
 - 1 -

Digital M
c
Logic Design

Bryan J. Mealy & James T. Mealy

© Bryan J. Mealy 2012

 - 3 -

Table of Croutons

Pretentions .. - 15 -

Legal Crap.. - 15 -

Acknowledgements ... - 16 -

Rambling Commentary ... - 16 -

Overview of Chapter Overviews ... - 18 -

1 Chapter One .. - 25 -

1.1 Introduction .. - 25 -

1.2 More Introduction .. - 25 -

1.3 Digital Design: What is it? ... - 26 -

1.4 Historical Overview of Digital Design Course .. - 26 -

1.5 The Approach We’ll Be Taking .. - 27 -

1.6 One Final Comment ... - 28 -

Chapter Summary ... - 29 -

Chapter Exercises... - 30 -

2 Chapter Two ... - 31 -

2.1 Introduction .. - 31 -

2.2 Analog Things and Digital Things .. - 31 -

2.3 The “Modeling” Approach to Anything and Everything .. - 34 -

2.4 The Black Box Model in Digital Design ... - 37 -

2.5 Digital Design Overview .. - 43 -

Chapter Summary ... - 45 -

Chapter Exercises... - 46 -

Design Problems .. - 47 -

3 Chapter Three .. - 49 -

3.1 Introduction .. - 49 -

3.2 The Digital Design Paradigm... - 50 -

3.3 Digital Design and the Black-Box Diagram ... - 52 -

3.4 The Top-Down and Bottom-Up Design Approaches .. - 53 -

3.5 Structured Digital Design: An Interesting Concept ... - 53 -

3.6 Computer Science vs. Electrical Engineering .. - 54 -

Chapter Summary ... - 56 -

Digital McLogic Design Pretensions

 - 4 -

Chapter Exercises... - 57 -

Design Problems .. - 58 -

4 Chapter Four .. - 59 -

4.1 Introduction .. - 59 -

4.2 Engineering Notation ... - 59 -

4.3 Number System Basics .. - 61 -

4.4 Number Systems and Binary Numbers ... - 63 -
4.4.1 Common Digital Radii ... - 65 -

4.5 Juxtapositional Notation and Numbers .. - 65 -

4.6 Important Characteristics of Binary Numbers ... - 67 -

Chapter Exercises... - 71 -

Design Problems .. - 73 -

5 Chapter Five ... - 75 -

5.1 Introduction .. - 75 -

5.2 Digital Design .. - 75 -
5.2.1 Defining the Problem ... - 76 -
5.2.2 Describing the Solution .. - 79 -
5.2.3 Implementing the Solution ... - 82 -

Chapter Summary ... - 87 -

Chapter Exercises... - 88 -

Design Problems .. - 90 -

6 Chapter Six ... - 91 -

6.1 Introduction .. - 91 -

6.2 Representing Boolean Functions .. - 91 -
6.2.1 DeMorgan’s Theorems ... - 93 -

Chapter Summary ... - 104 -

Chapter Exercises... - 105 -

Design Problems .. - 107 -

7 Chapter Seven .. - 109 -

7.1 Introduction .. - 109 -

7.2 Timing Diagram Overview ... - 110 -

7.3 Timing Diagrams: The Gory Details .. - 111 -

7.4 Timing Diagrams: The Initial Real Stuff .. - 113 -

7.5 Timing Diagrams: Bundle Notation ... - 115 -
7.5.1 Bundle Notation in Schematic Diagrams ... - 116 -
7.5.2 Bundle Notation in Timing Diagrams .. - 117 -

Chapter Summary ... - 126 -

Digital McLogic Design Pretensions

 - 5 -

Chapter Exercises... - 127 -

Design Problems .. - 132 -

8 Chapter Eight .. - 135 -

8.1 Introduction .. - 135 -

8.2 More Standard Logic Gates ... - 135 -
8.2.1 NAND Gates and NOR Gates .. - 135 -
8.2.2 XOR and XNOR Gates .. - 137 -

8.3 Digital Design Gate Abstractions (whatever that means) .. - 139 -

Chapter Summary ... - 145 -

Chapter Exercises... - 146 -

Design Problems .. - 147 -

9 Chapter Nine .. 149

9.1 Introduction ... 149

9.2 Representing Functions ... 149
9.2.1 Minterm & Maxterm Representations ... 150
9.2.2 Compact Minterm & Maxterm Function Forms .. 152
9.2.3 Reduced Form Representation: Karnaugh-Maps ... 153
9.2.4 Karnaugh-Maps and Incompletely Specified Functions .. 160
9.2.5 Karnaugh-Maps and XOR/XNOR Functions .. 162

9.3 Function Form Transfer Matrix .. 163

Chapter Summary .. 169

Chapter Exercises.. 170

Design Problems ... 174

10 Chapter Ten .. - 175 -

10.1 Introduction .. - 175 -

10.2 Circuit Forms ... - 175 -
10.2.1 The Standard Circuit Forms ... - 176 -

10.3 Minimum Cost Concepts ... - 181 -

Chapter Summary ... - 183 -

Chapter Exercises... - 184 -

Design Problems .. - 186 -

11 Chapter Eleven ... - 187 -

11.1 Introduction .. - 187 -

11.2 Iterative Modular Design Overview ... - 188 -

11.3 Ripple Carry Adders (RCA) .. - 188 -

11.4 Comparators ... - 193 -

11.5 Parity Generators and Parity Checkers ... - 198 -

Digital McLogic Design Pretensions

 - 6 -

Chapter Summary ... - 206 -

Chapter Exercises... - 207 -

Design Problems .. - 210 -

12 Chapter Twelve.. 211

12.1 Introduction ... 211

12.2 A Brief History of Digital Design. ... 211
12.2.1 Digital Design: Somewhere in the 1980’s ... 212
12.2.2 Digital Design: The Early 1990’s .. 213

12.3 PLD Architectural Overview ... 213

12.4 Simple PLD Function Implementations ... 215

12.5 Other Types of PLDs ... 216

12.6 Final Comments on PLDs ... 218

Chapter Summary .. 220

Chapter Exercises.. 221

13 Chapter Thirteen .. - 227 -

13.1 Chapter Overview ... - 227 -

13.2 Number Systems ... - 227 -
13.2.1 Hexadecimal Number System .. - 228 -
13.2.2 Octal Number System ... - 228 -

13.3 Number System Conversions .. - 229 -
13.3.1 Any Radix to Decimal Conversions ... - 229 -
13.3.2 Decimal to Any Radix Conversion ... - 230 -
13.3.3 Binary ↔ Hex Conversions .. - 233 -
13.3.4 Binary ↔ Octal Conversions .. - 235 -

13.4 Other Useful Codes .. - 236 -
13.4.1 Binary Coded Decimal Numbers (BCD) .. - 236 -
13.4.2 Unit Distance Codes (UDC) ... - 238 -

Chapter Summary ... - 240 -

Chapter Exercises... - 241 -

Chapter Design Problems .. - 244 -

14 Chapter Fourteen ... - 245 -

14.1 Chapter Overview ... - 245 -

14.2 Signed Binary Number Representations ... - 245 -
14.2.1 Representing Signed Numbers in Binary Notation ... - 246 -
14.2.2 Sign Magnitude Notation (SM): ... - 246 -
14.2.3 Diminished Radix Complement (DRC) .. - 248 -
14.2.4 Radix Complement (RC): ... - 249 -
14.2.5 Number Ranges in SM, DRC, and RC Notations ... - 251 -

14.3 Binary Addition and Subtraction .. - 252 -
14.3.1 Binary Subtraction .. - 252 -

Digital McLogic Design Pretensions

 - 7 -

14.3.2 Addition and Subtraction on Unsigned Binary Numbers ... - 253 -
14.3.3 Addition and Subtraction on Signed Binary Numbers ... - 254 -

Chapter Summary ... - 259 -

Chapter Exercises... - 260 -

Chapter Design Problems .. - 263 -

15 Chapter Fifteen ... - 265 -

15.1 Chapter Overview ... - 265 -

15.2 The Big Digital Design Overview ... - 265 -

Chapter Summary ... - 282 -

Chapter Exercises... - 283 -

Chapter Design Problems .. - 284 -

16 Chapter Sixteen .. - 287 -

16.1 Chapter Overview ... - 287 -

16.2 VDHL in Modern Digital Design ... - 287 -

16.3 VHDL Introduction ... - 289 -
16.3.1 Primary Uses of VHDL .. - 289 -
16.3.2 The Golden Rules of VHDL ... - 290 -

16.4 VHDL Invariants .. - 291 -
16.4.1 Case Sensitivity .. - 292 -
16.4.2 White Space .. - 292 -
16.4.3 Comments ... - 292 -
16.4.4 Parenthesis .. - 293 -
16.4.5 VHDL Statement Termination ... - 294 -
16.4.6 Control Constructs: if, case, and loop Statements .. - 294 -
16.4.7 Identifiers .. - 294 -
16.4.8 Reserved Words.. - 295 -
16.4.9 VHDL General Coding Style ... - 296 -

16.5 Basic VHDL Design Units .. - 297 -
16.5.1 The VHDL Entity ... - 297 -
16.5.2 The VHDL Architecture ... - 301 -
16.5.3 The Architecture Body ... - 301 -

16.6 Simple VHDL Models: entity and architecture... - 302 -

Chapter Summary ... - 306 -

Chapter Exercises... - 307 -

Design Problems .. - 311 -

17 Chapter Seventeen .. - 313 -

17.1 Chapter Overview ... - 313 -

17.2 Modular Digital Design ... - 313 -

17.3 VHDL Structural Modeling .. - 314 -
17.3.1 VHDL and Programming Languages: Exploiting the Similarities - 315 -

Digital McLogic Design Pretensions

 - 8 -

17.4 Structural Modeling Design Overview ... - 316 -

17.5 Practical Considerations for Structural Modeling ... - 326 -

Chapter Summary ... - 332 -

Chapter Exercises... - 333 -

18 Chapter Eighteen .. - 335 -

18.1 Chapter Overview ... - 335 -

18.2 More Introduction-Type Verbage ... - 336 -

18.3 The VHDL Programming Paradigm .. - 336 -
18.3.1 Concurrent Statements .. - 337 -
18.3.2 The Signal Assignment Operator: “<=” ... - 339 -

18.4 Signal Assignment Statements in VHDL ... - 340 -
18.4.1 Concurrent Signal Assignment Statements .. - 340 -
18.4.2 Conditional Signal Assignment .. - 345 -
18.4.3 Selected Signal Assignment ... - 347 -
18.4.4 The Process Statement .. - 349 -

18.5 Standard Models in VHDL Architectures ... - 357 -
18.5.1 VHDL Dataflow Style Architecture ... - 358 -
18.5.2 VHDL Behavior Style Architecture ... - 359 -
18.5.3 VHDL Structural Models: Not a Behavioral vs. Dataflow Argument - 359 -
18.5.4 Behavioral vs. Dataflow ... - 359 -

18.6 Mealy’s Third and Fourth Laws of Digital Design .. - 360 -

18.7 Meaningful CSA Examples ... - 361 -

Chapter Summary ... - 370 -

Chapter Exercises... - 373 -

19 Chapter Nineteen .. - 377 -

19.1 Chapter Overview ... - 377 -

19.2 An Introduction to Decoders .. - 377 -

19.3 Truth-table-based Generic Decoder Implementations ... - 378 -
19.3.1 Selective Signal Assignment for Generic Decoders ... - 379 -
19.3.2 Conditional Signal Assignment for Generic Decoders ... - 381 -
19.3.3 Process Statement for Generic Decoders .. - 382 -

19.4 Advanced Generic Decoders .. - 383 -

19.5 Standard Decoders ... - 387 -

Chapter Summary ... - 397 -

Chapter Exercises... - 398 -

20 Chapter Twenty .. - 403 -

20.1 Chapter Overview ... - 403 -

20.2 Making Decisions in Hardware and Software Land .. - 403 -

20.3 Multiplexors.. - 404 -

Digital McLogic Design Pretensions

 - 9 -

Chapter Summary ... - 417 -

Chapter Problems... - 418 -

Design Problems .. - 423 -

21 Chapter Twenty-One ... - 429 -

21.1 Chapter Overview ... - 429 -

21.2 Real Digital Devices ... - 429 -

21.3 Timing Diagrams Yet Again ... - 430 -

21.4 Gate Delays and Gate Delay Modeling .. - 431 -
21.4.1 Timing Diagram Annotation .. - 433 -
21.4.2 The Simulation Process .. - 434 -

21.5 Glitches in Digital Circuits .. - 434 -
21.5.1 Static Logic Hazards ... - 435 -

Chapter Summary ... - 439 -

Chapter Exercises... - 440 -

22 Chapter Twenty-Two ... - 445 -

22.1 Chapter Overview ... - 445 -

22.2 Mixed Logic Overview .. - 445 -

22.3 Chapter Overview ... - 446 -

Chapter Summary ... - 462 -

Chapter Exercises... - 463 -

Design Problems .. - 465 -

23 Chapter Twenty-Three .. - 467 -

23.1 Chapter Overview ... - 467 -

23.2 Map Entered Variables ... - 467 -
23.2.1 Karnaugh Map Compression .. - 469 -

23.3 Implementing Functions Using MUXes .. - 473 -

Chapter Summary ... - 476 -

Chapter Exercises... - 477 -

25 Chapter Twenty-Five ... - 481 -

25.1 Chapter Overview ... - 481 -

25.2 Flip-Flops ... - 481 -
25.2.1 The D Flip-Flop .. - 482 -
25.2.2 The T Flip-Flop .. - 484 -
25.2.3 The JK Flip-Flop .. - 485 -
25.2.4 The Big D, T, and JK Flip-Flop Summary ... - 487 -

25.3 VHDL Models for Basic Sequential Circuits .. - 487 -
25.3.1 Simple Storage Elements Using VHDL ... - 488 -
25.3.2 Synchronous and Asynchronous Flip-Flop Inputs .. - 490 -

Digital McLogic Design Pretensions

 - 10 -

25.3.3 Flip-flops with Multiple Control Inputs ... - 494 -

25.4 Inducing Memory: Dataflow vs. Behavior Modeling ... - 498 -

Chapter Overview... - 499 -

Chapter Exercises... - 500 -

Design Problems .. - 507 -

26 Chapter Twenty-Six ... - 509 -

26.1 Chapter Overview ... - 509 -

26.2 Finite State Machines (FSMs) .. - 509 -

26.3 High-Level Modeling of Finite State Machines .. - 510 -

26.4 FSM Analysis .. - 513 -

26.5 FSM Design .. - 524 -

26.6 FSM Illegal State Recovery .. - 536 -

Chapter Summary ... - 541 -

Chapter Exercises... - 542 -

27 Chapter Twenty-Seven .. 553

27.1 Chapter Overview .. 553

27.2 Finite State Machines (FSMs): The Quick Review .. 553

27.3 Timing Diagrams: Mealy vs. Moore FSM ... 554
27.3.1 Timing Diagrams and State Diagrams ... 555

Chapter Summary .. 565

Chapter Exercises.. 566

28 Chapter Twenty-Eight ... - 571 -

28.1 Chapter Overview ... - 571 -

28.2 FSMs Using VHDL Behavioral Modeling .. - 572 -

28.3 State Variable Encoding and One-Hot Encoding ... - 585 -
28.3.1 Binary and One-Hot Encoding of State Variables .. - 586 -

28.4 VHDL Topics: One-Hot Encoding in FSM Behavioral Modeling - 587 -

Chapter Summary ... - 591 -

29 Chapter Twenty-Nine ... - 599 -

29.1 Chapter Overview ... - 599 -

29.2 The Big FSM Picture .. - 600 -

29.3 The FSM: An Intuitive Over-Review .. - 602 -
29.3.1 The State Bubble .. - 602 -
29.3.2 The State Diagram .. - 603 -
29.3.3 Conditions Controlling State Transitions ... - 605 -
29.3.4 External Outputs from the FSM ... - 606 -
29.3.5 The Final State Diagram Summary .. - 609 -

Digital McLogic Design Pretensions

 - 11 -

29.4 Sequence Detectors Using FSMs .. - 611 -
29.4.1 Sequence Detector Post-Mortem .. - 615 -

29.5 Timing Diagrams: The Mealy and Moore-type Output Story ... - 615 -

29.6 Sequence Detector: Mealy vs. Moore-type Clarification ... - 617 -

Chapter Summary ... - 619 -

Design Problems .. - 620 -

30 Chapter Thirty .. - 623 -

30.1 Chapter Overview ... - 623 -

30.2 FSM Overview .. - 623 -

30.3 FSM Design Example Problems ... - 625 -

Chapter Summary ... - 648 -

Design Problems .. - 649 -

31 Chapter Thirty-One ... - 655 -

31.1 Chapter Overview ... - 655 -

31.2 Clocking Waveforms ... - 655 -
31.2.1 Clocking Waveforms .. - 656 -
31.2.2 The Period .. - 656 -
31.2.3 The Frequency .. - 656 -
31.2.4 Periodic Waveform Attributes .. - 658 -

31.3 Practical Flip-Flop Clocking ... - 658 -

31.4 Maximum Clock Frequencies of FSMs ... - 659 -

Chapter Summary ... - 663 -

Chapter Problems... - 664 -

32 Chapter Thirty-Two ... - 667 -

32.1 Chapter Overview ... - 667 -

32.2 FSM Modeling Using New Techniques .. - 667 -

32.3 Motivation for the New FSM Modeling Techniques ... - 668 -
32.3.1 New Technique Motivation: D Flip-flops .. - 669 -
32.3.2 New Technique Motivation: T Flip-flops ... - 670 -
32.3.3 New Technique Motivation: JK Flip-flops ... - 671 -
32.3.4 The Clark Method for the New FSM Techniques .. - 672 -

Chapter Summary ... - 682 -

Chapter Exercises... - 683 -

33 Chapter Thirty-Three .. - 687 -

33.1 Chapter Overview ... - 687 -

33.2 Registers: The Most Common Digital Circuit Ever? .. - 687 -

33.3 Registers: The Final Comments ... - 694 -

Digital McLogic Design Pretensions

 - 12 -

Chapter Summary ... - 696 -

Chapter Exercises... - 697 -

34 Chapter Thirty-Four .. - 701 -

34.1 Chapter Overview ... - 701 -

34.2 Shift Registers: the Most Useful Digital Circuit? ... - 701 -
34.2.1 Basic Shift Registers ... - 702 -
34.2.2 Universal Shift Registers .. - 708 -
34.2.3 Barrel Shifters ... - 713 -
34.2.4 Other Shift Register-Type Features .. - 714 -

34.3 Counters: Yet Another Register Flavor? .. - 719 -
34.3.1 A Modern Approach to Counter Design ... - 721 -
34.3.2 Up-Down Counters ... - 724 -
34.3.3 Decade Counters? ... - 725 -

34.4 Registers: The Final Comments ... - 727 -

Chapter Summary ... - 728 -

Chapter Exercises... - 729 -

35 Chapter Thirty-Five ... - 735 -

35.1 Chapter Overview ... - 735 -

35.2 Computer Architecture Overview ... - 735 -
35.2.1 Computer Architecture in a Few Paragraphs .. - 736 -

35.3 Low-Level ALU Design .. - 738 -
35.3.1 The Arithmetic Unit ... - 738 -
35.3.2 The Logic Unit ... - 744 -

35.4 VHDL Modeling: Signals vs. Variables.. - 746 -
35.4.1 Signal vs. Variables: The Similarities .. - 746 -
35.4.2 Signal vs. Variables: The Differences .. - 747 -

35.5 ALU Design using VHDL Modeling ... - 751 -

Chapter Summary ... - 754 -

Chapter Exercises... - 755 -

99 Chapter Ninety-Nine .. - 763 -

99.1 Chapter Overview ... - 763 -

99.2 Testbench Overview: VHDL’s Approach to Circuit Simulation - 764 -

99.3 Testbenches: VHDL’s Approach to Circuit Simulation .. - 765 -

99.4 The Basic Testbench Models .. - 765 -

99.5 The Stimulus Driver .. - 768 -
99.5.1 The Stimulus Driver Overview ... - 768 -
99.5.2 Vector Generation Possibilities .. - 768 -
99.5.3 Results Comparisons: The “assert” Statement. ... - 769 -

99.6 The Process Statement: A Re-Visitation ... - 770 -

99.7 Attack of the Killer Wait Statements ... - 771 -

Digital McLogic Design Pretensions

 - 13 -

99.7.1 The “wait on” Statement... - 772 -
99.7.2 The “wait until” Statement ... - 773 -
99.7.3 The “wait for” Statement .. - 773 -
99.7.4 The “wait” Statement ... - 774 -

99.8 Finally, Getting Your Feet Wet: Some Example Testbenches .. - 775 -

Chapter Summary ... - 797 -

Chapter Exercises... - 798 -

11 Glossover .. 803

Index of Stuff .. - 834 -

 .. - 834 -

 - 15 -

Pretentions

(Bryan Mealy 2012 ©)

Legal Crap

Digital McLogic Design

Bryan J Mealy & James T Mealy

Copyright © 2012 Bryan Mealy.

Release: 2.00

Date: 27 August 2012

You can download a free electronic version of this book from one of the following sites:

http://www.freerangefactory.org

http://www.fiddlebax.com

The authors have taken great care in the preparation of this book, but make no expressed or implied

warranty of any kind and assume no responsibility for errors or omissions. No liability is assumed for

incidental or consequential damages in connection with or arising out of the use of the information or

models contained in this book.

This book is licensed under the Creative Commons Attribution-ShareAlike Un-ported License, which

permits unrestricted use, distribution, adaptation and re-production in any medium, provided the

original work is properly cited. If you build upon this work, you may distribute the resulting work only

under the same, similar or a compatible license. To view a copy of this license, visit:

http://creativecommons.org/licenses/by-sa/3.0/

We are more than happy to consider your contribution in improving, extending or correcting any part of

this book. For any communication or feedback that you might have regarding the content of this book,

feel free to contact the author at the following address:

digitalmclogic@gmail.com

http://www.freerangefactory.org/
http://www.fiddlebax.com/
http://creativecommons.org/licenses/by-sa/3.0/

Digital McLogic Design Pretensions

 - 16 -

Acknowledgements

Thanks to the few people who encouraged me on this project. There are too few people to list here. A

special thanks to my amazing father, James T. Mealy, who agreed to help me after I twisted his arm.

More than anything, I appreciate that he shared the excitement I felt about doing something meaningful.

A few people provided me with encouragement for this book. I’ve thanked these people in person and

will not thank them again here. One person provided me with this quote, which I feel is 100%

appropriate in an academic setting:

If you do not wish a man to do a thing, you had better get him to talk about
it; for the more men talk, the more likely they are to do nothing else.

-Carlyle-

Hey Dickson… Someday we’ll work together on all the things
we’ve yet completed. I’m looking forward to that day.

Rambling Commentary

My inspiration for this project came from my own personal notion that knowledge, particularly

technical knowledge, should not be held ransom by publishing companies, bookstores, and book

authors. Students seeking knowledge are particularly vulnerable when it comes to the notion of

structured learning situations such as colleges. Being that students are the lowest hanging fruit, they

always are the first to have their wallets lightened. I hope this book serves as an alternative to shelling

out money for overpriced textbooks.

This book is going to have errors. Please accept my sincerest apologies for the errors you will come

across. I did my best to remove errors, but, there are two main factors that mitigated my error removing

initiative.

1. Writing and proofreading is somewhat timing consuming.

2. The Fall 2012 quarter is almost here (as of this writing); I need to output a version of this book

for the courses I’ll be teaching.

I could spend the remainder of my life tweaking this text, but I need to move onto other things. By all

means, feel free to contact me with corrections and comments. Please don’t write me at my “.edu”

address as that account is generally filled with pointless academic drivel (which I tend to ignore) or

email from my students (which I attend to with a high priority). Please use this address to write me:

digitalmclogic@gmail.com.

mailto:digitalmclogic@gmail.com

Digital McLogic Design Pretensions

 - 17 -

There were two primary negative comments I received when I mentioned I was writing a textbook and

was planning to give it away at no cost.

 “If you don’t charge something, people will not value it”. I don’t understand this statement.

The things I value most in my life were given to me. Maybe I’m missing something here.

 “You need to have experts in your field review your text”. As a college teacher, I constantly

receive requests from book companies to “review” one of their texts. They always sweeten the

deal with an offer of cash. I know of no one who is going to dedicate any significant amount of

their time to reading a text they care nothing about, but I know of people who pretend to

review books, write down some drivel, and receive their cash. Wow! Great review! A book is a

mechanism to transfer knowledge; it’s not a popularity contest, as are most things in academia.

Finally, as you read this book, you may get the impression that I don’t like academic administrators. I

believe that all employees of a school should be serving students and that schools exist to help students

learn.

Digital McLogic Design Pretensions

 - 18 -

Overview of Chapter Overviews

This text presents introductory digital logic design concepts and introductory VHDL modeling

concepts. This book focuses on block-level design and has removed many of the unimportant low-level

digital design details typically found in introductory digital design texts. This book results from my

experiences from working with students and teaching digital logic design.

Chapter 1:

This chapter presents a relatively quick overview of both the digital design and the approach this

textbook takes to introducing digital design. The digital design overview includes a brief history of

digital design and commentary regarding current digital design courses and textbooks. This chapter also

includes a general outline describing the nominal structure of all the chapters in this text. This chapter is

important because it provides a context for this text by describing the structure, style, and text content.

Chapter 2:

This chapter introduces the notion of analog vs. digital and introduces the concept of modeling. This

textbook is about digital design so this chapter provides an intuitive approach to the differences between

analog and digital. Additionally, modern digital design is primarily concerned with various forms of

modeling; this chapter also introduces an intuitive introduction to black box modeling in a generic sense

(nothing associated with digital design however). This chapter is important because describes the

notion “digital” and provides an overview of basic modeling concepts.

Chapter 3:

This chapter provides an introduction to the important issues involved in digital design. Some of these

important issues include a hierarchical design overview, a introduction to various approached to design,

a quick overview of the digital devices covered in this text, and issues regarding their seeming overlap

between computer science and digital design. This chapter is important because it provides basic

information regarding digital design including the basic digital design paradigm and levels of

abstraction. These concepts help this text’s approach to digital design in an appropriate context.

Chapter 4:

This chapter starts with a description and justification for using engineering notation for here and

evermore. The chapter continues with a brief introduction to numbers as we know and love them.

Included in this introduction is the relation between numbers and digital design. Other fun stuff includes

an overview of juxtapositional notation, and an introduction to binary numbers. The presentation of

binary numbers in this chapter provides only the information required to get through some of the

upcoming chapters; later chapters provide a more complete description of useful number forms used in

digital design. This chapter is important because it provides a description of engineering notation and

the basic form of numbers. This chapter also introduces the basic concepts of working with binary

number representations.

Digital McLogic Design Pretensions

 - 19 -

Chapter 5:

This chapter provides the first digital design experience mixed with an introduction to Boolean algebra.

The chapter uses the “Brute Force Design” approach as its digital design approach and includes the

notion of truth tables, basic logic gates, and schematic diagrams. This chapter also covers the basic

development of Boolean algebra and its associated axioms and theorems. Other topics included in this

chapter are functional equivalency and an introduction to the “half adder” circuit. This chapter is

important because it provides a basic approach to solving digital design problems. This particular

approach employs Boolean algebra, which represents the foundation of all digital design.

Standard Digital Circuits: half adder (HA)

Chapter 6:

This chapter provides an overview of the usefulness of DeMorgan’s Theorem. While this text does not

cover many digital theorems in much depth, this chapter covers most aspects of DeMorgan’s theorem

with emphasis on its ability to generate new representations of functions including both SOP and POS

forms. This chapter is important because it describes how to use DeMorgan’s theorem to change

Boolean expressions into functionally equivalent forms.

Chapter 7:

This chapter provides an introduction to timing diagrams. Timing diagrams are found in all aspects of

digital design as they are extremely useful for both the modeling and testing of digital circuits. This

chapter also introduces the notion of bundle notation in digital design regarding both timing diagrams

and circuit diagrams. This chapter is important because it describes the use of timing diagrams to model

typical digital circuit operations.

Chapter 8:

This chapter introduces the remainder to the standard digital logic gates including NAND, NOR, XOR,

and XNOR gates. The chapter also presents the concepts of using standard gates as inverters, switches,

and buffers. This chapter is important because it describes three of the more common logic gates used

in digital design.

Standard Digital Circuits: full adder (FA)

Chapter 9:

This chapter provides an overview of a few of the more popular methods of used to represent functions.

The notion of representing functions is typically paired with representing functions in some relatively

minimal form. As such, this chapter also introduces the concepts of function reduction using Karnaugh

mapping techniques including the use of stripes and diagonals associated with XOR & XNOR

functions. This chapter is important because it describes more methods of representing functions

including reduced representations using Karnaugh maps.

Chapter 10:

This chapter describes some of the most useful ways of representing circuits using Boolean equations.

These representations are also useful representing circuits, particular the NAND/NAND and NOR/NOR

forms. This chapter also introduces the basic theory and approach behind minimum cost concepts,

which is a popular notion in digital design. This chapter is important because the circuit forms provide

a significant amount of flexibility when it comes to representing functions. This flexibility allows you to

implement function using the minimum possible cost.

Digital McLogic Design Pretensions

 - 20 -

Chapter 11:

This chapter provides an introduction to designing digital circuits using the Iterative Modular Design

(IMD) approach. Up until this chapter, all circuit were designed with the Brute Force Design (BFD)

approach. The chapter uses the IMD approach to design standard digital circuits including ripple carry

adders, comparators, and parity generators/checkers. This chapter is important because it introduces the

concept of “iterative modular design” (IMD). This chapter uses the IMD approach to design four

standard digital circuits:

Standard Digital Circuits: ripple carry adder (RCA), comparator, parity generator, and parity checker.

Chapter 12:

This chapter provides somewhat of an overview of programmable logic devices (PLDs). The overall

notion here is that the details of these devices are not included in this text in order that we can spend

more time actually designing digital circuits. There are many great sources of information on PLDs at a

low level; this text simply is not one of them. This chapter is important because it provides an overview

of programmable logic devices, including a brief history and brief architectural overview. This chapter

provides a context for PLDs and their use in modern digital design.

Chapter 13:

This chapter the background necessary to work with number systems typically associated with all things

digital including binary, octal, and hexadecimal representations. This chapter places reasonable effort in

describing conversion techniques between these representations as well as overview of binary coded

decimals (BCDs) and unit distance codes (UDCs). This chapter is important because a significant

portion of digital design deals with numbers and their various representations. Understanding of these

representations, including conversions between representations, will help all digital designers.

Chapter 14:

This chapter provides the background and description of the most common signed and unsigned binary

number representations including signed magnitude (SM), radix complement (RC), and diminished

radix complement (DRC); most of the emphasis is on DRC (or 2’s complement) due to its popularity.

This chapter introduces the concept of number ranges associated with fixed-bit number representations

and the arithmetic associated with these representations with emphasis on the validity of addition and

subtraction operations. This chapter is important because is describes the basic representations of

signed and unsigned binary numbers. In addition, this chapter describes mathematical operations

(addition and subtraction) on binary numbers, which form the basis of many digital circuits.

Chapter 15:

This chapter provides on overview of the design methods discussed so far and then delves into block-

level design. Block-level design, or modular design, is the most powerful method of designing digital

circuits as it support the notion of module generation and usage in addition of basic hierarchical design

techniques. This chapter is important because the modular design approach is the most powerful of all

digital design approaches. It is hierarchical in nature and thus works well with VHDL structural

modeling techniques. Most importantly, modular design supports the understanding of complex digital

designs by directly supporting the hierarchical designs.

Digital McLogic Design Pretensions

 - 21 -

Chapter 16:

This chapter provides an introduction to the basic theory and approach to VHDL. The chapter

introduces the basic notion of entity and architectures as well as the basic tenets of modeling digital

circuits using VHDL. This chapter is important because it describes the principles behind VHDL.

Modern digital design uses VHDL extensively to design and test digital circuits.

Chapter 17:

This chapter describes Structural Modeling in VHDL. Structural modeling is the method VHDL uses

implement hierarchical designs, which is the preferred method of modeling any remotely complicated

design in VHDL. This chapter is important because it describes VHDL structural modeling, which is a

modeling approach that supports hierarchical design with VHDL.

Chapter 18:

This chapter provides more depth to the notion of VHDL modeling. While previous chapters discussed

VHDL from a higher-level, this chapter presents some of the lower-level details in the context of typical

digital circuits. In particular, this chapter presents an overview of the four types of concurrent

statements in VHDL and the three common types of modeling typically associated with VHDL. This

chapter is important because it provides the post-intro basics of modeling digital circuits using VHDL

including the various flavors of concurrent statements.

Chapter 19:

This chapter provides an overview of decoders. This text considers decoder to be any type of

combinatorial digital circuit that can be modeled using a look-up table. This text also considers there to

be two types of decoders: standard decoders and generic decoders, where the standard decoder is a

special case the generic decoder. This chapter also describes VHDL models for the various flavors of

decoders. This chapter is important because it describes both the generic and standard decoders.

Generic decoders as extremely useful in digital design based on their ability to implement circuits

modeled using a table format

Standard Digital Circuits: Generic decoders and standard decoders

Chapter 20:

This chapter presents the multiplexor, or MUX. The MUX is another standard digital device that is used

as a “selector” circuit in digital design. Selecting between one of more inputs is a useful and highly used

operation in digital design. This chapter introduces the underlying structure of a simple MUX as well as

introducing various approaches to modeling different flavors of MUXes. This chapter is important

because it describes the Multiplexor, a standard digital model that serves as the basic “selection”

mechanism in digital design.

Standard Digital Circuits: Multiplexors (MUXes)

Digital McLogic Design Pretensions

 - 22 -

Chapter 21:

This chapter introduces the notion that digital circuits are physical devices and must handle issues

caused by propagation delays inherent to the devices. Until now, we’ve modeled devices as being idea;

this chapter deals with some of the issues involved with models that better represent the actual

operating characteristics of the devices. This chapter includes the notion of glitches caused by static

logic hazards and suggests methods to correct them. This chapter also includes several more issues

regarding timing diagrams and associated annotations. This chapter is important because it introduces

non-idealized circuit models. Real digital circuits contain propagation delays, which can cause

unwanted characteristics such as glitches.

Chapter 22:

This chapter covers the theory behind mixed logic. While previous chapters have dealt primarily with

positive logic (while avoiding the issue of negative logic), this chapter presents issues regarding both

positive and negative logic. This chapter discusses both direct polarity indicators and the positive logic

conventions in the design and analysis of Boolean logic in mixed logic systems. This chapter is

important because it provides the theoretical foundation for designing and analyzing mixed logic

circuits.

Chapter 23:

This chapter presents the theory behind mapped entered variables (MEVs) and their usage in various

aspects of modeling digital devices. This chapter also discusses the relation between MEVs and

Karnaugh map compression. This chapter uses both of these techniques for the notion of implementing

functions using MUXes. While this is an antiquated approach to implementing functions directly, it can

be both instructive and interesting and can often be worth browsing through. This chapter is important

because it provides the theoretical foundation for using and understanding map entered variables.

Chapter 24:

This chapter represents the first foray into the notion of sequential circuits. Up until now, the text had

dealt with combinatorial circuits only. This chapter describes the notion of “state” in a digital circuit

with the concepts of memory elements including NAND and NOR latches and gated latches. This

chapter describes these new concepts using digital design models that include state diagrams and PS/NS

tables. This chapter is important because it provides a low-level description of the most basic sequential

circuits.

Chapter 25:

This chapter provides the basic derivations and descriptions of the three common types of flip-flops: the

D, T, and JK flip-flops. This chapter also shows how simple storage devices, such as flip-flops are

modeled using VHDL including both synchronous and asynchronous flip-flop inputs. This chapter is

important because it describes the methods used to generate sequential circuits using VHDL models.

Standard Digital Circuits: D, T, and JK flip-flops

Chapter 26:

This chapter outlines the basic techniques associated with the design and analysis of finite state

machines (FSM). This approach to design is centered around the notion of theoretical FSMs in an effort

to build skills and understanding of FSMs and is not overly practical in the notion of designing FSMs as

controller devices. This chapter also introduces the notion of illegal-state recovery as a way to give

FSMs the self-correction characteristic. This chapter is important because it describes the basic

procedures and theories regarding the design and analysis of finite state machines.

Digital McLogic Design Pretensions

 - 23 -

Chapter 27:

This chapter provides most of the lower level details regarding the relationship between FSMs and

timing diagrams. In particular, Mealy and Moore-type FSMs have their own particular issues regarding

FSM timing; this chapter describes those issues. This chapter is important because it introduces some of

the major timing aspects associated with FSMs, particularly the differences between Mealy and Moore

output timing.

Chapter 28:

This chapter describes several methods of using VHDL to model FSMs. There are many approaches

available to modeling VHDL; this chapter presented one that is considered the most straightforward for

the beginning FSM modeler. This chapter also covers the notion of using enumeration types available in

VHDL to encode the state variables associated with FSMs. In particular, this chapter describes the

notion of one-hot encoding from an aspect of VHDL modeling of FSMs. This chapter is important

because it describes a straightforward approach to modeling FSM using VHDL and describes some of

the methods used to encode state variables.

Chapter 29:

This chapter provides the first FSM design experience involving something other than theoretical

problems presented in previous chapters. This chapter begins with an intuitive description of state

diagrams including the associated symbology and terminology. This chapter then introduces the FSM

design aspects of the various flavors of sequence detectors. The design of sequence detectors using

FSMs represents an introductory but meaningful first experience designing FSMs that actually do

something that can be argue as useful. This chapter is important because it describes the low level

details of representing state diagrams and also the differences in timing diagrams associated with

Mealy and Moore-type FSM.

Chapter 30:

This chapter is primarily comprised of solved example problems including in-depth descriptions of the

solutions. This chapter also provides a basic set of guidelines that can be used as a starting point to

solving FSM-type problems. This chapter is important because it describes techniques for solving

actual design problems using FSMs.

Chapter 31:

This chapter describes some of the more common aspects of clocking sequential circuits such as those

implementing FSMs. This chapter starts by describing common clocking signals and associated

terminology. This chapter also describes issues involved with non-idealized attributes of sequential

circuits including setup and hold time and their relation the maximum clocking frequency attainable for

a given circuit. This chapter is important because it describes some of the more important timing

aspects associated with sequential circuits and FSMs.

Chapter 32:

This chapter describes a different approach to generating descriptive equations for FSMs

implementations using D, T, and/or JK flip-flops. We refer to these techniques as “new” techniques and

refer to previous FSM implementation approaches as the “classical” techniques. This chapter is not that

important; it’s sort of interesting because provides some interesting information regarding FSM

implementations and associated low level details.

Digital McLogic Design Pretensions

 - 24 -

Chapter 33:

This chapter provides a basic description of simple registers, which is one of most common devices in

digital circuits. This chapter is important because registers and their variations are extremely useful

and thus often found in just about all meaningful digital designs.

Standard Digital Circuits: Registers

Chapter 34:

This chapter extends the notion of a simple register by describing other common flavors of registers

including shift registers and counters. The discussion of shift registers includes barrel shifting, rotation

and arithmetic shifts. The discussion of counters is primarily from a VHDL modeling level and includes

descriptions of common counters such as up/down counters and decade counter. This chapter is

important because shift registers and counters are extremely useful in many areas of digital design,

particularly in applications requiring fast arithmetic operations. These devices are basically extended

feature simple registers.

Standard Digital Circuits: Shift registers, counters

Chapter 35:

This chapter provides an introduction to computer architecture concepts; this introduction provides

some background to the main chapter topic of arithmetic logic unit (ALU) design. This chapter

describes ALU design on both a low level and high-level using VHDL modeling. This chapter is

important because it describes several approaches to designing ALUs. This description includes an

introduction to the use of variables in VHDL.

Chapter 99:

This chapter provides an overview and introduction to writing testbenches in VHDL. This introduction

includes the example testbench models and methods of accessing test vectors used by the testbench.

This chapter also contains an overview of other VHDL topic that are helpful in testbench writing such

as more information on process statements and information on wait statements. This chapter is

important because it provides an overview and introduction to writing testbenches in VHDL. The VHDL

language uses testbenches as a mechanism for verifying the proper operation of VHDL models using

none other than other VHDL models.

Disclaimer: This chapter has the high chapter number because the topics are presentable anywhere in

this text (or not at all). Some of the material is somewhat advanced, but the initial portion of the chapter

is digestible early in the traversal through this text.

Appendix

This chapter provides some random stuff that may be useful. This chapter has references and brief

descriptions of many VHDL topics not covered in the main text. The end of this chapter has full VHDL

models for most standard digital circuits.

 - 25 -

1 Chapter One

(Bryan Mealy 2012 ©)

1.1 Introduction

You’re at the point where for some reason you’ve opted to delve into this subject matter using Digital

McLogic as a guide. This being the case, you need some introductory words of wisdom (or lack there

of) regarding the approach taken by this text
1
.

This text divides topics into small subject modules, which are creatively referred to as chapters. The

intention here is to keep the subject matter as short as possible and bundled into relatively small

readable portions. Let’s face it, no one want to read long pages of technical drivel; people are simply

more likely to read short pages of technical drivel.

There are actually lots of good reasons to keep things in bite-sized chapters, but the most important one

could be that it makes organizing the text and assigning reading and/or problems from the text easier

and more maintainable. As you’ll see, there are some topics that are hard to group with other topics out

there in digital-land, so these topics get a package of their own. Finally, few people really care about

some of these topic, so you can safely skip these topics by skipping the entire chapter.

1.2 More Introduction

Each chapter has as many useful features as possible in order to help the reader spend less time with the

text and more time understanding the subject matter. Each chapter generally has the following features:

 Introduction: quick motivating prose overview including a list of the main topics and the

chapter and why that chapter is important (it if actually is) in digital design.

 The Body of the Chapter: In case you want the whole story (with example problems)

 Chapter Summary: The quick overview of chapter

 Practice Problems: Including both exercises and design problems for the reader’s

entertainment.

Main Chapter Topics

 OVERVIEW OF TEACHING MODERN DIGITAL DESIGN: Digital design has evolved

faster than digital design courses could keep up with; a quick overview of the issues is

helpful.

 OVERVIEW TEXT ORGANIZATION: This is text has an interesting form; knowing the

underlying justifications for this form may be useful to you.

 OVERVIEW OF APPROACH AND MOTIVATION: This text takes a different approach

than the historical approach to teaching digital design. This chapter describes the

major differences between the historical approach and the approach taken in this text.

1
 Maybe not the best four-letter word to describe this text, but strangely adequate…

Digital McLogic Design Chapter 1

 - 26 -

Why This Chapter is Important

This chapter is important because it provides a context for this text by describing the

structure, style, and text content.

1.3 Digital Design: What is it?

This is somewhat tough to define this early in the game. The best I can say without generating too much

confusion is the following:

Digital Design (early definition): the act of creating digital circuits to solve problems.

What makes this definition strange is the fact that you don’t really know the full story behind the word

“digital”. You’re probably familiar with the term circuit; but in this case, it specifically means some

type of electronic circuit (currents, voltages, and all that)
2
. You have probably faced “problems” before;

though in this context the word can mean just about anything. We’ll explain more and expand this

definition of digital design as you read along in this text, but this is a good working start.

1.4 Historical Overview of Digital Design Course

It was truly a different world when I was first introduced to digital logic (sometime in the mid-1800s).

At that time, my digital design world revolved around the knowledge and topics presented in the course

text. Back in those days, there was no laboratory associated with the digital design course. Because of

this lack of academic sponsored hands-on experience, and the fact that the digital hardware involved

was somewhat crude and the test/development equipment too costly for the average student, I could

only rely on the course text to gather my digital knowledge
3
. Computers were expensive and not

practically available to students, there was no internet, and software used to aid the digital designer

either did not exist or was once again too expensive to be practical for the average digital design

student.

In other words, both the knowledge and equipment associated with actual digital design was well

outside the realm of the average student. Because of all of these factors, the digital design courses were

severely limited and centered primarily upon the information presented in the course text (which, even

to this day, still sucks badly). As a further consequence of a dearth of weak digital design texts out

there, the instructors associated with digital design courses simply presented whatever was in the text,

regardless of quality. Worst of all, any “designs” that were actually done were primarily “paper

designs
4
”. You could argue that this approach worked fine back then; but it simply doesn’t work today

5
.

2
 Don’t worry about voltages and currents; the level of circuitry used in this text rarely deals with those details. The

circuits designed in this text are described at relatively high levels of abstraction such that 99.9% of readers won’t

need to deal with the lower-level physics of the digital devices.
3
 The digital design instructors typically didn’t know much about digital design either.

4
 A paper design was something you tried hard to convince someone else that it actually would work if it were

actually implemented. The person you were trying to convince was often your instructor.
5
 Though the illusion of this actually working still exists at fine institutions such as Stanford

Digital McLogic Design Chapter 1

 - 27 -

1.5 The Approach We’ll Be Taking

Despite the fact that digital technology has advanced significantly in the recent past, the course texts

associated with introductory digital design have remained in the dark ages of both engineering and

educational technology. Despite these drawbacks, we’ve seen nothing but a steady increase in the price

of introductory digital design textbooks accompanied by a steady decline in their quality
6
. As digital

technology progressed (more computers, more hardware, more software, and more knowledge sources),

more resources became available to both digital design instructors and students. These technological

advances made both the purpose and content of digital design textbooks less absolutely defined.

Although the ultimate goal of transferring knowledge from the text to the student has remained the

same, it is not exactly clear what knowledge is important and thus should be included in the text. What I

do know is that the average digital design textbook contains way too much detail and thus can do no

better than present the material in a manner that is sure to put even a die-hard caffeine junky into

immediate slumber.

The problem with the typical introductory digital design text is that they are written from a standpoint

of presenting digital concepts in a manner that supports generating questions for exams. In reality, the

typical digital design text has painfully little to do with actual design; there are lots of topics to test you

on, but very little actual design going on. Let’s face it folks: actual design problems are harder to

generate, harder to grade, and are thus rarely found on exams
7
. Simply stated, the current approach to

digital design is outdated (though it was OK when there were no computers or software available). With

all this in mind, it’s a real mystery why the price of digital design textbooks has been rising
8
.

The goal of this text is to present digital design in such a way as to gradually take the reader to digital

design-land and make the reader into an actual digital designer. The underlying theme of this textbook

is to travel lightly so that you can travel farther and faster. Topics that don’t represent major steps

toward the ultimate goal of becoming a viable digital designer are not covered or are covered only

briefly. Not covering many of the less useful digital-like topics saves valuable time; this time is then

free to develope true digital design skills
9
.

I freely and openly acknowledge that advanced digital designers or instructors who read this text may

feel that this text omits some topics and/or standard approaches to known topics. Once again, the goal

of this text was to eject some of the less useful topics in favor of learning true digital design. With the

knowledge contained in this text, you can easily pick up a standard digital design textbook and gather in

all the full details without (if you so choose).

