Academies Press, 2011.
[4] Alawneh, Shadi, Carl Howell, and Martin Richard. "Fast quadratic

discriminant analysis using gpgpu for sea ice forecasting." (HPCC), 2015
IEEE 7th International Symposium on Cyberspace Safety and Security (CSS).
[5] Shadi Alawneh, Roelof Draget, Dennis Peters, Claude Daley and Stephen
Bruneau, IEEE Transactions On Computers, vol 64, No. 12, December 2015,
pp. 3475-3487.
[6] Lee, Victor W., et al. "Debunking the 100X GPU vs. CPU myth: an
evaluation of throughput computing on CPU and GPU." ACM SIGARCH
Computer Architecture (2010):
[7] Ayubian, Sara, Shadi Alawneh, and Jan Thijssen. "GPU-based monte-
carlo simulation for a sea ice load application." Proceedings of the Summer
Computer Simulation Conference. Society for Computer Simulation
International, 2016.
[8] Glaskowsky, Peter N. "NVIDIA’s Fermi: the first complete GPU
computing architecture." White paper 18 (2009).
[9] Kim, Sunpyo Hong Hyesoon. Memory-level and Thread-level Parallelism
Aware GPU Architecture Performance Analytical Model. Vol. 3. Technical
Report TR-2009, 2011. [10] Kumar, Mahesh, Ms Sapna Jain, and Ms
Snehalata. "Parallel Processing using multiple CPU", International Journal of
Engineering and Technical Research (IJETR), Vol2, 2014
[11] NVIDIA Corporation 2016a. “CUDA FAQ”,
https://developer.nvidia.com/cuda-faq.
[12] NVIDIA Developer 2016. “Programming guide”,
http://docs.nvidia.com/cuda/cuda-c-programming-guide.
[13] Corporation, N. 2016b. “CURAND library”,
https://developer.nvidia.com/curand.

[14] Shan, Jing. "Superlinear Speedup in Parallel”. Computation." CCS,
Northeastern Univ., Massachusetts, Course Report (2002).
[15] SciNet 2015. “Introduction to performance – SciNetWiki,
https://wiki.scinet.utoronto.ca/wiki/index.php/Introduction_To_Performance.

[16]http://www.nvidia.ca/object/what-is-gpu-computing.html
[17] Prinslow, Garrison. "Overview of performance measurement and
analytical modeling techniques for multi-core processors." UR L: http://www.
cs. wustl. edu/~ jain/cse567-11/ftp/multcore (2011).
[18] Suchard, Marc A., et al. "Understanding GPU programming for

statistical computation: Studies in massively parallel massive mixtures."
Journal of computational and graphical statistics 19.2 (2010): 419-438.
[19] Hannemann, Müller-, Matthias, and Schirra, Stefan, eds. “Algorithm
engineering: bridging the gap between algorithm theory and practice”. Vol.
5971. Springer, 2010.
[20] Spiechowicz, J., Kostur, Marcin, and Machura, Lukasz. "GPU
accelerated Monte Carlo simulation of Brownian motors dynamics with
CUDA." Computer Physics Communications 191 (2015): 140-149.
[21] Brandao, Diego, et al. "Performance evaluation of optimized
implementations of finite difference method for wave propagation problems
on GPU architecture (22nd International Symposium on. IEEE, 2010.
[22] Alawneh, Shadi, et al. "Hyper-real-time ice simulation and modeling
using GPGPU." IEEE Transactions on Computers 64.12 (2015): 3475-3487.
[23] Cullinan, C., Wyant, C., Frattesi, T., and Huang, X. Computing

performance benchmarks among CPU, GPU, and FGPA.
[24] “Monte Carlo simulation and its efficient implementation”
http://www.nag.com/Market.
[25] “Monte Carlo methods in CUDA” http://www.thalesians.
com
[26] Kroese, Dirk P., et al. "Why the Monte Carlo method is so important
today." Wiley Interdisciplinary Reviews: Computational Statistics 6.6 (2014):
386-392.
[27] N. Metropolis. The beginning of the Monte Carlo method.Los Alamos
Science, 15:125–130, 1987.
[28] Metropolis, Nicholas, et al. "Equation of state calculations by fast
computing machines." The journal of chemical physics 21.6 (1953): 1087-
1092.
[29] R. H. Swendsen and J.-S. Wang. Nonuniversal critical dynamics in

Monte Carlo simulations. Physical Review Letters, 58(2):86–88, 1987
[30] Coddington, Paul D. "Analysis of random number generators using
Monte Carlo simulation." International Journal of Modern Physics C 5.03
(1994): 547-560.
[31] Wang, Chun, et al. "Statistical methods and computing for big data."
arXiv preprint arXiv: 1502.07989 (2015).
[32] Sheppard, Andrew. "CUDA Accelerated MonteCarlo for HPC." Sc11,

Seattle, WA (November 2011).
[33] Goldsworthy, M. “A GPU–CUDA based direct simulation Monte Carlo
algorithm for real gas flows.Computers & Fluids”. 94 (2014), 58–68.
[34] Yusoff, M. S., and Jaafar, M. Performance of CUDA GPU in Monte
Carlo simulation of light-skin diffuse reflectance spectra. In Biomedical
Engineering and Sciences (IECBES), 2012 IEEE EMBS Conference on,
IEEE (2012), 264–269.
[35] Jia, Xun, et al. "Development of a GPU-based Monte Carlo dose
calculation code for coupled electron–photon transport." Physics in medicine
and biology 55.11 (2010): 3077.

116