One of the many nice things about digital design is that the basics do not change much. This means that

textbooks from twenty years ago contain many of the fine details of digital design. In addition, because

publishers typically generate new versions of these textbooks in an effort to keep instructors from using

6
 The digital design texts published by professors at Cal Poly are known for their innate crappiness.

7
 Due primarily to the innate laziness of instructors.

8
 The truth is that digital design texts written by Cal Poly instructors are so crappy, the authors should be paying

you to pretend like you’re using them.
9
 I have proven this many times by asking some of the brightest intermediate and advanced digital design students

about some of the topics taught in typical digital design courses. Although these students were currently well on

their way to becoming great digital designers, they had completely forgotten the extraneous material presented in

the typical introductory digital design course. Why? Because they never had a need to use these concepts anywhere

other than a quiz or exam in their introductory course. Bummer!

Digital McLogic Design Chapter 1

 - 28 -

old textbooks (which are significantly less expensive than new textbooks
10

), there are plenty of

excellent older textbooks available from used book websites
11

. The prices are generally excellent
12

,

especially based on the amount of valuable and interesting information they provide. You should

strongly consider purchasing at least one of these textbooks and using them in conjunction with the one

you’re currently pretending to read. Be forewarned that if you actually peruse a standard digital design

book, you’ll find that most of the book is filled with interesting stuff though not too much of the stuff is

going to help you become a viable digital designer.

1.6 One Final Comment

Throughout this text, you’ll be learning many tools and techniques associated with digital design and

engineering in general. Once you’ve mastered these tools and techniques, there is a tendency to

approach digital design problems by rote. Learning to do problems by rote is somewhat OK in early

stages of learning digital design because of the newness of much of this material limits the complexity

of problems. Doing problems by rote could arguably be a good approach if digital design was one of

those engineering topics that carry little importance in the big scheme of things (we all know of such

topics). As you’ll soon find out, digital design material is much more important than most other

engineering topics.

The relation that digital design has to computers in general is equivalent to the relation that addition has

to general mathematics: it’s tough to do math without understanding the basics of addition. The more

completely you learn and understand the material presented in this text, the better off you’ll be when

you eventually take on more complex digital designs or be required to apply basic digital design

concepts in later engineering and/or computer coursework. If you memorize the material, you

eventually forget it. If you truly understand the material, you’ll never forget it. The better you

understand the material, the less work and struggle you’ll experience when you’re faced with an actual

digital design sometime in the future. This means you’ll have more time to actually have a life as

opposed to spending time in a cave or in front of a computer (that is, if having a life is something you

aspire to).

10

 This is not true at the typical college bookstore; their monopolies are so strong that used books generally cost

more than new books. I could not write this if it were not true.
11

 Check out your local library, www.half.com, or www.addall.com for availability and/or pricing of these books.

Many websites also include reviews of these books in order to help you narrow your selection.
12

 Seriously, a two-inch thick textbook for under $5!

http://www.half.com/
http://www.addall.com/

Digital McLogic Design Chapter 1

 - 29 -

Chapter Summary

 This text takes a unique approach to introducing digital design. Most digital design textbooks are

mired in low-level details that most people either don’t use or quickly forget. Moreover, most

digital design textbooks have painfully little to do with actual design. This textbook is refreshingly

different.

 Digital design entails the knowledge, understanding, and ability to design digital circuits. Doing

endless pointless exercises in the back of chapters doesn’t make you a digital designer.

 Digital design has come a long way through the last 25 years, much farther than all other

engineering disciplines. This is due primarily to the onslaught of computers that started happening

in the late 1970’s and continues today.

 When all is said and done, go buy a used digital design textbook from a website that sells used

books. The price is extremely low (for older editions) considering that they provide an impressive

amount of information.

Digital McLogic Design Chapter 1

 - 30 -

Chapter Exercises

1) List a few of the drawbacks of most digital textbooks.

2) List a few devices that you feel would contain digital circuitry of some sort.

3) Briefly describe why you feel most instructors seem to be lazy and/or pre-occupied with things

other than teaching.

 - 31 -

2 Chapter Two

(Bryan Mealy 2012 ©)

2.1 Introduction

Generally speaking, the first step in doing anything you don’t know anything about is to learn about some

of the terminology that’s going to be tossed at you. We’ll take this approach with the digital design thang

by first getting some lingo and basic design approaches out of way before we go on. As with everything,

digital design is easier than it initially appears. This chapter starts with defining what is “digital” and

what is “design”. You won’t be doing any digital design in this chapter, but you’ll learn about “digital”

and will be doing some real design on the same level that you’ll eventually be designing digital circuits

on. The approach we’’ take in learning “design” is substantial in that it is applicable to designing just

about anything, including bowling paraphernalia.

Main Chapter Topics

 ANALOG AND DIGITAL: Understanding digital design requires an understanding of

the inherent differences between “analog” and “digital”. This chapter outlines these

differences.

 ”MODELING” AS A DESIGN TOOL: This chapter introduces the concept of modeling

as the most basic tool for understanding just about anything, particularly digital

design.

Why This Chapter is Important

This chapter is important because describes the notion “digital” and provides an

overview of basic modeling concepts.

2.2 Analog Things and Digital Things

Since we’ve referred to the term “digital” quite often already, it’s time to provide a definition for it.

Generally speaking, in the context of engineering, the concept of “digital” is best understood when it is

presented along side the definition of “analog”. The terms are somewhat hard to describe with words but

a few quick examples describes them nicely.

Example 1: In an effort to save the planet and do the sustainability thing, I’ve been

installing compact fluorescent (CF) lights as well as dimmers for my incandescent lights in

my house. However, I’ve arrived at a dilemma: while the CF lights generally use less

power, the intensity of light they provide is not adjustable. In other words, the CF light is

either all the way on, or all the way off. But then again, while incandescent lights require

more energy to operate (that is, they provide both light and a significant amount of heat), I

have the ability to save energy by using the dimmer to adjust the light’s output intensity

Digital McLogic Design Chapter 2

 - 32 -

level. In other words, I am hypothetically able to adjust the dimmer to provide an infinite

number of light intensity levels (but only one intensity level at a time). The on/off nature of

the CF bulb is a hallmark of “digital” while the infinite number of intensity levels

associated with the incandescent bulb controlled by a dimmer is the hallmark of “analog”.

Example 2: Many buildings around campus have both wheelchair ramps and stairs leading

to the buildings. While both options lead you to your ultimate destination, they do so in

distinctly different ways. The wheelchair ramp can be considered a continuous path to the

building, which means that you can hypothetically stop at any one of an infinite number of

levels along this path to the building. The stairs, on the other hand, only have a few

“discrete” levels I can stop at; the individual stairs represent each of these levels. The big

difference here is discrete (for the stairs) vs. continuous (for the ramp). This example differs

from the previous example in the instead of having two discrete levels for the CF bulb (on

and off), we now have many discrete levels (one level for each of the stairs). The

discreteness of things is the hallmark of digital while the continuousness of things is the

hallmark of analog. What’s really bugging me, though, is how to characterize an escalator?

The answer: Digalog.

Example 3: This is an example for the musically inclined out there. Stringed instruments

created sound by way of a string that vibrates between two fixed points. On instruments

such as guitars (or mandolins, bass guitars, etc.) and violins (or violas, cellos, fretless bass

guitars) you change the pitch of the vibrating string by placing your fingers at different

positions on the fingerboard. The difference between these instruments is that guitars have

frets on the neck while violins do not (see Figure 2.1). The frets only allow the string to

vibrate at a set of discrete string lengths (generally 19-22 on a typical guitar)
13

. The violin,

on the other hand, has no frets, so you can effectively play an infinite number of pitches on

a given string. In other words, the guitar provides a discrete number of pitches it can

generate while the violin provides a continuous number of pitches.

Figure 2.1: "Frets" on the bass guitar fingerboard and the “fretless” viola fingerboard on the right.

13

 We’re of course not considering using your fingers to stretch the string (which changes the frequency of the note).

Digital McLogic Design Chapter 2

 - 33 -

The concept of analog vs. digital described in the previous examples is generally thought of as the

describing something in the continuous domain vs. the discrete domain, respectively. For the problem of

the lights, the incandescent light that is controlled by a dimmer can effectively provide anyone of a

number of a virtually endless set of light intensities dependent upon the position of the dimmer control.

This range of intensities is considered continuous over the basic ON (full light) or OFF (no light) settings

of the dimmer. On the other hand, the CF light is only capable of providing two light intensities: ON or

OFF. Since there are no in-between options for the CF light, the set of options is represented by two

discrete values: ON and OFF. While the incandescent lights effectively provide an infinite range of light

intensities, the CF lights provide only a finite set of options. The continuous realm of the incandescent

light is then considered analog because of its continuous nature while the CF light is considered digital

because they only operate at two discrete levels.

The importance of the analog vs. digital concept relates directly to digital logic design. Although there are

many ways to implement a functional electronic circuit, the approach taken in this text is to implement

circuits using digital logic. A digital logic circuit is an electronic circuit that provides you with some

desired result and is implemented using digital logic devices. As you’ll see later, the basis of all digital

logic is the use of circuit elements whose inputs and outputs can only be one of two values. These two

values are typically described as OFF-ON, TRUE-FALSE, HIGH-LOW, GOOD-BAD, BLACK-WHITE,

EE-CSC, CAT-DOG, TEACHER-ADMINISTATOR, DEMOCRAT-REPUBLICAN, etc. Either a “high

voltage” or “low voltage” drives the actual circuit but we generally choose to describe circuits using more

general terms. Note that the “high” vs. “low” forms the digitalness of this approach. As you’ll see later,

once we get closer to performing actual design, we primarily model the inputs and outputs of our digital

circuit using 1’s and 0’s, which are nothing more than placeholders for the actual high and low voltage

values
14

.

So why do I want to design digital circuits in order to solve my problems? The last time I looked, we’re

still all living in an analog world. The problem we face is that the ubiquitous computer is only capable of

operating in the discrete, or digital, realm. Since a computer is nothing more than a giant digital circuit
15

,

understanding digital design is the unstated first step in successfully communicating with computers.

Understanding digital design is also the first step towards designing computers. With each passing day,

the world we purportedly live in becomes more and more controlled by digital devices. So long as you

choose to live in this world, it’s best that you understand digital devices and work with these devices at

something other than a user level. The starting point for this journey is learning digital design
16

.

Now that read through a few examples, some viable definitions for “digital” and “analog” are in order.

These definitions are still somewhat lacking in that some other background details need covering.

Digital: A description of a something (such as a signal or data) that is expressed by a

finite number of discrete values (or states). These discrete values include the entire

“range” of possibilities, but do not include any of the “in-between” values.

Analog: A description of something that (such as a signal or data) that is expressed

by a continuous range of values. The continuousness of analog implies that there are

an infinite number of possible values in the given range.

14

 Some budding digital designers may be scared off by the notion of “voltage” so we generally discuss digital design

at a level of abstraction that enables us to ignore the reality that “voltage” is the lifeforce of digital circuits.
15

 The fun parts of a computer are digital; there are many analog portions of a computer such as the power supply,

but these are really boring when compared to the digital parts.
16

 And protecting yourself from robots.

Digital McLogic Design Chapter 2

 - 34 -

2.3 The “Modeling” Approach to Anything and Everything

The text up to this point has been careful not to use the words “model” or “modeling” in order not to

create confusion. The truth is that everything we do in digital design (and engineering in general) is a

matter of generating the correct “model” for a something, namely the digital circuit. If we model our

digital circuits correctly using a useful description mechanism (such as VHDL), we can apply software

that will use this model to automatically generate a working circuit on a programmable logic device

(PLD).

So, what exactly is a model? I could look up the term in the dictionary, but that may not give me the

digital design flavor of the word. So listed below are my two best definitions of the word model. These

are the most useful definitions that I can think of; a list of the many subtleties of these definitions surely

follows.

model (def. 1): a representation of something.

model (def. 2): a description of something in terms that highlights the relevant

information while hiding some of less useful information.

1. I could not clearly define the word with one definition, so I used two. The two

definitions contain a different amount of wording, and thus detail. In other

words, these two definitions provide two different levels of detail regarding the

definition of a model, as the idea of differing levels of detail in a model is

extremely important to the notion of modeling.

2. Modes are used to represent or describe something. What the definitions do not

state is the exact nature of how we represent the model. This implies that there is

no one correct form of a model. Generally speaking, anything that presents

information by representing or describing something can therefore be considered

a model. The other implication here is that some models are more “useful” than

others.

3. There is no one “correct” model for anything. This implies that there can be

many different “valid” models of the same thing. The different models can

provide varying amounts and levels of information, but in the absolute sense, no

one model is better than another.

Now that we’ve defined the crap out of the poor word, you may be asking yourself something like: “Why

should I care?” The reason you should care is that models in digital design have only one general

purpose: models transfer information to the entity reading the model. In this case, the entity in question

could be a piece of software, your lab partner, your teacher, or your pet raccoon. In addition, if you have

created a good model, then your model will quickly promote an understanding of the thing you’re

modeling. If you’ve created a bad model, no one will know what you’re attempting to convey (but you’ll

generate a significant amount of job security).

The concept of model should be nothing new to you. If you think about, out there in the real world, there

are endless things out there are representing something without really being something (and some of these

things actually transfer information to you). The truth is that the use of models is so useful that we

somewhat forget that we’re actually using or relying on them. The following list provides a few examples

that may give you an idea of what you’re missing.

Digital McLogic Design Chapter 2

 - 35 -

1. Example 1: Runway Models – We’ve all seen them: emaciated men and women wearing

bizarre clothing and sporting unique hairstyles strutting down the runway. These people

are some designer’s representation of actual women and men. These are actually really

bad models (literally) because they don’t represent anything other than an attempt to

make people feel inadequate about the bodies so they’ll consume more crap.

2. Example 2: Role Models – These are the people that society expects up to look up to.

While we do know some features about these models (probably the good features, which

is why they are role models), we do not have the full description. Unfortunately, we

sometimes are disappointed when a more accurate description of our role models appears

in the news and/or the police blotter.

3. Example 3: The Weather Report (weather prediction) – So how is it we know that it’s

going rain next week? The satellite images indicate there is a storm somewhere; but the

interesting fact is that it the images predict that rain will arrive a week in advance. The

prediction is based on models of previous weather patterns. There is nothing to stop the

storm from drastically changing its path and not having rain the next week, but

probabilistically speaking, we’ll probably get rain next week.

4. Example 4: Graphical User Interfaces (GUIs) – Practically every computer-type device

uses some type of GUI. These GUIs generally contain graphical representations of items

such as button, switches, sliders, elevator bars, etc. These items are not really what

they’re trying to mimic, they’re nothing more than models of the items. Some pixels on a

display are used to model a button; the device interacts with the model to make

something meaningful happen when the button model is actuated. There’s not really a

button there though there is a healthy dose of button-on-button action.

5. Example 5: Video Games – Not that I play video games… but the entire genre is a

model of real and/or imaginary life. Everything you see in the game is a model of

something you can relate to in real life, but it’s truly far from being real life. Guns in real

life are actually much louder and smell funny when you fire them. Imagine for a second

if your video game modeled nothing related to real life? Can your brain actually deal with

something that is has no concept of?

Digital design uses modeling to aid in the understanding and the design of digital circuits. The concept of

models in digital design comes in two different broad flavors:

Design a digital circuit: Unless you start grabbing transistors in order to create some actual

digital devices, you’ll probably be using models while you’re in the act of “digital designing”. In

this case, you must generate your own “model” of a digital circuit that performs some specific

task. The model you generate can then be used to create an actual digital circuit.

Here is a model of something; use it in your digital design: In this case, someone is going to

give you some model(s) and expect you to understand them to the point that you can use them in

your digital design. Remember, someone is handing you a description of something, so you need

to understand how to use it, but not necessarily how it works, before you are able to successfully

use it.

The good news is that digital design generally only uses a few types of models. The list bellows describes

the main model types used in digital design
17

. Keep in mind as you read these model types that there is no

one correct model of any given thing. Either the model is useful because it helps you design or understand

17

 Not listed here are Finite State Machine state diagrams. We’ll start using these special digital models in a later

chapter.

Digital McLogic Design Chapter 2

 - 36 -

something, or it’s not useful because its inherent description is provided in such a way as to effectively

provide you with nothing useful.

 The black box model: This is probably the most used and useful model in digital design. The

black box model is simply a box that graphically shows the inputs and outputs to the digital

circuit. We’ll cover black box designs as they relate to digital design later. Figure 2.2(a) shows

an example of a black box model used in digital design (don’t worry about the details now).

 The digital circuit element model: These are nothing more than special black box models. The

models used in digital devices typically use man special symbols; when digital designer see

these symbols, they know what they mean. Sometimes these special symbols are replaced with

black boxes having appropriate description labels. Figure 2.2(b) shows an example of a digital

circuit element model and its corresponding black box model.

 The timing diagram: Timing diagrams graphically describe the operational characteristics of a

digital circuit based on the status of inputs and outputs plotted as a function of time. We’ll deal

with timing diagrams in a later chapter. Figure 2.3 shows an example of a timing diagram for

some unspecified digital circuit.

 The written description model: A model of a digital design or component is something nothing

more than a written description. In this case, if there is not an accompanying black box model

with the written description, you should be able to generate one based on the written description.

Figure 2.4(b) shows a written description of a digital circuit.

 The VHDL model: VHDL provides a language of its own to describe the operation of digital

circuits. Although VHDL has special syntax and constructs typically associated with computer

programming languages, VHDL is a hardware description language, not a programming

language. We’ll start dealing with this more in later chapters. Figure 2.4(a) shows a VHDL

model of a circuit.

(a) (b)

Figure 2.2: An example of a black box model (a), and a digital circuit element model with its

corresponding black box model, (b).

Digital McLogic Design Chapter 2

 - 37 -

Figure 2.3: An example of a timing diagram (don't worry about the details).

entity dff is

 port (D,S,R : in std_logic;

 CLK : in std_logic;

 Q, nQ : out std_logic);

end dff;

architecture dff of dff is

begin

 process(D,S,R,CLK)

 begin

 if (R = '0') then

 Q <= '0'; nQ <= '1';

 elsif (S = '0') then

 Q <= '1'; nQ <= '0';

 elsif (rising_edge(CLK)) then

 Q <= D;

 nQ <= not D;

 end if;

 end process;

end dff;

The circuit has four inputs and two outputs. The

outputs are always complements of each other.

Two inputs, R and S, are asynchronous negative

logic inputs. When R is asserted (negative logic),

the Q output is ‘0’; when S is asserted, the output

is ‘1’. The R input takes precedence over the S

input. The Q output follows the D output on the

active clock edge (rising-edge triggered).

(a) (b)

Figure 2.4: An example of a VHDL model (a), and a written description of a digital circuit (b).

Incidentally, these two models described the same digital circuit.

The last general comment regarding these model types is that you should be able to generate all of these

types of models for any circuit that you design. Your job as a digital designer is two-fold: 1) design a

digital circuit, and 2) fully document your design. Using appropriate models help you both design and

document your digital circuits. Models are your friends and they’re going to help you in every aspect of

your digital design career.

2.4 The Black Box Model in Digital Design

The black box model is extremely useful in designing anything, particularly digital circuits. There are

approaches to designing digital circuits that don’t use black box models, but these approaches can’t

compare to the efficacy of using black box modeling.

Unlike modeling techniques such as VHDL, black box modeling does not constrain you with special

syntax or arcane rules. This being the case, you should not forget the overall purpose of using a model:

models are quick ways to transfer information. The clearer the model represents its information, the more

quickly you can glean information from it, and thus, the model is more effective. We’ll soon demonstrate

some of the basics of modeling as it relates to digital design.

In digital design, we’re most concerned about the inputs to and the outputs from a digital circuit. Inputs

and outputs represent digital signals going into and out of the circuit. The digital circuit itself is

Digital McLogic Design Chapter 2

 - 38 -

represented by a box
18

; lines going into and out of the box represent the inputs and outputs, respectively.

Figure 2.5 shows a few examples of a black box models.

Figure 2.5(a) shows the basic black box model with inputs and outputs listed on the left and right sides,

respectively. Figure 2.5(b) shows an equivalent model with the inputs and outputs (I/O) indicated with the

use of arrowheads on the signal lines. Figure 2.5(c) is another equivalent model that uses “self-

commenting” signal names to differentiate the circuit’s I/O. Note that in each of the models in Figure 2.5,

the black box has a label. In addition, in case you have not figured it out yet, the word “black” in black

box has a figurative meaning, not a literal one. In other words, the box is considered black because we

don’t know what’s inside of it
19

.

(a) (b) (c)

Figure 2.5: A few examples of basic black box models.

The models shown in Figure 2.5 are tough to write about because there are no hard rules for black box

diagrams. However, here are a few strong guidelines you should always attempt to follow:

 The “flow” of digital models generally goes from left to right. Thus, inputs are on the left side of

the box while outputs are placed on the right side of the box.

 Put arrowheads on you signals if it’s not completely obvious what is an input and what is an

output (and it usually isn’t).

 All signals should generally be labeled unless there is some compelling reason not to (and there

usually isn’t).

 Place labels on boxes if the reason for the box’s existence is not patently obvious (and it usually

isn’t).

The models shown in Figure 2.5 represent the first step in black box modeling. Let’s take one more step

and then you’re on your own. One of the hallmarks of any type of design is the ability to abstract the

design across many levels. For our particular purpose, a high-level model of something may not be that

useful to use if we were hoping for a low-level model (and vice versa). These different levels of a model

make up a hierarchy of a particular design with each level offering a different type and/or amount of

information from other levels. Black box models are generally used to represent this hierarchy by

essentially having a set of black box models for a given design. Keep in mind here that the goal is to

transfer information: so strive to make your hierarchical models clear and concise
20

. What I’m trying to

say here is that I have no hard rules for you to follow when you make your black box diagrams; therefore,

I encourage you to make up your own rules. Whatever you do, your models will be judged by how well

they transfer information between entities.

18

 Use any shape except circles; circles are used elsewhere in digital design.
19

 I’m thinking about using the term “dark box modeling” instead of black box modeling. Because the box is dark,

there is no light shed on the interior of the box. Somewhat poetic, huh!
20

 This notion will be much clearer in later chapters when you’re actually using more meaningful black box models.

Digital McLogic Design Chapter 2

 - 39 -

Figure 2.6 shows an example containing two black box models. It just so happens that the larger model

shown in Figure 2.7 uses these two models. Without being too judgmental, Figure 2.7 may not present the

best models ever devised, but they are worth looking at. Figure 2.7(a) shows a black box diagram that

sports a two-level hierarchy. The upper-level is the MY_BIG_BOX model; the lower level contains four

previously defined models (these are the models shown in Figure 2.6). The model in Figure 2.7(b) is

somewhat similar to the model shown in Figure 2.7(a), with a big difference as pointed out below.

 From Figure 2.7(a), we don’t know precisely which signals are inputs and outputs by the way

the model is drawn. Specifically, the higher-level model does not contain arrowheads on the

signal nor do the signals contain self-commenting names.

 A black box named Z_BOX appears on the lower level and was not previously defined; what’s

in this box is therefore a total mystery and we’ll hope it’s defined elsewhere (which it’s not).

 The interior black box diagram at the lower level is true to what Figure 2.6 shows. You can use

this fact to extrapolate which signals are the inputs and outputs for most of the signals in the

higher-level model. The I/O (input/output) characteristics of the Z_BOX remain a mystery.

 The two models in Figure 2.7 are almost identical. The model in Figure 2.7(b) seems to contain

less information than the box in Figure 2.7(a) as it does not list the internal connections.

Figure 2.6: Two example black box models.

(a) (b)

Figure 2.7: Two examples of black box diagrams with similar features but varying levels of detail.

Here are a few examples to both drive home the black box modeling approach as a general approach to

understanding things. This is actually the same example presented in three different flavors. Have fun.

Example 2-1

Provide a black box diagram showing a natural gas-powered storage-type water heater.

Digital McLogic Design Chapter 2

 - 40 -

Solution: The first thing to notice about the problem is how vaguely it is stated. This is not necessarily a

bad thing, particularly if you know nothing about hot water heaters. The problem is expecting you to

simply do something; you probably won’t be providing your solution to the Maytag company for

immediate fabrication. In addition, you should definitely get used to the vagueness about how the

problem was stated: bad descriptions are typical in most engineering pursuits
21

.

The first step in all design problems should be to draw a box and place a somewhat meaningful label on

it. Figure 2.8(a) shows the result of this complicated step. This step ain’t much, but it is a great starting

point, particularly if you have no idea of what you’re doing. But then again, for anything you ever do in

any engineering problem, drawing a block box should always be the first step.

The next step is to consider what little you know about the solution from the problem statement. You

know the water heater heats water (duh!); therefore, there must be a cold water input as well as a hot

water output. Once you include these in your model, your black box diagram should appear similar to

Figure 2.8(b). Note that the arrowheads show the direction for the inputs and outputs.

For the last step, look again at the problem description. You know that the heater is a natural gas heater,

so it must have an input for natural gas (so include that in your model). Figure 2.8(c) show the model

when this input is included.

And that’s about it. Are we done? Because the problem statement did not provide us with much direction

as to the level of detail desired for the solution, we can thus declare ourselves done with this problem.

Check it out: the model in Figure 2.8(c) is somewhat descriptive; especially considering you may know

nothing about water heaters. The point here is that you started with nothing and you ended up with a

reasonably helpful model. Tomorrow, the world.

(a) (b) (c)

Figure 2.8: A possible thought process for this example.

Example 2-2

Provide a black box diagram showing a natural gas-powered storage-type water heater and

some of its important subsystems.

Solution: This is the same problem but now you’re expected to know something about hot water heaters.

The best approach to take here is not to panic. Without too much effort, you probably know more, or

more importantly, you can figure out how a hot water heater works. Note that when this problem asks for

subsystems, it is requesting that you do some type of hierarchical design.

21

 Particularly engineering education pursuits.

Digital McLogic Design Chapter 2

 - 41 -

Step One is a hallmark of all design: don’t reinvent the wheel: borrow you solution from the previous

example since it was a rather cool hot water heater design. Figure 2.9(a) shows the result of this step

(though the name of the black box has changed from the previous example).

Step Two, make a list of all the subsystems that would probably be required for the hot water heater.

There must be a storage tank for the hot water. There must be a control unit
22

 to maintain a relatively

constant water temperature by turning on the gas when the water cools and turn it off when it reaches the

desired temperature. There must be gas burner in there too. Come to think of it, there must be a fume

exhaust (and I should have included this in the previous example had I thought of it then). I can’t think of

anything else. Figure 2.9(b) shows the final solution to this example.

Once again, we’ll declare this problem completed. We could do more but… why bother since our

solution has satisfied the original problem statement. Note that our final solution in Figure 2.9(b) show a

two-level hierarchical support with the top-level being the HWHEATER2 black box that the lower levels

being the three subsystems.

(a) (b)

Figure 2.9: A possible solution to this example.

Example 2-3

Provide a black box diagram showing a natural gas-powered storage-type water heater and

some of its important subsystems. Include enough detail in your model to show the basic

interaction of the various subsystems.

Solution: This example represents a slight modification to the original problem. Whereas in the previous

example we were expected to know something about the heater’s subsystems, we’re now expected to

know something about how the subsystems interact with each other. Once again, this is not that big of a

deal, unless you’re a total nimrod
23

.

Once again, the problem didn’t state exactly how much detail you need to include. Therefore, in this case,

we’ll add a small amount of detail and call the problem done. The first step in the solution is to once

again borrow from the final solution from the previous example. Figure 2.10(a) show the result of this

step with a new label being attached to the top-level black box. The next step is to add some connections

22

 Generally, a thermostat regulates the water temperature; that is, it keeps the water at some desired temperature

without letting it get too much above or below that temperature.
23

 But now is your chance to learn something about the art of gas-powered hot water heater design.

Digital McLogic Design Chapter 2

 - 42 -

between the internal black boxes. The control unit is the brains of the heater; it’s going to turn on the

burner when the water gets too cold. That means the control unit must monitor the temperature of the tank

(one connection goes to the tank) and tell the burner to turn on/off (another connection goes to the

burner).

At this point we could be done with the problem, but while we’re at it, let’s add some more detail. Since

we have a few subsystems listed, let’s connect the arrows from the higher level to the lower-level

subsystems. This notion is fairly intuitive; Figure 2.10(b) shows the final result.

(a) (b)

Figure 2.10: A possible solution to this example.

This set of examples hopefully showed you the power of black box modeling. Although this example had

nothing much to do with digital design, the hierarchical design approach used in these examples is the

mainstay of viable digital design practice. There are two major things to note about this problem. As you

read these, keep the thought of digital design in mind.

Firstly, these examples only roughly stated the level of detail we should use in the

problem solution. As a result, we did the best we could without worrying too much about

the fact that the U.S. Patent office probably would not like our black box model. We did

what the problem asked, then moved on.

Secondly, while we were working these examples, we started out with nothing as well as

very little knowledge about hot water heaters. By the time we were done with these

examples, we had an interesting model of our hot water heater, and we’re probably a little

bit smarter. The black box modeling technique allowed us to take random bits of

information and reassemble them in a viable model that seemed to solve the given

problem. This is the cool thing about black box modeling: it provides you with a method

of creating a path to the problem’s solution when you’re feeling like you have no idea

where to go.

Mostly importantly, never forget Mealy’s first and second laws of digital design.

Mealy’s First Law of Digital Design: if in doubt, draw some black box diagrams.

Mealy’s Second Law of Digital Design: if your digital design is running into weird

obstacles that require kludgy solutions, toss out the design and start over from square

one.

Digital McLogic Design Chapter 2

 - 43 -

A result of Mealy’s First law of digital design is if you have no idea what you’re doing, you’ll at least

look like a pro
24

. But seriously, start drawing black box models and 1) list what you do know (such as

inputs/outputs and given signal name, and 2) label everything (such as the names of the blocks). A result

of Mealy’s Second law of digital design is to prevent you from becoming stuck out there in digital-land.

So if your design in not coming relatively easy, toss it out, rethink it, and start again, preferably from a

slightly different angle. Recall that digital design should never be overly complicated.

2.5 Digital Design Overview

Even though we’re only a few pages into the introductory verbage
25

 of digital design, we’re ready to

grasp the main ideas behind modern digital design and relate them to the approach taken by this text. If

you were somehow required to embody digital design in one short sentence, it would be something such

as:

digital design: the creation of digital circuits to solve problems.

The keys to this definition lie with “creating a digital circuit” and the “problem” that is “solved”. These

ideas are worth expanding upon.

Solving a Problem: “Solving a problem” could mean many things but our approach is specific

to digital circuits. The first step in solving a problem is to know something about the problem.

Figure 2.11: shows the general model of a problem that we’ll use as a starting point for all the

problems presented in this text. In other words, although we won’t initially know what goes in

the box from a given problem description, the problem description generally tells us the “inputs”

and “outputs” of the circuit as well as how the circuit will behave.

Creating Digital Circuits: There are many ways to create a digital circuit and we’ll soon be

exploring a few of them. In order to solve the given problem, you’ll need to create a digital

circuit and place it (figuratively speaking) in the black box of Figure 2.11:. If your digital circuit

manipulates the inputs in such as way as to provide the requested functionality on the outputs,

then your digital design seemingly works properly. Probably the best way to view the digital

circuits you’ll be designing is that your circuit establishes a structured relationship between the

circuit’s inputs and outputs in such a way as to solve the given problem. The problem

statements in digital design generally state the desired outputs for a given a specific set of inputs.

In a nutshell, digital design is a matter of “creating” the interior of the Digital Circuit box shown in

Figure 2.11: The digital circuit you design can be modeled as a device that generates the correct outputs

to the circuit given a set of inputs
26

. There are many approaches to solving digital problems; using digital

circuits to solve problems is the underlying theme of this text. Moreover, there are may approaches to

designing digital circuits; this text will of course use the most intelligent approaches only.

24

 And that’s good enough for the typical administrator in academia.
25

 Definition of verbage: part verbose, part garbage; pronounced ver-baj.
26

 In some later chapter, we’ll modify this definition of a digital circuit as a device that generates the correct sequence

of outputs to a specific sequence of inputs. The best is yet to come.

Digital McLogic Design Chapter 2

 - 44 -

Figure 2.11: “Digital Design” in a nutshell: a general model of a digital circuit.

Digital McLogic Design Chapter 2

 - 45 -

Chapter Summary

 The world can be divided into to camps: analog and digital. Though we live in an analog world, the

computers that run this world are inherently digital. The basic characteristic of analog things is that

they are “continuous” in nature while the basic characteristic of digital things is that they are

“discrete” in nature. Said in other words, digital things can only take on a pre-determined set of

values (thus the discreteness) while analog things can take on an infinite set of values.

 The notion of digital things in the context of “digital design” generally only takes on two discrete

values. These values are most often associated with ON/OFF, HIGH/LOW, or TRUE/FALSE. Most

of the time in digital design, these discrete values are described (or modeled) with “1” and “0”.

 The notion of digital in “digital design” basically stems from the use of transistors. Being that

transistors are a basic electronic element, the discrete values that generates the digital nature of

digital design comes from high and low voltages associated with making the transistor operate. Since

the exact voltage levels determine the physical characteristics of the devices, different digital devices

use different voltage levels. Because of all these different voltage levels, the discrete values of

transistors in the context of digital design modeled as either “1” (for high voltage) or “0” (for low

voltage).

 The main tool used in any type of design is “modeling”. In this context, a model represents a

description of something, but not necessarily that thing. Modern digital design uses many types of

models including black box models, VHDL models, timing diagrams, written descriptions, etc.

 The main purpose of models is to quickly transfer information to the entity (person or computer)

reading the model. Since there are generally no carved-in-stone rules to modeling, the best models

are the ones that transfer the most information; this means that good models are inherently clear to

the user.

 Models in general promote an overall understanding of the entity being models and thus can become

complex. The main mechanism in modeling to handle this complexity is the notion of “hierarchical

modeling” which means that models can simultaneously describe many different levels of the design.

The construct of “boxes within boxes” embodies hierarchical modeling as it relates to black box

modeling.

 Black box modeling and hierarchical modeling is not limited to digital design; they can describe just

about anything. In particular, black box models helps people reverse engineer just about anything and

thus create knowledge where only darkness previously reigned.

 Digital design is about creating digital circuits to solve problems; problems solutions involve

creating a circuit that establishes a structured relationship between the circuit’s inputs and outputs in

such a way as to solve the given problem.

 Most importantly to digital design are these two laws:

o Mealy’s First Law of Digital Design: if in doubt, draw some black box diagrams.

o Mealy’s Second Law of Digital Design: if your digital design is running into

weird obstacles that require kludgy solutions, toss out the design and start over

from square one.

Digital McLogic Design Chapter 2

 - 46 -

Chapter Exercises

1) The analog world we live in has many people who seem to thrive on the use of digital

photography. Practically everyone it has a digital camera, or has the equivalent on their cell

phone or computer. A conversion from analog to digital occurs somewhere in the camera. Where

exactly does this analog-to-digital (ADC) occur? Explain as best you can.

2) Briefly explain the general purpose for a model.

3) List some of the pros and cons of not having stringent rules regarding basic black box modeling

techniques.

4) One of the themes of this chapter is the hierarchical design approach. Would it be possible to

have too many levels for a given design? Explain your answer without being too verbose.

5) The dimmers used for incandescent lights mentioned in this chapter can actually be considered

digital in nature. Although the dimmer effectively provides what a continuous range of light

frequencies between the ON and OFF limit, how can it possibly still be digital in nature?

Explain as best you can.

6) If you were required to take a “hierarchical” approach to reading this chapter, briefly describe

how you would do it.

Digital McLogic Design Chapter 2

 - 47 -

Design Problems

1) Draw a block box model of the following devices (be sure to label your model as completely as

possible): a) the family dog, b) the tree growing in the forest, c) a bottle of beer, d) your best

friend, e) your wallet or purse, f) a typical compost pile.

2) Draw a block box model of the following devices (be sure to label your model as completely as

possible): a) microwave oven, b) handheld calculator, c) television, d) portable MP3 player, e)

refridgerator/freezer.

3) Draw a two block diagrams, each using a different level of description, for the following

devices (be sure to label your model as completely as possible): a) an internal combustion

engine , b) a typical soda dispensing machine.

 - 49 -

3 Chapter Three

(Bryan Mealy 2012 ©)

3.1 Introduction

We’re at the point where for some reason you’ve opted to read this text. This is the point in most texts

where high-level motivating words of motivation are offered; and so here they go… the first step in doing

the digital design thing is to get some lingo and basic design approaches out of way. We’ve sort of

already done that, so now we need to put our approach to digital design in its proper context.

Modern digital design is hierarchical in nature as was detailed in a previous chapter. But since this

comment carries a lot of truth, we must clearly define where exactly in the digital design hierarchy our

approach to digital design resides. This chapter attempts to provide that context. Additionally, there are

many different approaches to designing a digital circuit; this chapter gives you a quick taste of those

approaches, but you’ll have to wait for later chapters for the complete details.

Probably the strongest statement you can make about digital design is that is has about zero relation to

computer science. Though you can use digital design to design computers that are programmable by

computer scientists (and other wankers), digital design and computer science are two different worlds.

Despite the fact that a significant portion of digital design is done with VHDL, which appear similar to

higher-level computer programming languages, the relation between the two is extremely thin. This

chapter reiterates this point to the level of being nauseating.

Main Chapter Topics

 DIGITAL DESIGN PARADIGM: The modern approach to digital design is well

structured. This chapter describes hierarchical design and its relation to digital design

described in this text.

 STANDARD DESIGN APPROACHES: There are many approaches to “design”; this

chapter describes some approaches typically associated with designing digital circuits.

 MODERN DIGITAL DESIGN AND COMPUTER SCIENCE: Modern digital design

borrows many techniques and terminology from computer science; this chapter

briefly discusses the more useful similarities

Why This Chapter is Important

This chapter is important because it provides basic information regarding digital design

including the basic digital design paradigm and levels of abstraction. These concepts

help this text’s approach to digital design in an appropriate context.

Digital McLogic Design Chapter 3

 - 50 -

3.2 The Digital Design Paradigm

As you study digital design, you’ll soon discover that digital circuits quickly become complex and

complicated (or, complexicated, as some idiots like to say). The good thing about digital design is that it

contains a built-in mechanism that indirectly controls the complexity of digital designs and facilitates the

understanding of complex digital circuits.

Because you can view a digital circuit at many different levels, you can also design a digital circuit at

many different levels. We’ve seen this notion before in a previous chapter with our discussion of

modeling. Many factors decide the level at which you choose to design your digital circuits. Generally

speaking, you’ll be doing your design at the highest level of abstraction possible in order to increase your

effectiveness as a digital designer. Once again, there are many different ways to model a digital circuit

and these ways are generally divided into different “levels of abstraction”.

The field of computer science often uses the term “abstraction” despite the fact that the typical computer

scientist has no idea what the word truly means. The dictionary definition goes something like: the act of

considering something as a general quality or characteristic, apart from concrete realities, specific

objects, or actual instances. This definition relates to digital design in that we typically attach a set of

qualities to a “black box” with little regard to the actual implementation details of those qualities. Often

times it is your job to generate a set of qualities of a digital circuit; but once you do this, you want to

move on by moving to a higher level of abstraction by placing your design into a black box. Other times,

you’ll be using the black boxes designed by other people. This black box approach and moving to higher

levels of abstraction simplifies digital circuit design and thus make you a more efficient digital designer.

In digital design, the concept of levels of abstraction are often referred to as the black box approach to

digital design or sometimes as the “object-level” design approach. No matter how it is referenced, it is a

form of hierarchical design, a notion that we’ll live and die with in digital design. The previous chapter

contained a few examples of hierarchical design; later chapters provide more details regarding these

notions. In reality, any digital design that does anything remotely useful is going to be a hierarchical

design. If your design is not hierarchical, then your design is a “flat design”. If you’re going to do flat

digital designs, you might as well hold up a flashing neon sign saying: “I’m dumbtarted”
27

.

In reality, it is possible to perform digital design at many different levels. This text, as well as digital

design in general, only touches upon a narrow window the digital design hierarchy
28

. The following set of

figures describes a few different levels of abstraction associated with digital design. Have no fear,

however, you won’t need to know much about most of these levels other than the fact that they exist.

Figure 3.1: This is a cheap model of an electron. Technically

speaking, it’s the movement of electrons that make operation of digital

circuits possible, as it’s the electrons moving around in a controlled

manner that make useful things happen in electronic circuits. This is an

extremely low-level view of digital electronics and is way out of the

scope of this text.

27

 As strange as this seems, there was an instructor at a certain California State College who insisted that students do

nothing other than flat designs. By chance if that instructor is reading this, I’ve been meaning to tell you that you’re a

total idiot.
28

 As you may or may not eventually see, the typical digital design text goes into more detail regarding the

underlying transistors used to make digital devices. It’s all fun stuff, but only if you’re into the physical properties of

semiconductors. It is important stuff, but, it is better to learn all that at another time if you really need to learn it.

Digital McLogic Design Chapter 3

 - 51 -

Figure 3.2: The basis of digital electronics is what the electrons are

doing in a piece of semi-conducting material (namely sillycone). This

figure shows two different flavors of silicone that are sandwiched

together to form a device known as a diode. The flavors, known as n-

type and p-type, are generated by doping the silicone with special

substances. Sounds fun, huh? Why do you think they call it dope? The

symbols in this figure are the accepted circuit schematic symbols

(they’re models, of course) for the diode. Once again, this level of

view of a digital circuit is still too low-level for this text. It’s

interesting to note that many engineering students will eventually need

to deal with diodes in those pesky analog-type courses.

Figure 3.3: This device is somewhat similar in construction to the

diode but there’s more of it. This device is a model of a Bipolar

Junction Transistor (BJT). The interesting thing about this device is

that it’s operating characteristics forms the basis of digital electronics

as the notion of digital in “digital design” is derived from this device.

This transistor is able to operate in several different modes; in digital

electronics, these transistors operate exclusively in only two modes

which is where the term “digital” comes from and are typically

referred to as OFF-ON, HIGH-LOW, etc. Once again, we’re purposely

ignoring the terms “voltage” here. This device is still too low-level for

this text.

Figure 3.4: This symbol is comprised of two transistors: a PMOS and an

NMOS. Together they form what is known as a CMOS element

(Complimentary Metal Oxide Semiconductor). The connect of these two

transistors is such that they form an element that performs a basic digital

function (inversion). Note that we no longer include the “p” and “n” level

of modeling in this figure However, since this text does not deal with basic

analog electronic devices, we still want to avoid having any direct dealings

with transistors.

Figure 3.5: This figure shows some of the gates used represent transistor

circuits such as those in Figure 3.4. These gates perform specific and

useful digital operations that you’ll learn about later. This text deals

directly with gates such as the ones in this figure; you’ll soon be learning

how to design useful digital circuits using these gates. Digital circuits

modeled using these devices are referred to as gate-level circuits or gate-

level designs. You could just as easily model the circuit on a transistor

level, but using the gates are easier to understand because we prefer to

design on the highest level of abstraction possible. In other words, each of

the gates in this figure is actually an abstracted model of a transistor

circuit.

Digital McLogic Design Chapter 3

 - 52 -

Figure 3.6: Up to this point, we’ve been abstracting to higher and

higher levels relative to digital electronics. The trend continues

with this figure. The devices in this figure are models of standard

digital circuits, which are generally constructed of the gates

shown in Figure 3.5. This text also deals directly with this level

of digital circuit. These and similar devices, combined with the

gates of Figure 3.5, are used to construct some useful and

interesting digital circuits. I like to refer to digital circuits drawn

using these devices as object-level circuits because of the nice

analogy made to object-oriented software design. Lucky for us

that VHDL strongly supports object-level design.

Figure 3.7: And lastly, abstracting to really high levels are digital

devices such as microprocessors and microcontrollers. Viewed from this

level, these devices are massively complex despite the fact they are

comprised of digital devices that are relatively simple to understand.

Devices as complex as this one are beyond the scope of this text. Keep in

mind that devices such as these are so complexicated (such as millions of

transistors) that they necessarily must be designed at very high levels of

abstraction.

Although this text only deals with embodies the abstraction levels shown in Figure 3.5 and Figure 3.6, the

series of figures in embodies a major theme behind digital design: abstracting to higher levels in order to

increase your understanding and effectiveness as a digital circuit designer. State differently, there is

always an effort to group a bunch of small things of varying purpose into a special box (sounds like

modeling to me). These special boxes perform specific functions though the details of how the special

box performs those functions are not necessarily important at that specific box level.

3.3 Digital Design and the Black-Box Diagram

As you’ll see later, drawing a black box model (or black box diagram) is generally the first step in any

digital design problem. This approach supports the modern notion of digital circuit design in that your

design will probably include many black boxes designed by someone else or designed by you at some

previous time.

You should not consider the black box diagram approach or the hierarchical design approach to problem

solving anything new; it’s actually similar to doing many simple everyday tasks such as using a

calculator. Though you have (or should have) the ability to do many of the tasks you relegate to your

calculator, you’d simply rather not do them and opt to use the calculator for its speed and accuracy. For

example, you can use a simple algorithm to perform long division and eventually arrive at the same result

as a division operation on a calculator. However, the calculator does it faster and without error: the wisest

decision is to use the calculator. The same is true for most of the digital design problems. You’ll learn

how to design certain standard devices and then abstract them to a black box in order to not worry about

the lower-level details. You’ll forever use only that black box without worrying about details of what’s

inside because you have confidence that it works. Similar to the calculator example, you’ll have the

ability to do the lower-level black box design but you avoid it because you’ve done it before, you

understand it, and you have better things to do.

To drive the point home even further, most every existing digital design tool out there has an extensive

list of black-box digital devices. The good new is that modern digital design rarely expects you to design

Digital McLogic Design Chapter 3

 - 53 -

digital components from the ground up
29

. If you had to design everything starting from their basis low-

level digital parts, you wouldn’t be a productive digital designer. Besides, when you’re out there in the

real world, no one is going to pay you the big bucks to designing circuits and components that have

already been designed and tested. Digital designers of yesteryear were masters of paper designs since that

was about all they could do
30

. The modern digital designer needs to be a master of the tools; embedded in

those tools are previously designed devices that are ready for re-use in your design.

3.4 The Top-Down and Bottom-Up Design Approaches

Drawing a black box model (or black box diagram) is generally the first step in any digital design

problem. Because of this, it is pertinent to discuss some well-known attributes of black box modeling.

Related to the notion of black box modeling are the common notions of top-down and bottom-up design

paradigms. These are labels attached to design approaches that you’ll find yourself applying without

much effort. The interesting thing to note about both of these design approaches is that they are inherently

hierarchical in nature despite the fact that this quality is not included in the name. These design

approaches are worth defining and briefly discussing as they come up often in various discussions

regarding design paradigms in other fields.

The top-down design approach starts with drawing a box that represents the highly abstracted design (a

design at its highest level). This would entail a labeled black box with a listing of inputs and outputs. The

understanding with approach to design is that you’ll be filling in lower-level details as your design

progresses. In this case, including lower-level details typically means drawing black boxes within the

highest-level black box. Once again, note the hierarchical nature of this approach.

The bottom-up approach to design starts by drawing boxes at their lowest level of abstraction. This means

that these low-level boxes necessarily don’t include boxes in their interior. This approach essentially

maps out the fine details first and then works upwards to higher levels of abstraction that show how these

low-level boxes relate to the higher-levels of abstraction. Once again, note the hierarchical qualities of

this approach.

So what is better: bottoms up or top-down? There is no correct answer to this question. Your mission is to

design a quality and working digital circuit: exactly how you do this is up to your own personal style.

Don’t let anyone tell you one approach is better than another
31

.

3.5 Structured Digital Design: An Interesting Concept

As you will soon find out, the reality in digital-land is there are only a relative few number of core digital

devices. Even the most complex digital circuit is decomposable into a set of these core digital devices.

Computer programs refer to this decomposition process as “structured programming”
32

. This

decomposition is a reversing of the hierarchical design process. If you are able to understand the

operation of the core digital devices, you’ll also be able to understand any digital device, regardless of its

complexity, if you have the inclination to actually dig that deep into low-level details. More likely than

not, if your digital design can be decomposed into these basic elements, your design will most likely be

robust, easy to test, and easy to reuse with confidence.

29

 Actually, designing everything from square zero is that hallmark of a really bad digital design course; try not to

find yourself there.
30 This is particularly true in an academic environment were the quarters and semesters pass too quickly to spend time

actually implementing real digital circuits.
31

 This is a typical interview question. My suggestion is that however you answer such a question, be sure to support

your answer because it’s inevitable that the interviewer has a different approach.
32

 And if I recall my computer science knowledge correctly, the notion of a good computer program is one that can

be decomposed in to a relatively small set of basic programming structures. If you’re computer program is not written

correctly, no such decomposition is possible.

Digital McLogic Design Chapter 3

 - 54 -

In this text, there are only a few digital design modules that we’ll be learning about and working with.

From these modules, you can design an amazing number of different circuits. Add in the many digital

modules contained in typical VHDL design libraries, and you can design any digital circuit without too

much effort. The notion of black box designs or object-level design fully supports the presence of large

design libraries full of digital devices waiting to be used by a crafty digital designer. VHDL is a tool that

allows you easy access to these device libraries.

Figure 3.8 shows a quick overview of digital design as it relates to the introductory digital design topics

covered in this text. You don’t need to know any of this now, but what you’ll hopefully see from Figure

3.8 is that there aren’t that many standard digital devices (or modules) out there. Even better is that fact

that the basic modules out there are generally simple devices. The key here is that there are not many

low-level devices to learn about; the majority of digital design involves the assembly of these basic

devices into a larger, more meaningful circuit.

In summary, here’s all I know about digital design:

1) Digital design is based on a relatively small set of digital devices.

2) Digital design relies heavily on various modeling approaches.

3) Digital design modeling relies heavily on hierarchical modeling.

Figure 3.8: The quick digital design overview.

3.6 Computer Science vs. Electrical Engineering

Without doubt, the object oriented approach to software design is analogous to the modern Electrical

Engineering approach to digital design. The similarities are wickedly similar and worth mentioning here.

 In computer programming, you have the ability to create programs at many levels such

as machine code, assembly language, or higher-level languages such as C or Java. In

digital design, you can design at the transistor level, the gate level, the object level, etc.

Digital McLogic Design Chapter 3

 - 55 -

In both cases, the lower the level you design at, generally speaking, the more time and

effort you’ll need to put into it.
33

 In computer science, reusing previously designed and tested code is a good way to

increase your productivity. A significant portion of computer program design involves

the incorporation of previously designed modules in the current program. As a result,

there are many software packages out there that simply provide bunches of modules

(functions, methods, subroutines, etc) that do something meaningful. Not surprisingly,

much of the productivity software out there is written a very high level
34

. In the modern

electrical engineering-based approach to digital design, you have many similar options

such as off-the-shelf digital devices and the ability to create and use various design

libraries. This distinction between computer science and modern electrical engineering

approach to digital design is blurred further by the existence of hardware design

languages such as VHDL and Verilog and their associated device libraries.

The point here is that these two fields are surprisingly similar. They also have the interesting relationship

that one would not exist without the other despite being healthfully dissimilar. Good engineers are fluent

and productive in both electrical engineering and computer science (while bad engineers tend to exhibit

hatred towards one or the other or both). Start on the road of being a good engineer by not fearing or

avoiding the field that is “not part of your major” or “outside your area of interest”. Always put effort into

celebrating and working with the interconnectedness of these two fields, particularly the areas of digital

design and computer programming.

One major consideration that primarily computer science people should consider is the fact that a great

deal of time and effort in the real world go into creating Electronic Design Automation (EDA) tools.

These are software tools that increase the productivity of hardware designers. This implies that if your

primary interest is software development, having a solid understanding of the needs and methods of the

digital hardware design engineer is going to make you a better and/or more marketable software

developer. In other words, if it was not for major advances in software tools, digital hardware designers

would still be wiring boards to circuits and cutting out rubylith
35

.

33 There are of course instances in both fields where you would definitely want to choose to design on a lower level

as opposed to a higher one.
34 Could you imagine what a nightmare it would be to write Windows application code at a low-level such as

assembly language?
35

 Go check this out on www.wikipedia.org…

Digital McLogic Design Chapter 3

 - 56 -

Chapter Summary

 Digital design is about making complex things form simple components. Moreover, digital design is

based on a relatively small set of simple digital devices, relies heavily on various modeling

techniques, and particularly relies on hierarchical modeling

 The basic of “digital” circuits is the transistor. Transistors can be operated in many different ways,

but they only operate at two discrete levels in digital design: OFF/ON, HIGH/LOW, etc.

 The main drive in digital design is to group a bunch of small things of varying purpose into a special

box (namely a black box) for use later at higher levels of abstraction. These boxes are known to

perform specific functions though the details of how the special box performs those functions are not

necessarily important higher levels of abstraction.

 Good digital designers know their tools and know the basic approached to modeling. Two basic

approaches to modeling are the top-down approach and the bottom-up approach; one is not

necessarily better than the other. There are libraries full of previously designed digital devices that

can be quickly placed into your design. Having knowledge of your development software generally

allows you access to these devices.

 Good digital design borrows many techniques and practices from computer science. Modern digital

design is typically object oriented; in this case, objects are black-boxes.

 The real important aspects of digital design:

 Digital design is based on a relatively small set of digital devices.

 Digital design relies heavily on various modeling approaches.

 Digital design modeling relies heavily on hierarchical modeling.

Digital McLogic Design Chapter 3

 - 57 -

Chapter Exercises

1) The analog world we live in has many people who seem to thrive on the use of digital

photography. Practically everyone it seems has a digital camera, or has the equivalent on their

cell phone or computer. A conversion from analog to digital occurs somewhere in the camera.

Where exactly does this analog-to-digital (ADC) occur? Explain as best you can.

2) One of the themes of this chapter is the hierarchical design approach. Would it be possible to

have too many levels for a given design? Explain your answer without being too verbose.

3) List a few instances where a “bottom-up” design would be better than a “top-down” design.

4) List a few instances where a “top-down” design would be better than a “bottom-up” design.

5) List a few of the disadvantages of using a “flat-design” approach to designing anything.

6) Briefly describe the similarities between object oriented computer program design and modern

digital design. Use as many cool words in your description as humanly possible.

7) Consider a team of programmers who are developing some EDA tools targeted for quickly

creating efficient digital circuits. Speculate on the most likely breakdown of fields of study of

the team members; be sure to include the team managers in your speculation.

Digital McLogic Design Chapter 3

 - 58 -

Design Problems

1) Using a top-down design approach, show the steps required and the resulting black box

diagram to design a laser-type printer for a personal computer. Don’t worry about if you know

very little about computer printers; I never allow not know anything stop me from doing stuff.

2) Using a bottom-up design approach, show the steps required and the resulting black box

diagram to design a soda vending machine. Do your best to show the process; don’t worry

about not knowing much about vending machines.

 - 59 -

4 Chapter Four

(Bryan Mealy 2012 ©)

4.1 Introduction

The previous chapters hopefully gave you a small taste for what exactly is meant by the term “digital”

and the term “model”. In this chapter, we’ll continue our move towards digital design by discussing

some of the underlying details regarding number systems. This information in this chapter represents a

brief introduction to number systems; we’ll address the topic again in later chapters.

In addition to your “welcome” to number systems in the context of engineering, this chapter also

introduces the details of engineering notation. The sad reality is that anyone can use any number of

ways to write relatively large and relatively small numbers. While all of these methods may show

equivalent numbers, the numbers can appear quite different, thus leading to massive confusion and

world chaos. The better approach is to employ some type of standard when representing numbers; the

standard we’ll use in this text is the standard used by most intelligent people
36

. Engineering notation is

the standard we speak of.

Main Chapter Topics

 ENGINEERING NOTATION: Writing number in a clear and concise manner is rather

important in engineering and thus, digital design. This chapter describes the

approach and motivation behind engineering notation.

 NUMBER SYSTEM INTRODUCTION: Since number usage has become second nature

in our everyday existence, we probably have forgotten some of the underlying

characteristics that make numbers “work”. This chapter provides a friendly

reminder of common definitions associated with number systems as well as a brief

introduction to binary numbers.

Why This Chapter is Important

This chapter is important because it provides a description of engineering notation and

the basic form of numbers. This chapter also introduces the basic concepts of working

with binary number representations.

4.2 Engineering Notation

As you are probably finding out by now, digital designers and engineers are lazy
37

. In order to reduce

their workload and thought-load, engineers typically use what is referred to as engineering notation

36

 Thus, academic administrators have no such standards. For that matter, neither does the average troglodyte.
37

 They’re actually constructively lazy: always searching for a “better” way to do things (which is a really good

thing).

Digital McLogic Design Chapter 4

 - 60 -

when representing numbers out there in engineering land. Unfortunately, problems can arise when

attempting to represent a numbers. For example, you can represent the number 34.7 x 10
-4

 in an infinite

number of equivalent ways; Table 4.1 lists a few of the valid representations.

0.000034.7 x 10
2
 0.347 x 10

-2

0.00034.7 x 10
1
 3.47 x 10

-3

0.00347 34.7 x 10
-4

0.0347 x 10
-1

 347 x 10
-5

Table 4.1: A few ways to represent 34.7 x 10
-4

.

The problem is that it’s hard to obtain a good intuitive feel for numbers if they are written in different

forms. As you’ll find out, having a “good intuitive feel” for a problem helps you arrive more quickly at

a solution. The solution to this problem is to adopt a standard for representing numbers; engineering

notation is the standard used in the engineering profession, typically in the area of digital design.

Engineering notation is a subset of scientific notation with some extra rules added. The idea of behind

engineering notation is to enhance the intuitive feel of numbers by placing restrictions on their

representations.

The main item of interest here is the difference between numbers represented in engineering notation

and scientific notation
38

. Engineering notation uses special suffixes to represent the exponential portion

of the number; using these prefixes provides the viewer with a quick feel for the number. We all like the

notion of a “quick feel”. The advantages of using engineering notation are that it allows you to get a

quick feel for the magnitude of numbers based on the designated unit prefix as well as the magnitude

portion. Figure 4.1 shows the rules for using engineering in every day life.

1. The magnitude portion of the number should be between 0 and 1000. This

range can be officially listed as [1,1000)
39

.

2. The units portion of the number uses an appropriate prefix. Engineering

notation does not use exponential notation The constraint is that all the

exponents must be integral multiples of three.

Figure 4.1: The rules for correctly using engineering notation.

Table 4.2 lists the only prefixes you need to know. There are many others, but how often do you have

the unsatisfiable urge to use prefixes such as “yocto”
40

. You should be familiar with most of these

prefixes already; but if not, now is your chance to learn some lingo that will impress your non-technical

friends
41

 and allow you to freely converse with your technical friends
42

 (real or imaginary). Note that

the prefixes in engineering notation only come in multiples of three. You could make up your own

prefixes if you wanted but that would pretty much guarantee that no one would know what the $%#&!

38

 Look these up for full details; this section provides only an executive summary of sorts.
39

 This notation means that the number is greater than or equal to 1 but less than 1000.
40

 Yep, it sounds more like a personal hygiene problem than a prefix.
41

 If you actually have any friends.
42

 Real or imaginary, if you actually have any friends.

Digital McLogic Design Chapter 4

 - 61 -

you were talking about
43

. So unless instructed otherwise, engineering notation always uses these

prefixes.

Value Prefix Abbrev. Example

10
9
 Giga G GHz

10
6
 Mega M MHz

10
3
 Kilo k kHz

10
-3

 mili m ms

10
-6

 micro μ μs

10
-9

 nano n ns

Table 4.2: Engineering Notation prefixes.

Example 4-1

Represent the value 452300Hz in engineering notation.

Solution: The value 452300 is greater than 1000 (10
3
) but less than 1000000 (10

6
). This means we’ll

need to use the K prefix. The given number is then divided by 1000 to obtain the proper magnitude

portion of the number and the K prefix is attached. The final answer is 452.3 KHz.

Example 4-2

Represent the value 84.3 x 10
-8

s in engineering notation.

Solution: The first order of business here is to convert the exponential portion of this value to a

multiple of three. If we multiple the number by 100 (10
2
) the exponential portion of the number

becomes -6 which is OK. However, to compensate for this multiplication, we must also divide the

magnitude portion of the number by 100 (10
2
). The resulting magnitude value is then 0.843. However,

since this value is less than 1, this will not be proper engineering notation. Our only other choice is to

adjust the exponential part in the other direction. To do this we divide the exponential portion of the

number by 10 to obtain 10
-9

 and then multiply the magnitude portion of the number by 10 in order to

compensate. The result is 843ns.

4.3 Number System Basics

Without doubt, humans have spent most of their existence doing quite well without the concept of

numbers or number systems. Number systems eventually became an integral part of human life as

43

 Then again, such an approach works great for academic administrators.

Digital McLogic Design Chapter 4

 - 62 -

humans evolved and progressed
44

. The concept of numbers, for better or worse, has corrected the basic

limitation of the human brain in its lack of ability to handle large quantities of “things”.

My eighth grade algebra teacher
45

 once told the class a story about some primitive culture. I’ve long

since forgotten why exactly he told this story, but I never forgot the story itself; after all, that was the

day I found out that I was not much better than a caveman. He told the class about a primitive culture

somewhere in the world and about the number system they used. This number system was comprised of

three “numbers”: one, two, and many. What has always impressed me about this story was the fact that

it still nicely describes the way my brain “processes” certain type of situations where keeping track of a

certain number of items is necessary. Although this number system seems extremely limited compared

to the number systems we currently use, this caveman simple number system remains well matched to

limitations of the human brain.

Figure 4.2 demonstrates a basic limitation in the human brain. In Figure 4.2(a), it’s fairly obvious to the

unencumbered human brain that there is one dot in the square. Your brain can hopefully both see and

process this information almost instantaneously
46

. Your brain probably has no problem “counting” the

number of dots in the square of Figure 4.2(b) either. However, once you arrive at Figure 4.2(c), your

brain cannot instantaneously gather this information: the sheer number of dots in the square instantly

overloads your brain (even though there are relatively few). In essence, your brain is no more

sophisticated than the brain of the person in the so-called primitive culture.

As you know, we modern humans are able to both conceive and process the dots in the square of Figure

4.2(c). The way we do this is to represent the quantity of dots in the square with a “number”. This

number is defined by a previously and mutually agreed upon set of rules to ensure that everyone who is

processing the quantity of dots in the square arrives at the same result. There is even a mutually agreed

upon set of squiggles that are used to represent the numbers.

(a) (b) (c)

Figure 4.2: An example showing a basic limitation of the human brain.

Also worth mentioning here is the concept of “stone-age unary”, which is actually still a viable and

relatively popular number system. When cavemen started realizing the needed some way of keeping

track of the quantity of things, they started saving a small stone for each thing they had. For example, if

they had 12 cows, they would store 12 small stones in the pockets of their stone-age loincloths. This

worked great for small quantities, but was less effective for larger herds. This counting system is

referred to as a stone-age unary in that each stone represented one thing being counted. We still often

use this counting system today with the notion of tick-marks. For example, outlaw cowboys cut one

groove in the handle of their six-shooters for each person they killed. Similarly, academic personnel

44

 Although the usage of numbers is often considered an apparent first step in human de-evolution.
45

 It was Mr. Fangman; the year was 1975.
46

 Although some individuals may take longer, particularly individuals who have job titles such as

“administrators”.

Digital McLogic Design Chapter 4

 - 63 -

administrators carve a single notch in their desks for each person they harass or fire. Another popular

example is what most of us learned early in grade school and probably still use today (I know I sure do).

It is common to use tick marks to count various things; Figure 4.3 shows an example of such a counting

system. Note that this method of counting had the added feature of being easy to perceive a total

number of things with the standard grouping of “five” things. The number represented by the marks is

Figure 4.3 is 23, which also happens to be the IQ of the average academic administrator.

Figure 4.3: A modern and useful usage for “stone-age unary”.

4.4 Number Systems and Binary Numbers

Although you’ve been working with numbers and number systems most of your life up until now, a

quick review of the some of the underlying structure and definitions is in order. We’ll go more into

depth with our study of number systems in a later chapter; providing a brief introduction to the binary

number system is the primary focus of this chapter. Keep in mind that the reason binary numbers are so

important in the study of digital design is the fact that a binary number nicely models the high-voltage

vs. low-voltage relationship in the underlying transistor implementations of digital circuits.

First, here are a few quick definitions. The concepts presented in this section should be nothing new to

you but many of you may have never seen or simply forgotten the actual definitions. It’s sort of sad…

although you’re probably able to tweak around with multi-variable calculus but you also probably have

forgotten what exactly a radix point is. Welcome to higher education.

Number System: a language system consisting of an ordered set of symbols

(called digits) with rules defined for various mathematical operations.

Digit: a symbol used in a number system.

Radix: the number of digits in the ordered set of symbols used in a number

system.

Number: a collection of digits; a number can contain both a fractional and

integral part.

Radix Point: a symbol used to delineate the fractional and integral portions of

a number.

As example, consider a decimal number (radix = ten). Since the number is a decimal number, we can

use either one of ten different symbols to represent a decimal number (0, 1, 2, 3, 4, 5, 6, 7, 6, 8, or 9)
47

.

If we were only limited to ten numbers in this number system, the number system would be of little use

to us. However, by placing digits side-by-side and including some special rules, we can represent just

about any possible number. When we place digits side-by-side, we are representing numbers in what is

known as juxtapositional notation. Using juxtapositional notation allows a given number system to

represent numbers greater than the “radix-1”. Number systems can use juxtapositional notation for any

47

 Keep in mind that these symbols are arbitrary; if you don’t like them, feel free to create your own.

Digital McLogic Design Chapter 4

 - 64 -

radix value. Each of the digit positions in juxtapositional notation can be any of the digits in the ordered

set for the given radix. For decimal numbers, the numbered set is: [0,1,2,3,4,5,6,7,8,9].

Figure 4.4 lists some other fun facts regarding numbers and juxtapositional notation. Figure 4.4 shows

that numbers are divided into their integral and fractional. The radix point delineates the integral and

fractional portions of the number
48

. Each digit in both the fractional and integral portions of the number

is a member of the set of numbers associated with the given radix.

NUMBER = (N)R = (Integer Part) . (Fractional Part)

 Radix Point

Figure 4.4: The form of a typical number.

Figure 4.5 provides an alternative and more formal definition of a number. This definition also includes

some of the typical lingo used to describe numbers. Note that there is nothing too amazing about this

approach; it’s simply the convention that most everyone happens to use.

NUMBER = (N)R = (An-1 An-2 … A1 A0 . A-1 A-2 … A–m) R

where:

R Radix

A a digit in the number

A n-1 the most significant digit (MSD)

A -m the least significant digit (LSD)

Figure 4.5: Another form of a typical number.

Example 4-3

Describe the integral and fractional portions of the following number: 989.45

Solution: The solution to this problem should be second nature to you. “989” is the integral portion of

the number; “45” is the fractional portion of the number. Note that the radix point divides the integral

and fractional portions of the number. Also, note that since there is no listed radix value, the radix value

of ten is implied and thus the number is a decimal number. The standard we’ll use in this text is that if a

radix value is not listed, then the number is a decimal number. Numbers listed in other radii should

explicitly list the radix or explicitly state somewhere that the radix is something other than ten.

48

 The radix point is that funny dot that you’re not supposed to call a decimal point unless the radix is ten.

Digital McLogic Design Chapter 4

 - 65 -

4.4.1 Common Digital Radii

There are four common radii used in the study of digital design: 10, 2, 8, and 16. These number systems

are sometimes referred to as base 10, base 2, base 8 and base 16, where the “base” is the same number

as the radix. For this introduction to numbers, we’ll only be looking at numbers with a radix of ten

(decimal) and a radix of two (binary). Table 4.3 shows the symbol set for the decimal and binary

numbers. The important thing to note here is that the set of symbols for a binary number comprises of

only ‘0’ and ‘1’, with the highest valued number in each set being the number that equals the radix-1.

Also, note that the values in Table 4.3 read lowest values to highest values (left to right). The last thing

to keep in mind is that number systems generally share digits; this means that the binary and decimal

‘1’ and ‘0’ are the same symbol. This choice is once again arbitrary, but it’s a useful choice to reuse

symbols we’re already used to using.

RADIX NAMES SYMBOL SET

10 decimal 0,1,2,3,4,5,6,7,8,9

2 binary 0,1

Table 4.3: The most commonly used radii in the study of digital things.

4.5 Juxtapositional Notation and Numbers

The use of juxtapositional notation allows a given number system to represent quantities larger than the

(radix-1). You are already familiar with such notation since you have spent most of your lives dealing

with decimal numbers. The theory behind this notation is no different in other bases but we’ll remind

you of it here.

Juxtapositional notation means that the symbols in a given number system are placed side-by-side in

order to represent quantities larger than the numbers in the given set. Assigning a weight to every digit

position in the number allows the number system to represent any value. By convention, the numbers

are monotonically increasing (scanning right to left) powers of the radix in question. The main thing to

remember here is that the weighting of the digit to the immediate left of the radix point is the radix

raised to the zero power
49

. These attributes are widely accepted conventions but are by no means

required. The following two examples demonstrate these ideas; these two examples use radii of ten and

two, respectively. Be sure to compare and contrast the items that are the same and different.

Example 4-4

Show the weightings associated with each digit in the following number: 987.45

Solution: Table 4.4 shows the solution to Example 4-4. The important thing to notice about this

solution is that the radix exponential row uses the radix to monotonically increasing/decreasing powers

to designate the weightings. This convention follows the juxtapositional number conventions listed in

Figure 4.5.

49

 This is done by convention; there is not rational reason for this except this is the way it’s always been done.

Digital McLogic Design Chapter 4

 - 66 -

Decimal Value

of Digit Weight

100 10 1 0.1 0.01

Radix

Exponential

10
2
 10

1
 10

0
 10

-1
 10

-2

Positional Value
9 x 100

(900)

8 x 10

(80)

7 x 1

(7)
.

4 x 0.1

(0.4)

5 x 0.01

(0.05)

 Radix Point

Table 4.4: The solution to Example 4-4.

Example 4-5

Show the weightings associated with each digit in the following number: 101.112

Solution: Table 4.5 shows the solution to Example 4-5.

Binary Value of

Digit Weight

4 2 1 0.5 0.25

Radix

Exponential

2
2
 2

1
 2

0
 2

-1
 2

-2

Positional Value
1 x 4

(4)

0 x 2

(0)

1 x 1

(1)
.

1 x 0.5

(0.5)

1 x 0.25

(0.25)

 Radix Point

Table 4.5: The solution to Example 4-5.

Since decimal and binary are the two primary radii used in digital design (decimal for humans; binary

for actual digital hardware), you should definitely understand the previous examples and memorize the

numbers listed in Table 4.6. You’ll be using binary and decimal numbers throughout this text. In

addition, we’ll present some other useful radii in a later chapter.

You’ll eventually commit these numbers to your memory because you’ll be using them so often in

digital design and computer-type applications. However, if you put the time into memorizing them now,

you’ll save yourself a lot of time, effort, and struggle in the near future. (Hint: take notice of the pattern,

as it changes from right to left) Note that the binary numbers listed in Table 4.6 are listed as four binary

digits, or bits. As you’ll see later, a group of four bits has special significance in digital design land.

Digital McLogic Design Chapter 4

 - 67 -

Including the leading zeros in the binary numbers enables you to read the number quickly; omitting the

leading zeros does not change the value of the number.

Decimal

(base 10)
Binary

(base 2)

0 0000

1 0001

2 0010

3 0011

4 0100

5 0101

6 0110

7 0111

8 1000

9 1001

10 1010

11 1011

12 1100

13 1101

14 1110

15 1111

Table 4.6: Numbers that every successful digital designer has memorized. The binary numbers

are presented in groups of four for reasons that will become apparent later.

4.6 Important Characteristics of Binary Numbers

Digital design uses binary numbers quite often because the transistors that form the underlying physical

hardware operate in one of two modes: roughly speaking, either “off” or “on”. A later chapter presents

the low-level details of binary number, but this chapter lists some quick characteristics as a preparation

for upcoming design discussions. These two characteristics are massively important; you’ll be using

them everywhere throughout digital design. Therefore, it’s a great idea to make sure you understand

them and commit them to memory.

Table 4.6 shows one of the important characteristics to note about binary numbers. Quite often in digital

design land, there is an issue of given how many unique numbers can be represented by “X number of

bits”. There is a special relationship in a binary number system that uses monotonically increasing

powers for the bit-position weight values. For example, were you are only considering one bit, you can

have two unique numbers: ‘0’ and ‘1’. If you have two bits, you can have four unique numbers: “00”,

“01”, “10”, and “11”. If you have three bits, you can form eight unique numbers (too many to list).

Table 4.6 shows that with four bits, you can form 16 unique numbers. Figure 4.6 lists this relationship.

Number of unique numbers = 2 number of bit locations

Figure 4.6: The relation between the number of bit locations and total number of representable

unique numbers.

Digital McLogic Design Chapter 4

 - 68 -

Example 4-6

How many unique numbers can be represented by an 8-bit binary number?

Solution: The solution to this problem utilizes the formula in Figure 4.6. The quantity of unique

numbers = 2
number of bit locations

 = 2
8
 = 256

The other important characteristic of binary numbers is the notion of the “range” of numbers that a

given set of bits can represent. There is a lot more to this notion than meets the eye, so we’ll only

consider one last characteristic; a later chapter fills in the details.

Our brief discussion of binary numbers so far has only included unsigned binary numbers. In this

context, an unsigned binary number is considered to be any number that is not negative; specifically,

this means any number that is zero or greater. In real life, binary numbers can be interpreted as either

signed binary numbers or unsigned binary numbers. The notion of how to represented signed numbers

is slightly more involved which is why we’re saving the topic for another chapter.

Figure 4.7 shows the closed form formula that describes the number range that is representable by a

given number of bits in an unsigned binary number. A following example shows the ease at which you

can apply this formula. This formula uses square brackets to represent the fact that the range is inclusive

of the boundary numbers of the range listed in the formula.

Number Range for Unsigned Binary Numbers = [0-(2 number of bit locations – 1)]

Figure 4.7: The formula showing the number range for an unsigned binary number based on the

number of bits in the number.

Example 4-7

What range of decimal numbers can be represented by an 8-bit unsigned binary number?

Solution: The solution to this problem utilizes the formula in Figure 4.7.

Number Range for Unsigned Binary Number = [0-(2
number of bit locations

– 1)] = [0-(2
8
 – 1)] = [0-255]

Note that the range [0-255] represented 256 unique decimal numbers, which happily agrees with the

solution of Example 4-5.

Digital McLogic Design Chapter 4

 - 69 -

Example 4-8

How many unique numbers can a 6-bit binary number represent? For this problem, assume

that binary number uses standard weightings.

Solution: Since there are six bit locations, and each bit can take on two different numbers (since it is

binary). The answer is thus two (the binary radix) raised to the sixth power (with six being the number

of bits in the number). Here is the complete formula:

Unique numbers = 2
6
 = 64.

Example 4-9

Consider a 6-bit binary number; list the maximum value, the minimum value, and the two

numbers in the middle of the number range that these six bits are able to represent.

Solution: The list below provides the requested numbers:

The maximum number: this would be all “1’s”, or “111111” = 63

The minimum number: this would be all “0’s”, or “000000” = 0

The two middle numbers are based on the fact that there are always an even number of numbers

available for a given number of bits. The two numbers in the middle of the range are “011111” and

“100000”; these numbers represent 31 and 32, respectively.

Digital McLogic Design Chapter 4

 - 70 -

Chapter Summary

 Engineering notation is a subset of scientific notation and is always used to represent numbers

when being understood is a requirement
50

. Engineering notation uses a magnitude and exponential

parts to represent numbers. The magnitude part must be in the range [1,1000); the exponential part

must be an integral multiple of three and be represented with standard metric prefixes.

 The development of numbers resulted from the need to process larger “quantities” of things.

Human brains are limited in the number of real things they can process, the invention of “numbers”

allows human brains to comprehend and process larger quantities of things

 Numbers represent quantities that are too big for our brain to understand and process. Numbers are

formed by using a basic set of symbols associated with the particular radix in question. Numbers

use juxtapositional notation to represent quantities larger than the numbers represented by the

associated symbol set. Digit positions are assigned weightings and each position in a number has a

different weighting. Numbers are comprised of both integral and fractional portions, which are

delineated by a radix point.

 Digital design uses binary numbers because of the fact that a binary number nicely models the

high-voltage vs. low-voltage relationship in the underlying transistor implementation of digital

circuits.

 Two important characteristics of unsigned binary number are 1) the number of numbers that can be

represented by a given number of bits, and, 2) the range of number that can be represented by a

given number of bits. These quantities can be represented by closed form formulas:

Number of Unique Numbers = 2
number of bit locations

Number Range for Unsigned Binary Numbers = [0-(2
number of bit locations

– 1)]

50

 Which is why academic administrators never use engineering notation.

Digital McLogic Design Chapter 4

 - 71 -

Chapter Exercises

1) Convert the following values to engineering notation.

a) 235500000

b) 45 x 10
-4

c) 241.3 x 10
8

d) -33.8 x 10
-4

e) 0.00303 x 10
-4

f) 0.146 x 10
8

g) 0.0000000253 x 10
4

h) 8.355 x 10
7

2) Which of the following numbers are larger?

a) 235500000 or 23.55 x x 10
-6

b) 4.5m or 45 x 10
-4

c) 241.3M or 241.3 x 10
8

d) -33.8 x 10
-6

or -33.81 x 10
-6

3) If you had 153 items in your backpack, can you think of a way to describe those items other

than using numbers? If you can think of ways, how much do those ways differ from stone-age

unary?

4) How would you classify the Morse code in terms you learned in this chapter?

5) Juxtapositional notation seems like a pretty good idea, but, can you think of anything better?

6) How many unique numbers can be represented by a 4, 8, and 12-bit binary numbers? For this

problem, assume that standard weightings are used for the binary number.

7) List the number ranges (in decimal) that can be represented for 4, 8, and 12-bit binary numbers.

For this problem, assume that standard weightings are used for the binary number.

8) Briefly described why are binary numbers used so often in digital design?

9) Write closed form formulas that show the middle two decimal numbers of any given number of

bits in an unsigned binary number.

Digital McLogic Design Chapter 4

 - 72 -

10) Consider a 4-bit unsigned binary number that uses the following weighting (listed from left-

most to right-most bits): 2
1
, 2

2
, 2

1
, and 2

0
. (Don’t laugh, people actually do things like this).

How many unique numbers can be represented by this range? List the unique numbers that can

be represented by this range. List at least one advantage and one disadvantage of using this set

of weightings for a binary number.

Digital McLogic Design Chapter 4

 - 73 -

Design Problems

1) Design a circuit that has three inputs and two outputs. One of the outputs indicates when the 3-bit

input value is less than three; the other output indicates then the input is greater than five. Provide

the equations that describe your circuit. Implement the final circuit using AND gates, OR gates,

and inverters.

2) Design a circuit that has three inputs. One indicates if the value of the 3-bit input is either one or

six (decimal). Another of the inputs indicates if the en the 3-bit input value is less than four. The

final output indicates when the 3-bit input is five or greater. Provide the equations that describe

your circuit. Implement the final circuit using AND gates, OR gates, and inverters.

 - 75 -

5 Chapter Five

(Bryan Mealy 2012 ©)

5.1 Introduction

The previous chapters hopefully gave you a small taste for what exactly is meant by the term “digital”

and the term “model”. In this chapter, we’ll combine these two words and actually do something that

intelligent and creative people refer to as “digital design”. Digital design is not just the pseudo-title of

this book; it’s where we really want to be.

The “art” of digital design has not as of yet been refined to the point of being able to present the subject

in only one way using the same set of definitions and algorithms. From a beginner’s standpoint, you can

certainly do the digital design process by rote, which is not a good thing unless you intend to kill off

your basic creative nature. Although this chapter presents a single approach to digital design, it is by no

means the only approach nor is this approach carved in stone. This chapter represents the first step in

digital design. Your mission is to realize that digital designs are solvable and representable in many

different ways. Have fun; it’s really not that big of a deal.

Main Chapter Topics

 DIGITAL DESIGN OVERVIEW: This chapter uses a simple design example to

introduce a structured digital design process. The chapter presents the “iterative”

approach to digital design.

 BOOLEAN ALGEBRA: This chapter introduces Boolean algebra including its basic

axioms and associated theorems.

Why This Chapter is Important

This chapter is important because it provides a basic approach to solving digital design

problems. This particular approach employs Boolean algebra, which represents the

foundation of all digital design.

5.2 Digital Design

If you’re reading this sentence, it may be because you have opted to pursue the path of becoming an

engineer. Although I’ve officially been an engineer for way too long, I’m still not sure what an exactly

an engineer is or what an engineer does. As best that I can figure, an engineer is a person who solves

Digital McLogic Design Chapter 5

 - 76 -

problems
51

. More specifically, an engineer is a person who solves problems that have enough technical

content to such that they deemed “engineering problems”. Since an engineer is a problem solver, and

since this text is all about digital design, and since you’re obviously reading this text, let’s take a look at

a basic model for solving digital design problems.

Being the average smart person that you are, you’ve probably solved a lot of problems during your life.

However, have you ever really analyzed your approach to solving problems? In case you haven’t, we’ll

talk about a possible approach in this section. As best that I can see it, the following verbage lists the

approach that I generally take to solving a problem. Note that this approach is generic enough to be

applicable to any problem, not just digital design problems. I suspect that everyone who considers

themselves a problem solvers take a similar approach. Here is my basic algorithm to solving

problems
52

.

1) Define the problem: understand the starting point and requirements

2) Describe your solution to the problem: propose a path to the solution

3) Implement your solution to the problem: embodiment of the solution

The following verbage represents an introduction to digital design presented in the context of an actual

problem. There is a lot of information presented so try not to lose track of the basic approach. Keep in

mind that we’re designing a digital circuit; you might want to take a different approach if you were

designing a stick in the mud.

5.2.1 Defining the Problem

The basis of any design problem is a relatively clear statement of the problem at hand. As previously

stated, in digital design you typically face the notion of designing a digital circuit that processes some

set of inputs and generates the desired output. It is understood that for here and evermore in this text,

that both the inputs to the circuit and the outputs from the circuit are digital values
53

. Figure 5.1

provides the problem statement for this painfully long design example.

Example 5-1

Problem Statement: Design a digital circuit where the output of the circuit

indicates when the 3-bit binary number on the input is greater than four.

Figure 5.1: The problem statement.

The basic concept of all digital design is simple: you’re simply creating a circuit that provides the

correct output(s) to a given set of input(s)
54

. Read that sentence again, it’s important. An issue here for

you to realize is that there are many approaches to performing digital design; this section presents only

one of them. What you’ll find is that you will eventually develop your own style and approach to digital

design as you gain experience with the digital design process and problem solving in general. Keep in

51

 As opposed to administrators: their main goals are to create problems for engineers and then do their best to

prevent the engineers from solving them. Administrators are basically jealous that they don’t have the brains or

work ethic to become engineers.
52

 Typical administrator are not aware of any such problem solving algorithms; but be sure to ask them about their

many “justifying their existence” algorithms.
53

 Many circuits contain both analog and digital circuitry; we’ll only work with digital circuitry.
54 What you see later in this course is that the outputs can also be based on a sequence of inputs. For now, we’ll

pretend that the circuit outputs are based solely on the circuit inputs at a given time.

Digital McLogic Design Chapter 5

 - 77 -

mind that the overall goal is to solve the problem; the main goal here is to familiarize you with a simple

digital design process. You’ll initially be on a mission to collect tools and experience with digital

design: the more you learn, the more you’ll realize that you’ll never use a significant portion of what

you learned.
55

The first step in defining this problem is to translate what the problem is asking in the problem

statement (words) to some other form. A good place to state with any digital design problem is to draw

a block diagram that clearly shows both the inputs to and the outputs from the circuit. Drawing a

diagram of the circuit should be the first step in solving any digital design problem. From the problem

statement, you can see that the digital circuit that satisfies this problem has three inputs (the 3-bit binary

number) and one output (states a quality of the inputs that we’re interested in).

The starting point in any digital design is to draw a black box model that clearly indicates the stated

circuit inputs and outputs. We’ve seen this approach to modeling other things in a previous chapter.

Recall that a model in this digital context is simply a description of a digital circuit. This is purposely a

loose definition because there are once again about a bajillion-and-one ways to describe a digital circuit.

The diagram in Figure 5.2(a) is just one of these ways.

The nice thing about the diagram of Figure 5.2(a) is that it clearly shows that our final circuit has three

inputs and one output (as indicated by the direction of the arrows of the labels listed in Figure 5.2).

Figure 5.2(b) shows another model of our final circuit. The main difference between these two models

is the fact that the model in Figure 5.2(b) has given specific names for the inputs and outputs. Note that

the circuit models of Figure 5.2(a) and Figure 5.2(b) show roughly the same thing but the Figure 5.2(b)

provides a greater amount of detail and is probably a better model in the context of this problem. Recall

that the term “model” does not imply a specific level of detail.

For the purposes of solving this problem, the model of Figure 5.2(b) is better because we need to use

the signal names in this approach to solving this problem. The signal names applied to the model in

Figure 5.2(b) are nothing special: the “B” could mean binary; the numbers following the Bs are

probably (we’ll comment on this soon) associated with the weighting factors of the binary numbers.

The “F” is a typical name given to the outputs of a digital circuit because the output is a function of the

inputs (more on this later).

There one piece of important information missing from the model of Figure 5.2(b): since the three

inputs represent a binary number, what are the binary weights of the inputs? You need to state this in

your problem solution in order for the solution to have meaning. For this problem, let’s consider the B2

input to be the most significant bit (MSB) and the B0 input to be the least significant bit (LSB). If you

did not state this extra piece of information, your solution in the context of the model of Figure 5.2(b)

would not make sense. In general, you must always state this extra information when you are

performing digital design. You could probably make an implicit assumption here, and be correct, but

it’s always better to explicitly state your assumptions somewhere in the design process, preferably early

on. It may be tedious, but recall one purpose of having a model is for anyone to look at it once and

quickly understand what is going on.

55

 As you will notice later, the design process in this chapter is really inefficient; you’ll rarely use it.

Digital McLogic Design Chapter 5

 - 78 -

(a) (b)

Figure 5.2: Two different models of the proposed digital circuit.

The next step in solving this problem is to establish a relationship between the circuit’s inputs and

outputs. Since we’re the digital designers here, the approach we’ll take is to state an input/output

relationship such that the given problem is solved. The way we’ll do this is to list every possible unique

combination of the three inputs and assign an output value that indicates when the inputs satisfy the

original problem. This approach of specifying the input/output relationship represents one of many

valid techniques used to solve digital design problems. The table used to display this input/output

relationship is referred to as a truth table. Figure 5.3 shows the truth table for this problem: Figure

5.3(a) shows the empty truth table while Figure 5.3(b) shows the truth table with every possible

combination of the three binary inputs and output that indicates when the input combination solves the

stated problem.

B2 B1 B0 F

B2 B1 B0 F

0 0 0 0

0 0 1 0

0 1 0 0

0 1 1 0

1 0 0 0

1 0 1 1

1 1 0 1

1 1 1 1

(a) (b)

Figure 5.3: The empty and completed truth table for Example 5-1.

The following list describes some of the interesting and important things to note about the truth tables

shown in Figure 5.3.

 Figure 5.3(a) shows an empty truth table while Figure 5.3(b) shows a truth table that is

filled in with 1’s and 0’s. The fact that 1’s and 0’s are used is for modeling digital values

is traditional in digital design (it’s easier and faster to write than other options such as ON-

OFF). Digital circuitry and digital models typically use 1’s and 0’s to model the voltages

that drive the underlying hardware of the circuit. Using 1’s and 0’s at this point in the

design allows us to abstract past the need to deal with voltages (which is a good thing for

people who don’t know what voltage is). We’ll be modeling voltages using 1’s and 0’s for

the remainder of this text.

 The tables have eight rows. There is always a binary relationship between the number of

inputs to the circuit and the number of rows in the truth table. For this example, since there

Digital McLogic Design Chapter 5

 - 79 -

are three inputs, there are 2
3
 (eight) unique combinations of the three inputs. Be sure to

note that the decimal equivalents to the listed input values range from zero to seven (0-7),

because in binary, the counting begins at 0 (“000”) and ends at 7 (“111”).

 The truth table is set up so that F is truly a function in every sense of the word. This is no

different from the concept of functions in mathematics where there are independent

variables and dependent variables. For this example, B2, B1 and B0 are the independent

variables while F is the dependent variable. In this case, the value of F is dependent upon

the values of the B2, B1, and B0 inputs. In addition, the output F has only one value for

each possible input combination. If the output were to have two different values for one

row in the truth table, the functional relationship would not exist and the world would be

sad.

 The first three columns of the truth table form every unique combination of the three input

values. The column for the output shows what we want the circuit output to be if a

particular input combination specified by the problem specification appears on the inputs.

For this example, we entered 0’s for the cases where the inputs bits represent a number

less than five. Conversely, we enter 1’s for the cases where the input combination is

greater than four
56

. In other words, a ‘1’ in the F column shows when the input

combination, which represents a binary number, is greater than four as specified by the

problem.

 The truth table includes an extra grid line in the middle row of the truth table in order to

increase the readability of the table. Truth tables are typically divided into rows of four

thus proving that life is good.

This is the end of the first step: the problem is now 100% defined using the truth table in Figure 5.3(b).

In case you’re thinking that this problem is sort of straight-forward (and boring) in the way that the

outputs were specified, you’re right. There is no real secret to this style of designing circuits. This

particular style of digital design is an exhaustive approach in that the truth table lists every possible

input combination. This approach is referred to as the iterative approach to digital design (or iterative

design) but I like to refer to it as BFD (for brute force design).

Would an iterative approach be possible if the circuit had 24 inputs? No. Therein lays one of the basic

limitations of the iterative approach. But not to worry, the approach taken in this problem serves a good

purpose and justifies the learning of other more efficient approaches in later chapters. Onto the next

step.

5.2.2 Describing the Solution

Although the truth table has completely defined the solution to this problem, it is generally somewhat

klunky to work with, especially as the number of circuit inputs increase. What we need to do is develop

a “science” of sort in order to more efficiently and generically describe the problem’s solution. If we are

able to develop this new science, we’ll be able to solve more complex digital design problems. Lucky

for us that someone a real long time ago already developed the “science” we’re looking for. Here’s the

shortened version of the story
57

.

56

 As you’ll see later, this approach is somewhat arbitrary; the problem could also be solved by swapping the 1’s

and 0’s in the output column. We’ll deal with this later.
57

 This is really the short version; this is definitely an area you’ll want to explore in other digital design textbooks.

Digital McLogic Design Chapter 5

 - 80 -

About a bajillion years ago, a guy named George Boole developed some methods to deal with a two-

valued algebra
58

. Although his original intent was to model logical reasoning in a mathematical context,

his work currently forms the basis for all digital design. This two-valued algebra has since come to be

known as Boolean algebra. Boolean algebra, similar to normal algebra, is based on a set of operators

defined over the set of elements in question. The possible elements in this set are {0,1} which clearly

shows the two-values (that binary thang again).

Table 5.1 lists the basic axioms of Boolean algebra. The basic operators in Boolean algebra, namely, the

dot (•), the cross-looking symbol (+), and the overbar (ˉ), are completely defined by the axioms shown

in Table 5.1. Table 5.2 and Table 5.3 list the theorems that are provable using the axioms in Table 5.1.

In case you actually want to prove these theorems, substitute the binary values into the expressions in

the theorems using the axioms. Go for it. I dare you
59

.

1a 000 1b 111

2a 111 2b 000

3a 00110 3b 11001

4a 10 4b 01

Table 5.1: Boolean algebra Axioms

5a 00 x 5b xx 1 Null element

6a 000 xx 6b xxx 00 Identity

7a xxx 7b xxx Idempotent

8a xx Double Complement

9a 0 xx 9b 1 xx Inverse

Table 5.2: Single variable theorems.

10a xyyx 10b xyyx Commutative

11a)()(zyxzyx 11b)()(zxyzyx Associative

12a)()()(zxyxzyx 12b)()()(zxyxzyx Distributive

13a xyxx)(13b xyxx)(Absorption

14a xyxyx)()(14b xyxyx)()(Combining

15a yxyx)(15b yxyx)(DeMorgan’s

Table 5.3: Two and three-variable theorems.

58

 In case you have forgotten what algebra is, it’s a mathematical system used to generalize arithmetic operations

by using letter or symbols to stand for numbers based on rules derived from a minimal set of basic assumptions.

These basic assumptions are referred to as axioms. An axiom is a statement universally accepted as true. From this

set of axioms, theorems can be proved true or false. A theorem is a proposition that can be proved true from

axioms.
59

 Proving the theorems using the basic axioms is a typical exercise in most digital design texts. We’ll opt to move

onto more useful things.

Digital McLogic Design Chapter 5

 - 81 -

The most important result gathered from the basic axioms of Table 5.1 is the definition of the three

operators. Although the axioms completely define these operators, the definition of these operators is

clearer using a truth table. The three operators actually have names. The dot operator (•) is referred to as

the AND operator and used to signify an AND operation (sometimes referred to as logical

multiplication). The cross operator (+) is referred to as the OR operator and is used to define an OR

operator (sometimes referred to as logical addition). The overbar is referred to as the NOT operator and

is used to define a NOT operation (usually referred to as inversion or complementation). Table 5.4

shows the truth tables associated with these three definitions.

AND

(logical multiplication)

OR

(logical addition)

NOT

(inversion)

x y yxF

0 0 0

0 1 0

1 0 0

1 1 1

x y yxF

0 0 0

0 1 1

1 0 1

1 1 1

x xF

0 1

1 0

Table 5.4: Truth tables for the three basic logical operators.

Recall that the goal of this section was to produce a scientific method of describing the function

associated with the solution of the original problem. Since that problem appeared about five pages ago,

Figure 5.4 once again provides the truth table defining the solution to this problem.

B2 B1 B0 F

0 0 0 0

0 0 1 0

0 1 0 0

0 1 1 0

1 0 0 0

1 0 1 1

1 1 0 1

1 1 1 1

Figure 5.4: The truth table for the original problem.

We now have several different ways of describing the function that provides a solution to the problem

at hand. The first representation is the truth table, which we declared as being klunky. A second

solution is sort of a verbal and thus non-scientific solution. Figure 5.5 shows the long and drawn out

text of this verbal solution. Notice that Figure 5.5 extensively uses of the words “and” and “or” in the

solution. However, since we went to all the trouble to describe Boolean algebra, Figure 5.6 shows a

better (more efficient and scientific) way to describe the function using Boolean algebra. Note the

similarities in the solutions shown in Figure 5.5 and Figure 5.6.

Digital McLogic Design Chapter 5

 - 82 -

The output of the circuit is a ‘1’ when:

 (B2=1 and B1=0 and B0=1) or (B2=1 and B1=1 and B0=0) or (B2=1 and B1=1 and B0=1)

Figure 5.5: One approach to describing the solution to Example 5-1.

B0B1B2 B0B1B2 B0B1B2 B0)B1,F(B2,

Figure 5.6: A better approach to describing the solution to Example 5-1.

There are several important things to note about the in Figure 5.6.

 This is truly an equation (note the presence of the equals sign). This equation is referred to

as a Boolean equation or sometimes as a Boolean expression. This expression is written in

functional form in that the complete set of independent variables is listed directly on the

left side of the equals sign while the dependent value is listed on the right of equals sign.

 The expression implies some form of precedence of the AND, OR, and NOT operators.

The NOT operator (represented by the bars above the independent variables) has highest

precedence followed by the AND, and then the OR function. Boolean expressions such as

these can be written using parenthesis around the individual terms that are being ANDed

together
60

. Figure 5.7 shows an example of the equation of Figure 5.6 with a refreshing

use of parentheses is

B0)B1(B2)B0B1(B2 B0)B1(B2 B0)B1,F(B2,

Figure 5.7: An arguably better approach to describing the solution to Example 5-1.

5.2.3 Implementing the Solution

Up to this point, you’ve defined your solution (step 1) and described your solution (step 2) which means

you’re now ready to implement your solution. The reality is that the word implement has many

connotations; what we mean in this context is that we need some way to implement this function in

actual hardware
61

. All you currently know are the basic functions associated with Boolean algebra:

AND, OR, and NOT. If actually had to implement this circuit in hardware, how would you do it?

There just so happens to be entities out there referred to as “logic gates” that implement the individual

logic functions for you. Just as there are AND, OR, and NOT functions, there also happen to be

physical circuits (AND, OR, and NOT gates) that implement these functions. In other words, a logic

gate is a physical device that implements a logic function.

60

 Use of parenthesis reduces the need to memorize operator precedence. So, if in doubt, use parenthesis.
61

 A typical digital design synonym for implementing a function in hardware is to “realize” the function or

“function realization”.

Digital McLogic Design Chapter 5

 - 83 -

There are many types of gates out there in digital design-land, but for now, we’ll only deal with these

basic three gates. Figure 5.8 shows these three basic gates. Once again, the symbols shown in Figure 5.8

are nothing more than models of gates. In other words, the gates represent the associated logic functions

but without providing details as to how the functions are implemented on a transistor level. As you can

probably see by now, this form of abstracting is typical in digital design. These gates typically use a

relatively small number of transistors in their implementations
62

.

AND gate OR gate Inverter

Figure 5.8: The basic gate symbols used to model AND, OR, and NOT functions.

Also good to note here are some issues associated with AND and OR gates.

 AND gates and OR gates must have at least two inputs but are not limited to a maximum

number of inputs. In the cases of more than two inputs, the functions remain consistent. Figure

5.9 lists a more generic definition of AND and OR gates; these definitions completely describe

the functionality of these gates when they have more than two inputs
63

. You can hopefully see

from this definition that AND and OR gates can have as many inputs as they need while still

exhibiting the basic AND and OR functionality.

 AND gates and OR gates can have only one output.

 Inverters can only have one input and one output.

AND gates: the output is only a ‘1’ when all the inputs are a ‘1’

OR gates: the output is only a ‘0’ when all the inputs are a ‘0’

Figure 5.9: A more generic and intuitive definition for AND and OR functions.

These gates now give us the ability to implement the solution in actual hardware. However, for this

problem, we’re not going to actually implement the circuit. Instead, we’re going to provide yet another

model for the circuit. Figure 5.10 shows a model of the final circuit implementation. Make sure you

understand the relationship between the circuit model shown Figure 5.10 and the Boolean equation

shown in Figure 5.6. To test your understanding of this relationship, you should be able to generate the

associated Boolean equation shown in Figure 5.6 that describes the circuit from the circuit model shown

in Figure 5.10.

62

 Configuring transistors to implement logic functions is a topic covered in most standard digital design texts. The

notion of designing gates on a transistor level is massively important when you consider many integrated circuits

contain millions of logic gates.
63

 You can add more inputs to the gate symbols as required.

Digital McLogic Design Chapter 5

 - 84 -

Figure 5.10: The circuit model that solves Example 5-1.

In general, you should be able to go back and fourth between the various representations of a Boolean

function. From this example, we learned of and worked with four different representations of a Boolean

function: 1) truth table, 2) written description, 3) Boolean equation, and 4) circuit model. As you’ll soon

find out, there are many more ways to represent a Boolean function. Each one of these representations

is officially a model of a digital circuit
64

. Given any one of these models, you should 1) be able to

generate any of the other models, and 2) be able to actually implement the circuit.

Example 5-2: Half Adder

Design a circuit that adds two bits. The output of this circuit should show both the sum of the

added bits and whether the addition operation has generated a carry-out. This circuit is one of

the most basic circuits in digital design and is known as a Half Adder, or HA.

Solution: Although at this point you may not feel as if you know too much about digital design, you

truly know enough to design a significant and relatively important digital circuit. With a quick example,

we can drive home the design point and have a crapload of fun in the process.

You may require some background in order to do this problem. While performing a mathematical

operation using decimal numbers is no big deal for you, performing a similar operation using binary

numbers requires a special, slightly altered state of consciousness
65

. What you’ll soon discover, if you

have not discovered it already, is that performing mathematical operations in decimal and binary

follows the same rules. The only difference is that the binary number system only contains two

symbols: ‘0’ and ‘1’.

If you were to add two, single-digit, decimal numbers, your result would either be a single digital

number (less than ten) or a two-digit number (greater than nine). Looking at that in another way, results

of this addition that are greater than or equal to the radix are represented by two digits while results less

then the radix are represented with a single digit. In the case of the two-digit result, one digit represents

the result of the addition while the other digit represents the value that “carried-out” from the single-bit

addition. The same is true for binary addition. There are only four different possible results for binary

addition of single bit: Table 5.5 shows these four possibilities as well as the SUM and Carry-out results.

The only item of relative interest in Table 5.5 is the fact that adding ‘1’ to ‘1’ results in a sum of ‘0’

with a carry-out of ‘1’. If you consider the Carry-out to be the MSB and the sum to be the LSB, the total

64

 Although not all of these models are dark box models.
65

 Not really.

Digital McLogic Design Chapter 5

 - 85 -

result is “10” which is the binary equivalent of 2 (two) in decimal
66

. So much for the background, now

let’s tackle the actual design process.

Operation SUM
Carry-out

(CO)

0 + 0 0 0

0 + 1 1 0

1 + 0 1 0

1 + 1 0 1

Table 5.5: All possible single-bit addition operations with sum and carry results.

Step 1) Define the Problem: The problem statement for this problem represents a good start at

defining this problem. As with all problems, draw a high-level diagram of the final circuit. From the

problem statement, you can see that this circuit contains two inputs and two outputs. Figure 5.11 shows

the two inputs (arbitrarily named OP_A and OB_B)
67

 and two outputs SUM and CO. Table 5.6 and

Table 5.7 show the empty truth table (only the independent values are listed) the completed truth table

for this design, respectively. In the design process, you generally start out with an empty table and then

proceed to fill in the independent and dependent values (the inputs and outputs, respectively) in that

order. If you don’t do it in this order, no special penalties are applied.

Figure 5.11: The black-box diagram for the example problem.

OP_A OP_B SUM CO

0 0

0 1

1 0

1 1

Table 5.6

OP_A OP_B SUM CO

0 0 0 0

0 1 1 0

1 0 1 0

1 1 0 1

Table 5.7

66

 OK, I saw a student with the following words written on his t-shirt “There are 10 types of people in the world,

those who understand binary and those who do not”. Even my TA has the shirt. If this saying is copywritten, then

feel free to sue the life out of me. Thanks.
67

 Although you could choose just about any signal names for the inputs and outputs, you should assign names that

are self-commenting. In other words, OP_A (operand A) is arguably a better label than FINGER_NAIL although

both labels are equally valid.

Digital McLogic Design Chapter 5

 - 86 -

Step 2) Describe the Solution: Note that for this problem, you’ll need to generate two Boolean

expressions: one for the SUM and the other for the CO. The final equations are written by logically

summing the product terms associated with rows in which 1’s appear.

BOPAOPBOPAOPSUM ____ BOPAOPCO __

Equation 5-1: The final equations for Error! Reference source not found..

Step 3) Implement the Solution: The final step involves translating the Boolean expressions listed in

Equation 5-1 into circuit form. Figure 5.12 shows the final gate-level implementation.

Figure 5.12: The circuit representation of the final solution for Error! Reference source not found..

In case you don’t see it yet, you’ve officially designed one of the basic circuits in digital design-land:

the half-adder (HA). In other words, the circuit shown in Figure 5.12 adds two bits and generates a

result. The two inputs are digital values as are the two outputs. If you were to purchase the appropriate

digital circuitry, you could actually set up this circuit and make it work.

Digital McLogic Design Chapter 5

 - 87 -

Chapter Summary

 The design of a digital circuit drives by the need to solve a problem. The basic process of digital

design can be described in three steps: 1) define the problem, 2) describe the solution, and 3)

implement the solution. Solutions to digital design problems are often described with Boolean

equations, which have their basis in Boolean algebra.

 There are many possible ways to represent solutions to digital design problems. These many

solutions are considered functionally equivalent in that they all describe the same thing but do so

in different ways. In other words, if the outputs for two given solutions are equivalent based on

the same set of inputs (but the form of the solutions differ), the solutions are functionally

equivalent.

 Important Standard Digital Modules presented in this chapter:

o Half Adder (HA)

Digital McLogic Design Chapter 5

 - 88 -

Chapter Exercises

1) What entity forms the basis of iterative design?

2) What entity forms the basis of iterative design?

3) Why is the term “brute force” associated with iterative design?

4) Can you, at this early stage in your digital design career, describe a better approach to digital

design?

5) Why are truth table-based designs considered severely limited?

6) Generate a Boolean equation that is equivalent to each of the following truth tables.

B2 B1 B0 F

0 0 0 0

0 0 1 1

0 1 0 1

0 1 1 0

1 0 0 1

1 0 1 0

1 1 0 0

1 1 1 0

A B C F

0 0 0 1

0 0 1 0

0 1 0 1

0 1 1 1

1 0 0 0

1 0 1 1

1 1 0 0

1 1 1 0

(a) (b)

X Y Z F

0 0 0 0

0 0 1 0

0 1 0 0

0 1 1 1

1 0 0 1

1 0 1 1

1 1 0 0

1 1 1 0

t u v F1 F2

0 0 0 1 0

0 0 1 1 0

0 1 0 0 1

0 1 1 0 1

1 0 0 0 0

1 0 1 1 0

1 1 0 0 1

1 1 1 0 1

(c) (d)

Digital McLogic Design Chapter 5

 - 89 -

7) Convert the following Boolean expression to truth table form.

a) CBACBACBACBACBAF),,(

b) CBACBACBACBACBACBAF),,(

c) ZYXZYXZYXZYXZYXF),,(

8) Convert the following Boolean functions to truth table form.

a))()()()()(),,(TSRTSRTSRTSRTSRTSRF

b))()()()(),,(CBACBACBACBACBAF

c))()()()(),,(ZYXZYXZYXZYXZYXF

9) Draw a circuit representation for the following Boolean equations:

a) ZYXZYXZYXZYXZYXF),,(

b))()()()()(),,(TSRTSRTSRTSRTSRTSRF

Digital McLogic Design Chapter 5

 - 90 -

Design Problems

1) Design a circuit that has three inputs and two outputs. One of the outputs indicates when the 3-bit

input value is less than three; the other output indicates then the input is greater than five. Provide

the equations that describe your circuit in SOP form. Implement the final circuit using AND gates,

OR gates, and inverters.

2) Design a circuit that has three inputs and two outputs. One output indicates when the three inputs

(considered a binary number) are even; the other output indicates when the three input bits are odd.

Implement the final circuit using AND gates, OR gates, and inverters.

3) Design a circuit whose 3-bit output is two greater than the 3-bit input. The binary count should

wrap when the output value is greater than 1112.

4) Design a digital circuit that controls a switch box according to the following specifications: If

either one (and only one) or two (and only two) of the three input switches are on, the output is on.

For this problem, assume that “on” is represented by a ‘1’. Implement your final circuit using AND

gates, OR gates, and inverters.

5) Design a digital circuit according to the following specifications. The circuit output indicates

when the 3-bit binary input is less than or equal to four but not zero. Provide a proper black

box diagram, a truth table, a Boolean equation, and a circuit diagram that model your solution.

The circuit diagram should only use only AND gates, OR gates, and inverters.

 - 91 -

6 Chapter Six

(Bryan Mealy 2012 ©)

6.1 Introduction

The previous chapters hopefully have given you a sense for the fact that digital design is centered on the

use of various model types and representations of digital circuits. What you’ll eventually discover is

that true digital designers need to be adept at being able to model circuits in a way most appropriate for

a given situation.

The previous chapter introduced many theorems based on the basic axioms of Boolean algebra. Aside

from DeMorgan’s theorem, many of these theorems rarely used in digital design applications. Digital

design and other technical fields such as computer science and bowling use DeMorgan’s theorem quite

often. This chapter presents a foundation for the use of DeMorgan’s theorem in digital design; you find

extensive use of this theorem throughout this text.

Main Chapter Topics

 DIGITAL DESIGN REVIEW: This chapter provides a quick review of the basic

design approach presented in a previous chapter.

 DEMORGAN’S THEOREMS: Probably the most widely used theorem in digital

design, DeMorgan’s theorems can describe and generate product of sums and sum

of products representations of functions.

Why This Chapter is Important

This chapter is important because it describes how to use DeMorgan’s theorem to

change Boolean expressions into functionally equivalent forms.

6.2 Representing Boolean Functions

A Boolean function, or simply “function”, is an equation that describes an input/output relationship of a

module in terms of digital logic. There are many different ways of modeling this input/output

relationship. Up until now, you have seen three main approaches: the truth table, a Boolean function,

and a circuit model.

There are a few important things to notice about the input/out relationships we’ve been using. First,

these three representations are functionally equivalent. In other words, these three forms say the same

thing but say it in three different ways. As you become more familiar with digital logic you’ll be able to

go back and forth between these forms very quickly. Secondly, you’ll also quickly realize that some

forms of function representations are more appropriate than others in modeling digital circuits. The

Digital McLogic Design Chapter 6

 - 92 -

other important thing to notice here is that though there are many ways to model the input/output

relationship of a digital circuit, only a few of these methods are used most of the time. The good news is

that you’ve seen three of the more standard approaches already.

For a quick review, recall that the design process we used in a previous chapter had the three primary

steps listed below. We then used these steps to solve Example 6-1 (repeated from a previous chapter).

1) Define the problem: understand the starting point and requirements

2) Describe your solution to the problem: propose a path to the solution

3) Implement your solution to the problem: embodiment of the solution

Example 6-1

Problem Statement: Design a digital circuit where the output of the circuit

indicates when the 3-bit binary number on the input is greater than four.

The solution to Example 6-1 included a black box diagram (Figure 5.3(a)), a truth table (Figure 5.3 (b)),

a Boolean expression (Figure 5.7), and the final circuit diagram (Figure 5.10).

B2 B1 B0 F

0 0 0 0

0 0 1 0

0 1 0 0

0 1 1 0

1 0 0 0

1 0 1 1

1 1 0 1

1 1 1 1

(a) (b)

Figure 6.1: The black box model and completed truth table for Example 6-1.

B0)B1(B2)B0B1(B2 B0)B1(B2 B0)B1,F(B2,

Figure 6.2: A Boolean expression describing the solution to Example 6-1

Digital McLogic Design Chapter 6

 - 93 -

Figure 6.3: The circuit model that solves Example 6-1.

6.2.1 DeMorgan’s Theorems

The list of theorems provided in the previous chapter (listed again in the appendix) is relatively long. In

standard versions of digital logic courses, students are required to become intimately familiar with these

theorems by proving them using the basic digital axioms. The truth is that modern digital design rarely

has a direct use for most of these theorems. Then again, the useful theorems are used all the time;

DeMorgan’s theorem happens to be one of those theorems. Familiarity with DeMorgan’s theorem is

going to allow us to represent functions in many different ways. This section deals directly with using

DeMorgan’s theorems to generate new representations, or more specifically, function forms, to model

digital circuits, and thus, solutions to digital problems.

A new representation of a digital circuit can be derived from an application (or multiple applications) of

DeMorgan’s theorem after gathering information from a truth table. For this explanation, let’s back up

to the design example we were previously using. Figure 6.4 shows once again the Boolean equation that

describes a solution to that design problem. The form of this equation is referred to as the sum of

products (SOP) form. Note that this name makes sense in that there are three terms in the equation that

are logically multiplied together (these product terms have been wrapped in parenthesis). These product

terms are then logically added together to complete the equation. The sum of products form, or just SOP

form, is probably the most widely used equation form in digital design land. For better or worse, it is

not the only form.

B0)B1(B2)B0B1(B2 B0)B1(B2 B0)B1,F(B2,

Figure 6.4: The solution to the previous example listed again here.

Another widely used Boolean equation form is referred to as the product of sums (POS) form. You can

obtain the POS form from the truth table in a way that is similar to the SOP form. Note that in the SOP

form, you wrote the Boolean equation based on the rows of the truth table that contained a ‘1’. In other

words, you found which rows contained a ‘1’ in the output and you included the product term for that

row in the final Boolean equation.

The technique of inverting the output officially describes the same function (the right-most column

shown in Figure 6.5). Note the right-most column in Figure 6.5 is the same as the F column except the

associated values are in complemented form. In other words, the two right-most columns of Figure 6.5

have a complementary relationship to each other. Generating an equivalent POS form for the truth table

shown in Figure 6.5 is similar to the approach for generating the SOP form. The only difference is that

we’ll need to apply DeMorgan’s theorems multiple times to get to the POS form we’re looking for.

Let’s start this process by taking a look at DeMorgan’s theorem.

Digital McLogic Design Chapter 6

 - 94 -

B2 B1 B0 F F

0 0 0 0 1

0 0 1 0 1

0 1 0 0 1

0 1 1 0 1

1 0 0 0 1

1 0 1 1 0

1 1 0 1 0

1 1 1 1 0

Figure 6.5: The truth table for the original problem with a complemented output added.

DeMorgan’s theorem is one of the more commonly applied logic theorems in digital design-land

because theorem allows for the transformation of a circuit from one form to another. DeMorgan’s

theorem is also useful in other fields such as discrete mathematics, computer programming, and

bowling. Table 6.1 shows DeMorgan’s theorems listed in both two variable and generalized forms. The

final form listed in Table 6.1 emphasizes the fact the “variables” shown in the original listing of

DeMorgan’s theorem are not necessarily Boolean variables. The symbols shown in the first two

equations can be either simple Boolean variables or Boolean expressions. In either case, the overbar

applies to the entire expression that it covers.

YXYX YXYX

nn XXXXXX 2121 XnXXXnXX 2121

Table 6.1: DeMorgan's theorem in two-variable and generalized forms.

Let’s generate an equation for F in POS form. The key here is to notice that for the SOP form, you were

interested in the rows of the truth table that had a ‘1’ for the output. The approach is to list the product

terms that have a ‘1’ on the output of the complimented output
68

. This first step is similar to generating

SOP form but you’re actually generating an equation in SOP form for the compliment of the output
69

.

Table 6.2 shows the set of equations generated by seeking a POS expression for the given function. The

explanation of each row in Table 6.2 follow the table.

68

 Be sure to note that looking for 1’s in the inverted output column is exactly the same as looking for 0’s in the

non-inverted output column.
69

 Keep in mind that a complement of the output is not the desired output relative to the original problem. In other

words, the complement of the output does not represent a solution for the given problem.

Digital McLogic Design Chapter 6

 - 95 -

(a))B0B1(B2 B1)B2B2()B0B1B2(B0)B1B2()B0B1B2(F

(b))B0B1(B2 B1)B2B2()B0B1B2(B0)B1B2()B0B1B2(FF

(c))B0B1(B2 B0)B1B2()B0B1B2(B0)B1B2()B0B1B2(F

(d))B0B1B2()B0B1B2()B0B1B2()B0B1B2()B0B1B2(F

(e) B0)B1B2()B0B1(B2B0)B1(B2)B0B1(B2B0)B1(B2 F

Table 6.2: Generating a POS form from multiple applications of DeMorgan's theorem.

(a) This equation is SOP form generated by listing the product terms for the 0’s of the F

column or the 1’s of the complemented F column. Note that there are five product

terms in this equation. Also, note that although this is a valid SOP form for the

complemented output, we’re looking for a POS form for the uncomplemented

output. This is an important distinction.

(b) Both sides of the equation in (a) are complemented, which by some Boolean axiom

or theorem, preserves the equality. Complimenting both sides of an equation is an

extremely common operation when dealing with Boolean algebra.

(c) Since the double complement of a variable equals that variable, the double-

complimented F on left side of the equals sign becomes uncomplimented. The result

is that we now have an expression for F; our ultimate goal is to have an equation for

F in POS form so we still need to massage this equation in order to get it into POS

form. The expression on the right side of the equals sign shows the results after the

first application of DeMorgan’s theorem. Note that the product terms are now

complemented and are ANDed together. In other words, the giant overbar is now

distributed to the individual product terms and the OR operators were changed to

AND operators.

(d) Each of the product terms receives an individual application of DeMorgan’s

theorem. Once again, the overbar is distributed to the individual components of the

product terms and the logic operators are switched from AND to OR.

(e) An application of a basic Boolean algebra axiom allows us to remove the double complements

from the variables. The final result of this step provides the desired POS form.

In summary, you now have an approach for generating both an SOP and POS form of equations

describing a digital relationship. These are massively common forms so make sure you understand

them. In particular, understand where these forms came from: the SOP form is generally associated with

the 1’s of the circuit while the POS form is generally associated with the 0’s of the circuit
70

. Once

again, The SOP and POS forms are functionally equivalent, that is, they describe the same input/output

relationship, but they do so in different ways.

70

 This may seem a little “follow the rules” oriented but it will make more sense later as we delve deeper into other

digital design topics.

Digital McLogic Design Chapter 6

 - 96 -

Example 6-2

Change the following circuit implementation from a SOP (AND/OR) to a POS (OR/AND)

form.

Solution: First, a comment... As you’ve seen already, there are many ways to represent a functional

relationship in digital-land; you’ve seen several equation forms (SOP & POS), truth tables, and timing

diagrams. That is, for any given relationship, there are functionally equivalent ways to represent the

relationship. This being the case, you should be able to go from any one form to any other form. This

problem is a case of going from a circuit model implemented in SOP form to a circuit model in POS

form. There are actually many ways to solve this problem, but we’ll solve it in arguably the most

straightforward approach.

We’ll take the following steps: 1) write out the equation implemented by the circuit, 2) expand the

equation to something that looks like a more familiar SOP form, 3) use the equation to fill in a truth

table, 4) solve for the complemented output, 5) complement the equation and DeMorganize
71

 the result

until you have the equation in POS form, and finally, 6) use the derived POS equation to re-implement

the circuit. Here we go.

1) Write out the equation implemented by the circuit. The circuit is in SOP form; from the

circuit, you can see that you’ll have two product terms (two AND gates) that are logically

added together (one OR gate). The resulting equation is:

CABACBAF),,(

2) Although this equation is officially in SOP form, we need to make this look like a more

familiar SOP form (standard SOP form) in order to transfer the equation to a truth table. The

problem right now is that both of the product terms are missing an independent variable,

which we’ll need to add. The way we’ll do this is to logically multiply the equation by ‘1’.

Thinking back to the original Boolean algebra theorems, you’ll find that: 1 xx . Note the

first product term is missing the C variable. We’ll add it by multiplying the first product

term by 1)(CC which does not alter the value of the product term. The following

equations list the entire procedure for both product terms.

71

 To “DeMorganize” means to apply DeMorgan’s theorem. This term was coined by the infamous Professor

Freeman Freitag sometime in the mid-1980s.

Digital McLogic Design Chapter 6

 - 97 -

CBACBABA

CCBABA

)(

CBACBACA

BCABCACA

BBCACA

)(

Here is the final equation:

CBACBACBACBACBAF),,(

3) Now that the terms look familiar, we enter them into a truth table. Note that a ‘1’ is placed in

the F column for the corresponding product terms in the equation derived in the previous

step of this solution.

A B C F

0 0 0 0

0 0 1 1)(CBA

0 1 0 0

0 1 1 1)(CBA

1 0 0 1)(CBA

1 0 1 1)(CBA

1 1 0 0

1 1 1 0

4) The next step is to solve for the complemented output. We do this by the long way by adding

a complemented F column to the previous truth table. From the table below we can write an

SOP equation for the complemented output; this result appears below the following table.

A B C F F

0 0 0 0 1

0 0 1 1 0

0 1 0 0 1

0 1 1 1 0

1 0 0 1 0

1 0 1 1 0

1 1 0 0 1

1 1 1 0 1

Digital McLogic Design Chapter 6

 - 98 -

CBACBACBACBACBAF),,(

5) The final equation is an expression for F-bar (another way of saying a complemented F). We

want an expression for F (as opposed to F-bar) so we must complement both sides of the

equation and DeMorganize the result a bunch of times. The following equations list these

steps.

CBACBACBACBACBAF),,(

CBACBACBACBACBAF),,(

)()()()(CBACBACBACBAF

)()()()(CBACBACBACBAF

)()()()(CBACBACBACBAF

6) Finally, the last step is to draw a circuit model for the final equation of the previous step.

This turned out to be a long problem as it shows many of the useful and versatile properties

associated with Boolean algebra. One final thing to note in the diagram below is the fact that

the AND gate has some extended wings to handle the larger number of inputs; this is

typically done with any gate, as necessary when dealing with multiple inputs.

Digital McLogic Design Chapter 6

 - 99 -

Example 6-3

Change the following circuit implementation from a POS (OR/AND) to a SOP (AND/OR)

form.

Solution: The solution to this problem is similar to the solution of Example 4-7; the steps are basically

the same but you need to apply them in a strange reverse order.

1) Write out the equation implemented by the circuit. The circuit is in POS form; from the circuit,

you can see that you’ll have two sum terms (two OR gates) that are logically multiplied

together (one AND gate). The resulting equation is:

)()(),,(CABACBAF

2) We need to put the above equation into SOP form so we can easily enter its information into

the truth table. If we complement both sides of the equation and then DeMorganize it, we’ll get

an expression for F-bar in SOP form.

)()(CABAF

)()(CABAF

)()(CABAF

CABAF

3) From here, we need to expand each of the product terms to include each of the independent

variables. We’ll use the same technique as before.

Digital McLogic Design Chapter 6

 - 100 -

CABAF

)()(BBCACCBAF

CBACBACBACBAF

4) The equation above tells us where the 0’s live in the truth table. If we know where the 0’s live,

we also know where the 1’s live and that is what we’re looking for in order to give us an

equation for this function in SOP form.

A B C F F

0 0 0 0 1

0 0 1 0 1

0 1 0 1 0

0 1 1 1 0

1 0 0 1 0

1 0 1 0 1

1 1 0 1 0

1 1 1 0 1

5) Now we can write an equation for F.

CBACBACBACBAF

6) The final step is to draw a model for the final circuit implementation.

Digital McLogic Design Chapter 6

 - 101 -

Example 6-4: Half Adder in POS Form

Provide a circuit diagram for a half-adder (HA) implemented in POS form..

Solution: We all know that a half adder is a one-bit adder with two inputs (the bits being added) and

two outputs (a sum and a carry-out). This being the case, we can borrow much of our results from the

SOP version of the problem we did in a previous chapter.

Step 1) Define the Problem: As with all problems, draw a black box diagram of the final circuit;

Figure 5.11 shows this result. Table 5.6 and Table 5.7 show the original truth table and the truth table

including the complemented outputs, respectively.

Figure 6.6: The black-box diagram for the example problem.

OP_A OP_B SUM CO

0 0

0 1

1 0

1 1

Table 6.3: The original truth table.

OP_A OP_B SUM !SUM CO !CO

0 0 0 1 0 1

0 1 1 0 0 1

1 0 1 0 0 1

1 1 0 1 1 0

Table 6.4: The truth table including complemented

outputs.

Step 2) Describe the Solution: Note that for this problem, you’ll need to generate two Boolean

expressions: one for the SUM and the other for the CO. For this problem, we’ll use SOP form since the

problem statement did not specify a preference. The final equations are written by logically summing

the product terms associated with rows in which 1’s appear.

)__()__(BOPAOPBOPAOPSUM

)__()__()__(BOPAOPBOPAOPBOPAOPCO

Equation 6-1: The starting equations for Example 6-4.

Digital McLogic Design Chapter 6

 - 102 -

)__()__(BOPAOPBOPAOPSUM

)__()__(BOPAOPBOPAOPSUM

)__()__(BOPAOPBOPAOPSUM

)__()__(BOPAOPBOPAOPSUM

Equation 6-2: The SUM path from SOP to POS for Example 6-4.

)__()__()__(BOPAOPBOPAOPBOPAOPCO

)__()__()__(BOPAOPBOPAOPBOPAOPCO

)__()__()__(BOPAOPBOPAOPBOPAOPCO

)__()__()__(BOPAOPBOPAOPBOPAOPCO

Equation 6-3: The CO path from SOP to POS for Example 6-4.

Step 3) Implement the Solution: The final step involves translating the Boolean expressions listed in

Equation 6-2 and Equation 6-3 into circuit form. Figure 5.12 shows the final gate-level implementation.

Figure 6.7: The circuit representation of the final solution for Example 6-4.

Finally, it’s instructive to list all the solutions we know about thus far. Equation 6-4 lists both the SOP

and POS forms for the CO output while Equation 6-5 lists the SOP and POS forms for the SUM output.

Digital McLogic Design Chapter 6

 - 103 -

Note once again that the SOP and POS forms for a given output are functionally equivalent. Finally

once again, Figure 6.8 shows a comparison of the final circuit implementations for both the SOP and

POS versions of the half adder.

BOPAOPCO __

Is functionally equivalent to:

)__()__()__(BOPAOPBOPAOPBOPAOPCO

Equation 6-4: The CO path from SOP to POS for Example 6-4.

BOPAOPBOPAOPSUM ____

Is functionally equivalent to:

)__()__(BOPAOPBOPAOPSUM

Equation 6-5: The CO path from SOP to POS for Error! Reference source not found..

(a) (b)

Figure 6.8: A side-by-side comparison of the SOP (a) and POS (b) circuit diagrams for the half

adder.

Digital McLogic Design Chapter 6

 - 104 -

Chapter Summary

 DeMorgan’s Theorem: One of the basic theorems in digital design typically used to translate

from one form to other functionally equivalent forms. Boolean expressions can be simplified

using DeMorgan’s theorem also. There are two different forms of DeMorgan’s theorem; both

bring ultimate bliss to the user.

 SOP and POS Representations: Two of the most common ways to represent Boolean functions

are using sum-of-products (SOP) and product-of-sum (POS) forms. DeMorgan’s is typically used

to generate a POS equation from a truth table. The SOP form is characterized by multiple

product terms that are logically summed together while the POS form is characterized by sum

terms that are logically multiplied together.

 A function can be represented by a truth table in two ways; either the positive version of the

output is presented (a representation of a non-complemented output variable) or the negative

version is presented (a representation of the complemented output variable). These two outputs

are complements, or inversions, of each other.

Digital McLogic Design Chapter 6

 - 105 -

Chapter Exercises

1) Generate a Boolean equation that is equivalent to each of the following truth tables in POS form.

B2 B1 B0 F

0 0 0 0

0 0 1 1

0 1 0 1

0 1 1 0

1 0 0 1

1 0 1 0

1 1 0 0

1 1 1 0

A B C F

0 0 0 1

0 0 1 0

0 1 0 1

0 1 1 1

1 0 0 0

1 0 1 1

1 1 0 0

1 1 1 0

(a) (b)

X Y Z F

0 0 0 0

0 0 1 0

0 1 0 0

0 1 1 1

1 0 0 1

1 0 1 1

1 1 0 0

1 1 1 0

t u v F1 F2

0 0 0 1 0

0 0 1 1 0

0 1 0 0 1

0 1 1 0 1

1 0 0 0 0

1 0 1 1 0

1 1 0 0 1

1 1 1 0 1

(c) (d)

2) Convert the following functions to POS form

a) CBACBACBACBACBAF),,(

b) CBACBACBACBACBACBAF),,(

c) ZYXZYXZYXZYXZYXF),,(

3) Convert the following functions to SOP form.

a))()()()()(),,(TSRTSRTSRTSRTSRTSRF

Digital McLogic Design Chapter 6

 - 106 -

b))()()()(),,(CBACBACBACBACBAF

c))()()()(),,(ZYXZYXZYXZYXZYXF

4) For the following circuit diagram, change the form from SOP to POS form.

(a) (b)

5) For the following circuit, change the circuit to a have an output for F in SOP form.

6) Draw a circuit representation for the following Boolean equations:

)()()()()(),,(TSRTSRTSRTSRTSRTSRF

Digital McLogic Design Chapter 6

 - 107 -

Design Problems

1) Being that SOP and POS forms are functionally equivalent, describe a few reasons why you would

want to use one form over the other.

2) Design a circuit that has four inputs and three outputs. The four inputs are considered to be two 2-

bit inputs. One output consider the two inputs to be binary numbers and indicates when the two

input number are not equivalent. The other output considers the two inputs to be stone-age binary

inputs and indicates when the two binary inputs are equivalent. The third output indicates when the

previously described outputs are both in an “on”. For this problem, implement the first two outputs

using POS forms; implement the third output in any way you deem appropriate, but minimize your

use of gates in the implementation.

3) Design a circuit that has four inputs and four outputs. Each input is from a switch that is associated

with one of four doors to a room; the outputs control a locking device on each door. There are four

different sets of people who need to get into the room but you need to control exactly who gets into

the room. Consider the each door to be named A, B, C, or D. Design a circuit that allows the

following control (don’t worry about how people are going to get out of the room). Provide a

model of your circuit using POS form.

 If someone wants in door A, that person always gets in and is always the only person that gets

in unless door C wants in also, in which case both door A and C will be opened.

 If some one wants in door B, that person can only get in if someone at door D wants in also. In

this case, both door B and D will open.

 The person at door C can never be in the room alone but can be in the room with anyone else.

 - 109 -

7 Chapter Seven

(Bryan Mealy 2012 ©)

7.1 Introduction

The previous chapters provided a foundation of digital design. These are the first few steps into a

special world; you can travel as deeply into digital-land as you desire. We are still early in the “design”

process and the designs are relatively simple. Moreover, the approach we have taken to design is not

used much due to the fact its severe limitations.

The truth is that this is not a perfect world but the entire world will expect your designs to work

perfectly. Half the battle in the actual implementation of any design is the notion that your design will

need modifications along the way in order to ensure the design successfully completes the task it set out

to do. This means that you’re going to make mistakes along the way. This fact leaves you with two

options, both of which you’ll find yourself taking: 1) make sure you understand all the parameters

before you start the design, and, 2) fully test the design at many stages along the way and particularly

when the design is completed. The main topic of this chapter is to introduce timing diagrams, a

mechanism to facilitate both of these objectives. You’re going to make mistakes when you design;

timing diagrams are going to help limit the number of mistakes you make and also help you and/or

anyone who’s working with your design understand what’s going on.

Timing diagrams represent both a design tool and a test tool. This means that timing diagrams can both

specify designs and test designs. While it is conceivable that the world can get by without ever seeing a

timing diagram, they are massively helpful, particularly as your designs become more complex. Timing

diagrams provide a visual representation of what your circuit should be doing (the design process) or

what your circuit is actually doing (testing). Either way, timing diagrams are massively helpful. If there

ever were a notion that proved that a picture is work a thousand words, it would definitely be in regards

to timing diagrams.

Main Chapter Topics

 TIMING DIAGRAMS: The operation of digital circuits is often specified, explained,

and/or modeled with timing diagrams. Timing diagrams provide both an initial

design tool as well as a method to verify the proper operation of completed circuits

and are thus an integral part of any meaningful digital design. This chapter

introduces timing diagrams and describes their relation to digital circuits.

Why This Chapter is Important

This chapter is important because it describes the use of timing diagrams to model

typical digital circuit operations.

Digital McLogic Design Chapter 7

 - 110 -

7.2 Timing Diagram Overview

We currently have several methods to model digital circuits including truth tables, circuit diagrams, and

written circuit descriptions. Although these representations are considered 100% accurate descriptions

of the circuits, they are somewhat timeless in nature. This “timelessness” forms somewhat of an

artificial representation of a circuit in that digital circuits actually operate over given periods of time
1
.

As digital circuits become more complex, it becomes increasingly harder to imagine how the circuit

operates over a given span of time
2
.

A digital circuit operates over a given time span. During these time spans, the circuit’s outputs “adapt”

to changes in the circuit inputs. In other words, the circuit’s inputs are generally expected to change;

when this change occurs, the circuit’s outputs must respond such that they continue to match the

specifications for a given set of inputs. A digital circuit’s outputs react dynamically to the circuits

inputs. Yet another reason why digital circuits are widely considered massively exciting.

Timing diagrams detail a digital circuit’s operation over an arbitrary period of time. Because of this,

timing diagrams are massively important in digital design-land for two main reasons. Firstly, timing

diagrams are able to specify and/or model digital circuit operation
3
. Secondly, timing diagrams are used

to verify that digital circuits are operating as specified either by using some type of simulator or

examining the waveform output from the actual circuit. For now, in a written text such as this one, we’ll

only be dealing with the first item. When you’re actually designing and implementing circuits, you’ll be

living intimately with the second item as you make working with simulators and working with

debuggers a part of your life.

To drive the point home even further… if your circuit does in fact simulate properly, the next step in the

design process is to implement the circuit. You’ll find out that just because your circuit simulates

properly does not guarantee that the physical circuit will work properly. If you implement the circuit,

and it does not work, the next step is to figure out why it does not work. You generally don’t go back to

the simulator as you have probably previously verified that that circuit simulated properly.

Your next step is to analyze the actually hardware implementation. This is often done by using a happy

device known as a logic analyzer, or LA. As you will see, one of the two main types of outputs from the

LA is a timing diagram-type display. The LA is a magical device that allows you to view signals in

your circuit of your choosing for designated windows of time. The LA is a massively useful hardware

debugging tool used by all competent digital designers. Don’t fear the LA.

There is some special terminology and symbology typically used in timing diagrams; we’ll be going

over a few of the more important ones in this chapter. You’ll find out that although there are many ways

to represent timing diagrams, the concepts of timing diagrams and their relation to digital circuits is not

complicated. Once you understand the basics of timing diagrams, you’ll be able to quickly adjust to any

timing diagram symbology that you’ve not seen or used before. There is somewhat of a learning curve

involved, but if you put the time into becoming comfortable with timing diagrams, they’ll help you

become a better digital designer.

1
 It takes time for the electrons to move around in the underlying sillycone. Keep in mind that nothing is

instantaneous in actual digital circuits although we typically can model signal changes in circuits as being so.
2
 As you’ll find out later, there are two basic types of circuits. The notion of “time” relative to a circuit becomes

more complicated when the circuits outputs are a function of something other than the circuit’s inputs.
3
 More often, only the important parts of the circuit are specified. In this context, “important” could have many

meanings. As we travel deeper into digital design land, these meanings start to surface.

Digital McLogic Design Chapter 7

 - 111 -

7.3 Timing Diagrams: The Gory Details

Jumping right into it, Figure 7.1 shows five timing diagrams serving as an introduction to the flavor of

most timing diagrams you find out in digital-land. The items below provide an extended description and

comments regarding each of the timing diagrams in Figure 7.1. Keep in mind that the horizontal axis is

the time axis in each of these timing diagrams
4
. For this example, we only use the term “time” but we

have attached no metric such as “seconds” or “milliseconds” to the time. At this point in your digital

design careers, we can satisfy ourselves by talking about time in general
5
.

(1) Note that all the timing diagrams show a “functional” relationship; that is, at any given time, a

given signal is either high, or low, but never both at the same time.

(2) This timing diagram shows line that seems to go randomly up and down. The line represents the

value of digital signal in question. The signal is generally given a name, but we’ve left it out in

order to keep this discussion general. Note that the signal has two values, which is what you

would expect from a digital signal. The signal shows various transitions from high-to-low and

low-to-high; these signal changes are referred to as toggles in digital lingo.

(3) This timing diagram explicitly shows the two values of the signals. In this case, the two values

are referred to as ‘H’ and ‘L’, which represent the high and low values of the digital signals,

respectively. Also included in this timing diagram are the horizontal dotted lines, which support

the notion that the digital signal is either high or low
6
. These dotted lines are often omitted but

are often included in more “busy” timing diagrams in order to increase the readability and

understandability of the timing diagram.

(4) This timing diagram is similar to the timing diagram of (b) but the ‘H’ and ‘L’ have been

replaced with ‘1’ and ‘0’, respectively. This emphasizes the point that the two values of the

digital signals are actually models representing some actual digital hardware. There are many

flavors of digital hardware out there; these flavors can differ in the voltage levels used to drive

the hardware. We opt to ignore voltage concerns by abstracting our digital designs to a higher

level such that we don’t need to deal with voltage levels. In other words, we’re describing the

digital operation of a circuit; voltage levels are an issue we can often not worry about.

(5) This is another common style of modeling digital signals. While the previous timing diagrams

used vertical lines to represent high-to-low and low-to-high transitions, the style of this timing

diagram uses slanted lines. Note that the lines are always slanted in the direction of advancing

time. In reality, the signals in a digital circuit cannot instantaneously change value as they seem

to do in the other listed timing diagrams, but it is sometimes helpful to include the slanted

transitions in timing diagrams. It is generally more common in digital design-land to model the

signal transitions as occurring instantaneously.

(6) The final timing diagram is nothing new. What we want to do is use this timing diagram to toss

some typical timing diagram lingo at you. At (a) in the timing diagram shows that the given

signal is initially low at the beginning of the timing diagram. At (b), the signal switches from a

4
 The horizontal axis is always the time axis; if it’s not, rotate the text 90 degrees.

5
 The notion of exact time increments on the horizontal axis are somewhat less important at this point than the

notion of understanding what exactly the timing diagram is attempting to show. If completely understand the basic

function of timing diagrams, the addition of exact time measurements is trivial. We’ll be dealing other issues of

timing diagram timing issues as they become more appropriate in later chapters.
6
 This is primarily a mechanism to help the person reading the timing diagram figure out what is going on. This

becomes important in complex designs where you need to list a page full of signals in order to verify your design is

working correctly. After staring at a page full of signals, the “highness” and “lowness” of signals is sometime

obfuscated due to brain overload.

Digital McLogic Design Chapter 7

 - 112 -

low state to a high state, or more simply stated, the signal toggles. At (c), the signal switches

from a high state to a low state, or once again, toggles
7
. Around the time indicated by (d), the

signal toggles two times (similar to (b) and (c)). At (e), the timing diagram ends with the signal

in a low state. In addition, possibly most importantly, we want to express the notion that the

more comments you place on a timing diagram, the happier the human reader will be.

(1)

(2)

(3)

(4)

(5)

Figure 7.1: Example timing diagrams.

Finally, as we alluded to in the description of the timing diagram in Figure 7.1(5), including notes on

timing diagram is something you should always do. Nothing looks crappier than a page filled with

timing diagrams but having no notes included describing to the reader exactly what they are looking at.

The unstated rule for all timing diagrams is that they should include notes to describe what is important

in that specific timing diagram. Stated differently, timing diagrams are either trying to show you

something, or they are being used by you to show something to other people. That being said, make

sure that you always include notes, or “annotations” in your timing diagrams; you’ll find yourself

hoping that the person who provided the timing diagram you’re being forced to stare at provided you

with the same notes.

And really finally, there are many approaches to annotating timing diagrams; we’ll get to other

approaches in later chapters. The truth is that there is no correct way to annotate a timing diagram, but

the following list provides some reasonably intelligent guidelines.

 The overall purpose of any diagram, including timing diagrams, is to quickly present

information. Providing annotations facilitates the understanding of the underlying circuit. If

you make the timing diagram clear, you’ve served your purpose.

 Make sure you draw the reader’s eye to the important part of the timing diagram; you can

easily do this with your annotations.

7
 Toggling refers to switching states and includes both low-to-high and high-to-low transitions.

Digital McLogic Design Chapter 7

 - 113 -

 Don’t try to express too many ideas in one timing diagram. A better approach is to make

multiple timing diagrams, each with its own succinct point.

 Only include the signals and information in timing diagrams that help you get your point

across; you should strive to omit unused or unimportant.

 The time-span for timing diagram should only include information that helps you solidify your

point. The act of including too large of a time-slice diverts the focus away from what you’re

trying to show.

 All timing diagrams (and all diagram, for that matter) should include a title that quickly

describes what the timing diagram is trying to show.

7.4 Timing Diagrams: The Initial Real Stuff

One use of timing diagrams is to model the operation of digital circuits and devices. Since we are

currently familiar with three digital devices, let’s demonstrate their operation with timing diagrams.

Figure 7.2 show an inverter and an associated timing diagram. The signal names ‘x’ and ‘F’ represent

the input and output to the inverter, respectively (as listed in the top diagram of Figure 7.2). The upper

signal in the timing diagram is labeled ‘x’; the timing diagram shows how the x signal acts as a function

of time. The signal activity shown in ‘x’ line is arbitrary; the intent of this timing diagram is to show the

changes in the output (F) as a function of the input (x)
8
. Figure 7.2 does indeed show the complimentary

relationship between the input and output, as you would expect from an inverter.

Figure 7.2: Example timing diagram for inverter.

Figure 7.3 shows example timing diagrams for AND and OR gates. Note that in Figure 7.3(a), the

output is only high when of both the ‘x’ and ‘y’ inputs are high. Likewise, Figure 7.3(b) shows that for

an OR gate, the output is only low when both of the ‘x’ and ‘y’ inputs are low. The two timing diagrams

of Figure 7.3 once again match our previous description of AND and OR gate operation. Moreover, the

timing diagrams in Figure 7.3 completely describe the operation of AND and OR gates; recall that truth

tables were previously used to described these gates
9
. Keep in mind that for both timing diagrams in

Figure 7.3, the value of the input variables is arbitrary; there is nothing special about the input timing.

The outputs, of course, are dependent upon the inputs.

8
 Keep in mind that once again shows the true functional relationship between the input (the independent variable)

and the output (the dependent variable). In other words, for any one given instance of time, the output is necessarily

high or low (but never both).
9
 It’s up to you decide which is better. Generally speaking, sometimes one description is better than another based

on the context of what you’re describing.

Digital McLogic Design Chapter 7

 - 114 -

(a) (b)

Figure 7.3: Example timing diagrams for an AND gate (a) and an OR gate (b).

For our final example, let’s generate a timing diagram for the main example problem from the previous

chapters. Figure 7.4 shows the truth table associated with a previous example while Figure 7.5 shows an

example timing diagram associated with the truth table. Note that the timing diagram includes the three

inputs and one output listed in the truth table. The input signal characteristics in Figure 7.5 are once

again arbitrary.

Figure 7.5 uses some special notation to indicate that the timing diagram does indeed reflect the

characteristics of the associated truth table. The vertical dotted lines in Figure 7.5 represent particular

moments in time. At each of these moments in time, the index into the truth table provides an aid in

your perusal of the timing diagram. For example, the (1) label indicates a match between the second

row in the truth table where B2=’0’, B1=’0’, and B0=’1’. Under these particular signal conditions, the

output is a ‘0’.

index B2 B1 B0 F

(0) 0 0 0 0

(1) 0 0 1 0

(2) 0 1 0 0

(3) 0 1 1 0

(4) 1 0 0 0

(5) 1 0 1 1

(6) 1 1 0 1

(7) 1 1 1 1

Figure 7.4: The truth table for the original problem design problem.).

Digital McLogic Design Chapter 7

 - 115 -

Figure 7.5: Timing diagram for main problem specified in this chapter.

Here are a few more comments regarding timing diagrams.

1. The vertical dotted lines in Figure 7.5 do not overlap any transitions on the input signals.

Technically speaking, the “vertical” transitions in the signals indicate a discontinuity
10

 in the

signal. The truth here is that you’re not being told the entire story regarding timing diagram.

Later chapters reveal the truth after you prove your worthiness to the digital gods.

2. The input signals B0, B1, and B2 are completely arbitrary. In this particular timing diagram,

there happens to be every possible combination of the three inputs. This won’t always be the

case, but since it is, the timing diagram of Figure 7.5 completely describes the given function.

The given function would not be completely specified if one or more particular sets of

combinations of the inputs were missing.

7.5 Timing Diagrams: Bundle Notation

As every digital designer knows, the name of the game in the real world is to constantly transform

things from one form, to an equivalent form that is simpler. This is particularly true with timing

diagrams because they have tendency to become unwieldy and thus unreadable. One way to control this

added complication is to exploit the common purpose of some signals by placing them into a special

group. The resulting grouping of signals makes a given design easier to understand; the associated

timing diagram is also easier to analyze.

Out there in digital-land, the term “bus” refers to a group of signals. In reality, the term bus has multiple

definitions in digital land
11

, so the more appropriate term for what we’re describing here is a “bundle”.

I’ll keep writing bundle, and thus keep fighting off my tendency to use the word bus. You need to get

used to the terms “bundle notation” and “bus notation” as digital design uses these terms quite often.

This section covers the notion of using bundle notation.

The use of bundle notation appears in three areas in digital design: in schematic diagrams, timing

diagrams, and VHDL models. None of these uses are overly complicated, though the standards for

10

 It’s one of those calculus terms. Please refer to your bulky math book for clarification.
11

 The term “bus” often refers to a “protocol”, which is essentially a pre-defined set of rules that describe a

mechanism that digital entities can use to communicate with each other. Additionally, you often see the terms bus

and protocol used interchangeably.

Digital McLogic Design Chapter 7

 - 116 -

bundle notation in timing diagrams is somewhat less standard than they are in schematic diagrams. The

general idea is that if you understand the general concepts of bundle notation, nothing much can cause

you confusion.

7.5.1 Bundle Notation in Schematic Diagrams

This is a straightforward concept so we’ll not spend a lot of time here. The issue at hand is to simplify

block diagram and/or schematic diagrams by bundling signals. The use of “slash notation” allows us to

do this quite easily; Figure 7.6 shows a few examples. As advertised, a set of signals is bundled; a

forward slash indicates a bundled signal and a number indicates how many signals are in the bundle.

Some specific information regarding Figure 7.6 and slash notation appear below. Figure 7.6(a) shows

the original diagram while the other components of Figure 7.6 show some examples.

 Figure 7.6(a) shows the original block diagram indicating a black box with three inputs and

one output. The inputs may be related and can thus be bundled. Note that in each of the

subsequent bundles, some small amount of information is lost (namely, the names of the

individual signals) in an effort to make the diagram less busy.

 Figure 7.6(b) shows one approach to bundling. This diagram shows an attempt was made to

preserve the names of the signals. The slash on the “B_210” line indicates that the B_210

signal is now a bundle and that it contains three individual signals as indicated by the tiny “3”

near the slash mark.

 Figure 7.6(c) shows an approach that attempts to save even less information than Figure 7.6(b)

by using “B” instead of “B_210”. Once again, the diagram presents less information, but there

is less clutter in the resulting circuit model.

 Figure 7.6(d) shows yet another approach to bundling; in this case, the signal name also

indicates how many signals are associated with the bundle. You see this sometimes, but it is

not super clear what the “_3” is attempting to indicate. As a result, it is questionable how much

the “_3” actually helps.

(a) (b)

(c) (d)

Figure 7.6: Various diagrams showing schematic-based bundling using slash notation. .

The general idea is to use bundling to make your diagrams more readable. However, you need to be

careful here, as tossing every signal into a bundle does not always make sense. Figure 7.7 shows an

Digital McLogic Design Chapter 7

 - 117 -

example where bundling does not make sense. The diagram in Figure 7.7(a) shows a half adder while

Figure 7.7(b) shows an attempt to bundle both the inputs and outputs on the device model. The result is

a cleaner looking diagram, but… this is a total failure.

The problem with bundling the signal in Figure 7.7(b) is that both the input and output signals are

distinct; thus placing them into a bundle has made the diagram more confusing. For example, we know

the half adder is a 1-bit adder, but from the Figure 7.7(b) it appears to be some flavor of two bits. Recall

that the idea behind bundling is to make the resulting diagrams more readable to humans. The example

in Figure 7.7 has completely failed on this mission. The moral of this story is to always make sure

whatever you’re doing makes things easier to read and understand; simply “looking better” does not

necessarily support “being better” because being better is all about making something more

understandable.

(a) (b)

Figure 7.7: Various diagram showing schematic-based bundle notation. .

7.5.2 Bundle Notation in Timing Diagrams

Bundle notation in timing diagrams is also a relatively simple concept. Keep in mind, that there are

many ways to model bundles in timing diagrams; this section will show a few of them. If you

understand these, you’ll be able to deal with anything new.

Figure 7.8(a) shows that same tired block diagram we’ve been using. What we’re interested in is a

timing diagram associated with Figure 7.8(b). In this case, two things have occurred; one is fairly

obvious and the other is rather mysterious. The following list describes these items.

 The block diagram in Figure 7.8(b) represents an equivalent version of Figure 7.8(a), which

has been simplified using bundle notation. The one bundled signal in Figure 7.8(b) replaces the

three signals in Figure 7.8(a).

 The signal “B” in Figure 7.8(b) represents the three signals B2, B1, and B0 from Figure 7.8(a).

Since the names have been changed, you’ve lost the notion that there may be an ordering

associated with the signals in Figure 7.8(a). If this is the case, you need to state this

somewhere; the two places you have to state this are in the schematic diagram or in the timing

diagram. This is massively important; it’s easy to make the assumption that the reader will

know what you’re trying to convey. You should never make any assumptions about anything

in digital-land; it’s always better to make note somewhere that someone will actually see it.

Digital McLogic Design Chapter 7

 - 118 -

(a) (b)

Figure 7.8: Example block diagrams for the used by Figure 7.9.

Figure 7.9 shows two different but equivalent timing diagrams. The timing diagram in Figure 7.9(a)

lists the individual signals while the timing diagram in Figure 7.9(b) uses two forms of bundle notation.

There are a few things of interest to note here; these notes follow the diagram.

(a)

(b)

Figure 7.9: Equivalent timing diagrams showing individual signals (a) and timing-diagram-based

bundle notation (b).

Digital McLogic Design Chapter 7

 - 119 -

 In Figure 7.9(b), two parallel horizontal lines indicate that the signal is a bundle. The crosses

that appear in these lines indicate that at least one of the subsequent signals in the bundle has

change from either a low to a high or a high to a low.

 In Figure 7.9(b), numbers generally indicate the value of the signals within the bundle. You’ll

see many different ways of representing these numbers; we’ve opted to use a C programming

language-type notation used to represent hexadecimal numbers to represent the individual

signals in the bundle. Specifically, the “0x” prefix on a number indicates that you should

interpret the number as a hexadecimal number. Note in the Figure 7.9(b) that every time a

signal changes, there is also a change in the corresponding number representing the bundle.

 There are only three signals associated with the bundle while hex notation can specify four bits

per hex number. This is not a problem in that the missing signal(s) is always assumed to be the

most significant bit (MSB) in the bundle and always assumed zero.

 The diagram should explicitly state that in the hex number used in Figure 7.9(b), the most

significant bit represented is B2 while the least significant bit is B0. Notes

 Figure 7.9(b) show the B’ and B” signals. These are equivalent signals but two different styles

are used to represent their values. Often time the timing diagram drops the “parallel bar”

notation when all the signals in the bundle are all high or all low. Ether approach is fine; the

timing diagram in B” is more clear and consistent (one man’s opinion).

One other commonly seen notation is associated with the expansion of bundles. Figure 7.10(a) shows a

block diagram that includes a bundle while Figure 7.10(b) shows an associated timing diagram .The

timing diagram in Figure 7.10(b) includes a “bundle expansion” of the signal labeled “B”. The diagram

indirectly states that bundle B is comprised of three signals (B(2), B(1), and B(0), with B(2) being he

MSB and B(0) being the LSB
12

. This notation is typically used in simulators and is useful because the

simulators generally allow you to expand the signals and un-expand the signals upon your whims. This

notation also uses “parenthetical indexing” into the bundle and is the preferred approach as it is

consistent with the syntax used in VHDL (which we’ll get to later).

12

 This notation assumes that the signal with the highest index is the most significant bit. This notation is used quite

commonly and it is rarely stated that B(2) is the MSB. If you’re not using this approach in your timing diagrams,

you need to clearly state the approach you’re using in order that you don’t confuse the crap out of someone.

Digital McLogic Design Chapter 7

 - 120 -

(a)

(b)

Figure 7.10: An example of bundle expansion showing parenthetical indexing on the expanded

bundle.

Finally, there is simply much more to say about timing diagrams that this chapter does not mentioned. If

you look at a timing diagram in any typical datasheet, you’ll see lots of strange stuff there. When you

actually start reading those datasheets, you should be able to understand what is going on from

developing a basic understanding of timings. Hopefully, this chapter provided some measure of

assistance. We can only hope.

Digital McLogic Design Chapter 7

 - 121 -

Example 7-1

Use the following circuit to complete the accompanying timing diagram.

Solution: First, a comment. There are many ways to approach this problem; the approach listed here is

definitely the long way. This solution shows you all aspects of the problem and is not necessarily the

best way to solve the problem. Once you have more experience in digital design, you’ll see all those

other ways to solve the problem.

Step 1) Write out the Boolean equation implemented by the circuit. While we’re at it, we may as well

expand the equation into standard SOP form which will help us complete the truth table.

CBABCACBACBAF

BBCACCBAF

CABAF

)()(

Step 2) Generate a truth table and fill in a ‘1’ for the output associated with each of the listed standard

product terms. The index values are included here as it may help us out later. One super massively

important point in this problem is that the problem never stated which of in the inputs was the most

significant bit. In this problem, not stating this information will not change the answer. But, since we

have decided to list the problem using a numeric index, we must state that input A is the MSB while

input C is the LSB
13

.

13

 And of course, you should always state any assumptions you make in any problem. You should

always make sure that you and the reader of your solution stay in the same mindset.

Digital McLogic Design Chapter 7

 - 122 -

index A B C F

(0) 0 0 0 0

(1) 0 0 1 1

(2) 0 1 0 0

(3) 0 1 1 1

(4) 1 0 0 1

(5) 1 0 1 1

(6) 1 1 0 0

(7) 1 1 1 0

Step 3) Use the state of the inputs signals to generate numeric indexes on the original timing diagram.

Note that timing diagram includes vertical dotted lines for every notable span of time on the timing

diagram. Stated in another way, after every input signal transition, the overall state of the inputs

changed and we noted that on the timing diagram using the vertical dotted lines.

Step 4) Use the numbers you entered on the timing diagram to index into the truth table you generated

for this problem. The outputs associated with each row of the truth table are graphically entered into the

timing diagram with a 1’s and 0’s representing the high and low portions of the signal, respectively. The

following timing diagram represents the final solution for this problem.

Digital McLogic Design Chapter 7

 - 123 -

Example 7-2

If possible, use the timing diagram listed below to generate a Boolean equation that that

describes the function modeled by the timing diagram. For this problem, consider A, B, and C

to be inputs; F is an output.

Solution: Once again, there are many ways to do this problem. For this problem, the timing diagram

seemingly models a circuit with three inputs and one output. The first issue we need to deal with is

whether this timing diagram sufficiently describes a function. For the timing diagram to describe a

function, two things need to happen. First, the timing diagram must represent all possible combinations

of the three inputs. Second, for each of those individual combinations, the output must be consistent

throughout the timing diagram in order for the timing diagram to model a function in the true

mathematical sense of the word. Let’s take a look.

Step 1) Find and mark all the input combinations represented in the given timing diagram.

Digital McLogic Design Chapter 7

 - 124 -

Step 2) Because both of the conditions listed in the previous step exist, the given timing diagram does

indeed represent a function. From this point, we can transfer the information from the timing diagram to

a truth table. Once again, a “high” signal in the timing diagrams translates to a ‘1’ in the resulting truth

table. The diagram below shows the result of this step.

index A B C F

(0) 0 0 0 1

(1) 0 0 1 1

(2) 0 1 0 0

(3) 0 1 1 0

(4) 1 0 0 0

(5) 1 0 1 0

(6) 1 1 0 0

(7) 1 1 1 1

Step 3) From the previous truth table, we can generate the following Boolean equations. The equation

below shows this is result in all its glory. We appear to be done with this problem.

ABCCBACBAF

Post Problem Commentary: This problem could be categorized as an “analysis” problem, or maybe

even better as a “timing analysis” problem. Note that we “analyzed” the original timing diagram in

order to arrive at our solution. In addition, if we were totally into the pointless digital self-flagellation

thing, we could also draw the circuit associated with the final equation we generated. Let’s definitely

skip that.

Example 7-3

Using the following timing diagram, expand the listed bundle into individual signal. For this

problem, assume that signal labeled “B” represented a bundle with three individual signals. Use

parenthetical indexing for the signal members of “B”.

Solution: For this problem, we need to expand the bundle notation and list the individual signals of the

bundle in the timing diagram. We will use parenthetical notation as specified by the problem which

Digital McLogic Design Chapter 7

 - 125 -

dictates that B(2) is the MSB of the signal “B” and B(0) is the LSB of “B”. The diagram below lists the

final solution. Are you ready for the final solution
14

?

14

 It’s a reference to an Elvis Costello song; no need to panic.

Digital McLogic Design Chapter 7

 - 126 -

Chapter Summary

 Timing Diagrams: One common and useful approach to modeling digital circuits is with a timing

diagram. Timing diagrams show the state of signals over a given span of time. Timing diagrams

explicitly show the functional relationship of digital circuits in that for every unique set of inputs,

there is only one unique set of outputs. Timing diagrams use a signal’s value (most often either ‘1’ or

‘0’) as the independent variable (the vertical axis) and time as the dependent variable (the horizontal

axis). Complete timing diagrams can be used to completely specify a digital circuit’s correct

operation.

 Timing Diagrams for Design: Timing diagrams are often used to define problems. For example, you

may see problems stated such as “design a circuit that has an input/output relationship modeled by the

following timing diagram. In this way, the timing diagram is part of the circuit specification.

 Timing Diagrams in Analysis: Timing diagrams are often used for analysis. There are two aspects

to timing diagrams used in analysis. First, the timing diagram may be the output of a “digital circuit

simulator”. In this way, you’re testing the expected output of a circuit that you have not necessarily

implemented. Secondly, many test devices typically output timing diagrams. The Logic Analyzer is a

standard test device that essentially generates timing diagrams which results from testing an actual

implemented circuit. Either way, the thing you’re tying to figure out is whether your circuit will do

(simulation) or actually does (implementation) the right thing.

 Bundle Notation: This notation consists of associating single signals with a common purpose into

one signal that has multiple sub-signals. Digital design commonly uses this notation designs in order

to simply the design and/or analysis process. Bundle notation is seen often in both schematics and

timing diagrams. Bundle notation in schematics uses slash notation (a forward slash with a number

indicating the number of signals in the bundle) while bundle notation in timing diagrams uses double

bars with some type of indication of the value of the included signals.

Digital McLogic Design Chapter 7

 - 127 -

Chapter Exercises

1) Using the following Boolean equation to complete the accompanying timing diagram.

CBACBABCF

2) Using the following Boolean equation to complete the accompanying timing diagram.

TRRSTSRSTRF

3) Does the timing diagram listed below completely define a function? Why or why not? If it does,

write both SOP and POS equations that describes the function and provide a circuit diagram in both

SOP and POS form that could be used to implement the circuit.

Digital McLogic Design Chapter 7

 - 128 -

4) The following timing diagram may completely model a function.

 If the timing diagram defines a function, draw a circuit diagram for the function in

reduced form.

 If the timing diagram does not define a function, explicitly describe why it does not.

5) Consider the previous problem… can you safely state which of the inputs variables is the MSB or

LSB? Be sure to provide a complete explanation.

6) Does the timing diagram listed below completely define a function? Why or why not? If it does,

write both SOP and POS equations that describes the function and provide a circuit diagram in both

SOP and POS form that could be used to implement the circuit.

Digital McLogic Design Chapter 7

 - 129 -

7) Consider the previous problem… how does the ordering of the labels of A, B, and C change the

outcome of the problem? Be sure to provide a complete explanation.

8) Does the timing diagram listed below completely define a function? Why or why not? If it does,

write both SOP and POS equations that describes the function and provide a circuit diagram in both

SOP and POS form that could be used to implement the circuit.

9) In your own words, under what conditions could the timing diagram of the previous problem ever

be used in a real circuit setting?

10) If the following timing diagram completely specifies a function, write a Boolean expression for that

function.

11) If the following timing diagram completely specifies a function, write a Boolean expression for that

function.

Digital McLogic Design Chapter 7

 - 130 -

12) Does the following signal completely specify a Boolean function? Briefly explain why or why not.

13) Complete the following timing diagram for the F output based on the given circuit.

14) For this problem, consider the input variables to be A, B, and C and the outputs to be F1 and

F2. The timing diagram below completely described functions F1 and F2. Write a Boolean

expressions that describe F1 and F2

Digital McLogic Design Chapter 7

 - 131 -

15) For those aspiring digital designers on drugs, state whether the timing diagram listed below

completely defines a function? Why or why not? Does anyone really freaking care?

Digital McLogic Design Chapter 7

 - 132 -

Design Problems

1) Design a circuit whose output represents a square of the input. For this problem, describe your

design using SOP or POS equations. Also, waste yet even more time by completing the timing

diagram listed below.

2) Design a digital circuit that will be used by the head of a typical committee in academia. The input

labeled “A-HOLE” is the head of the committee; the other two committee members are labeled

“GOOD1” and “GOOD2”. Being a typical head of a committee, the chairman of the committee has

commissioned you to build this circuit in order to better serve himself. The committee has a set of

switches that are used for a “secret” vote. Your mission is to modify the circuit inputs such that

there is always a majority in any way the head of the committee votes. Provide a truth table and

equations for your circuit; also, complete the following timing diagram in order to prove that you

may know what you’re doing.

Digital McLogic Design Chapter 7

 - 133 -

 - 135 -

8 Chapter Eight

(Bryan Mealy 2012 ©)

8.1 Introduction

This chapter continues up the digital design learning curve by introducing four new logic gates. Though

you’ve been using AND and OR gates (and inverters) to implement your designs, it turns out that these

types of gates are used the least out there in digital land (not including the inverters). After you’ve

pounded through this chapter, you’ll know all of the basic gates used in digital logic. At that point, we

will have gained much more flexibility in our digital designs, which is good. Then soon after that, we

do just about all we can never to use simple gates in our designs ever again
86

. Kind of strange.

Main Chapter Topics

 STANDARD LOGIC GATES: This chapter introduces four new gates: the exclusive

OR (XOR) and exclusive NOR (XNOR) gates, and the NAND and NOR gates.

Why This Chapter is Important

This chapter is important because it describes three of the more common logic gates

used in digital design.

8.2 More Standard Logic Gates

Although AND and OR gates implement the most basic digital logic functions, AND and OR gates are

not the most widely used gates in digital design-land. In reality, AND and OR gates have some

limitations that are not shared in the two most common digital logic gate-types: NAND and NOR gates.

In addition to these gates, digital design uses the XOR and XNOR gates rather extensively.

8.2.1 NAND Gates and NOR Gates

The NAND gate and NOR gate are formed by complementing the output of AND and OR gates,

respectively
87

. The names NAND and NOR are a shortened version of NOT-AND (for NAND) and

NOT-OR (for NOR). Figure 8.1 shows that the NAND and NOR gates can be modeled by adding an

inverter on the output of the AND and OR gates. Inverting the AND and OR gate outputs can be

86

 Though this sounds dramatic, the real reason is based on the propaganda introduced in earlier chapters. Recall

that in digital design, we always want to be designing at the highest level possible. While sometime you really need

to use gates in your designs, they are relatively low-level devices and we generally try not to use them if possible.
87

 Warning: this is only sort of true. You can think of these NAND/NOR gates with inverters on the outputs but

there is a better way to model them. Don’t worry about the better way for now. Pretend I didn’t mention it.

Digital McLogic Design Chapter 8

 - 136 -

considered as creating a new functional relationship and is thus rewarded by a unique gates symbols for

these two new functions. Figure 8.2 shows the two new gate symbols for the NAND and NOR gates.

Most appropriately, Figure 8.3 shows the truth tables associated with the NAND and NOR functions.

Note that in Figure 8.3, the truth tables show that the outputs of the NAND and NOR gates are in fact

complimented versions of AND and OR gates, respectively. Wow! Too much excitement one

paragraph.

(a) (b)

Figure 8.1: Functional equivalent models for the NAND (a) and NOR (b) logic gates.

(a) (b)

Figure 8.2: The NAND (a) and NOR (b) logic gates.

A B BAF

0 0 1

0 1 1

1 0 1

1 1 0

A B BAF

0 0 1

0 1 0

1 0 0

1 1 0

(a) (b)

Figure 8.3: Truth tables for the NAND (a) and NOR (b) logic functions.

There are several reasons why digital design uses NAND and NOR gates more often than AND and OR

gates. One thing to keep in mind is that all logic gates are implemented by placing transistors into a

circuit such that they create the desired logic functions. From a standpoint of the underlying transistor

implementation, there is no amazing advantage to using a AND gate instead of a NAND gate.

One of the advantages that NAND and NOR gates do have over AND and OR gates is that they are

considered to be functionally complete. This means that a NAND gate (or a series of NAND gates) can

implement any Boolean function
88

. In other words, a single NAND gate can be used to generate an

AND function, an OR function, or a complement function (INVERTER). While some of the details of

this statement are beyond what you need to know at this point, you can see from the truth table for the

NAND gate in Figure 8.3(a) that there are two possible ways to create an inverter from a NAND gate.

88

 The same is true of a NOR gate; the details are not provided here.

Digital McLogic Design Chapter 8

 - 137 -

Using a NAND gate to generate an AND function is obtained by adding an inverter to the output of the

NAND gates. Using a NAND gate to generate an OR function is a mixed logic topic and is covered in a

later chapter.

How does one make an inverter out of a NAND gate? Rows 1 and 4 of the NAND gate’s truth table

(shown in Figure 8.3(a)) indicate that if the two inputs to the NAND gate are equivalent, the output is

an inversion of the input. Actual hardware can implement this characteristic by connecting the same

signal to both inputs
89

 of the NAND gate; in Figure 8.4(a) shows this result.

There’s actually another way to turn a NAND gate into an inverter. Notice that Rows 3 and 4 of the

NAND gate’s truth table indicate that if one of the inputs to the NAND gate is fixed to a logic ‘1’, the

output of the NAND gate exhibits an inversion function based on the other input. This is implemented

in hardware by connecting one of the NAND gate inputs to the high voltage in the circuit; Figure 8.4(b)

shows a schematic of this relationship.

(a) (b)

Figure 8.4: Making an inverter from a NAND gate.

And as you can probably guess from knowing that NOR gates are functionally complete, there are a few

ways to force a NOR gates to have an inversion function. Figure 8.1 shows the two approaches to

making an NOR gate into an inverter. We state these without proof
90

; there are some chapter problems

that may make you break a sweat with these concepts. Woohoo!

(a) (b)

Figure 8.5: Making an inverter from a NOR gate.

8.2.2 XOR and XNOR Gates

The final type of logic gates that we’ll introduce in this chapter are the exclusive OR gate (or the XOR

gate) and the exclusive NOR gate (or XNOR gate). Figure 8.6 shows the schematic symbol for these two

gates. Note the similarity between these gates and the OR and NOR gate symbols. Moreover,

89

 Or all of the inputs if there gates has more than two inputs.
90

 As is most stuff in this text…

Digital McLogic Design Chapter 8

 - 138 -

sometimes the simple OR gate is referred to as an inclusive OR gate as opposed to the exclusive OR

gate we’re dealing with now.

(a) (b)

Figure 8.6: The exclusive OR (XOR) and exclusive NOR (XNOR) gates.

Figure 8.7 shows the truth tables that provide the official definitions for the XOR and XNOR functions.

Note that the XOR and XNOR functions are complements of each other as is true with the OR and

NOR gates. Figure 8.8 shows the official Boolean equations describing the XOR and XNOR functions.

These equations differ slightly from the definitions of the previous gates we’ve dealt with. Whereas the

AND/NAND and OR/NOR gates are defined by the basic axioms of Boolean algebra, the XOR/XNOR

gates are not. The leads to the fact that the XOR and XNOR are often described in terms of the

equations listed in Figure 8.8. Note that in these equations the XOR function has its own special

operator symbol: the circled cross. There is also a special operator for XNOR gates which is not

shown
91

 in Figure 8.8(b): the circled dot.

The equations in Figure 8.8 are both massively important and useful; you’ll use these equations often in

digital design. You may want to stare at them for a while; I know I sure do
92

. One final thing to note

here is that the XNOR gate is often referred to as an equivalence gate because the gate output is a

logical ‘1’ when the two gate inputs are equivalent. You can see this relationship from the XNOR

definition of Figure 8.7(b).

A B BAF

0 0 0

0 1 1

1 0 1

1 1 0

A B BAF

0 0 1

0 1 0

1 0 0

1 1 1

(a) (b)

Figure 8.7: Truth tables for the exclusive OR (XOR) and exclusive NOR (XNOR) functions.

BABABAF ABBABAF

(a) (b)

Figure 8.8: The official equations describing the XOR and XNOR functions.

91

 The equation editor I used when writing this does not contain the required symbol and I’m too lazy to seek a

work-around.
92

 Not really.

Digital McLogic Design Chapter 8

 - 139 -

In addition, the last thing to note about XOR and XNOR gates… They have one huge significant

difference from other logic gates. While AND, OR, NAND, and NOR gates can have two or more

inputs, XOR and XNOR gates can only have two inputs by definition of the gates. In the most general

definitions of AND-type and OR-type gates, there is wiggle room to include multiple inputs. This is not

true with XOR and XNOR gates. In reality, XOR-type gates are somewhat similar to inverters in that

inverters have a fixed number of inputs.

8.3 Digital Design Gate Abstractions (whatever that means)

In the previous section, you saw that NAND and NOR gates can be configured as inverters. This fact is

relatively useful and it comes up quite often in digital design-land. There is a bit more to the story so

we’ll be filling in the details in this section and hint at where these things can be used in digital designs.

Gates are useful items in that they form the basis of digital design, but they also have other special

functionality. You know the logic behind these gates, but applying basic intuitiveness to these gates

allows them to be used in other ways, namely as a type of switch. Once you have an intuitive feel for

the complete functionality of basic logic gates, you can use them in many digital designs in clever

manner, so plan on placing these items in your digital bag of tricks.

Basic gates have three relatively useful functions beyond modeling their use as logic elements. These

three functions include gates as inverters, gates as switches, and gates as buffers. The following verbage

more fully describes these functions while Figure 8.9 provides some of the visual details. For each of

these gates, we’ll only consider the case of 2-input gates. Also worthy of note, for simplicity, we’ve

omitted all mention of the XNOR gates as they are basically a special case of the XOR gate.

The key to making gates do these seemingly new and wonderful things is the notion of connecting an

input (or inputs) to the power (logic ‘1’) or ground (logic ‘0’) of a circuit. Often times ground is

referred to as “GND” and is shown with a down-pointed arrow in a circuit diagram. The thing that

makes the physical logic devices in your circuit actually work is their connection to power and ground.

Connect an input to logic ‘1’ is often referred to as “tying the input high” or “tied high” while

connecting an input to logic ‘0’ is often referred to as “tying the input low” or “tied low”.

Gates as Inverters: If you wire a gate properly, they can act as inverters. When one

input is connected to power or ground (logical ‘1’ or ‘0’, respectively), the gates act as

inverters. Table 8.1 lists the connections required to create inverter functions from

various gates.

Gate Type Gate Connected as Inverter

NAND connect one input to ‘1’

NOR connect one input to ‘0’

XOR connect one input to ‘1’

Table 8.1: Gate connection for inverter functionality.

Gates as Switches: In this context, the notion of a switch means something we can turn

on and turn off. This is the notion of “gate killing” which is quite useful in many digital

design applications. The notion here is that if one gate input is a special known value, the

output is always known and does not change. In other words, one input has the ability to

Digital McLogic Design Chapter 8

 - 140 -

essentially disable the gate and force the output to a certain value that does not change as

long as the given input remains the same.

Gate Type Gate Connected as Switch

AND & NAND connect one input to ‘1’

OR & NOR connect one input to ‘0’

XOR connect one input to ‘1’

Table 8.2: Gate connection for switch functionality.

Gates as Buffers: The word buffer is a common term in all electronics including digital

electronics. For digital electronics, a buffer function is essentially one that does not

change the logic level of a given signal. This is generally useful because often times you

want to pass a signal along in a circuit unchanged. This buffering action is often

combined with either a switch or inverter functionality
93

.

Gate Type Gate Connected as Buffer

AND connect one input to ‘1’

OR connect one input to ‘0’

XOR connect one input to ‘0’

Table 8.3: Gate connection for inverter functionality.

In addition, since it is purported that a picture is worth a gazillion words, Figure 8.9 graphically shows

what we’ve been attempting to describe in the previous few paragraphs and tables. Good luck!

Gate Configuration Timing Example Comments

When you ground an input to an

AND gate, the output will always

be zero, no matter how many inputs

there are and no matter what the

state of these inputs are. You’ve

killed the gate.

When you tie one input to an AND

gate high, this input will essentially

have no effect on the output of the

AND gates. This creates a pass-

though effect for the signal in the

case where there is only one other

input.

This case is similar to the AND

gate with one input tied low. The

NAND gate is dead when one input

is grounded. The output is thus

stuck at ‘1’ in this case.

93

 For example, for a given input, the value is either high or low and the resulting gate function is a buffer and an

inverter, or a buffer and a switch (depending on which gates you’re working with).

Digital McLogic Design Chapter 8

 - 141 -

When an input to a NAND gate is

tied high, the other input becomes

an inverter. This is the opposite of

tying an AND gate high which gave

a pass-through effect.

Tying one input of an OR gate low

prevents the input from having an

effect on the output. This is similar

to tying an input to an AND gate

high.

Tying an input to an OR gate ‘1’

effectively kills the gate by forcing

the output to always be ‘1’. None of

the other inputs to the OR gate

matter at this point.

Tying one input of a NOR gate to

‘0’ effective disables that input in

that is can no longer effect the

output.

Tying a NOR gate to ‘1’ effectively

kills the gate in that the output is

always low. This is similar to tying

the OR gate high.

EXOR gates by definition only

have two inputs. When one input is

tied to ‘0’, the gate effectively

becomes a pass-through for the

other signal.

EXOR gates by definition only

have two inputs. When one input is

tied to ‘1’, the gate effectively acts

as an inverter for the other signal.

Figure 8.9: Everything you didn’t want to know about the secret lives of basic logic gates.

Example 8-1

Implement a half adder (HA) using a minimal amount of gates; use any type of gate you’re

familiar with in order to minimize the final gate count.

Solution: The first thing to note is that the HA was fairly simple; the second thing to note is that the

problem drops a giant hint that you should use one of the new gates you’re familiar with. Recall that the

HA has two inputs and two outputs as shown below.

Digital McLogic Design Chapter 8

 - 142 -

We all remember how a HA works but we provide the associated truth table once again without

description.

OP_A OP_B SUM CO

0 0 0 0

0 1 1 0

1 0 1 0

1 1 0 1

From inspection, you can see that the SUM output is an XOR function and the CO is an AND function.

Seriously, you need to inspect things quite often in digital design as items such as XOR functions aren’t

delivered on flaming pies. The circuit diagram below on the left is the resulting circuit. The circuit

below on the right is the final circuit from the first time we did this problem. The result is two devices

for the XOR enabled counter compared to six devices for the original version. The world is saved.

Example 8-2: The Full Adder (FA)

Design a circuit that adds three bits: two bits are associated with a standard addition operation

while the third bit is considered a carry-in bit. In other words, this circuit completes the

following operation: (a + b + ci) where a and b are the standard additive operands and ci

represents the carry-in bit. The outputs of the circuit are identical to the half adder: SUM and

Carry-out.

Digital McLogic Design Chapter 8

 - 143 -

Solution: The first thing to notice about this design is its similarity to the half adder (HA). The

difference between the HA and the full adder (FA) is that the FA contains an extra input, the carry-in

bit. The bottom line is that while the HA was a two-bit adder, the FA is a three-bit adder; the outputs of

the HA and FA are identical in that they both have a sum and a carry-out.

As always, let’s start this design out with a black box diagram. Figure 8.10 shows the black box

diagram for the full adder.

Figure 8.10: Black box diagram of the full adder.

The next step in the design is to specify the input/output relationship of the design. In other words, we

must specify the outputs we want (based on the problem specification) for a given set of inputs. The

truth table is one approach for defining this relationship since it lists every possible combination of the

input variables (the independent variables). The outputs are then assigned based on the problem’s

original specification of adding the three input bits. Figure 8.11 shows the result of this step.

a b ci s co

0 0 0

0 0 1

0 1 0

0 1 1

1 0 0

1 0 1

1 1 0

1 1 1

a b ci s co

0 0 0 0 0

0 0 1 1 0

0 1 0 1 0

0 1 1 0 1

1 0 0 1 0

1 0 1 0 1

1 1 0 0 1

1 1 1 1 1

(a) (b)

Figure 8.11: The truth tables associated with the FA design specifications.

The next step is to translate the information in the two output columns of the truth table shown in Figure

8.11 into equation form. Equation 8-1 shows the final equations for the two output variables. From

these output equations, you could easily draw the final circuit model. We leave drawing the final circuit

model for the FA as an exercise for the reader (because I simply don’t feel like doing it).

cibacibacibacibas cibacibacibacibaco

Equation 8-1: Boolean equations describing sum and carry-out outputs of the FA.

Digital McLogic Design Chapter 8

 - 144 -

Example 8-3:

Show that the following equations contain XOR functions.

CABCBACBACBACBA C)B,F(A,

Solution: This is one of those problems where there is actually an easier way to do it than the way it is

done in this example (we’ll be discussing those approaches in a later chapter). For now, the only way

we know how to do this problem is to factor it. Factoring using Boolean algebra is simply something

none of us wants to do, but sometime we must really do it. Here we go.

There is no better way to do this problem other than to stare at it and look for a starting point. The

starting point we’re looking for is a something that can be factored. This problem happens to be set up

sort if nicely in that the natural ordering of the terms makes the problem easier. Without too much

description, listed below is the final solution. Note that including the XOR function in the output

significantly reduced the amount of logic in the final Boolean equation.

CBACB

CBACBCB

CBAAACBCB

CBCBACBACBCBA

CABCBACBACBACBA

)(C)B,F(A,

)(C)B,F(A,

))((C)B,F(A,

)()(C)B,F(A,

 C)B,F(A,

Digital McLogic Design Chapter 8

 - 145 -

Chapter Summary

 NAND and NOR are formed from complimenting the outputs of the AND and OR gates,

respectively. NAND and NOR gates are generally used more often that AND and OR gates in digital

design.

 Exclusive OR (XOR) and exclusive NOR (XNOR) are two additional standard gates used in digital

logic. These functions are somewhat useful for some basic digital circuits such as the Full Adder

(FA).

 NAND and NOR gates are considered to be functionally complete which means that a NAND gate

can be used to generate and AND function, and OR function, or an inversion function. AND and OR

gates, however, are not functionally complete.

 Basic logic gates can be connected to work as inverters, switches, and buffers. These connections

represent an extended functionality of basic gates and are quite useful in digital design.

 Important Standard Digital Modules presented in this chapter:

o Full Adder (FA)

Digital McLogic Design Chapter 8

 - 146 -

Chapter Exercises

1) Briefly describe why AND and OR gates are not considered functionally complete.

2) Briefly describe whether you feel XOR gates are considered functionally complete?

3) Explicitly describe how to make a NOR gate into an inverter.

4) Draw a diagram of a 4-input NAND gate that has been configured as an inverter. Don’t combine

inputs for this problem.

5) Draw a diagram of a 4-input NOR gate that has been configured as an inverter. Don’t combine

inputs for this problem.

6) What extended functionality can be obtained from a XNOR gate by connecting one input to either

‘1’ or ‘0’? Briefly explain.

7) Write a reduced Boolean equation in SOP form for each of the following functions. Make sure you

pull out the XOR functions where humanly possible.

ABC CBA CBA BCA CBA C)B,F1(A,

ABC CBA BCA CBA CBA C)B,F2(A,

Digital McLogic Design Chapter 8

 - 147 -

Design Problems

1) Design a circuit that controls the locking mechanism of a room that contains three doors: door A,

door B, and door C. Each door will allow only one person into the room when the controller you’re

designing unlocks the lock on that door. For this circuit, the door will remained locked under the

following conditions:

a. When one person wants into each door

b. When no people want in any door

c. When one person wants in Door B but no one wants in any other door

d. When two people want in but no one wants in at Door B.

For this problem, provide an equation and a final circuit diagram for your solution. Be sure to

extract any exclusive OR-type functions that may be present in your equations.

2) Design a circuit that controls the watering controller for you three precious plants. Assume each of

your girls contain a sensor that indicates to the controller when each individual plant requires

water. You’ve consulted the horticulturist and they told you that the water should only turn on

when only one or only two plants require watering; the water should be off at all other time. For

this problem, provide an equation and a final circuit diagram for your solution. Be sure to extract

any exclusive OR-type functions that may be present in your equations.

 - 149 -

9 Chapter Nine

(Bryan Mealy 2012 ©)

9.1 Introduction

Our approach to this point in digital logic design was to present digital logic basics and the basics of

digital circuit modeling. Unfortunately, this introduction was somewhat on the quick side and omitted

many of the finer points of both topics in order to allow you to actually design and model some digital

logic circuits from start to finish. This chapter adds some more knowledge and techniques that help you

design and/or represent digital circuits.

Main Chapter Topics

 STANDARD FUNCTION REPRESENTATIONS: This chapter introduces several

standard methods used to represent functions and the terminology associated with

these representations.

 FUNCTION REDUCTION USING KARNAUGH MAPS: This chapter introduces the

concept of function reduction, and in particular, function reduction using Karnaugh

maps.

Why This Chapter is Important

This chapter is important because it describes more methods of representing functions

including reduced representations using Karnaugh maps.

9.2 Representing Functions

A significant part of designing digital circuits involves implementing functions. Once again, functions

definitions describe an input/output relationship of a digital circuit. The design part of digital design has

to do with deriving the function, but once it is derived (from whatever method you used to derive it),

you need to somehow represent it
1
. There are many ways to represent functions in digital-land; this

section presents a few of the more popular ways. We’ll be picking up other ways as we progress

through this text. Once again, keep in mind that you should be able to translate any one model (or

representation) to any other model out there in the world of digital design.

1
 This is statement is something a bean counter would say: it sounds good, but is misleading and generally not

completely true. The fact is that equations are somewhat klunky and hard to work with. Equations are most often

associated with beginning stages of digital design; but as you move on in digital-land, you quickly move to other

design approaches. Later chapters discuss these approaches; we need to deal with just a few more basics for now.

Digital McLogic Design Chapter 9

 150

9.2.1 Minterm & Maxterm Representations

Without you knowing it, you’ve already been exposed to minterm representations and maxterm

representations of functions. For this section, let’s return to the design overview example used in the

previous chapters. For your convenience, Figure 9.1 shows the equation for the function we were

previously working with. From the truth table of Figure 9.1, you generated the Boolean function shown

in Equation 9-1 to describe the information contained in the truth table. We eventually went on to

describe Equation 9-1 as sum-of-products form (SOP) but that is not the whole story. As it turns out,

this equation is actually listed in what is known as “standard SOP form”. You know that the equation is

in SOP form because you can see the product terms are being summed together. So what makes it a

standard SOP form?

B2 B1 B0 F

0 0 0 0

0 0 1 0

0 1 0 0

0 1 1 0

1 0 0 0

1 0 1 1

1 1 0 1

1 1 1 1

Figure 9.1: The generic function used in a previous chapter.

B0B1B2 B0B1B2 B0B1B2 F

Equation 9-1

Equation 9-1 is a standard SOP form because each of the product terms contains only one instance of

each of the function’s independent variables. Note that the independent variables in the product terms

can appear in either complimented or uncomplimented form. The product terms in Equation 9-1 are

considered something special in that they are standard product terms
2
. When we’re describing a

function using product terms, we simply list the product term associated with the row in the truth table

that contains an output of ‘1’. Each row in the truth table has a unique product term associated with it;

Table 9.1 shows the product terms for three-variable (A, B, C) function.

As you see from Table 9.1, the product terms are also labeled as “minterms”s which is simply another

name for a standard product term. Another term that is used sometimes is that notion that an equation

listed in standard SOP form is often referred to as a minterm expansion of the function. Equation 9-2

shows the standard SOP form of the function from the previous example (note that we’ve switched

from B2, B1, and B0 to A, B, and C to make things easier for the lazy author).

2
 Later in this set of notes you’ll see that listing all the terms as standard product terms not generally done.

Digital McLogic Design Chapter 9

 151

CBA CBA CBA F

Equation 9-2

As you have probably guessed, there is also going to be a standard product of sums (POS) form which

contains standard sum terms that are logically multiplied together. In this case, a standard sum term is

referred to as a maxterm. The main difference between minterms and maxterms is that maxterms

describe the locations of the 0’s in the function’s output
3
. Or equivalently, maxterms describe the 1’s in

the output of the complemented function. Equation 9-3 shows the standard POS form of the function;

this form is sometimes referred to as a maxterm expansion.

C)BA()CB(A)B(A)CB(AC)B(A F C

Equation 9-3

A B C minterm maxterm F index

0 0 0 CBA CBA 0 0

0 0 1 CBA CBA
0 1

0 1 0 CBA CBA
0 2

0 1 1 CBA CBA
0 3

1 0 0 CBA CBA
0 4

1 0 1 CBA CBA
1 5

1 1 0 CBA CBA
1 6

1 1 1 CBA CBA
1 7

Table 9.1: A listing minterms and maxterms for the each combination of circuit inputs.

As a final note here, there is a special relationship between the minterms and maxterms. For a given

row in the truth table, the minterms and maxterms are compliments of each other as is shown by the

equations in Figure 9.2. To generate a minterm from a maxterm (or vice versa), you first complement it

and then tweak it using DeMorgan’s theorem (if you need to). Figure 9.3 shows an example of this

relationship for the fourth row in Table 9.1. In Figure 9.3(a), the equation for the given minterm is

complimented and then DeMorganized which generates the associated maxterm.

3
 More specifically, maxterms describe the location of the 0’s in the rows containing 0’s for the

uncomplimented output.

Digital McLogic Design Chapter 9

 152

Maxterm Minterm Minterm Maxterm

Figure 9.2: The secret relationship between minterms and maxterms.

CBAF

CBAF

CBAFCBAF

CBAFCBAF

)0,0,1(),,(

)0,0,1(),,(

 CBAF

CBAF

CBAFCBAF

CBAFCBAF

)0,0,1(),,(

)0,0,1(),,(

(a) (b)

Figure 9.3: Examples showing the complimentary relationship between minterms and maxterms.

9.2.2 Compact Minterm & Maxterm Function Forms

As you can clearly see, representing functions in standard SOP or POS forms is klunky. To remedy this,

we use the compact minterm form or the compact maxterm form instead. This is easy to do, and as the

names implies, it’s a lot less work than the standard forms. The compact minterm and maxterm forms

are simply a case of listing the decimal index (shown in the right-most column of Table 9.1) associated

with the rows where either the 1’s or 0’s of the circuit reside in a given truth table.

Compact forms traditionally use Greek symbols in their representations; the summation symbol used for

listing minterms (since it is a “summing” of product terms) and the capital Pi symbol used for listing

maxterms
4
. Figure 9.4 shows the compact minterm and compact maxterm forms for the example we’re

working with. One important thing to note here is that these compact forms always need listing as a

function of the independent variables. If you did not include all of the independent variables, you would

not be able to expand the list into standard sum or standard product terms.

)7,6,5(),,(CBAF
)4,3,2,1,0(),,(CBAF

(a) (b)

Figure 9.4: Compact minterm and maxterm forms for the current example.

One final comment on these different function forms. You’ve now have learned the following ways to

represent functions: truth tables, standard SOP, standard POS, compact minterm, compact maxterm, and

circuit forms. The forms relate to each other in that they essentially provide multiple ways of

representing the same thing. In other words, all of these different forms are functionally equivalent.

This being the case, you should be able to change from any one of the forms to any other one of the

4
 If you consult the right source, you’ll find that the Pi symbol is associated with multiplication. This text, however,

is not the right source.

Digital McLogic Design Chapter 9

 153

forms. We’ll work more with these translations later. However, while switching from one form of a

function to another is excruciatingly exciting, it certainly does not represent digital design, as most

digital design textbooks lead you to believe. Though it makes for easy-writing exam questions, it ain’t

digital design.

9.2.3 Reduced Form Representation: Karnaugh-Maps

There are three main recurring themes present in modern digital design: 1) make your circuit smaller, 2)

make your circuit faster, and 3) make your circuit consume less power. As you’ll see later in your

engineering careers, you’ve never be able to achieve all of these things with the current digital

technology
5
.

Beginning digital design students are primarily concerned with the first issue: making circuits smaller.

Generally speaking, if your circuit is smaller, your circuit operates faster and consumes less power; but

it’s actually more complexicated than that. Some of the function forms are easier to represent when the

circuit is in a “reduced form” (no one wants to draw a large circuit on a piece of paper if there is a

smaller equivalent circuit). There is one problem with the previous statement: we have not defined the

word “smaller”. As you may guess, the word “smaller” has many connotations, particularly in digital

design-land. For the purpose of this chapter, we’ll define one circuit to be smaller than another circuit if

it uses less gates and/or if the gates in the circuit contain less inputs
6
. Implicit in this definition is that

the two circuits in question are functionally equivalent, regardless of the number of gates or gate inputs.

You’ve already have been exposed to functionally equivalent circuit of different sizes with the example

we’ve been using over the course of this and the previous chapters. Figure 9.5 shows the two main

equation forms for the previous example. As you know, these are the standard SOP and standard POS

forms; these two forms look significantly different but are actually functionally equivalent.

What should be obvious from looking at Figure 9.5 is that if you had to implement this circuit using

discrete gates and wires and all that ugly stuff, you would choose the standard SOP form because there

appears to be less work involved because there are a fewer number of gates than the POS form. The

result is that if you can make the circuit “smaller”, life is good. Making the circuit “smaller”, or

“reducing” it, is the main idea in this section. Reducing functions, or function reduction refers to the

practice of making the function representation “smaller” without changing the input/output relationship

of the function.

B0)B1(B2)B0B1(B2 B0)B1(B2 B0)B1,F(B2,

B0)B1B2()B0B1(B2B0)B1(B2)B0B1(B2B0)B1(B2 B0)B1,F(B2,

Figure 9.5: Two functionally equivalent forms of the example circuit.

Unfortunately, a significant component in most introductory digital design courses is to make students

reduce functions using the list of theorems presented in a previous chapter. If this were the only way to

reduce a function, everyone would need to learn to reduce functions with the various digital theorems.

5
 There is a famous quote out there in digital land: “smaller, faster, less power… choose any two”. I’m not sure

who said this.
6
 Or some combination of number of gates and number of inputs. Once again, this is not overly important as gate

count is not a huge priority in the flavor of digital design we concentrate on in this text.

Digital McLogic Design Chapter 9

 154

However, this is simply not the case for several reasons. First, there are better ways to reduce functions

by hand (and we’ll be learning those ways in this section). Secondly, if you really had to reduce a

function and needed to know that you did the right thing, you would use a the appropriate software on a

computer. The computer is limitless in the number of independent variables it can handle and does not

make mistakes. Your time is valuable and you make mistakes. Moreover, out there in engineering land,

no employer is stupid enough to pay you an engineering salary to reduce Boolean equations by hand
7
.

Use a computer to reduce functions when you can; if you can’t use a computer, use Karnaugh Maps.

Many programs out there reduce functions. In addition, if you felt inspired to write your own function

reduction program, there are many algorithms out there that you could code up.

This section describes using Karnaugh maps to reduce functions. Karnaugh maps are essentially a tool

to visually apply the Combining theorem (which was listed in the previous chapter and once again here

for you convenience). The Combining theorem is usually referred to as the Adjacency theorem which is

a better definition for our purposes.

14a xyxyx)()(

14b xyxyx)()(

Combining

Table 9.2: The Adjacency theorem in living color.

Jumping right into it… what we want to do is enter the information shown in Figure 9.1 into a special

diagram referred to as a Karnaugh map. Figure 9.6 shows an empty three-variable K-map and a three-

variable K-map including the output data from Figure 9.1.

(a) (b)

Figure 9.6: An empty Karnaugh map and a K-map that contains a functional relationship.

There are a few important things to note about the K-map of Figure 9.6:

 Each square, or cell, in the K-map contains a number, which is an index into the associated

truth table of Table 9.1. In other words, the data associated with the output variable is placed

into the corresponding cell in the K-map. There is necessarily one K-map cell for each row in

the truth table.

 The K-map includes a funny numbering system, which is referred to as a unit-distance code

(discussed in a later chapter). What you need to know now is that the numbering system used

in the K-map has a funny jog in it. This jog becomes more pronounced for the 4-variable K-

map, which we’ll deal with soon. Since a unit-distance code is used, each cell in the K-map is

adjacent to cells in the horizontal and vertical directions. Of course, vertical does not mean

7
 Unless of course you work for a government contractor; in this case, you’ll probably never have anything

meaningful to do.

Digital McLogic Design Chapter 9

 155

much in this example. What this does mean is that cell 4 is adjacent to cell 6 despite the fact

that they don’t appear to be connected.

 There are major portions of the K-map that are associated with a given state of each input

variable. For example, the top row of the K-map is associated with the complement of input

A while the bottom row of the K-map is associated with the uncomplimented A. Similarly,

the right-most four cells of the K-map are associated with the uncomplimented B variable

while the left-most four cells of the K-map are associated with the complimented B. A similar

argument can be made for the C variable but we’ll not bore you with the details. Note that the

complimented C variable appears on left-most and right-most rows of the K-map. Figure 9.6

shows these boundary issues with the variables listed on the outside of the K-maps.

The approach from here is to start making groupings of 1’s in the K-map in Figure 9.6(b). This is going

to seem somewhat funny at first but… you’ll quickly get the hang of it
8
. Figure 9.7(a) shows the

groupings we’ll make; we’ll deal with why and how we made these grouping next. Figure 9.7(b) shows

the final grouping associated the two groupings made in Figure 9.7(a). Note that the equation in Figure

9.7(b) is much “smaller” or more “reduced” than the equations shown in Figure 9.5. Once again, aside

from the fact that these equations appear different, they are functionally equivalent.

ACABF

(a) (b)

Figure 9.7: The K-map with groupings (a) and the reduced equation (b).

There are three distinct parts to performing K-map reduction: 1) entering the function data into the K-

map, 2) making the groupings in the K-map, and 3) generating the equation to represent the groupings.

We’ve covered the first topic for 3-variable K-map, and now we’ll cover how to write equations for the

groupings you made in step 2).

Writing down the equations from a K-map is a simple matter of listing (in product-term form) where the

grouping resides in the K-map in terms of the independent variables. For the grouping made with the

solid line in Figure 9.7(a), you should be able to see that it lives in the A row and the two C columns.

Since this grouping resides in both the B and complemented B columns, the B variable is not included

in the product term. The result is the product term “AC”. A similar argument can be made for the

grouping made with the dotted line: this grouping lives cleanly in the A row and the two B columns and

thus generates a product term of “AB”. Figure 9.7(b) shows the two product terms associated with the

grouping of Figure 9.7(a).

The next step is learning the basic rules of making the groupings. Many digital design textbooks

provide a set of rules that instruct you on how to make the groupings. These rules are generally hard to

follow because they generally span about a full page of the text. These rules, however, are condensed

into the four rules listed in Figure 9.8. It’s sort of a drag to follow rules such as these but you’ll quickly

8
 Have no fear; no one has ever had long-term issues with K-maps.

Digital McLogic Design Chapter 9

 156

get the hang of things. Notice in the groupings made in Figure 9.7(a) follow the rules provided in Figure

9.8.

1) Groupings must contain either 1, 2, 4, 8, or 16 cells

2) Groupings must have four corners (such as squares or rectangles)

3) Make the groupings as large as possible (cover as many cells as possible

with one grouping while following the previous two guidelines)

4) Make as few groupings as possible to cover the “cells of interest”

Figure 9.8: The three rules of generating K-map groupings.

In case you didn’t notice, Karnaugh maps inherently generate SOP forms. Despite this fact, K-maps can

also generate reduced POS forms, but with several extract steps in-between. The grouping of terms to

generate POS forms follows the same rules as the SOP forms but with one exception: for POS forms,

you must start the process by grouping the 0’s in the K-map
9
. Once you have grouped the 0’s, you’re

able to generate a SOP equation for the complimented output function. From there, as with the truth

table approach to generating a POS form from a SOP for of the complemented output, you must apply

DeMorgan’s theorem. Figure 9.9 shows an example of this process.

)(

)(

)()(

CBAF

CBAF

CBAF

CBAF

CBAF

(a) (b)

Figure 9.9: The K-map with groupings (a) and the reduced equation (b).

Keep in mind that it is massively important to be able to generate either a reduced SOP or POS form

using K-maps. The K-map techniques are similar: for the SOP form, you first need to group the 1’s in

the K-map and then write down the product terms associated with the groupings. For the POS form,

you’re grouping 0’s which creates an SOP expression for the complemented function. From there, you

need complement the generated equation and apply DeMorgan’s theorem (maybe several times) to

generate the final POS expression.

There are a few tricks
10

 associated with using K-maps; once you see and use these tricks a few times,

you’ll be a K-map superstar. The following set of figures show all the interesting K-map tricks that you

need to be aware of in order to use K-maps to reduce functions. The following figures list examples in

conjunction with the compact minterm and maxterm forms. These are all the tricks I know for three and

9
 Recall that grouping the 0’s for a function is equivalent to grouping the 1’s for the complimented function.

10
 These are not really tricks; they’re actually only groups that are not patently obvious from the stated K-map

rules.

Digital McLogic Design Chapter 9

 157

four variable K-maps. For those you on drugs, take a gander at what you need to do for K-maps of five

and greater variables
11

.

)7,6,5,4,2,0(),,(CBAF
)3,1(),,(CBAF

CAF CAFCAF

(a) (b)

Figure 9.10: K-map grouping for SOP (a) and POS (b) forms.

)7,5,3,2,1(),,(CBAF
)6,4,0(),,(CBAF

CBAF))((CBCAFCBCAF

(a) (b)

Figure 9.11: K-map grouping for SOP (a) and POS (b) forms.

11

 This is a total waste of time. K-maps themselves are somewhat of a waste of time; it’s only a matter of time

before no one uses them anymore. I hope that time comes soon.

Digital McLogic Design Chapter 9

 158

)6,5,4,0(),,(CBAF
)3,1(),,(CBAF

CBCABAF
))()((CBCABAF

BCCABAF

(a) (b)

Figure 9.12: K-map grouping for SOP (a) and POS (b) forms.

The four variable K-maps are only slightly different from the 3-variable K-maps. In addition to the jog

in the count that appears in the third and fourth columns in the 3-variable K-map, a similar jog appears

between the third and fourth rows in the 4-variable K-maps. Figure 9.13 shows a blank 4-variable K-

map with the funny count listed. The number appearing in the cells are indexes into a truth table that

contains 2
4
 or 16 entries [0,15]. The most common error in when using 4-variable K-maps is to forget to

make the row jog when entering values into the K-map; please don’t forget the jogs.

Listed in the figures following Figure 9.13 are all the known tricks for dealing with 4-variable K-maps.

There are not that many and they are not that complicated as they do follow the four K-map grouping

rules. These may seem strange at first, but after you do a few of these, they become second nature and

there won’t be anything you need to commit to memory (except for the row jog).

Figure 9.13: The blank 4-variable K-map; note the special numberings.

Digital McLogic Design Chapter 9

 159

)14,11,10,9,8,7,5,3,2,1,0(),,,(DCBAF
)14,13,712,6,4(),,(CBAF

DACDCABF))()()((DCBCBADBACBAF

DCBCABABDBCAF

(a) (b)

Figure 9.14: K-map grouping for SOP (a) and POS (b) forms.

)10,7,5,4,3,1,0(),,,(DCBAF
)15,13,12,11,9,8,6,2(),,,(DCBAF

DCBADACAF
))()()((DCABADACAF

DCAABADCAF

(a) (b)

Figure 9.15: K-map grouping for SOP (a) and POS (b) forms.

Digital McLogic Design Chapter 9

 160

)15,12,10,8,7,4,2,0(),,,(DCBAF
)14,13,11,9,6,5,3,1(),,,(DCBAF

BCDDCDBF
))()((DCBDBDCF

DBCDBDCF

(a) (b)

Figure 9.16: K-map grouping for SOP (a) and POS (b) forms.

9.2.4 Karnaugh-Maps and Incompletely Specified Functions

As you’ll find out later in your digital design career, there many instances where there are rows in a

truth table (and thus cells in a K-map) that do not have a specified output. Functions such as these are

considered incompletely specified functions. Although this may sound somewhat problematic, it

generally helps in the function reduction process.

The lines in the truth table that have no specific output can be thought of as follows: if the input

conditions associated with an incompletely specified row appear on the circuit inputs, you don’t care

what the circuit outputs are. What is good about this is that if the output in that row does not matter, you

can assign it either a ‘1’ or a ‘0’ which has the potential effect of making your final equation “smaller”,

or more reduced. The potential for increased reduction is a result of assigning “don’t cares” such that

they make larger groupings.

The process of reducing functions that are incompletely specified, or as them are more commonly

known, functions that contain don’t care entries, is easier than it sounds. The assignment of 1’s or 0’s to

the don’t care cells in the K-map is done implicitly; you never actually make the assignments directly.

The approach is to use a “-“ in the associated K-map cells that are “don’t cares”. In this way, you can

either choose to include the “don’t cares” in your groupings or leave them out. Including the don’t cares

can help you make bigger groupings and thus increased reduction of the function.

For example, if you have a function with don’t cares in it and you are aiming to generate a reduced SOP

equation, you group all the 1’s in the map and use the don’t cares to make your groupings larger
12

. In

this case, while you are obligated to group all the 1’s in the K-map, you should only group the “don’t

cares” if it makes your grouping larger which has the effect of making you product terms contain a

fewer number of independent variables. You are not obligated to group the “don’t care” entries.

A similar argument can be made for the case of generating a reduced POS form; in this case, you’re

grouping 0’s and using the don’t cares to help make the 0-groupings larger. Keep in mind that if you

12

 Keep in mind that the larger the grouping, the smaller the associated product term will be. This is why they call it

reduction.

Digital McLogic Design Chapter 9

 161

include a “don’t care” in a grouping of 1’s, you’re implicitly assigning the cell with the “don’t care” to

a ‘1’; if you’re grouping the 1’s and you opt not to include a don’t care in a group, you’ve implicitly

assigned a ‘0’ to that cell.

Figure 9.17 and Figure 9.18 show examples of function reduction with an incompletely specified

function. In addition, worthy of note in Figure 9.17 and Figure 9.18 is the nomenclature used to specify

the “don’t cares” for the compact minterm and maxterm forms. You’ll sometimes see this

nomenclature, so consider committing it to memory.

)14,10,6,5,4()15,12,8,7,0(),,,(mdDCBAF

BCDCF

Figure 9.17: The K-map groups for a reduced SOP form.

)14,10,6,5,4()13,11,9,3,2,1(),,,(MdDCBAF

))((CBDCF

CBDCF

Figure 9.18: The K-map groups for a reduced POS form.

Digital McLogic Design Chapter 9

 162

9.2.5 Karnaugh-Maps and XOR/XNOR Functions

As a final note on K-maps, they also can help you obtain XOR and XNOR functions from an equation

reduced by normal K-map methods. Although there are explicit rules on how to take XOR-type

functions directly from a K-map, these rules are once again long and complex. The preferred approach

uses characteristics of the K-map groupings to ascertain whether the K-map contains XOR-type

functions.

The approach to extracting XOR-type functions from K-maps is to, 1) use the K-map to alert you to the

fact that a XOR-type function is present, and, 2) use Boolean algebra to factor the XOR-type function

out of the equations resulting from reducing the K-map. The key to noticing whether a K-map contains

a XOR-type function is to see that your groupings have formed some stripes or diagonals. If you see

these conditions in your K-map, look closely at your final equation and factor out the XOR-type

functions. A few examples should drive home this point.

Figure 9.19(a) shows an example of diagonal groupings. Once you note this, you’ll know that the

equation generated from applying standard K-map techniques can be further reduced as is shown in

Figure 9.19(a). Figure 9.19(b) shows an example of striped groupings. Once noted, you can further

reduce the K-map-generated equations as shown in Figure 9.19(b). Figure 9.20 shows two large striped

groupings while Figure 9.21 shows two large diagonal groupings.

BABAABF CBCBCBF

(a) (b)

Figure 9.19: 3-Variable K-maps with diagonal (a) and stripes (b).

ABCCDDCF

ABCDCF)(

Figure 9.20: 4-Variable K-map with stripes.

Digital McLogic Design Chapter 9

 163

DBACBCBF

DBACBF)(

Figure 9.21: 4-Variable K-map with diagonals.

9.3 Function Form Transfer Matrix

We’re to the point now where we’ve learned many different ways of representing functions. The two

underlying truths are that 1) you rarely see some of these representations, and 2) you don’t generally

spend a lot of time going from one representation to another as it not typically done in modern digital

design. However, Figure 9.22 may aid you in learning and understanding the representations.

In reality, Figure 9.22 represents a bunch of “rules”. Rules in digital design are not good because if you

become pre-occupied with following and/or memorizing rules, you loose sight of the fact that your

main goal is to develop a basic understanding of digital design principles. The justification for

providing Figure 9.22 is that it will hopefully, 1) remind you off all the ways to represent functions
13

and how they are related, and 2) it will get you past this early phase of a digital design course where

we’re not really doing much real digital design. The standard digital design problem at this phase of

digital design is to do what you need to do to transfer between the various function representations. Yes,

it’s boring, but it’s fairly straightforward to learn. Here are a few things to notice about Figure 9.22.

 The matrix in Figure 9.22 represents the “easy” paths between the various function

representations. By easy, I mean, you could conceivably go from any one representation to any

other representation if you thought enough about it or were interested in breaking a sweat.

 At this point, the only way to generate a reduced form is by using a K-map. There are actually

other ways, such as applying Boolean algebra theorems, but life is simply too short for that.

The key here is to realize that any time you hear the word “reduced”, you automatically know

you have to use a K-map.

 All of the lines drawn in Figure 9.22 are bi-directional arrows, except one. Note that if you

have a VHDL model, it is not necessarily straightforward to go from a VHDL model to a

reduced form. We’ll be delving into VHDL later.

 There is no easy way to go between reduced SOP and POS forms. The best way to do this is to

transfer the information back to the K-map first.

13

 Keep in mind, there are still a bunch more ways to represent functions that we’ll wade through later.

Digital McLogic Design Chapter 9

 164

 There truly is an easy way to go back and fourth between compact minterm/maxterm

representation and VHDL. We’ll get to those later when we do more VHDL.

Figure 9.22: Function representation transform matrix (be sure to read the explanation for this).

Example 9-1: Full Adder

Re-implement full adder in reduced form using any gate you deem appropriate to reduce the

overall gate count.

Solution: Figure 8.11 shows the black box diagram and the truth table for the full adder. We’ve derived

and explain this previously so no more verbage is provided here.

Digital McLogic Design Chapter 9

 165

a b ci Sum Co

0 0 0 0 0

0 0 1 1 0

0 1 0 1 0

0 1 1 0 1

1 0 0 1 0

1 0 1 0 1

1 1 0 0 1

1 1 1 1 1

(a) (b)

Figure 9.23: The black box diagram (a) and the truth table for a FA.

Figure 9.24 shows the completed K-maps for both the Sum and Co outputs of the FA. Note that in

Figure 9.24(a), there are not obvious reduction opportunities for the Sum output. However, since the K-

map exhibits diagonals that practically jump out of the page, there are going to be some XOR type

qualities we can factor out of the resulting equations.

Figure 9.25 shows the original equations taken directly from the grouping made in the K-maps. Note

that the equation for the sum must be factored in order to extract the XOR functions they contain.

Figure 9.26 shows the final circuit diagram for the full adder.

(a) (b)

Figure 9.24: The K-maps associated with the Sum (a) and Co (b) outputs for the FA.

)(

)()(

)()(

CiBASum

CiBACiBASum

BCiCiBACiBCiBASum

ABCiCiBACiBACiBASum

 BCiACiABCo

(a) (b)

Figure 9.25: The paths to the reduced equations for the sum output (a) and the Co output (b).

Digital McLogic Design Chapter 9

 166

Figure 9.26: The final circuit diagram for the full adder.

Example 9-2: Special Switch Network

A circuit is required in order to control a network of switched. The circuit has four inputs:

three of the switches are normal on/off switches while the fourth switch is an enable switch for

the entire circuit. The circuit should have the following characteristics (this is a verbal model

of the circuit):

 If the enable switch is off, the single output will be low (off)

 Otherwise, if any two (and only two) switches are one, then the output is high

(on)

 Three switches will never be on simultaneously

 The circuit output is low under all other conditions

Solution: The first step in these types of problems is to draw a block diagram of the circuit. The circuit

has four inputs and one output. In this step, it would be a great idea to give both the inputs and outputs

intelligent looking names. Figure 9.27 shows the black box diagram for this circuit.

Figure 9.27: Black box diagram of circuit.

Digital McLogic Design Chapter 9

 167

The next step will be to create a relationship between the circuit’s outputs and the circuit’s inputs. Keep

in mind that this is a functional relationship in that each combination of digital inputs has only one

unique value on the digital output. The best approach in this relatively not-too-complex circuit is to start

with a truth table. Figure 9.28 shows the completed truth table for this example.

EN SW3 SW2 SW1 F_OUT

0 0 0 0 0

0 0 0 1 0

0 0 1 0 0

0 0 1 1 0

0 1 0 0 0

0 1 0 1 0

0 1 1 0 0

0 1 1 1 0

1 0 0 0 0

1 0 0 1 0

1 0 1 0 0

1 0 1 1 1

1 1 0 0 0

1 1 0 1 1

1 1 1 0 1

1 1 1 1 -

Figure 9.28: Truth table for problem solution.

Now that you’ve completed the truth table, take a quick look at it and make sure that it actually makes

sense. Note that in the truth table shown in Figure 9.28, the rows with the 1’s in the output have EN

asserted in each case. This means nothing is going to happen unless the enable input is a ‘1’, which is in

the problem statement. Also note that the final row is listed as a don’t care; because it was stated that

the condition will never happen. We take advantage of the fact that this condition never happen by

assigning a don’t care to the output associated with those input conditions. This will hopefully allow for

a smaller final equation.

Equation 9-4 shows the resulting expression for the output. If you stare at this equation, you can see that

it is somewhat intuitive based on the original problem description. As with all of these problems, you

should stare at your final solution for a few minutes to verify that it’s not totally wanky. Equation 9-4

does actually make a lot of sense.

SW1)SW3(ENSW1)SW2(ENSW2)SW3(ENF_OUT

Equation 9-4: The expression for the problem solution.

Figure 9.29 shows the circuit model the implements a solution to the problem. This problem has a

common digital input: the enable input. In many of these cases, it is possible to somewhat simplify the

design by handling the enable input separately from the main problem. Figure 9.30 shows an alternate

solution for this problem. Note that the enable controls the final output by having ultimate control over

the AND gate on the output. This is an important feature in digital design: always keep it in mind.

Digital McLogic Design Chapter 9

 168

Figure 9.29: The brute-force logic solution to the problem.

Figure 9.30: A more intuitive logic solution to the problem.

Digital McLogic Design Chapter 9

 169

Chapter Summary

 Functions can be represented in many different forms. The forms presented in this chapter include

standard SOP and POS forms, compact minterm and maxterm forms, and reduced forms.

 Reducing functions, or function reduction refers to the practice of making the function representation

smaller without changing the overall input/output relationship of the function. We declare one circuit

to be smaller than another circuit if it uses less gates and/or if the gates in the circuit contain less

inputs. Implicit in this definition is that the two circuits are functionally equivalent, regardless of the

number of gates or gate inputs.

 There are three main recurring themes present in modern digital design: 1) make your circuit smaller,

2) make your circuit faster, and 3) make your circuit consume less power. Rumor has it that you can

only choose two of these options.

 Three and four-variable Karnaugh maps are used to reduce Boolean equation representations of

functions. The K-map inherently generates a SOP form but can be also generate POS form by

multiple applications of DeMorgan’s Theorem.

 Incompletely specified functions, or don’t cares as they are commonly known, are sometimes found

in digital design. These outputs can be assigned such that the final function representation is more

reduced.

 Karnaugh maps that contain “stripes” and/or “diagonals” indicated that XOR (or XNOR) functions

are present. The final equation describing the circuit can be further reduced if the XOR-type functions

are factored out. There are large sets of rules that can be applied to this process, but a better approach

is to simply use your brain to see possible XOR functions in K-maps and Boolean factorization to

flush out the terms.

Digital McLogic Design Chapter 9

 170

Chapter Exercises

1) Write a reduced Boolean equation in SOP form for each of the following functions.

 (1,3,4,6) C)B,F1(A,

)(0,2,4,6,7 C)B,F2(A,

 (3,4,5,6) C)B,F3(A,
 (2,4,6,7) C)B,F4(A,

 ,9,12,13)(0,2,4,6,8 D)C,B,F5(A,
 0,13,15)(0,2,5,8,1 D)C,B,F6(A,

 13,14,15)(4,5,6,12, D)C,B,F7(A,
 ,11,13,15)(2,3,6,7,9 D)C,B,F8(A,

2) Write an expression for F in compact minterm form:

 2,13,15)(2,10,11,1 D)C,B,(A,F

3) Write an expression for F in compact maxterm form:

 ,8,10)(2,4,5,6,7 D)C,B,(A,F

4) Write an expression for F in compact maxterm form:

 11,12)(4,5,6,10, D)C,B,(A,F

5) Write an expression for F in standard SOP form:

)59,23,2()ZY,X,W,V,F(U,

6) Write an expression for F in standard POS form:

)51,33,12()ZY,X,W,V,F(U,

7) Implement F using a minimum of logic devices:

 3,15),9,10,11,1(0,1,4,6,8 D)C,B,(A,F

Digital McLogic Design Chapter 9

 171

8) Implement F using a minimum of logic devices:

 (0,2,5) Z)Y,(X,F

9) Convert the following standard POS equation to compact maxterm form:

)EDCB)(AE D C B A (E)D,C,B,F(A,

10) Write a reduced expression for F in POS form:

BDA DCB ABD D)C,B,F(A,

11) Write the reduced SOP expression for F given the following function:

 ,14)(0,2,3,6,8m15,13,11,10,5 D)C,B,F(A, d

12) Write the reduced SOP expression for the following function:

 Md(1,5) ,12,14,15)(2,6,10,11 D)C,B,F(A,

13) For the following equation:

 ,11,12,14)(4,5,6,7,9 D)C,B,F(A,

a) write the reduced SOP equation for F

b) write the reduced POS equation for F

14) Write an expression for F in compact minterm form that describes the following circuit:

Digital McLogic Design Chapter 9

 172

15) Write an expression for F and F in reduced SOP form that describes the following circuit:

16) From the following compact minterm form:

 0,11,15)(2,3,5,7,1 D)C,B,F(A,

a) write the reduced SOP equation for F

b) write the reduced POS equation for F

17) Convert the following expression to compact maxterm form in terms of F.

 1,15)(0,6,7,8,1 D)C,B,(A,F

18) Write an expression for F in standard sum of products form (SOP).

 4,15)11,12,13,1,7,8,9,10,(2,3,4,5,6 D)C,B,(A,F

19) Write the reduced SOP expression for F given the following function:

 (0,1,7,10)m13,12,9,8,5,2 D)C,B,F(A, d

Digital McLogic Design Chapter 9

 173

20) The equation describing the circuit below was not reduced before the circuit was implemented.

Analyze the circuit and re-implement (draw the circuit) in reduced form using AND & OR gates

and Inverters.

(a) (b)

(c) (d)

21) The equations describing the circuits below were not reduced before the circuits were implemented.

Analyze the circuit and re-implement (draw the circuit) in reduced form using AND & OR gates

and Inverters.

(a) (b)

Digital McLogic Design Chapter 9

 174

Design Problems

1) Design a circuit that has an output that indicates when the four-bit unsigned binary number on

the input is a prime number. For this problem:

 assume an input value of “0000” will never occur (be sure to note this fact where

appropriate)

 assume the decimal value of 1 is a prime number

Provide a block diagram, truth table, and a maximally reduced equation that models a solution

for this problem.

2) Design a circuit that has an output that indicates when the three-bit unsigned binary number on

the input is:

 Less than or equal to 510, and

 Greater than 110

For this problem, an input value of “000” will never occur (be sure to note this fact where

appropriate). Provide a block diagram, truth table, a maximally reduced equation, and a circuit

diagram that models a solution for this problem.

4) Design a circuit whose outputs represent the square of the two circuit inputs. Implement the

associated output functions in reduced SOP form.

5) Design a circuit whose outputs represent the square root of the circuit’s 4-bit inputs. Implement the

associate output functions in reduced POS form. Round the output either up or down when

necessary. Provide a truth table, a reduced Boolean equation and circuit diagram for you solution.

6) A given circuit has four inputs. Two of the inputs are considered the fractional portion of a binary

number while the other two inputs are considered the integral portion of the binary number. The

outputs of this circuit should represent a 2-bit binary number associated with the 4-bit input but

with rounding up and down. In other words, if the input is greater or equal to 0.5, the output should

represent the input rounded up. Otherwise, it output should represent the input rounded down to the

nearest integer. Provide a truth table, a reduced Boolean equation and circuit diagram for you

solution.

 - 175 -

10 Chapter Ten

(Bryan Mealy 2012 ©)

10.1 Introduction

This chapter is one of the final chapters on more interesting ways to represent Boolean expressions. The

approaches presented in this chapter are important because they are typically seen more often the many

other approaches. You’ll surely find that the forms presented in this chapter are actually quite useful.

The added feature of this chapter is that you’ll be doing some grunt-work with Boolean algebra; recall

that this was a topic we skipped over in previous chapters.

One of the underlying notions of being able to represent functions in various forms is the notion that

one form has some type of advantage over some other form. They idea here is that if I can find a

functionally equivalent form that I can implement faster, requires less power to operation, cheaper,

etc
1
., than that is the form I’m most likely going to use that form.

2

Main Chapter Topics

 CIRCUIT FORMS: Previous chapters have presented various functionally equivalent

representations of circuit. This chapter presents the theory behind generating

several new forms and outlines when such forms are most useful. The new circuit

forms presented in this chapter are definitely some of the most widely used

representations of circuits.

 MINIMUM COST CONCEPTS: Being that there are many different ways to represent

functions, the question arises when one representation should be used over another.

This chapter outlines minimum concepts as they apply do function representations.

Why This Chapter is Important

This chapter is important because the circuit forms provide a significant amount of

flexibility when it comes to representing functions. This flexibility allows you to

implement function using the minimum possible cost.

10.2 Circuit Forms

1
 And also a lot of other reasons not listed here; hopefully you’re getting the idea.

2
 And of course if you’re into computer science, these forms can be used to help obfuscate your Boolean equation.

Digital McLogic Design Chapter 10

 - 176 -

The term “circuit forms” is a somewhat common term in digital logic design vernacular. This term

generally refers to the fact that any given digital logic function can be implemented using physically

different circuits. Several of the previous chapters provided us with many different, yet functionally

equivalent forms.

This section examines yet another flavor of circuit forms. For these circuit forms, the equivalent

equations look distinctively different from each other, and the final circuit associated with these various

forms appears distinctively different from each other. In the context of a digital system, the term

functionally equivalent refers to the fact that the input/output relationship of the circuit is preserved but

the implementation details are different.

There are many reasons why you would want to use one form over another. Generally speaking, one

form is often desired over another; the more desired form is usually based on the notion of efficiency in

that one form may require fewer gates and/or inputs than another form. This section discusses forms

that are generated with successive applications of DeMorgan’s theorem. This approach is somewhat

standard and generates the most common forms of a circuit. In truth, there are about as many circuit

forms as you could spend the time generating. In reality, there are only about four commonly used

circuit forms; the good news is that you’ve already been working with several of these forms.

10.2.1 The Standard Circuit Forms

There are eight common (and easily derived) circuit forms; these forms are so common that we’ll refer

to them as the “standard circuit forms”. If you examine a standard digital design textbook, you’ll find

that some textbooks actually list bunches of strange and wonderful circuit forms; we’ll opt to stick to

the standard eight types in this chapter. The nice thing about the standard forms is that they are all

generated from successive applications of DeMorgan’s theorem, so if you know how to use this

theorem, you won’t have to waste your time memorizing where the various forms come from.

Equations 1(a) and 2(a) of Table 10.1 show the compact minterm and compact maxterm forms of an

arbitrary function, respectively. These two forms can be reduced using K-mapping techniques to the

expressions shown in 1(b) and 2(b). These two expressions were generated from grouping the 1’s of the

circuit (left column) or the 0’s of the circuit (right column). The resultant equations serve as the starting

point to generate other forms. The following steps describe how to generate the set of eight standard

forms from the two compact forms. Table 10.2 a written description of this procedure.

Digital McLogic Design Chapter 10

 - 177 -

1(a) 15,14,13,11,10,9,5,4,1F 2(a) 12,8,7,6,3,2,0F

 AND/OR Form OR/AND Form

1(b) CBADCCAF 2(b) F AC AC D AB D

 2(c) F AC AC D AB D

 2(d) F AC AC D AB D

 2(e) F A C A C D A B D

 NAND/NAND Form NOR/NOR Form

1(c) CBADCCAF 2(f) F A C A C D A B D

1(d) CBADCCAF 2(g)

 F A C A C D A B D

 OR/NAND Form AND/NOR Form

1(e) CBADCCAF 2(h) F AC AC D AB D

 NOR/OR Form NAND/AND Form

1(f) CBADCCAF 2(i) F AC AC D AB D

Table 10.1: The generation of standard circuit forms by using DeMorgan's theorem.

Digital McLogic Design Chapter 10

 - 178 -

AND/OR Form OR/AND Form

The form in 1(b) is the AND/OR form and is

referred to as the Sum of Products (SOP) form.

This form is obtained from a K-map by grouping

the 1’s of the circuit’s output and performing K-

map reduction techniques. The individual

groupings in the K-map form the product terms.

The final function represents a logical summing

of the associated product terms.

The form in 2(b) is obtained by applying K-map

reduction techniques to the 0’s of the circuits

output. In this case, since the K-mapping was

based on the 0’s of the circuit, we obtain the

complement of the function (F). The

expression is in AND/OR form but we’ll

massage it into a different form by writing an

expression for F rather than F as is listed in

2(b) by complementing the expressions on both

sides of the equal sign, which preserves the

equality and produces the equation shown in

2(c). Dropping the double compliment on the left

side of equality generates the equation in 2(d).

An application of DeMorgan’s theorem

generates the expression on the right side of the

equality. The equation in 2(e) shows the final

OR/AND form which is also referred to as the

Product of Sums (POS) form.

NAND/NAND Form NOR/NOR Form

The form in 1(c) is obtained from the AND/OR

form by double complimenting both sides of the

equation in 1(b). Double complimenting each

side of the equation preserves the equality of the

expression. The double compliment on the left

side of the equation 1(c) drops out. On the right

side of equation 1(c), one of the compliments is

used to DeMorganize the expression. The

equation in 1(d) shows the NAND/NAND form

of the expression; the term NAND/NAND refers

to the fact that each of the individual product

terms are complimented product terms (a NAND

function). These individual terms are ANDed

together and complimented which effectively

changes it from an AND function to an NAND

function.

The form in 2(f) is obtained from the OR/AND

form by double complimenting both sides of the

equation in 2(e). The double compliment on the

left side of the equation 2(f) drops out. On the

right side of equation 2(f), one of the

compliments is used to DeMorganize the

expression. The NOR/NOR form of the

expression is shown in 2(g). This is referred to as

NOR/NOR form because each of the individual

sum terms are complimented (a NOR function).

These individual terms are ORed together and

complimented which changes it from an OR

function to an NOR function.

OR/NAND Form AND/NOR Form

The OR/NAND form shown in 1(e) is obtained

by DeMorganizing the individual terms from

1(d) to change them from product terms to sum

terms. The expression retains the overbar over

the entire term.

The AND/NOR form shown in 2(h) is obtained

by DeMorganizing the individual terms from in

2(g) to change them from sum terms to product

terms. The expression retains the overbar over

the entire term..

NOR/OR Form NAND/AND Form

The NOR/OR form shown in 1(f) is obtained by

DeMorganizing the entire OR/NAND form

shown in 1(e). In this way, the overbar on the

right side of the equals sign is distributed to the

individual terms in the equation.

The NAND/AND form shown in 2(i) is obtained

by DeMorganizing the AND/NOR form shown

in 2(h). In this way, the overbar on the right side

of the equals sign is distributed to the individual

terms in the equation.

Table 10.2: Written description of the circuit forms and derivations shown in Table 10.1.

Digital McLogic Design Chapter 10

 - 179 -

Yep, there sure are many forms out there. The good news is that the AND/OR, NAND/NAND,

OR/AND, and NOR/NOR forms are definitely the most common forms. The relationship between these

forms is nicer than you may be initially thinking after plodding through the math provided in Table

10.1. Let’s look at the AND/OR form and it’s relation to the NAND/NAND form.

Figure 10.1 shows the common AND/OR form circuit implementation. Note that in this

implementation, overbars on the input signals replace the inverters in an effort to save time. The form

shown in Figure 10.1 matches the equation shown in equation 1(b). Figure 10.2(a) shows the

subsequent NAND/NAND circuit implementation as it appears in Equation 1(d). While the circuit

implementation is correct in that only NAND gates are used in the implementation, it is somewhat

misleading because it no longer resembles the AND/OR form that it originated from.

Figure 10.1: The beloved AND/OR form.

Although this is somewhat unexpected, there are two forms of NAND gates as Figure 10.2(b) indicates.

We’ll explain the details of this in a later chapter, so please accept it without explanation for now. By

the time you get it explained to you, you’ll be more able to handle some of the fine points. Since the

right-most NAND gate of Figure 10.2(a) is actually implementing an OR function, you should use some

type of OR-looking gate. Since this is an NAND/NAND form, the solution is to remove the right-most

AND form of a NAND gate and replace it with an OR form
3
 of a NAND gate as is shown in Figure

10.2(b).

Another thing that is disconcerting about the circuit of Figure 10.2(a) is that the bubbles “don’t match”
4
.

This is an indicator that something may be wrong. Although in the case shown in Figure 10.2(a) the

implementation is truly correct, someone who is not familiar with the circuit may have doubts. In

summary, you should not the similarities between the circuit of Figure 10.1 and Figure 10.2(b).

Generally speaking, when you are asked to provide the circuit diagram for a function in NAND/NAND

form, the best choice is to draw the circuit of Figure 10.1 and add the bubbles in the appropriate

location to make the circuit appear like that of Figure 10.2(b). I like calling this the no-brainer approach

to circuit forms
5
. Moreover, these are two of the most popular circuit forms. In the real world, the most

widely used form is the NAND/NAND form.

3
 Don’t worry about this wording for now.

4
 The “bubbles” are polarity indicators. This is a deep and often confusing subject (mixed logic) that we’ll address

in a later chapter. For now, just go with it and do your best to “match bubbles”.
5
 In this case, the “no-brainer” thing is temporary; we’ll fill in the details later. Not having brains is not necessarily

a bad thing as brainlessness in the ranks of academic administrators is worn like a badge.

Digital McLogic Design Chapter 10

 - 180 -

(a) (b)

Figure 10.2: The confusing (a) and totally clear (b) approach to NAND/NAND representations.

A similar type of argument can be made for the OR/AND and NOR/NOR circuit forms. The circuit

implementation of the OR/AND form provided in Equation 2(b) is shown in Figure 10.3. Once again,

the inverters have been omitted and are replaced with complemented input signals (don’t try this at

home). If we were to implement this circuit in the NOR/NOR form as listed in 2(f), you would end up

with the circuit shown in Figure 10.4(a).

While the circuit shown in Figure 10.4(a) is technically correct, digital designers generally avoid this

form because it is misleading, especially those digital designers who understand basic mixed logic

principles
6
. A better NOR/NOR implementation appears in Figure 10.4(b). In this implementation, the

right-most NOR gate is implemented using the AND
7
 version of the NOR gate. The comforting thing

here is that the NOR/NOR form implementation of Figure 10.4(b) is strikingly similar to that of Figure

10.3. Once again, if you’re required to implement a function in NOR/NOR form, the circuit shown in

Figure 10.4(b) is the preferred approach.

Figure 10.3: The good’ole OR/AND form.

6
 Mixed logic is an important concept that is covered in a later chapter.

7
 Once again, don’t worry about this wording for now; this is another reference to mixed logic.

Digital McLogic Design Chapter 10

 - 181 -

(a) (b)

Figure 10.4: The confusing (a) and totally clear (b) approach to NOR/NOR representations.

10.3 Minimum Cost Concepts

The desired approach to implementing circuits is to implement them at a minimum final cost. This turns

out to be somewhat of an open-ended concept because minimum cost approach requires a proper

definition of the word “minimum” before knowing what the minimum cost is. In reality, out there in the

real world, there are about a bajillion definitions of the word “minimum” in terms of implementing a

circuit. For beginning digital design courses, this definition usually refers to the number of gates used to

implement a circuit and/or the number of inputs to the gates in the circuit.

The definition of “minimum” can also mean the number of integrated circuits (ICs) used to implement a

circuit
8
, or the number of transistors used in the ICs in the circuit etc. The definition of minimum cost is

further obscured by the fact that your company may already have a bajillion ICs that are expensive but

since you have nothing else planned for them, it would be cheaper to use them for your circuit because

you can probably get them for a good price (namely free)
9
. It’s all strange and somewhat obscure stuff.

The final word on minimum cost is this: if someone tells you to apply minimum cost concepts to your

design, make sure they provide you with an adequate definition of “minimum”.

Up to this point, you’ve learned to implemented functions with many different forms. The forms

primarily used are the reduced SOP and POS. When the concept of minimum cost arises, you generally

examine both POS and SOP forms. But wait, it gets worse. Now that you know a bunch of other forms

(such as NAND/NAND and NOR/NOR), you generally have to check all those forms also
10

. Generally

speaking, unless given other specific directions, the form that uses the least amount of gates is generally

the minimum cost solution. In particular, for given designs, you have the ability to use equivalent gates,

which can sometimes reduce the overall device count (particularly the number of inverters used in a

circuit).

The final word is this: the notion of minimum cost is primarily a relic from the past in terms of an

introductory digital design textbook. The truth is that most everything is relatively cheap in the world of

digital design. One thing that is not cheap is your salary. In the end, it’s easier and cheaper to model a

circuit using VHDL and not worry about the fine details of how it’s constructed at a lower level. In

most applications, if the circuit works, the world is happy. If the circuit needs to be optimal in terms of

8
 There are many ICs out there that contain different flavors of standard gates such as AND, OR, NAND gates, etc.

9
 This logic is something only a business major would understand.

10
 Though this seems somewhat excessive, it’s not as strange as it seems. When you’re building one circuit, saving

a gate here and there is not going to make a lot of difference. However, if your circuit is going to go into

production, and they’re planning on building a million units of your circuit, the savings of one cent in a million

circuits equates to as much money as the typical college president makes in a day.

Digital McLogic Design Chapter 10

 - 182 -

minimum cost, then make it so. As for minimum cost concepts appearing in digital design texts, I

suggest not getting to hung up with it.

Example 10-1: Minimum Cost Issues

Which of the eight standard forms would result in a minimum cost implementation in term of

a) device count (gates and inverters), and, b) gate count for the following function. Assume

you can use gates with any number of inputs.

 15,14,13,11,10,9,5,4,1F

Solution: Lucky for us, this function is the same function that we used to describe the original eight

forms. That means most of the work of the grunt work associated with this problem was done

previously (definitely my type of problem). Going back and examining Table 10.1, you’ll be able to

generate the information provided in Table 10.3; it has all the info we need if we know where to look.

From Table 10.3, you can see the two best forms for the a) part of this example are OR/AND and

NOR/NOR forms because they require six devices while other forms require more. For part b) all of the

forms require the same number of gates; no particular form has any obvious advantage.

Form a) Number of Gates & Inverters b) Number of Gates only

AND/OR (SOP) 7 4

OR/AND (POS) 6 4

NAND/NAND (SOP) 7 4

NOR/NOR (POS) 6 4

OR/NAND 7 4

AND/NOR 8 4

NOR/OR 8 4

NAND/AND 8 4

Table 10.3: The whole enchilada for Error! Reference source not found..

Digital McLogic Design Chapter 10

 - 183 -

Chapter Summary

 Circuit forms are used to implement logic functions using functionally equivalent expressions.

Although there are an effectively infinite number of ways to represent a function, there are only a

few standard ways. These standard ways are referred to as circuit forms and can be derived from

repeated applications of DeMorgan’s theorem. The most popular forms are SOP-type forms

(AND/OR, NAND/NAND) and POS-type forms (OR/AND, NOR/NOR).

 Minimum cost concept pertains to the many functionally equivalent forms of circuits. When many

circuit forms are possible, the circuit with the minimum cost is often the one that is implemented.

Many factors can determine the minimum cost of a given function. If you are required to

implement a minimum cost solution for a given function, the term “minimum cost” must first be

explicitly defined.

Digital McLogic Design Chapter 10

 - 184 -

Chapter Exercises

1) Write the following expression in OR/AND form:

) D C (A)D B(C) A(D)C,B,F(A,

2) Write a Boolean expression in NOR/NOR form that is equivalent to the following expression.

)DCA()DCA(D)CA(F

3) Implement F using a minimum of logic devices (AND, OR, and inverters):

 3,15),9,10,11,1(0,1,4,6,8 D)C,B,(A,F

4) Implement F using a minimum of logic devices (AND, OR, and inverters):

 (0,2,5) Z)Y,(X,F

5) Implement F using a minimum of logic devices (AND, OR, and inverters):

)2,13,14,15md(10,11,1 (0,4,7,8) D)C,B,(A,F

6) Implement the following circuit (draw the circuit) in reduced form using only NAND gates.

 11,14,15)(1,4,5,10, D)C,B,(A, F

7) Write a reduced equation in NAND/NAND that is equivalent to the following compact minterm

form. Do not draw the circuit.

)14,10()15,11,8,4,2,0(),,,(mdDCBAF

Digital McLogic Design Chapter 10

 - 185 -

8) Generate an equation in reduced NAND/NAND form that is equivalent to the following Boolean

expression. Do not draw the circuit.

)()()()(),,,(DBACBACBADCADCBAF

9) Generate an equation in reduced NAND/NAND form that is equivalent to the following

Boolean expression. Do not draw the circuit.

)()()()(),,,(DBACBACBADCADCBAF

10) The following timing diagram completely defines a function F(A,B,C) that has been implemented

on an 8:1 MUX. The control variables are A, B, and C (A is the most significant bit and C is the

least significant bit) and the output is F. Write an expression for this function in reduced

NAND/NAND form. Assume propagation delays are negligible.

Digital McLogic Design Chapter 10

 - 186 -

Design Problems

11) Design a circuit that indicates special conditions on a 4-bit input. Consider the 4-bit input to be an

unsigned binary number. This circuit has two outputs. One output indicates when the input is an

even multiple of 4. The other output indicates when the input is greater than 2 and less than 11.

Design this circuit any way you deem appropriate. Use nothing other than 4-input NOR gates in

your final circuit.

12) Design a circuit that indicates specific number ranges on the 6-bit input. Consider the 6-bit input to

be an unsigned binary number. This circuit has three outputs. One output indicates when the input

is less than 32. Another output indicates when the input is between 32 and 48, not including either

32 or 48. The other output indicates when the input is greater than 47 and an even number. Design

this circuit any way you deem appropriate. Use nothing other than 4-input NAND gates in your

final circuit.

 - 187 -

11 Chapter Eleven

(Bryan Mealy 2012 ©)

11.1 Introduction

There are three different approaches to performing digital design; up until now, we’ve only worked

with one of these approaches: BFD (Brute Force Design). The approach is named based on the amount

of effort required in order to complete even the simplest of circuits. The funny thing here is that we

could only implement the simplest of circuits based on the basic limitations of BFD. The other name for

BFD is “iterative design”; this term refers to the notion that we had to list (or iterate over) all the

possible circuit inputs in order to assign outputs to the circuit. From there we employed a truth table

(also a massively limited approach) in order to generate the final Boolean equation describing the

circuit. BFD was limited for many reasons; in the end, its only real use was as a mechanism to introduce

various digital design concepts.

In an effort to increase our efficiency as digital designers, we need to move onto other design

approaches. In this chapter, we’ll be dealing with our second design approach: IMD, or “iterative

modular design”. This approach is somewhat limited also, but it’s really useful in some situations.

Probably the best part about IMD is that it provides a great vehicle for presenting three different

standard digital modules.

Main Chapter Topics

 ITERATIVE MODULAR DESIGN (IMD): This chapter introduces the notion of

iterative modular design in the context of a standard digital circuit.

 RIPPLE CARRY ADDERS: A standard digital circuit that adds two digital values of

arbitrary length.

 COMPARATORS: A standard digital circuit that compares two digital values of

arbitrary length.

 PARITY CHECKERS & PARITY GENERATORS: A standard digital circuit that is

commonly used for error detection in digital values.

Why This Chapter is Important

This chapter is important because it introduces the concept of “iterative modular design”

(IMD). This chapter uses the IMD approach to design four standard digital circuits: the

ripple carry adder (RCA), the comparator, the parity generator, and the parity checker.

Digital McLogic Design Chapter 11

 - 188 -

11.2 Iterative Modular Design Overview

The main push behind IMD is the notion that we want to move away from the limits presented by BFD.

These limits are inherent in both truth tables and Karnaugh maps. Because truth tables and K-maps

were directly involved with generating an equation that described the circuit’s operation, the main

utility of IMD is that it decouples the digital designer from the need generate Boolean equations as part

of designing digital circuits. You can argue that you can use a computer to perform Boolean reduction

rather than a truth table and/or K-maps, but BFD is still a massively limited approach. The nice thing

about IMD is that it does not directly require the use of Boolean equations, which have been required

with current approach to digital design.

As you may guess, there are two separate aspects to IMD as implied by the name itself. The first aspect

is the “modular” part of IMD. The implication and allusion here is that IMD uses previously designed

modules as part of the design. In this context, a module is a black box model of something that was

modeled previously at a low level and can now be used at a higher level in as a part of another design.

There are many standard digital modules out there we can draw upon; the main two we’ve discussed so

far are the half adder and full adder.

The other aspect of IMD is the “iterative” part. This means that something in digital designs based on

IMD will be done repeatedly (thus “iteration”). In the context of IMD, the thing that is going to be

iterated is the modular part of IMD, or the modules. In the end, IMD involves using pre-designed

modules in an iterative manner in order to create circuits that do not require Boolean equations to

model. Lastly, and maybe more importantly, IMD provides out first introduction to hierarchical digital

design.

11.3 Ripple Carry Adders (RCA)

One of most commonly done things in digital and computer-land is arithmetic. As you may or not be

aware of, math operation are often performed by computers; and since computers are primarily large

digital circuits, it should be no surprise that tons of effort in digital-land is put into designing and

implementing circuits that do math.

There are two classes of people out there: people who design mathematical circuits and people who use

pre-design mathematical circuit. In reality, people get PhDs for designing new and more efficient

circuits that perform some required calculation faster and better than other digital circuits. The reason

this is so important is that computers generally spend a major portion of their computer power doing

mathematical operations. The result is if you can do a certain math operation more efficiently or with a

smaller digital circuit, you’ve saved time on the circuit level (so you can do more operations) and/or

you’ve saved space (so you can include other circuitry to do more stuff) and probably power (so you

can play games on your phone for a longer period of time before the battery needs charging).

This section looks at only one variety of mathematical circuit: the ripple carry adder, or RCA. Though

you can make this circuit also do subtraction without too much effort (a topic for another chapter), this

particular circuit is rather limited for reasons we’ll mention later. The RCA does present a great vehicle

to introduce iterative modular design.

Our first introductions to adding bits were the HA and FA. These circuits were severely limited because

they could only add one bit worth of information
117

. Recall that the truth table for the FA had eight

rows, which is pushing the limit of comfortability as far as truth tables and the associated Karnaugh

117

 Specifically, the result was one bit. The HA added two 1-bit values while the FA added three 1-bit values. Both

devices had a “sum” and “carry” output.

Digital McLogic Design Chapter 11

 - 189 -

maps go. The main push behind IMD is the notion that we want to move away from the limits presented

by BFD by removing the need to use Boolean expressions directly in the design process.

The RCA is one of the standard digital circuits in digital design
118

. The RCA is an “n-bit adder”, which

is a circuit that adds two n-bit numbers and provides a result. We refer to it as an “n-bit adder” because

the design can be general and thus we have no need to directly specify the value presented by “n”. The

RCA is built iteratively from our selection of 1-bit adders, namely the HA and FA. Without too much

blather, we’ll describe the RCA in the context of an example problem.

Example 11-1: The Ripple Carry Adder

Design a 4-bit Ripple Carry Adder (RCA). Each bit of this RCA should be represented

by either a HA or FA.

Solution: The importance of this problem can’t be overstated. First, it involves the design of a RCA,

which is one of standard circuits in digital design-land. Secondly, it provides our first excursion into

IMD and subsequently our first design that does not directly involve Boolean equations. Lastly, it’s a

circuit that is useful and instructive in many ways, as you’ll see in the following discussion. In addition,

worthy of note here is that we’ll sort of show you most of the design and then discuss it; it would not be

feasible for you to generate this design on your own at this point. Once you see the IMD technique,

you’ll then be able to apply it to other designs.

The starting point of this design is to define the inputs and outputs. We the RCA is a 4-bit adder, but

what exactly are the inputs and outputs. The inputs include two 4-bit values; the output includes a 4-bit

result and a 1-bit “carry” output. This carry output is often referred to as the “carry-out” or “co”. The

first step in this design is once again to draw a black box diagram of the final circuit. Figure 11.1 shows

a black box diagram that conforms to this problem’s specifications. In Figure 11.1, the two 4-bit input

operands are represented using bundle notation, as is the 4-bit sum output. A single bit is used to

represent the carry-out value and is referred to as the “co”.

Figure 11.1: Black box diagram for the ripple carry adder.

From this, if we were to use out standard design approach, we would face creating a truth table and

stuffing the output variables with values that solved the given problem. This approach presents a

dilemma because, as shown in Figure 11.1, this problem contains eight inputs. Representing every

possible combination of these eight inputs in a truth table would require a truth table of 256 rows. While

this would be wholly possible, doing so would represent the ultimate grunt work. But it gets worse:

118

 This is not exactly true; it’s true enough for now though. In reality, when you’re doing digital design, you’ll be

using “n-bit adders” and you may not have any direct knowledge regarding how the adder is implemented.

Digital McLogic Design Chapter 11

 - 190 -

reducing the results in an eight variable K-map would requires many years of mediation at some temple

high in the Himalayas.

But let’s take an approach that leverages the fact that we’ve already design some one-bit adders (named

the HA and the FA). This problem requires that we design a 4-bit adder, but we’ve already designed

two different types of 1-bit adders. Why not assemble the 1-bit adders in such a way as to create a 4-bit

adder? Once again, this approach represents a standard digital design approach that you’ll be using

quite often in the future. Figure 11.2 shows the final solution for this problem. Bunches of important

comments are sure to follow.

Figure 11.2: Black box diagram for a 4-bit Ripple Carry Adder.

Here are those promised important points:

 How does this circuit work? There are four 1-bit adders connected in a special manner. To

ensure the correct answer on the circuit’s outputs, each bit 1-bit adder must generate the

“correct” values. While the a and b inputs are understood to be immediately available, the

carry-outs are dependent upon the carry-ins from the previous bit location moving from right

to left (except for the HA). In other words, generating the correct second-from-right sum bit is

dependent upon the carry-out from the HA. In general, the correct values on each sum bits

must wait until the carry-out has been generated from the lower-order 1-bit adder. The reason

this circuit is referred to as a ripple carry adder or RCA, is that the carry must “ripple” from

the lower-order adders to the higher-order adders (or right-to-left in Figure 11.2).

 Figure 11.2 uses weightings associated with each bit location. These weightings are implied by

the numbering used for the inputs and sums. The higher the number “index”, the higher the

weighting. The s3 output bit is referred to as the most significant bit (MSB) while the s0 is

referred to as the least significant bit (LSB). Beyond that, this adder is assumed binary in

nature and uses the standard weighting associated with binary numbers.

 We completed this design without using a truth table. That being the case, we also completed

this design without using any K-maps or Boolean equations. We essentially completed this

design on a higher level than we completed previous designs. In other words, we completed

this design exclusively using previously designed modules (namely the HA and FA). The

design is modular in that we used previously designed modules; the design is iterative in that

we placed a number of the previous design modules such that our original design specifications

were satisfied.

Digital McLogic Design Chapter 11

 - 191 -

 The notion of the “carry out” in many cases (and in this case) can be used as the “fifth bit”. In

essence, though we added two 4-bit unsigned numbers, we actually obtained a 5-bit result.

There will be many times where you’ll find a good use for this bit.

One of the notions we discussed regarding the RCA was the fact that it is sometimes referred to as an

“n-bit adder”. The reason for this is that if we suddenly wanted an 8-bit adder, we simply add four more

FAs to the 4-bit RCA design. The act of “adding four more FAs” to the design is simple when you do it,

but is still massively powerful and somewhat advanced technique
119

. And, as you’ll see in the next

example problem, it’s not always the best approach to making an adder of greater width.

Example 11-2

Outline the steps you need order to design an 8-bit RCA using two 4-bit RCA circuits.

State any assumptions and make any changes you may need to the 4-bit RCAs.

Solution: Although you may not have noticed it in Example 11-1, the “thing” that allowed you to

increase the width
120

 of your 1-bit adder was the fact that the FA was a 1-bit adder that added three

different bits together and generated a 1-bit result. The key to RCA success was taking the carry-out

from a bit location of lower significance and including it in the addition operation of the next bit

location of higher significance. However, since the lowest-order bit, or, the LSB, only required a one-

bit adder with two inputs because there would be no carry-in into that bit location.

Using a HA in the lowest order bit location saved some hardware, but that’s about it. However, because

of the HA, we are not able to “cascade” the RCA with other RCAs which would allow us to build RCA

of greater bit-widths without too much trouble.

The solution to this example would be to substitute a FA for the HA shown in Figure 11.2. This solution

omits some of the details, but Figure 11.3(a) shows the 4-bit RCA module while Figure 11.3(b) shows

the black-box diagram for the solution of this example. Additionally, Figure 11.4 shows the final

solution to this example with some details included.

(a) (b)

Figure 11.3: The 4-bit RCA module (a) and the 8-bit RCA module (b).

There are a few worthy things to notice in Figure 11.4. There is actually a lot of new stuff going on in

this problem; these things are well worth describing.

119

 Accordingly, you now have the ability to design a 128-bit RCA if you really wanted to impress your friends.
120

 In this context, width refers to the number of bits contained in the input operands to the adder.

Digital McLogic Design Chapter 11

 - 192 -

 There is no notion of HAs and FAs; this is because the model in Figure 11.4 is at relatively

high level. At this point, we assume you know what a HA and FA is.

 It is a common assumption in digital-land to include a “carry-in” in RCAs. In this case, it is

assumed that the lowest-order bit uses a FA instead of a HA.

 Parenthetical notation shows that the total number of input bits for the two operands; these are

subsequently divided between the two individual 4-bit RCAs. In this case, you always need to

provide some type of notation to indicate how the routing of the associated signals; you should

never leave anything to guessing
121

. The same style of routing is use for the “sum” output.

 The “Cin” input to the lower-order RCA is “tied to ground”. Generally speaking, it is

requirement that every input in every schematic diagram is accounted for by connecting it to a

signal, or assigning it a known and constant value such as ‘1’ (power) or ‘0’ (ground)
122

.

 The reason this circuit works as an 8-bit adder in this cascade formation is that the “carry-out”

form the lower-order RCA connects to the “carry-in” of the higher-order RCA. This is

common in digital-land also as many ICs allow you to connect many of the same ICs together

to increase the overall width (or length in some cases) of the given signal. Once again, the

notion of connecting things together in this manner is referred to as cascading.

Figure 11.4: The high-level solution for Example 11-2.

121

 As will all problems you do in any context, you should always state any assumptions you make with the

problem. This notion includes annotating the schematic diagram.
122

 This is super important; don’t forget it.

Digital McLogic Design Chapter 11

 - 193 -

Example 11-3

Use the block diagram of the 4-bit RCA shown below to complete the accompanying timing diagram.

For this problem, assume the Cin input is always ‘0’.

Solution: This is a solution that you’ll have to convince yourself of what is going on by examining the

timing diagram in Figure 11.5. A few things to recall are that when you add two 4-bit binary numbers,

you essentially end up with a 5-bit binary number with the carry-out being the most significant bi

(MSB). The possible range for a 4-bit binary number is 0x0 to 0xF (equating to 0 to 15 in decimal). The

solution shown in Figure 11.5 lists the bundle values in hex format; the carry-out is not a bundle.

Figure 11.5: The solution to Example 11-3.

11.4 Comparators

The comparator is a commonly used device in digital land and is considered one the standard digital

circuits. One of the nice things about a comparator is the fact that modeling a comparator in VHDL is

Digital McLogic Design Chapter 11

 - 194 -

effortless while implementing the functionality in low-level logic is a giant pain it the arse. However,

since the comparator is a standard digital module, you need to make sure you understand exactly what

they’re made of. Moreover, the derivation of the standard gate-level implementation of a comparator

provides you with some useful practice dealing with exclusive OR-type functions. One of the other nice

features about a comparator is the fact that it presents another chance to apply the iterative-modular

design technique. We once again introduce the comparator with an example.

Example 11-4

Design a circuit that compares the values of two 2-bit inputs and indicates when

the input values are equal.

Solution: Although the problem description does not state it directly, the circuit we need to design is

referred to as a “2-bit comparator”. For this solution, let’s first design one using the BFD, or iterative-

based (truth table) approach. This example states that we’ll be designing a 2-bit comparator. In

comparator lingo, a 2-bit comparator is a device that compares two 2-bit binary numbers; the single

output of this circuit indicates when the two 2-bit inputs are equivalent. For this example, let’s restrict

the two 2-bit inputs to be unsigned binary numbers
123

.

Step one in this design is drawing the black box; Figure 11.6 shows the result of this step. Note that in

Figure 11.6, the circuit uses bundle notation to show that both the A and B signal are actually

comprised of two bits each.

Figure 11.6: The black-box diagram for the 2-bit comparator.

Step two the design process is generating a truth table and entering the output values in such a way as to

provide a solution to this problem. Since this problem has two 2-bit inputs, the truth table will have 2
4

or 16 rows. Figure 11.7 shows that we’ve arbitrarily listed the A inputs as the two left-most columns in

the truth table. In Figure 11.7, the A1 and B1 inputs have a higher weighting (in terms of the weights of

the digits) than the A0 and B0 inputs
124

. Figure 11.7 shows the completed the truth table and indicates

when the two inputs are equal. In other words, the EQ output lists a ‘1’ when the A and B inputs are

equivalent. Figure 11.8 shows the associated K-map.

123

 It’s OK to assume this since it was not explicitly stated in the problem and does not matter anyway.
124

 The reality is that the inputs could be placed in different columns the truth table; as long as you’re consistent

with the number values, all choices will lead to the same answer.

Digital McLogic Design Chapter 11

 - 195 -

A1 A0 B1 B0 EQ

0 0 0 0 1

0 0 0 1 0

0 0 1 0 0

0 0 1 1 0

0 1 0 0 0

0 1 0 1 1

0 1 1 0 0

0 1 1 1 0

1 0 0 0 0

1 0 0 1 0

1 0 1 0 1

1 0 1 1 0

1 1 0 0 0

1 1 0 1 0

1 1 1 0 0

1 1 1 1 1

Figure 11.7: The truth table for the 2-bit comparator.

Figure 11.8: The K-map for the 2-bit comparator.

At first glance, the K-map in Figure 11.8 seems to have no opportunity for reduction since no groupings

larger than one cell can be formed. The key thing to realize in this K-map is that there seems to be an

opportunity to extract exclusive OR functions from the resulting equations since the groupings in Figure

11.8 seem to have diagonal components to them. Once you notice this attribute of the K-map, you can

then continually factor the equation as shown in Figure 11.9.

Figure 11.9 shows an important derivation; you should make sure that you completely understand every

step of it because you’ll occasionally need to perform such algebraic manipulations out in digital

design-land
125

. The nice thing about this derivation is that it primarily uses factoring as opposed to

125

 One thing you may want to try for this problem is to change the column-order of the independent variables and

verify that you arrive at an equivalent Boolean expression.

Digital McLogic Design Chapter 11

 - 196 -

Boolean algebra theorems
126

. The important thing here is noticing the relationship between the final

equation of Figure 11.9 and the circuit implemented in Figure 11.10.

(a))0101()0101()0101()0101(BBAABBAABBAABBAAF

(b))0000)(11()0000)(11(BABABABABABAF

(c))00()11()00()11(BABABABAF

(d))1111()00(BABABAF

(e))11()00(BABAF

Figure 11.9: The ugly details of the final equation derivation for the 2-bit comparator.

Figure 11.10: The final circuit for the 2-bit comparator as equation (e) in Figure 11.9.

Although the circuit shown in Figure 11.10 seems to be nothing special, it implicitly indicates a

possibility to apply the iterative modular digital design technique. First, apply some horse-sense to

understanding this circuit. What the circuit is saying is that each of the bits of the same weighting must

be equal in order for the two numbers to be equal. In terms of the listed hardware, the AND gate is only

satisfied when each of its inputs are a ‘1’. In this circuit, each of the inputs to the AND gate are an

output of the individual XNOR functions. Recalling that an XNOR function is sometimes considered an

equivalence gate, note that each of the bit positions being compared must be equivalent in order for the

final number to be equivalent.

In the end, this problem was not too bad. Then again, it was only a 2-bit comparator; being that there

were only four inputs, an iterative approach was borderline doable. But really, who has any use for a 2-

bit comparator?

Example 11-5

Design a circuit that compares the values of two 4-bit inputs and indicates when the input values

are equal.

Solution: For this problem, the circuit has two 4-bit inputs for a total of eight inputs. If we were to take

the same approach as the previous example, we would require a truth table having eight independent

126

 Yet more proof that you can in fact be a good digital designer without scars left from applying endless Boolean

algebra equations.

Digital McLogic Design Chapter 11

 - 197 -

variables or 256 rows (2
8
). Would this be possible? Yes. Would anyone really do it? No

127
. The key

here is realizing that to make a 4-bit comparator, you simply need to add XNOR gates that will compare

each of the added bit positions. This approach is a classic application of the iterative-modular (because

you’re using the same element over and over again) design approach
128

. The reality in digital design is

that anytime you can apply the iterative modular approach, you’ll be saving yourself a bunch of time.

Figure 11.11 shows the final circuit diagram for a 4-bit comparator.

Figure 11.11: The final circuit for a 4-bit comparator.

Example 11-6

Use the black box diagram provided below to complete the accompanying timing diagram.

Solution: once again, a diagram shows the solution to this problem without a significant amount of

verbal description. Check out Figure 11.12 for all the gory details.

127

 An academic administrator probably would, however, because this approach would require a lot of wasted time

and effort; wasting time and effort is something academic administrators are really good at.
128

 Recall that the ripple carry adder was previously designed using the iterative-modular design approach.

Digital McLogic Design Chapter 11

 - 198 -

Figure 11.12: The solution to Example 11-6.

11.5 Parity Generators and Parity Checkers

Parity generators and parity checkers are two standard digital circuits that everyone who is anyone in

digital-land knows about. They are also a standard digital circuit that every digital designer should

understand and be able to design. The concept of parity in used quite often in digital communications,

which is why both the concept itself and the circuitry that handles parity are so important. The concept

of parity is relatively simple; the application of parity is slightly more complicated but is also on the

doable side.

The concept of parity is generally applied to a set of bits. This set of bits can either exist at one moment

in time in a parallel configuration or the bits can exists over several set times in a serial configuration.

Figure 11.13(a) and Figure 11.13(b) shows an example of both parallel and serial configurations,

respectively. In Figure 11.13(a), the values of the bits in question exist at one instance in time. In other

words, the set of bits considered for the application of the parity concept are values of the five signals in

Figure 11.13(a) circuit at the same instance in time.

The concept of parity can also be applied to a single signal over a given time span. The parity concept

applies to the set of bits in Figure 11.13(b) that are the values of the SIG signal at five different

instances in time. The important thing to note here is that the concept of parity applies to a set of bits:

this set of bits can either be bits collected in a parallel or serial format as shown in Figure 11.13.

(a) (b)

Figure 11.13: An example of parallel signals and serial signals.

Digital McLogic Design Chapter 11

 - 199 -

The concept of parallel and serial is probably more extensive than the concept of parity itself. Once the

bits in question are gathered, parity refers to the result of a modulo-2 addition of the bits. Although

modulo-2 addition sounds intimidating, the concept is straightforward. Modulo-2 addition refers to a

bit-oriented addition operation: the result of this addition is either ‘0’ or ‘1’. To perform a modulo-2

addition on a set of bits, you add all the bits and your result is either ‘0’ or ‘1’. In other words, if the

sum of the set of bits is ‘0’, the result of the addition was even. If the sum of bits was odd, the result

was odd.

As you will find out, the XOR gate inherently performs modulo-2 addition on its two inputs; re-

examine a look at the XOR gate’s truth table to convince yourself of this fact. The concept of parity

simply refers to the notion of whether the sum of the set of bits was odd (odd parity) or even (even

parity)
129

. That’s about it for the concept of parity; just keep in mind that the concept of odd and even

parity has nothing to do with odd and even numbers in the event that you’re considering the set of bits

in question to represent some type of number.

The concept of parity is particularly useful in digital communications; Figure 11.14 shows a simple

example of a communication system that uses the concept of parity. This example shows four bits that

are transferred in parallel across some type of medium. The medium in question is immaterial for this

problem (but could be anything). What is important in this problem is the notion that a total of four data

bits are being transferred: three data bits and a parity bit. For this example, the Generator box generates

the data being transferred, which again is not important for this problem.

The Parity Generator box is a circuit that imposes either an odd or an even parity to the three data lines.

This parity bit is then included with the data bits being sent in the communication channel. In other

words, the Parity Generator circuit assigns its output (the parity bit) to make sure that the set of data and

parity bits (A, B, C, & D) are either odd or even parity, depending on how you design the circuit. Once

these bits transfer across the medium, the parity better be the same as it was before the bits were

transferred. If the bits are sent with even parity and arrive with odd parity, there is obviously an error

generated somewhere during transmission. If the bits were originally sent with odd parity and arrives

with odd parity, there is a good chance that there was not an error during transmission
130

.

This circuit provides error detection for the data bits sent across the medium; in particular, this circuit

provides 1-bit error detection capabilities. The circuitry on the receiving end expects either odd or even

parity (as set by the circuitry); if it receives a message with the wrong parity, it indicates an error on the

PR output of the Parity Checker
131

.

129

 In this context, zero, or no bits that are ‘1’, is considered even (even parity).
130

 As you would probably guess, if two bits change, the parity would still be correct but two of the bits would be

incorrect and thus your entire message was garbage. The probability that two bits are erroneous is significantly less

that the probability that one bit was in error which is why parity is an effect error detecting measure.
131

 Implicit in the description is the fact that the parity generator and parity checker must agree on either odd or

even parity before this “system” is set up.

Digital McLogic Design Chapter 11

 - 200 -

Figure 11.14: An example of parity generation and checking.

The circuitry for parity generators and parity checkers is not overly complicated; you’ve actually

worked with similar circuitry in the case of the Full Adder. For this example, let’s design the Parity

Generator such that it generates even parity based on the data bits A, B, and C. For ease of

representation in this circuit, we’ll represent the parity bit with the variable D. What we need to do in

this problem is assign D to ensure that the set of bits A, B, C, and D have even parity. The approach

we’ll take is the BFD approach and examine bits A, B, and C; if these bits have odd parity, the parity bit

is set to ‘1’. In this way, if the modulo-2 sum of the data bits (A,B,C) is ‘1’, then the parity bit will be

set to ‘1’ which makes the parity of all four bits ‘0’ (even parity). In other words, parity from bits (A, B,

C = ‘1’) + ‘1’ (from the parity bit D) is ‘0’. With a final modulo-2 addition of ‘0’ for all the bits, the

parity of bits A, B, C, and D is even.

The truth table in Figure 11.15(a) shows this concept in tabular form. In other words, the D column is

assigned to ensure that modulo-2 sum of all the columns is ‘0’ thus provided the set of bits A, B, C, and

D with even parity. Figure 11.15(b) shows the K-map associated with the truth table shown in Figure

11.15(a). At first glance the truth table of Figure 11.15(a) does not appear to have any reduction

possibilities, but upon further inspection you’ll notice that the K-map contains bunches of diagonals.

Thus, we can factor the equation generated from Figure 11.15(b) in order to extract the XOR values as

shown in Table 11.1. Figure 11.16 shows the final circuit.

A B C D

0 0 0 0

0 0 1 1

0 1 0 1

0 1 1 0

1 0 0 1

1 0 1 0

1 1 0 0

1 1 1 1

(a) (b)

Figure 11.15: The truth table for a 3-bit even parity generator (a) and the associated K-map (b).

Digital McLogic Design Chapter 11

 - 201 -

(a) ABCCBACBACBAD

(b))()(BCCBACBCBAD

(c))()(CBACBAD

(d))(CBAD

Table 11.1: Derivation of the even parity generating circuit.

Figure 11.16: The final circuit for a 3-bit even parity generator.

To summarize the previous process, we generated a parity bit (D) based on the three data bits (A, B, and

C). For this problem, we arbitrarily produced a bit that generated even parity for the entire set of four

bits. All four bits were sent across the medium.

On the receiving side of the circuit, we need to design a circuit that checks the incoming bits to ensure

that they are even parity as was sent by the sending end of the circuit. This circuit essentially needs to

generate the modulo-2 sum of the four received bits, which is nicely done with a truth table, of all

things (more BFD). Figure 11.17(a) shows the resulting truth table. In this truth table, the PR column

indicates an error if the parity of the received bits is odd. Since the bits were originally sent with even

parity, the arrival of bits having an odd parity indicates that an error occurred in transmission (at least

one of the four sent bits was toggled).

Another way of looking at the PR column in Figure 11.17(a) is that the PR column is assigned to

generate an even parity based on all of the sent bits. Figure 11.17(b) shows the resulting K-map. Note

that this truth table contains characteristics similar to the truth table of Figure 11.15(b). If you were to

grind out the equations for this truth table, Figure 11.18(a) lists the final equation; you should actually

grind out these equations to increase your competence level in Boolean algebra. Figure 11.18(b) shows

the resulting circuit.

As a final note in this saga of parity generation and checking, you should notice a similarity between the

final equation of Table 11.1 and equations in Figure 11.18(a). Note that the only difference between a

3-bit even parity generator and a 4-bit even parity generator is the addition of one more XOR term.

From this similarity, you can apply the iterative-modular design (IMD) technique to easily create parity

generators of more than four bits. This design technique is one of the standard design approaches in

digital design-land. In addition, what about odd parity generation? It’s a great exercise to examine a

circuit that generates odd parity. The approach is similar to the approach take in the even parity

generation. The results are definitely interesting but not overly surprising. Consider trying it.

Digital McLogic Design Chapter 11

 - 202 -

A B C D PR

0 0 0 0 0

0 0 0 1 1

0 0 1 0 1

0 0 1 1 0

0 1 0 0 1

0 1 0 1 0

0 1 1 0 0

0 1 1 1 1

1 0 0 0 1

1 0 0 1 0

1 0 1 0 0

1 0 1 1 1

1 1 0 0 0

1 1 0 1 1

1 1 1 0 1

1 1 1 1 0

(a) (b)

Figure 11.17: The truth table (a) and K-map (b) for the 4-bit even parity generator.

)()(DCBAPR

DCBAPR

(a) (b)

Figure 11.18: The equations (a) and circuit (b) for the 4-bit even parity generator.

Example 11-7

Design a circuit that generates a parity bit that indicates when four bits are even parity.

Solution: This problem is describing an even parity generator; there are two ways to look at the parity

bit it generates. One way to look at the parity bit is that it indicates with a ‘1’ when the four input bits

are odd parity. Another way to look at it is that the parity bit is assigned such that the five bits (the four

input bits and the parity bit) always exhibit even parity.

Digital McLogic Design Chapter 11

 - 203 -

As always, a great place to start is by drawing a black box. Figure 11.19 shows the black box diagram

associated with this problem. Note that there are four input bits; the output labeled “PR” is the parity

bit.

Figure 11.19: The block diagram for Example 11-7.

We could use the BFD approach to solving this problem, but we would rather use the IMD approach to

save us time. Recall when we first described parity, we designed a 3-bit even parity generator. Figure

11.20(a) shows the final solution to that problem once again. In order to extend this circuit to be a 4-bit

even parity generator, we add another XOR gate as shown in Figure 11.20(b). For this problem, the

communications channel would now be sending five signals: A, B, C, D, & PR. The receiving ends of

the channel then examines these five signals in order to verify that the received signal exhibited even

parity.

(a) (b)

Figure 11.20: The circuit solution for a 3-bit even parity generator (a) and the solution to

Example 11-7, a 4-bit even parity generator.

Digital McLogic Design Chapter 11

 - 204 -

Example 11-8

Use the black box diagram to complete the accompanying timing diagram. Consider the black box to

generate odd parity based on the four input bits.

Solution: For this problem, the ODD_PAR signal generates a ‘1’ when the sum of “1’s” on the IN_SIG

signal is even; otherwise, ODD_PAR generates a ‘0’. Figure 11.21 shows the final timing diagram.

Figure 11.21: The solution to Example 11-8.

As a final note, you’re correct in thinking that the idea of parity generation and parity checking is

somewhat confusing. The basic concepts are straightforward; the problem is with the associated

vernacular. Here is a basic overview of the confusing vernacular.

 If you’re generating odd parity, your parity generator uses a ‘1’ to indicate when the input bits

have even parity. Including the ‘1’ makes the odd parity of the signals into even parity.

 If you’re generating even parity, your parity generator uses a ‘1’ to indicate when the input bits

have odd parity. Including the ‘1’ make the odd parity of the signals into even parity.

Digital McLogic Design Chapter 11

 - 205 -

Example 11-9

Design a circuit that adds two 4-bit digital values. If the addition operation generates a carry-out, the

4-bit sum output will be all zeros; otherwise, the 4-bit output will indicate the sum of the two 4-bit

input values.

Solution: The first part of this problem is straightforward; we simply need to use a 4-bit RCA. The

issue is what to do with the other part of the circuit. The best place to start from here is with a black box

model as is shown in Figure 8.10.

Figure 11.22: Black box diagram for this problem.

This is a typical design problem in many ways. The approach you need to take here is to think about the

requirements of the black box labeled “CKT”. What we need to do is pass the SUM output along if

there is no carry or make all the SUM bits a logical ‘0’ if there is a carry. What this operation describes

is to pass the SUM signals along if the carry-out is ‘0’, or, clear all of the sum bits. This operation

describes a classic switch action by the carry-out. We have a gate that implements such an operation:

it’s called an AND gate.

Figure 11.23 shows the final solution for this problem using AND gates. Note that we needed to first

invert the carry-out signal in order for it to have the correct affect on the associated AND gates. The

method used to connect the AND gates insures that their output is ‘0’ when the carry-out signal is a ‘0’

as it is inverted before being input to the AND gates. Note that we truly did an IMD approach with the

addition of the AND gates. Also, note that we indicated the expansion of the SUM bundle by using

parenthetical notation on the signal contained in the bus. The numbers in the parentheses are typical of

bundle expansion.

Figure 11.23: Schematic diagram for the box labeled CKT.

Digital McLogic Design Chapter 11

 - 206 -

Chapter Summary

 Iterative Modular Design (IMD) is a more powerful design method than brute force design (BFD).

What makes IMD more powerful is that it bypasses the constraints presented by the truth tables and

the entire BFD approach. Special type of digital circuits are typically designed with IMD.

 Important Standard Digital Modules presented in this chapter:

 Ripple Carry Adder (RCA): arithmetic circuit used add digital values

 Comparator: arithmetic circuit used to determine equality of two digital signals

 Parity Generator: circuit used to generate parity based on a set of digital signals

 Parity Checker: circuit used to determine the parity of a given set of digital signals.

 The notion of parity describes a characteristic of a set of signal or a sequence of signals. Parity is

defined as the modulo-2 addition of the ‘1’ bits of the signals in question. Parity can be either even

or odd. Parity generators are used to generate a parity bit that ensures a group of signals exhibit

even parity or odd parity. Parity checkers are essentially the same circuit as parity generators: both

are implemented on the gate-level using a set of exclusive-OR type gates.

Digital McLogic Design Chapter 11

 - 207 -

Chapter Exercises

1) Design a circuit that performs as follows: The circuit has six 10-bit unsigned binary inputs

(A,B,C,D,E,F). Comparisons are made between (A,B), (C,D), and (E,F) pairs. If two and

only two of these number pairs are equal, then the circuit’s one output is ‘1’; otherwise the

circuit’s output is a ‘0’. Use only standard digital modules in your design. Minimize your

use of hardware in this design. Include a black box diagram for both the top-level circuit as

well as the underlying circuitry.

2) Complete the timing diagram shown below considering the given schematic symbol.

Digital McLogic Design Chapter 11

 - 208 -

3) Complete the timing diagram shown below considering the given schematic symbol.

4) Complete the timing diagram shown below considering the given schematic symbol.

Digital McLogic Design Chapter 11

 - 209 -

5) Complete the timing diagram shown below considering the given schematic symbol. Consider the

circuit to generate even parity for the eight input bits.

6) Use the following circuit to complete the listed timing diagram.

Digital McLogic Design Chapter 11

 - 210 -

Design Problems

1) Design a special 4-bit RCA with the following specifications. This circuit has an input named

INV_OUT; when this input is in the ‘1’ state, the output of the RCA is inverted from what it would

normally be. HINT: Since you know all about RCAs, your solution to this example should include

a dark box labeled RCA (no need to reinvent the wheel on this problem).

2) Design a 16-bit RCA using two-8-bit RCAs. For this problem, assume an 8-bit RCA was

previously designed so you won’t need to re-design it.

3) Design an 8-bit comparator using only standard logic gates. The output of this comparator has only

one output that indicates whether the two input values are equal or not.

4) Design a 2-bit comparator in that compares two inputs, A & B; the output should indicate when A

= B, A < B, and A > B. You’ll need to use the IMD approach with this design.

5) Regarding the previous problem, would it be possible to use that design to generate a 6-bit

comparator using the IMD approach? Explain briefly but completely.

6) Design a 3-bit odd parity generator. Specifically, this circuit indicates when the three input bits are

even. Assume the 3-bit inputs are in a parallel configuration.

7) Using the design from the previous problem, design an 8-bit odd parity generator using IMD.

Assume the 8-bit input is in a parallel configuration.

 - 211 -

12 Chapter Twelve

(bryan mealy 2012 ©)

12.1 Introduction

Despite the fact that the introduction of programmable logic devices has massively changed the many

aspects of digital design, it is not a topic that we’ll go into in any detail. Our approach here is to use

PLDs to our advantage while skipping over the low-level implementation details. In other words, we’ll

be dealing with PLDs at a user-level, or at a high-level of abstraction.

There was a time when this material was a much more important part of an introductory digital design

course
1
, but that was a long time ago. In other words, this is interesting stuff but you may never see it

again despite the fact that you may be well on your way to becoming the world’s greatest digital

designer
2
. The chapter’s topics do present a nice foundation of digital knowledge and history that you’ll

find useful now and then (for whatever that is worth). We make no claim for this chapter to be overly

useful, as a lot of stuff is missing.

Main Chapter Topics

 PROGRAMMABLE LOGIC DEVICES (PLDS): PLDs are a key element in modern

digital design. This chapter presents a historical overview of PLDs and outlines

some of the basic operating features.

Why This Chapter is Important

This chapter is important because it provides an overview of programmable logic

devices, including a brief history and brief architectural overview. This chapter provides

a context for PLDs and their use in modern digital design.

12.2 A Brief History of Digital Design.

In case you have not noticed yet, the approach taken by digital logic design these days is to abstract

things to an impressively high level. While there are a lot of good things to be said about this approach,

(such as improved productivity), there is one really bad thing that you should be aware of: so many of

the low level details are hidden from you that you’re at risk of losing touch with your basic foundation

1
 Back in the days when paper designs ruled the world and teachers had nothing better to test students on.

2
 Actually, if you are on your way to being a great digital designer, you’ll probably need to delve into the details of

the particular PLD you may be using. These devices do a lot; you’ll eventually need to take advantage of some of

their advanced features in your design. Yes, this means you may have to actually read the associated datasheet.

Digital McLogic Design Chapter 12

 212

of digital logic. This was not the case all those years ago when computers were expensive and useful

software was essentially non-existent. This chapter attempts to remind you of both how you’ve gotten

to the digital place you find yourself today and to give you a greater appreciation of some of the tools

and hardware you use on a daily basis.

If you stop and think about it for a moment, it’s amazing how far digital integrated electronics have

come is such a short time
3
. What is even more amazing is that as things become more developed, the

speed at which changes happen seems to increase. This is especially true as general purpose computers

become involved in the game with various forms of design automation and computer aided design

(CAD) tools. The discussion that follows is centered around the path that got us to where we are today

in the context of hardware design and programmable logic devices (PLDs).

12.2.1 Digital Design: Somewhere in the 1980’s

In the 1980s, digital circuits were generally centered around discrete logic that was contained on

integrated circuits (ICs). These ICs were generally referred to as SSI and MSI: small scale integration

and medium scale integration. The difference between small, medium, and large scale, and very large

scale integration is determined by the number of transistors in the IC)
4
. All the designs in the digital

courses were primarily paper designs and there was little point in implementing them in actual

hardware. A few circuits were actually implemented but students learned quickly that implementing

circuits using SSI and MSI was extremely time consuming.

The SSI and MSI chips back then did not have too much functionality so even a simple digital design

ended up requiring many ICs. These designs were generally done on protoboards
5
, wire-wrap boards

6
,

or speed-wrapped boards
7
 because fabricating your own printed circuit board (PCB) was too expensive,

too messy, or too impossible
8
. Table 12.1 lists some of the good points and bad points of associated

with this level of digital design.

Good Points: Bad Points:

1. You could go to the local electronics

store, buy the required ICs, and

implement designs at a relatively low

cost.

2. You could get most of the designs

working using a minimal amount of

test equipment (about the only thing

affordable in those days was a

multimeter).

1. Circuits were tedious to assemble

(proto-board, PC board), hard to debug,

and not easily modified.

2. Multiple ICs required lots of board

space and consumed a lot of power.

3. Debugging options were limited and

required special equipment.

Table 12.1: Some of the good and bad points of early digital design.

3
 Worthy of note, one of the cool things about digital design is that the advancements have been so amazing. There

is nothing even remotely comparable on the analog side of electronics no matter what any analog person tries to tell

you.
4
 An example of SSI would be an IC with a few NAND gates on-board. An example of MSI would be an IC that

contained a counter or a multiplexor (digital devices you’ll learn about later).
5
 White boards with many holes in which to stick in wires and components.

6
 Components had long posts that were used to connect to other components via thin wire.

7
 A completely flaky technology that was simpler than wire-wrapping but died off anyway.

8
 There were no PCB companies that did the work for you at a reasonable price.

Digital McLogic Design Chapter 12

 213

12.2.2 Digital Design: The Early 1990’s

Back around this time, programmable logic devices (PLDs) started appearing
9
. These were relatively

simple devices such as the PALs (programmable array logic) and PLAs (programmable logic arrays).

These early devices were not overly large or complex and were very understandable when presented in

digital logic courses. Modern PLDs have become quite large and complicated. Table 12.2 lists some of

the good points and bad points of associated with this level of digital design.

Good Points: Bad Points:

1. Reduced the number of ICs required in

a design (lower power, more board

space, faster circuits).

2. More flexible: circuits could be

changed quickly without major

revamping (the devices were re-

programmable).

3. Electronic Design Automation (EDA)

tools appear and prosper.

1. Required special hardware and software

to program the PLDs.

2. Required learning a “programming

language” (namely a “hardware

description language”, or HDL).

3. Not easily tested due to the fact that so

much circuitry was onboard the PLD.

Table 12.2: The good and bad points of early PLD design.

12.3 PLD Architectural Overview

The early PLDs could essentially be modeled as an array of AND logic (the AND array) connected to

an array of OR logic (the OR array). The programmability of these devices is centered on the presence

of connections (or lack there of) made in the circuitry. The terminology typically used is that if two

lines were connected with a “fuse”, the connection was made (a physical contact was made). If the

connection did not have a fuse, then the connection was not made (an open-circuit was created).

Figure 12.1 shows three interesting connections commonly used in CPLD circuit descriptions. Figure

12.1(a) shows a connection between two signals that was made at the factory. Generally speaking, this

connection was made at the “mask-level” it cannot be changed. Figure 12.1(b) shows a connection

made with a fuse (the “X” is the symbology used to indicate that a connection exists between the two

signals). The model of a fuse is that it can be broken, and thus the connection between the two signals

will no longer exist. The short story is that the programmable portion of the PLD acronym is based on

blowing or not blowing these fuses10.

9
 Actually, they had been around for a while but they were now becoming affordable to real humans and student-

types.
10

 In reality, the actual silicon does not contain a “fuse”. Actual semiconductors use various forms of technology to

obtain the functionality of a fuse. Have you ever seen a fuse box attached to an IC?

Digital McLogic Design Chapter 12

 214

(a) (b) (c)

Figure 12.1: A factory made connection (a), a fuse-based connection (b), and no connection (c).

Figure 12.2 shows some other standard terminology used in PLD-land. As you’ll see in some of the

upcoming diagrams, the number of gate inputs can be excessive. For each of the gate inputs, there will

need to be an input signal line; the diagrams can ugly real fast due to the shear number of logic devices

contain on the devices. To combat this ugliness, the shortcut symbology of Figure 12.2: is used. This

symbology uses one input to model all of the gate inputs; the resulting circuit diagrams are much

cleaner looking.

Figure 12.2: The shortcut notation generally used in describing PLDs.

Several types of PLDs can be modeled as an AND plane that connects to an OR plane. Figure 12.3(a)

shows a model of such a circuit. This can most accurately be considered a model of a programmable

logic array because both the AND plane and OR planes are programmable. In other words,

programming the device is a matter of removing the unwanted fuses.

Figure 12.3(b) shows another similar device, the programmable array logic, or PAL. This device is

noticeably similar to the PLA but the connections in the OR plane are programmed in the factory, or

masked programmed, and thus cannot be reprogrammed by you the user. The important thing to note

here is that both of these devices have AND planes and OR planes. As you already know, we can use

AND/OR circuit forms to implement function (recall the AND/OR function forms). What these PLDs

provide is a single device that can implement many different functions simultaneously which

subsequently reduces the need for discrete logic ICs on a given PCB.

The reality is that these simple models for PLDs are no longer overly accurate. Yeah, some modern

PLDs contain AND and OR planes, but many have other styles of internal architecture
11

. Moreover, the

models shown in Figure 12.3: are very simple models. Even the simplest of AND/OR-based PLDs

contain more logic than is listed in these diagrams. If this raises your curiosity, I suggest you do some

product searches.

11

 In this context, architecture refers to the internal structure of the device.

Digital McLogic Design Chapter 12

 215

(a) (b)

Figure 12.3: A PLD with all the fuses in place (all connections made) (a), and a PLD containing an OR plane

that has been factory-programmed (b).

12.4 Simple PLD Function Implementations

Let’s take a look at one example PLD and analyze the functions it implements. Figure 12.4 shows an

example PLD. Although the functions it is implementing have no real meaning, we can still analyze it

to verify we have the PLD analysis technique down. The X’s in the AND plane of Figure 12.4 indicate

connections are made and thus form the literal inputs to the individual AND gates. The outputs of the

AND gates in the AND plane form the product terms used in the final function. Once again, the X’s

represent the fuses that have not been removed by programming the device. The dots in the OR plane

represent connections to the OR gates below. The column of AND gates implements a bunch of product

terms. The row of OR gates implement SOP functions as they sum the product terms from the AND

array. Figure 12.5 lists the four functions that the PLD in Figure 12.4 implements. Don’t get overly

excited about these equations; they certainly do not represent anything intelligent.

Not listed in Figure 12.4 or Figure 12.5: are the output options that are typically included with PLDs. In

an effort to make the devices more functional, the outputs are generally available to be fed back to serve

as inputs to other functions. This somewhat more complex type of circuitry allows the devices to

implement a greater number of functions as well as functions that are more complex. Not all PLDs

architectures share this functionality; I mention it here just in case it may matter. The truth is that these

types of PLDs can have complex architectures, which are way beyond this discussion.

Digital McLogic Design Chapter 12

 216

Figure 12.4: Typical model of a PAL.

DCBCACF 1 BCAF 2 DBCF 3 AACF 4

Figure 12.5: The Boolean functions implemented by the PAL of Figure 12.4.

12.5 Other Types of PLDs

Another major type of PLD is referred to as a complex programmable logic devicee, or CPLD, and the

field programmable logic device, or FPGA. These two types of devices also have completely different

architectures than the PAL shown in Figure 12.4. The CPLD does typically contain structures that can

be categorized as AND/OR arrays while the FPGA generally does not. You’ll study these devices in

further detail in other courses; there is not too much worth saying about them now.

The idea behind the CPLD is to put a bunch of PLDs on a chip and give them the ability to talk with

one another. The PLD-like part (AND/OR array) is referred to as a logic block and are connected to one

another through programmable interconnects. It is the programmable interconnects that give the CPLD

flexibility and efficiency. Figure 12.6 shows a generalized architecture of a CPLD; note that each of the

logic blocks shown in Figure 12.6 can be considered a single PLD. The I/O blocks shown in Figure 12.6

are also configurable (opposed to programmable) to include pull-up resistors and other fun-type things

that are generally associated with digital outputs and serve to extend the flexibility of the device.

Digital McLogic Design Chapter 12

 217

Figure 12.6: General diagram of CPLD.

The notion of configurability is different from programmability in that it allows you to select from a list

of pre-defined options as opposed to creating your own options, as is the case with programmability
12

.

Generally speaking, programming refers to the ability to configure various logic on the device while

configurability refers to selecting various options in or associated with the device
13

.

Figure 12.7 shows an expanded view of the logic blocks. As you can see, a logic block is comprised of

an AND/OR array which is connected to a macrocell. Macrocells are an important part of CPLDs they

have significant functionality and are fully programmable which makes modern CPLDs massively

powerful. The macrocells provide polarity control and output level adjustment among other things.

Often times, the measure of a CPLD’s capacity
14

 is provided in terms of macrocells.

Figure 12.7: Logic Block and its relation to PIs and I/O.

In the end, designing with PLDs allowed the designer to shift focus from making sure all the ICs on

your board were talking to each other to producing a circuit that satisfied the design description.

12

 A good analogy is going to a restaurant vs. going to a buffet. You get to roll your own in the buffet and create

whatever you want (programmability of the logic) while in a normal restaurant, you pick between a set number of

selections. What a stupid analogy.
13

 Generally speaking, you can configure the device by selecting options in the accompanying software used to

select internal logic and program the device.
14

 Generally, capacity refers to how much logic is contained on a PLD. Due to several factors, not all of the logic

can be used in many cases.

Digital McLogic Design Chapter 12

 218

12.6 Final Comments on PLDs

Once again, this has been a brief introduction to PLDs and many details are missing. In truth, modern

PLDs are amazingly powerful and complex devices. The internal architectures of these devices make

them useful in many applications. Keep in mind that some PLD (namely FPGAs) also contain devices

such as complete computers as part of their architectures. The complexity of and versatility of these

devices has opened up at least two new markets for them. The point here is that PLDs have come a long

way since only being able to implement a few functions; now they are able to implement large and

complete digital systems.

Rapid Prototyping: FPGAs are typically used quickly develop prototype systems before the

“real” system is in place. This means you can test the feasibility of a design while you’re

waiting for a chunk of silicon. This notion also supports a fast time-to-market if you’re

planning on having a design using FPGAs on the final product.

Device Verification: Because most ICs these days are first modeled in hardware description

languages, the same models can first be used to configure FPGAs in order to test the models in

real hardware. The idea here is to do everything humanly possible to verify your design is

going to function properly before you send the device off to the fab
15

. Keep in mind, it costs a

million bucks or so to have a device fabbed; in addition, even a rush fab order requires six

weeks or so to complete.

The size of PLDs is always a confusing issue. While there are many ways to state the size of a PLD, not

all of these ways are 100% honest. First, the act of transferring your design from a model (such as

VHDL) to the actual device can be extremely complex. The development software must interpret your

model in such a way as to implement its functionality on a PLD. The problem is that there are many

ways to interpret models and there are many ways to place that model onto an actual PLD.

Consider this notion: you have a design that you want to go onto an FPGA and you’re going to make a

1000 of these units. You want to maximize your profits by spending as little money as possible on the

FPGA, so you want to choose the smallest FPGA you can and still have your design fit onto it. The

notion of fitting a particular design onto an FPGA is something that many people have dedicated their

lives to doing better. In addition, if you’re a company that writes the development software, you want it

to be able to implement designs in as small of a footprint as possible on the FPGA; the better you can

do this, the more people will purchase your devices over a competitor’s device. Having crappy software

means that you’ll have to spend more and buy a larger FPGA. Therefore, size does matter, which means

the software determining size matters also
16

.

The other confusing issue regarding the capacity of PLDs is the notion of routabilty. In typical PLD

architectures, you have chunks of logic that talk to other chunks of logic; this conversation is done via

the “routing resources” contained as part of the internal architecture of the PLD. In reality, if your

device has X amount of logic resources, it will be impossible to use all of these resources in your design

because of resource constraints presented by routing resources. Once again, the better the software can

place and route your model onto the fabric of the PLD, the greater amount of logic you’ll be able to use

on your device.

15

 This is a shorthand term for “fabrication facility”, a place where they create ICs from random chunks of silicon.
16

 This should make you ask the following question: In development environments that are provided free of charge,

do you really think the free environment is going to do a job creating a small footprint for your design? The answer

is now; typically, these companies want you to buy their expensive development software that contains the secret

sauce you truly desire.

Digital McLogic Design Chapter 12

 219

In case you’re overloaded with acronyms, check out Figure 12.8. This figure shows that all of the

different programmable devices discussed in this chapter are forms of PLDs. There are actually many

other types out there not listed in Figure 12.8 as this is a modern digital logic textbook and not a history

of technology textbook. One thing worthy of note here is that, generally speaking, every company out

there has its own particular PLD architecture. This being the case, if you become an expert on one

company’s PLD, you won’t necessarily know squat about another company’s PLD.

Figure 12.8: A Venn diagram showing the relationship between various PLDs.

Digital McLogic Design Chapter 12

 220

Chapter Summary

 Programmable logic devices are a relatively new area in digital design. Although early PLDs were

simple devices, modern PLDs are massively functional to the point of being the defining device of

digital design. PLDs are world of their own and are massively complex at the gate level. Software

tools, however, allow modern digital designers to bypass the low-level details of PLDs and

implement circuits on a higher level.

 Common types of PLDs include PALs, PLAs, ROMs, CPLDs, and FPGAs. Check the list of terms

for a complete description of these acronyms.

Digital McLogic Design Chapter 12

 221

Chapter Exercises

1) Is it possible to utilize all the logic resources on a typical PLD? Why or why not?

2) Would it be possible to implement a RCA on a PLD that contained only a simple AND and OR

plane? Briefly discuss the issues involved.

3) List the Boolean expression implemented by the PLD on the left. Implement the following Boolean

expression for the PLD on the right:

ABCCBA C ABF5

CA BC BAF6 ,

)7,6,5,3,2(C)B,F7(A,

)11,10,5,4,3,2(D)C,B,F8(A,

Digital McLogic Design Chapter 12

 222

4) List the Boolean expression implemented by the PLD on the left. Implement the following Boolean

expression for the PLD on the right:

 CDA DB DCBA DCA DB F5

CA CA DCA DB DACF6

BC CDA DB DCBA CAF7

BC DCBA DCA DB F8

Digital McLogic Design Chapter 12

 223

5) List the Boolean expression implemented by the PLD on the left. Implement the following Boolean

expression for the PLD on the right:

BC D CBAF5

CA CBF6

DABC CAF7

D AF8 .

 - 225 -

 - 227 -

13 Chapter Thirteen

(Bryan Mealy 2012 ©)

13.1 Chapter Overview

One of the major uses for digital logic design is creating circuits that perform mathematical-type

operations. The foundation of digital knowledge that you’ve built up to now is sufficient to introduce

the topic of binary number representations and conversions between representations in the context of

arithmetic-type circuit design. The concepts presented in this chapter allow you to move closer to

designing some reasonably interesting circuits and useful circuits (but not that close).

Main Chapter Topics

 NUMBER SYSTEMS: This chapter reviews previously presented number systems and

describes hexadecimal and octal numbers.

 CONVERSIONS BETWEEN MIXED RADII: This chapter describes basic algorithms to

convert between presented number systems.

Why This Chapter is Important

This chapter is important because a significant portion of digital design deals with

numbers and their various representations. Understanding of these representations,

including conversions between representations, will help all digital designers

13.2 Number Systems

A previous chapter presented a general overview of number systems. Although there are definitely

many number systems out there, you’ll only need to directly know two of them in order to master

digital design: decimal and binary. The good news is that you probably already know decimal
148

. The

less than good news is that you need to become fluent with binary since it’s the only number system

that digital hardware understands. The bad news about binary is that it is sometimes a pain in the ass to

work with. However, the good news about working with binary is that there is some help available. The

bad news is that in able to get that help, you have to learn the hexadecimal (radix=16) and octal

(radix=8) number systems in order to aid you in your work with binary numbers. It’s not all that bad.

It’s actually sort of fun. But more importantly, the skills you develop working with these number

148

 Unless of course you’re aspiring to be some type of academic administrator; in that case, even decimal is

challenging to you. Those who can, do; those who can’t, well, they become academic administrators.

Digital McLogic Design Chapter 13

 - 228 -

systems is something you constantly use in digital design, computer science, computer engineering, and

bowling.

13.2.1 Hexadecimal Number System

The hexadecimal number system contains sixteen numbers in its associated ordered set of symbols. The

first ten numbers are the same as decimal numbers, but the last six are somewhat new. Since there are

no more unique decimal numbers to act as the final six numbers in the hexadecimal number system, it is

customary to switch to alpha characters. In other words, we use the letters AF to represent the hex

numbers 10-15. Table 13.1 shows the hexadecimal numbers along with the associated decimal and

binary numbers (in 4-bit format).

13.2.2 Octal Number System

The octal number system contains eight numbers in its ordered set of symbols. Since there are less than

the ten standard numbers in the decimal system, there is no need to use alpha characters as we did for

hexadecimal numbers. The thing of interest here is that once we run out of symbols in the octal number

system (as we do for numbers greater than seven), we draw on that familiar juxtapositional notation

where we start placing the numbers side by side. Table 13.1 shows this characteristic for several

important digital radii. Convince yourself that this carry over notation is similar to the decimal number

system but the carry over occurs at eight rather than at ten.

The importance of memorizing the first three columns of Table 13.1 cannot be overemphasized. The

faster you have this stuff memorized, the better off you’ll be in your digital design or computer science

(or bowling) career in general. I would suggest you make some flash cards and use them for a few

minutes per day. It’ll be time well spent; you won’t regret it.

(base 10)

Decimal

(base 2)

Binary

(base 16)

Hexadecimal

(base 8)

Octal

0 0000 0 0

1 0001 1 1

2 0010 2 2

3 0011 3 3

4 0100 4 4

5 0101 5 5

6 0110 6 6

7 0111 7 7

8 1000 8 10

9 1001 9 11

10 1010 A 12

11 1011 B 13

12 1100 C 14

13 1101 D 15

14 1110 E 16

15 1111 F 17

Table 13.1: Numbers that every digital designer need to memorize really soon.

Digital McLogic Design Chapter 13

 - 229 -

13.3 Number System Conversions

The reality is that we humans think in decimal but computers and other digital devices operate strictly

in binary. This means we’ll need to be able to translate between the various number systems typically

associated with digital design. What you see in this section is that we humans use hex and octal

numbers to simplify the representation of binary number. The use of hexadecimal is purely an aid for

humans to handle long strings of 1’s and 0’s that digital circuitry requires. VHDL readily understands

hexadecimal, which is yet another added bonus. While digital design uses hex notation quite often, octal

numbers are much less useful.

13.3.1 Any Radix to Decimal Conversions

A previous chapter covered a majority of this topic for this information will partially be review. As a

reminder to you, the digit positions in any number using juxtapositional notation have weights

associated with them. The associated number multiplies the weights in order to generate the final

number. There were few examples in an earlier set of notes for decimal and binary; below are two

examples for octal and hex numbers, respectively.

Example 13-1: Octal-to-decimal conversion

Convert 372.318 (octal) to decimal

Solution: Example 13-1 is an example of octal-to-decimal conversion; Table 13.2 shows the solution to

Example 13-1.

Decimal Value

of Digit Weight
64 8 1 0.125 0.015625

Radix

Exponential
8

2
 8

1
 8

0
 8

-1
 8

-2

Positional Value
3 x 64

(192)

7 x 8

(56)

2 x 1

(2)
.

3 x 0.1

(0.4)

1 x 0.015625

(0.015625)

 Radix Point

Final answer: 192 + 56 + 2 + 0.4 + 0.015625 = 250.415625

Table 13.2: The solution to Example 13-1.

Digital McLogic Design Chapter 13

 - 230 -

Example 13-2: Hexadecimal-to-decimal conversion

Convert 1CE.A416 (hexadecimal) to decimal.

Solution: Table 13.3 provides the solution to Example 13-2. As you can see, the solution is strangely

similar to Example 13-1.

Binary Value of

Digit Weight
256 16 1 0.0625 0.003906

Radix

Exponential
16

2
 16

1
 16

0
 16

-1
 16

-2

Positional Value
1 x 256

(256)

12 x 16

(192)

14 x 1

(14)
.

10 x 0. 0625

 (0.625)

4 x 003906

(0.015625)

 Radix Point

Final answer: 256 + 192 + 14 + 0.0625 + 0.003906 = 462.066409

Table 13.3: The solution to Example 13-2.

13.3.2 Decimal to Any Radix Conversion

Converting numbers from decimal to a number system of any radix can use one of many different

algorithms. This section examines the most straightforward algorithm for humans. Although this

approach will work for converting decimal to any base, we’ll only be looking at decimal to binary

conversion in this section. The best bet if you need to do conversions such as these is to use a

calculator.

The decimal to binary conversion will be the conversion you use most often. In addition, since this

method involves repeated division, it becomes very painful to make these conversions for anything

except decimal to binary conversions. There are actually two parts to this approach; one for the integral

portion and fractional portions of numbers.

As motivation for converting the integral portion of decimal number to binary, let’s first convert a

decimal number to a decimal number (don’t worry, it actually proves a point). The approach we’ll take

is to divide the number multiple times by the radix value. Example 13-3 provides an overview of this

division process.

Example 13-3: Decimal-to-decimal conversion

Convert 487 to decimal.

Solution: Table 13.4 shows the solution to this example. The solution comprises of repeated divisions

with the top row of table being the first division.

Digital McLogic Design Chapter 13

 - 231 -

487 ÷ 10 = 48 Remainder: 7 LSD = 7

48 ÷ 10 = 4 Remainder: 8

4 ÷ 10 = 0 Remainder: 4 MSD = 4

Table 13.4: Decomposing an integral decimal number into a decimal number.

From Example 13-3, you can see that the repeated division by the radix value decomposes the original

value into its individual weighted components. The first value that was generated by using this

algorithm was the least significant digit (LSD) which was the remainder after the first division. The

final value generated by this algorithm is the most significant digit (MSD). If you were to reassemble

the number with the MSD on the left and the LSD on the right, you would get the original number back.

Wow!

Although this example was somewhat funny because it did no actual conversion, it proves that the

algorithm is valid and it will work when transferring from decimal to a number of any radix value.

Example 13-4 shows an example of a decimal-to-binary conversion while an even more meaningful

example appears in Example 13-5. Note that in both of these examples that we’re using the terms LSB

and MSB. These are common digital design terms and stand for Most Significant Bit (MSB) and Least

Significant Bit (LSB). Not surprisingly, the technique is referred to as repeated radix division (RRD).

For those brave enough to try, it truly does work for any radix.

Example 13-4: Decimal-to-binary conversion

Convert 12 to binary.

Solution: Table 13.5 shows the solution to this example in a series of steps starting with the top row of

the table.

12 ÷ 2 = 6 Remainder: 0 LSB = 0

Final Answer:

1210 =11002

6 ÷ 2 = 3 Remainder: 0

3 ÷ 2 = 1 Remainder: 1

1 ÷ 2 = 0 Remainder: 1 MSB = 1

Table 13.5: The solution to Example 13-4: Decomposing a decimal number into a binary number.

Example 13-5: Decimal-to-binary conversion.

Convert 147 to binary.

Solution: Table 13.6 shows the solution to this example in a series of eight steps starting with the top

row of the table being the first step.

Digital McLogic Design Chapter 13

 - 232 -

147 ÷ 2 = 73 Remainder: 1 LSB = 1

Final Answer:

14710 =100100112

73 ÷ 2 = 36 Remainder: 1

36 ÷ 2 = 18 Remainder: 0

18 ÷ 2 = 9 Remainder: 0

9 ÷ 2 = 4 Remainder: 1

4 ÷ 2 = 2 Remainder: 0

2 ÷ 2 = 1 Remainder: 0

1 ÷ 2 = 0 Remainder: 1 MSB = 1

Table 13.6: The solution to Example 13-5; decomposing a yet larger integral decimal number into

a yet larger binary number.

As a motivational example for converting the fractional portion of a number to some other base, let’s

first convert a fractional decimal number to decimal number. Yes, this too has a point. The approach

we’ll take is to multiply the number repeatedly by the radix value and see what the result is. In each

step, we’ll peel off the newly created integral portion of the number and put it aside. Example 13-6

provides an overview of this algorithm. Note from the result shown in Example 13-6 that the first

integral result is the MSD of the original number. The final value we obtain is the LSD of the original

number. This algorithm is referred to as repeated radix multiplication (RRM). Example 13-7 and

Example 13-8 show two more somewhat worthy examples of this algorithm at its finest.

There are two key points about the example shown in Example 13-8. First, as opposed to the example

shown in Example 13-7, the example in Example 13-8 does not appear to end. For the sake of sanity in

this example, we decided to end the pain after four iterations of the algorithm. Stopping the algorithm

after four iterations is arbitrary; doing four iterations was boring enough. The other key point about this

example is that the answer we obtained is no longer a proper equation. In reality, since our conversion

never ended as nicely as the example of Example 13-7, we must use the approximation symbol to

indicate that the equality was not preserved. Also, note that all of these examples use a subscripted two

to indicate that the converted number is in a binary representation. Without this subscription, we would

have to interpret this number as decimal thus pissing off the digital goddesses.

Example 13-6: Decimal-to-decimal conversion (fractional)

Convert 0.243 to decimal.

Solution: Table 13.7 shows the solution to this example in a series of eight steps starting with the top

row of the table.

0.243 × 10 = 2.43 remove the 2 MSD = 2

0.43 × 10 = 4.2 remove the 4

0.3× 10 = 3.0 remove the 3 LSD = 3

Table 13.7: Solution to Example 13-6: Decomposing a fractional decimal number into a decimal

number.

Digital McLogic Design Chapter 13

 - 233 -

Example 13-7: Decimal-to-binary conversion (fractional)

Convert 0.375 to binary.

Solution: Table 13.8 shows the solution to this example in a few steps starting with the top row of the

table being the first step.

0.375 × 2 = 0.75 remove the 0 MSB = 0

0.375 = 0.0112 0.75 × 2 = 1.50 remove the 1

0.5 × 2 = 1.0 remove the 1 LSB = 1

Table 13.8: Solution to Example 13-7: Decomposing a fractional decimal number into a binary

number.

Example 13-8: Decimal-to-binary conversion (fractional)

Convert 0.879 to binary.

Solution: Table 13.9 shows the solution to this example in a few steps starting with the top row of the

table being the first step.

0.879 × 2 = 1.758 remove the 1 MSB = 1

0.879 ≈ 0.11102
0.758 × 2 = 1.516 remove the 1

0.516 × 2 = 1.032 remove the 1

0.032 × 2 = 0.064 remove the 0 LSB = 0 (?)

Table 13.9: Solution to Example 13-8; decomposing a fractional decimal number into a binary

number.

13.3.3 Binary ↔ Hex Conversions

Although binary is the official language of digital circuits, it is problematic to look at the seemingly

endless strings of 1’s and 0’s that form binary numbers. The problem is that our minds don’t easily

recognize a large string of bits too well. As an example of this, consider the fact that nine bits looks a

lot like eight bits at a quick glance. To get around this dilemma, we use hexadecimal and octal

representations for binary numbers wherever possible. This makes the numbers much more readable;

the conversion process is also quite friendly.

The key to converting between binary and hex numbers is to note that a single hex number can

represent a group of four binary numbers (and vice versa). This works because both binary and hex

numbers are powers of two, which allows for the individual weightings of the numbers to be powers of

two also. The conversions shown in Example 13-9 and Example 13-10 highlight the relationship

between the group of fours in the context of a binary-to-hexadecimal conversion and a hexadecimal-to-

binary conversion, respectively.

Digital McLogic Design Chapter 13

 - 234 -

There are a few special items to note in these examples.

 In Figure 13.1 the leading zeros in the number were omitted. Since zero has no value, you can

ignore them (but don’t forget they’re not there).

 Zeros are added to the end of the fractional portion of the number (commonly referred to as

bit-stuffing). A common mistake is to see that final ‘1’ in the fractional portion of the number

think that is equivalent to a binary ‘1’. This is not the case; actually the number has the weight

associated with the MSB of a 4-bit binary number. In other words, the final bit is associated

with a hexadecimal ‘8’ and not ‘1’. Be careful to not make this error.

 Note that in these examples the numbers have the radii clearly indicated thus indicating

mastery of the subject matter at hand.

Solution: Figure 13.1 shows the solution to Example 13-9.

1100110.101012 = 66.A816

Figure 13.1: The solution to Example 13-9.

Example 13-10: Hexadecimal-to-binary conversion

Convert D37.AC16 to binary.

Solution: Figure 13.2 shows the solution to Example 13-10.

D37.AC16 = 110100110111.101011002

Figure 13.2: The solution to Example 13-10.

Example 13-9: Binary-to-hexadecimal conversion

Convert 1100110.101012 to hexadecimal.

Digital McLogic Design Chapter 13

 - 235 -

13.3.4 Binary ↔ Octal Conversions

Converting between binary and octal numbers is similar to the binary-to-hex conversion. While the

binary-to-hex conversions use the “group of fours” approach, the binary-octal conversions use the

“group of threes” approach. Once again, this method works because we’re transferring back and forth

between radii related by powers of two. The “group of threes” approach is inherent the same as the

“group of fours” approach so less comment is provided there. The key here is to bit-stuff the fractional

portion of the binary number being converted so that you don’t make a mistake in the weighting.

Example 13-11: Binary-to-octal conversion

Convert 1101101.110112 to octal.

Solution: Figure 13.3 shows the solution to Example 13-11.

1101101.110112 = 155.668

Figure 13.3: The solution to Example 13-11.

Example 13-12: Octal-to-binary conversion

Convert 241.328 to binary

Solution: Figure 13.4 shows the solution to Example 13-12.

241.328 = 10100001.011012

Figure 13.4: The solution to Example 13-12.

Digital McLogic Design Chapter 13

 - 236 -

13.4 Other Useful Codes

Using binary patterns to represent numbers is a major field of study in modern engineering. Generally

speaking, binary codes are generated in order to efficiently represent some given information. In that we

currently live in the information age, there are literally and endless number of binary codes in use.

Moreover, there’s nothing to stop you from generating your own binary code just for the heck of it.

Despite the fact that there are such a great number of binary codes in use today, a few highly useful

codes are worth looking at. These are the binary coded decimal and unit distance codes.

13.4.1 Binary Coded Decimal Numbers (BCD)

You’re about to learn several different common ways of representing numbers using binary codes. In

this context, the word “code” refers to the interpretation of a set of bits. Up until this point, if you were

to see a bunch of bits, you would naturally think about juxtapositional notation and the weights of the

numbers, which happen to be powers of two (the radix for binary). For example, going from the radix

point and moving to the left, the weights associated with each bit position are increasing powers of two.

As you’ll soon find out, this is only true for unsigned binary numbers in one particular format; we’ll

need many more representations to be fluent in digital-land.

Binary coded decimal (BCD) numbers are somewhat similar to the group of fours so we’ll talk about it

in this section. The goal is to have a unique set of bits to represent each of the digits in the decimal

system. Since there are ten different numbers in the decimal system, we’re going to need at least four

bits to uniquely represent each of the digits. We could not represent the set of decimal numbers with

three bits because with three bits, we only have eight different unique bit patterns which is not be

sufficient to represent the ten symbols in the decimal number system. On the other hand, there is

nothing stopping us from using more than four bits to represent the digits but that would end up have

lots of unassigned codes. As it is, there are sixteen different bit combinations possible with four bits,

which results in six of the bit combinations not used when representing the set of decimal digits
149

.

Table 13.10 shows the four-bit code words and the decimal digits they represent. Note that these are the

same as the group of fours approach for the first ten rows. After that, we run out of decimal digits and

then have to take our shoes off.

149

 Although these six combinations are often used to represent “numbers” 10-15 hexadecimal.

Digital McLogic Design Chapter 13

 - 237 -

Decimal BCD Code

0 0000

1 0001

2 0010

3 0011

4 0100

5 0101

6 0110

7 0111

8 1000

9 1001

- 1010

- 1011

- 1100

- 1101

- 1110

- 1111

Table 13.10: The decimal digits and their associated BCD codes.

The primary role of BCD numbers is to represent decimal number on certain types of displays in

devices that are able to display decimal numbers. For now, let’s do a couple of examples. As you’ll see,

this is similar to stuff you’ve already done. Example 13-13 and Example 13-14 provide two examples

of these conversions. One thing to note from these examples is that these representations generally

show the leading zeros in the BCD numbers. In addition, these two figures have slight spaces between

the bits to somewhat group them into groups of four bits, which is shown only to help you read these

numbers late at night.

Example 13-13: BCD-to-decimal conversion

Convert 011001111000 (BCD) to decimal.

Solution: Figure 13.5 shows the solution to Example 13-13.

011001111000BCD = 678

Figure 13.5: The solution to Example 13-13.

Digital McLogic Design Chapter 13

 - 238 -

Example 13-14: Decimal-to-BCD conversion

Convert 396 to BCD.

Solution: Figure 13.6 shows the solution to Example 13-14.

396 = 001110010110BCD

Figure 13.6: The solution to Example 13-14.

13.4.2 Unit Distance Codes (UDC)

The concept of “distance” in digital-land has a special and relatively simple meaning. When you see the

word distance, it’s usually in the context of “the distance between two code words”. What this implies

is that you have a given set of binary code words of equal length; the set of codes also has a specified

sequence
150

. In this context, each of the code words is different from all of the other code words in the

set. Since this set of code words now has order, uniqueness, and a specified constant bit-length, we can

talk about the distance between two code words in the set.

An example of a code set would be the binary numbers associated with the decimal range [0,15] which

could be a represented with a 4-bit binary code. Table 13.11 shows an example of a 5-bit binary code.

As you can see from Table 13.11, the distance between two code words is defined as the number of bits

that must be toggled (inverted) to form one code word out of a contiguous code word in the set. Table

13.11 shows a few examples of distance between code words.

Table 13.11: A few examples of “distances” between code words.

Code

Word A

Code

Word B

Distance from

Word A to Word B Comment

00000 11111 5 5 bits must be toggled

01110 00110 1 Toggle second bit from right

00111 11100 4 Toggle outer two bits

A unit distance code (UDC) is a set of code words where the maximum distance between any two

sequential code words is one. In other words, to get from one code word to the next code word in the

sequence, you only need to toggle one bit. UDCs are quite important in several areas of digital-land.

You’ve already been exposed to UDCs but don’t worry about going to the health center to have yourself

checked-out or anything like that. We essential changed the cell numbering in a K-maps in order to

obtain unit distance ordering on both the rows and columns which allowed the Adjacency theorem to be

applied in a visual manner.

150

 Keep in mind that the standard binary count you’re used to using is somewhat arbitrary.

Digital McLogic Design Chapter 13

 - 239 -

There is actually a science to creating UDCs but we’ll not go into that here. Just know where you hear

the words “unit distance” that it’s describing a relationship between two binary number used to

represent something of importance. Also good to note here is that a special form of UDCs are Gray

Codes. Often times when people mention Gray and Unit Distance codes, they’re actually referring the

unit distance property and not the special characteristics associated with Gray codes
151

. Table 13.12 lists

a few examples of UDCs.

2-bit UDC 4-bit UDC 8-bit UDC

00

01

11

10

0001

0011

0111

1111

1110

1100

1000

0000

10000001

11000001

11000011

11100011

11100111

01100111

01100110

00100110

00100100

00000100

00000000

10000000

Table 13.12: Examples of 2, 3, and 8-bit UDC codes.

151

 I simply can’t remember what they are right now.

Digital McLogic Design Chapter 13

 - 240 -

Chapter Summary

 Hexadecimal (base 16) and octal (base 8) are two of the primary number systems commonly used

and associated with digital design. Hexadecimal is the more popular representation.

 Conversion between numbers used in digital design is often required. The important most common

conversions are decimal-to-binary, binary-to-decimal, octal-to-binary, binary-to-octal,

hexadecimal-to-binary, and binary-to-hexadecimal. Each of these conversions uses special

algorithms.

 Binary coded decimal (BCD) and unit distance codes (UDCs) are two of the commonly used binary

codes in digital logic.

Digital McLogic Design Chapter 13

 - 241 -

Chapter Exercises

1) Explain briefly but fully why the group of four approach works for converting number between

hexadecimal and binary representations.

2) Convert 2AF6.E716 to octal.

3) Convert 721.328 to hex.

4) Convert 312BCD to binary.

5) Convert 789BCD to hexadecimal.

6) Convert 100111102 to BCD.

7) Convert B3C16 to BCD.

8) Multiply 101011011.112 by 8.

9) Divide 4573.2348 by 64.

10) Divide 1AF.3D16 by 8.

11) Multiply 345.728 by 4.

12) What is the minimum radix value of the following number?: 145.801

13) What is the minimum radix value of the following number?: BA.123

14) Which of these two positive numbers is greater? 533.558 or 15B.B16

15) Which of these two positive numbers is greater? 1F3.E16 or 499.7510

16) Assemble these numbers into a gray code sequence: 111, 000, 110, 011, 001, 100.

Digital McLogic Design Chapter 13

 - 242 -

17) Can the follow set of number be made to form a gray code?:

0011, 0110, 1100, 0111, 1111, 1110, 0001.

18) What is the maximum distance between any two of the following numbers?

0011, 0110, 1100, 0111, 1111, 1110, 0001.

19) In the table below, cross out one code word from each column to make the code shown in the

column into a unit distance code. These two columns represent two separate unit distance codes.

0000

0010

0110

1110

1111

1100

1101

1001

0001

00000

10000

10001

11001

11011

10111

10011

10010

00010

20) Create a 6-bit unit distance code that contains at least eight unique code words. The first code

word should be a unit distance from the last code word (circular).

21) In the table below, add one code word to each column to make the code shown in the column into a

unit distance code. Add the required code words only in the rows indicated with arrows. These two

columns represent two separate unit distance codes – your answer will not necessarily be the same

code word for each code.

0000

0100

0110

0010

0011

1111

1110

1100

1000

0000

0001

0011

0111

0110

1100

1000

Digital McLogic Design Chapter 13

 - 243 -

22) The table below shows five binary codes. Circle the codes that are unit distance codes.

000

001

011

111

110

100

0000

1000

0100

0010

0001

0000

0001

0011

0010

0110

0100

1100

1000

01000

01001

01011

01111

11111

01111

01110

01100

00100

00000

00000

00100

01100

01110

11111

11110

11100

11000

10000

Digital McLogic Design Chapter 13

 - 244 -

Chapter Design Problems

1) Design a unit distance code that contains six code words. The code should be circular in nature and

each code word should be five bits long.

2) Design a circuit that converts a 2-digit BCD number into a 7-bit binary number. If you use

something other than a standard digital module in your design, be sure to provide a model for your

creation. For this problem, you can assume the BCD number is between [0,15].

 - 245 -

14 Chapter Fourteen

(Bryan Mealy 2012 ©)

14.1 Chapter Overview

Now that you’re more comfortable with number systems and various manipulations of number in

various radii, it’s time to delve into the details of doing math with binary numbers. While this

introduction is far from being complete, it will provide you with the background you can use as a

starting point for doing more exciting math operations using digital circuits.

Main Chapter Topics

 BINARY NUMBER REPRESENTATIONS: This chapter presents common

representations of signed binary number. These representations include sign

magnitude, radix complement, and diminished radix complement.

 BINARY ARITHMETIC: This chapter presents the basics of binary arithmetic using

signed and unsigned binary numbers. The emphasis is on fixed number lengths and

detection of result validity after mathematical operations.

Why This Chapter is Important

This chapter is important because is describes the basic representations of signed and

unsigned binary numbers. In addition, this chapter describes mathematical operations

(addition and subtraction) on binary numbers, which form the basis of many digital

circuits.

14.2 Signed Binary Number Representations

As you probably know by now, computers only have the ability to represent numbers with ones and

zeros. This is all fine and good for positive numbers but is seemingly inadequate for negative numbers.

There is of course no problem when you’re simply writing numbers on a piece of paper because all you

need to do is drop a “-“ in front of the number and everyone agrees that such a number is a “negative”

number. The other accepted numerical tradition is that when the number is positive, a “+” sign usually

does not appear in front of the number. Sadly enough, computers generally don’t rely on tradition in

order to do what they do. The reality is that computers don’t have an easy and efficient way to place a

“-“ sign front of numbers that are meant to be interpreted as negative. But alas, there is hope.

This section presents an overview of representing signed numbers using only the set of symbols

associated with the binary number system (namely 1’s and 0’s). There are three standard methods used

to represent signed numbers in binary notation; each of these representations has their good and bad

points, which we’ll discuss later. Once we introduce these representations, we’ll concern ourselves with

Digital McLogic Design Chapter 14

 - 246 -

the issues regarding the number ranges of these signed representation and standard mathematical

operations with the most common of these representations.

14.2.1 Representing Signed Numbers in Binary Notation

There are actually an infinite number of ways to represent signed numbers using binary notation. You

can make up any number of ways and they would be just as valid as any other way
152

. However, there

are a few standard ways used to represent signed binary numbers, which we’ll discuss in this section. In

particular, there are three representations of interest: sign magnitude (SM), diminished radix

complement (DRC), and radix complement (RC). The reality is that the most widely used is RC notation

but we’ll be working with all three and classify the work we do with the less used notations as a wicked

academic exercise.

Before we start, let’s exploit the similarities between these three representations. Keep in mind that we

only have the option of using ones or zeros to represent negative numbers. The easiest and most

efficient approach to represent sign numbers is to use a single bit, such as a ‘1’, to indicate that a

particular number is negative. The key to this method is to agree upon a standard location for this bit.

The accepted position of this bit is in the most significant bit position (highest weighting or left-most)

of the given number. Once again, the most significant bit position is generally the left-most bit position;

this position is commonly referred to as the MSB position, which not surprisingly stands for “most

significant bit”. This effectively separates the number into a bit that represents the sign and some bits

that represent the magnitude.

The MSB in every signed number representation we discuss in this chapter is the sign bit. If the sign bit

is a ‘1’, then the number is interpreted as negative with the magnitude being represented by the

magnitude bits. If the sign bit is a ‘0’, the number is a positive number with a magnitude represented by

the magnitude bits. Figure 14.1 provides a visual representation of the bit positions of the sign and

magnitude bits.

Figure 14.1: Some generic nine-bit number that is interpreted as being signed.

14.2.2 Sign Magnitude Notation (SM):

Sign Magnitude, or SM, s the most straight-forward of the three notations because SM notation closely

resembles the original model of signed numbers presented in the previous paragraph. In SM notation,

the sign bit indicates the sign of the number and the other bits represent the magnitude of the number.

Table 14.1 listed everything you may want to know about tweaking SM numbers.

152

 Administrators do this all the time.

Digital McLogic Design Chapter 14

 - 247 -

Operation Procedure

Multiply number by -1 toggle (change state) the sign bit

Convert positive SM to

decimal equivalent
apply binary-to-decimal conversion on magnitude bits

Convert negative SM to

decimal equivalent

1) note that the number is negative

2) do binary to decimal conversion on magnitude bits

3) add in minus sign (from step 1)

Table 14.1: Standard operations on binary numbers represented in SM.

Example 14-1

Change the sign of the following binary numbers represented in SM:

a) 011000012

b) 1100112

Solution: Changing the sign involves toggling the sign bit and doing nothing to the magnitude bits.

Note that you don’t need to know the decimal equivalents of these binary numbers in order to complete

this problem.

a) 111000012

b) 0100112

Example 14-2

Convert the following binary numbers represented in SM to their decimal equivalents:

a) 011000012

b) 1100112

Solution: a) This number is an 8-bit positive number. The number converts directly to decimal since the

sign bit is zero and thus adds nothing to the final decimal number. The answer is 97.

b) This number is a negative 6-bit binary number. The number is converted to decimal by first noting

that the number is negative and then performing a binary-to-decimal conversion on the magnitude bits.

The magnitude bits are 100112, which represent 19 in decimal. Adding the negative sign complete the

solution: -19.

Digital McLogic Design Chapter 14

 - 248 -

14.2.3 Diminished Radix Complement (DRC)

Diminished Radix Complement representations, or DRC, is best explained by the operations required to

change the sign of the number. Once again, this is a straight-forward matter: toggle all the bits in the

binary number (referred to as a 1’s complement). In DRC notation, the sign bit indicates the sign of the

number and the other bits represent the magnitude of the number (but positive and negative numbers

represent their magnitude’s differently). Table 14.2 lists everything you may want to know about

tweaking DRC numbers.

Operation Procedure

Multiply number by -1 toggle all the bits (1’s complement)

Convert positive DRC to

decimal equivalent
do binary to decimal conversion on magnitude bits

Convert negative DRC to

decimal equivalent

1) note that the number is negative

2) toggle all the bits (1’s complement)

3) do binary to decimal conversion on magnitude bits

4) add in minus sign (from step 1)

Table 14.2: Standard operations on binary numbers represented in DRC.

Example 14-3

Change the sign of the following binary numbers represented in DRC:

a) 011100012

b) 10011012

Solution: Changing the sign involves toggling all the bits. This problem is doable without knowing the

decimal equivalents of the binary numbers.

a) 100011102

b) 01100102

Example 14-4

Convert the following binary numbers represented in DRC to their decimal equivalents:

a) 011100012

b) 1100112

Solution: a) This number is an 8-bit positive number. Conversion to decimal can be done directly using

standard binary-to-decimal conversion techniques since the sign bit is zero and will add nothing to the

final decimal number. The answer is 113.

Digital McLogic Design Chapter 14

 - 249 -

b) This number is a negative 6-bit binary number. Convert it to decimal by 1) noting that the number is

negative, 2) toggling all the bits, 3) doing a decimal-to-binary conversion on the resulting number, and

4) adding the negative sign.

1) Yep, its negative

2) 1100112 0011002

3) 0011002 represents 12 in decimal

4) Adding the negative sign completes the solution: -12

14.2.4 Radix Complement (RC):

RC representation is once again best explained by the operations required to toggle the sign of the

number. This operation is somewhat straightforward yet not as simple as the SM and DRC

representations. In RC notation, the sign bit indicates the sign of the number and the other bits represent

the magnitude of the number. The magnitude bits are once again interpreted differently for positive and

negative numbers. For positive numbers, the magnitude bits are interpreted directly as a simple binary

number. If the number is negative, the magnitude bits are considered to be in a two’s complement

representation. Table 14.3 lists everything you may want to know about tweaking RC numbers.

Operation Procedure

Multiply number by -1 take the two’s complement of the number

Convert positive RC to

decimal equivalent
do binary to decimal conversion on magnitude bits

Convert negative RC to

decimal equivalent

1) note that the number is negative

2) take the two’s complement of the number

3) do binary to decimal conversion on magnitude bits

4) add in minus sign (from step 1)

Table 14.3: Standard operations on binary numbers represented in RC.

Finding the two’s complement of a number can be done by hand in two different ways. The two’s

complement is defined as “one greater than the 1’s complement”. This means that to find the 2’s

complement of a binary number, you toggle all the bits (the 1’s complement) and then add 1 to the

result. Though this works fine, it can sometimes lead to errors since you’ll possibly need to deal with a

carry bit across the span of the number. There is hope though.

The easiest way to find the 2’s complement of a number is to apply the following trick
153

: starting from

the right-most bit in the binary number, examine each bit from right to left. When you encounter a ‘1’,

toggle every bit after the first ‘1’ bit that is found (but don’t toggle the first ‘1’ bit). A few examples of

this will drive the point home. Figure 14.2 shows just about every case you’ll ever hope to run across.

In Figure 14.2, NC stands for “no change” while TOG stands for “toggle”.

153

 This is actually not a trick; it is more of an algorithm.

Digital McLogic Design Chapter 14

 - 250 -

(a) (b)

(c) (d)

Figure 14.2: Four examples showing the 2's complement conversion algorithm.

Example 14-5

Change the sign of the following binary numbers represented in RC:

a) 001101012,

b) 10011012.

Solution: Changing the sign involves taking the two’s complement of the numbers. You don’t need to

know the decimal equivalents of these numbers in order to complete this example.

a) 110010112

b) 01100112

Example 14-6

Convert the following binary numbers represented in RC to their decimal equivalents:

a) 001101012

b) 10011012

Digital McLogic Design Chapter 14

 - 251 -

Solution: a) This number is an 8-bit positive number. Conversion to decimal can be done directly using

standard binary to decimal conversion techniques since the sign bit is zero and will add nothing to the

final decimal number. The answer is 53.

b) This number is a negative 7-bit binary number. Conversion to decimal is done by 1) noting that the

number is negative, 2) taking the two’s complement, and 3) doing a decimal to binary conversion on the

resulting number, and 4) tacking on a negative sign to the result.

1) Yep, by golly, its negative

2) 10011012 01100112

3) 01100112 represents 51 in decimal

4) Adding the negative sign completes the solution: -51

14.2.5 Number Ranges in SM, DRC, and RC Notations

The reality of representing sign numbers in binary is that an extra bit (the sign bit) is used to represent

the sign. It almost seems that this means one less bit can be used to represent the magnitude of the

number and only one-half as many numbers can be represented by the same amount of bits
154

. This is

not exactly the case. The reality is that, generally speaking, the ranges of numbers that are representable

with a binary number shift downwards when a sign bit is used. The resulting range is still the same but

it no longer starts at zero (as it does for an unsigned binary number); the range of a signed binary

number is now centered about zero. Figure 14.3 visually shows what the last few sentences are

attempting to say.

Unsigned Binary Number Range Signed Binary Number Ranges

 SM and DRC

 RC

Figure 14.3: Number ranges for signed and unsigned binary numbers (n=8).

The key to understanding Figure 14.3 is that the letter n represents the number of bits in the binary

value. The smaller numbers in parenthesis in Figure 14.3 shows the number ranges when n=8, which is

a common bit-width in digital-land. The really important thing to notice about Figure 14.3 is the fact

154

 If this does not make sense, think about it for a minute. If there is one bit dedicated to the sign bit, doesn’t that

mean that there is one less bit to have a “weighting” in the number?

Digital McLogic Design Chapter 14

 - 252 -

that with SM and DRC representations, only 2
n
-1 out of the 2

n
 possible values for a given value of n are

representable in those notations. However, with RC, all 2
n
 possible values are represented. This is why

computers commonly use RC for signed binary number representations.

The section that follows is slightly painful. But… if you’re able to grasp the ideas presented in this

section, you’ll be much better off in digital design, computer science, computer engineering, and

croquet. The ideas are not that complicated once you get used to them. In addition, getting use to them

will assuredly give you direct benefits down the line. Keep in mind that just about everyone is weak

when it comes to the notion of 2’s complement math: they get by because they rely on some other entity

to mask their lack of understanding of the concepts. Don’t be one of these people.

14.3 Binary Addition and Subtraction

There are a few recurring topics regarding the addition and subtraction of binary numbers. These topics

are not overly complicated but they can seem somewhat strange when you first encounter them. The

topic of binary arithmetic and computers is a deep subject that many people spend their entire lives

studying. Generally speaking, if you can design a computer to perform efficient mathematical

operations, you’ll have a good computer (based on your definition of good). The problem is that there

are a bunch of trade-offs along the way. Without doubt, you’ll run into some of these topics later in

your digital/computer education but they’re beyond the scope of this discussion. This discussion is

limited to the issues involved with addition and subtraction of signed and unsigned binary numbers.

This discussion lives in the context of how a computer would actually perform addition and subtraction.

Namely, computers are comprised of a fixed set of hardware. What this means to us is that there are

fixed sizes of registers
155

 that can be used to perform the arithmetic operations. In other words, the

precision of the arithmetic performed by the computers is limited to some pre-determined value. For

example, the number ranges shown in Figure 14.3 are based on a fixed register size (and hence, word

length) of eight bits.

The ramifications of a fixed register size is that your mathematical operations must stay within these

limits if want the bits representing the result of your operation to be valid. The reality is that if you stay

within these limits, your fixed result will be valid; if you exceed the limits of the data you’re using,

you’re answer will be invalid. The crux of this discussion is that you’ll want to know when you’ve

exceeded these limits so you can know whether your answer is valid or not. There are two main ways to

exceed these limits: 1) go over the stated number range for the size of the data you’re using, or 2) go

under the stated range of data you’re using
156

. Keep in mind that we’ll need to continue this discussion

for both unsigned and signed binary data. The good thing here is that we’ll limit our discussion to RC

representations only.

14.3.1 Binary Subtraction

One of the many recurring themes in digital design-land is the fact that you always want to design your

circuits to do what they need to do but to do it using as little hardware as possible. Mathematical

operations in computers do not come free: they are done by hardware that you’ll soon be learning about

and designing. Hardware, or digital circuitry, takes up space and consumes power. Generally speaking,

the less circuitry your design contains, the better off the world will be.

155

 A register is a piece of hardware that stores a given number of bits. Data inside of a computer is transferred

around via these registers. The bit-width of these registers is fixed in a particular computer’s hardware.
156

 Going over or under the stated range means the number is off the left or right side of the number line shown in

Figure 14.3, respectively. Make sure you really understand this statement.

Digital McLogic Design Chapter 14

 - 253 -

These factors play out directly in this discussion in the context of binary subtraction. Although it would

not be a big deal to design a circuit that did subtraction, the cool approach is to use a circuit we’ve

already designed to perform subtraction. This is not a big deal in digital design-land and is done quite

often. The approach we’ll take is to use our ripple carry adder to apply indirect subtraction by addition.

Equation 14-1: shows the basic formula for this approach. This concept is something you’ve used

extensively in standard mathematics; the only new thing here is that we’ll be applying this concept in

the context of binary subtraction.

N1 - N2 = N1 + (-N2)

Equation 14-1: Indirect subtraction by addition.

Changing the sign of a number is no big deal when dealing with RC numbers: all you need to do is take

the two’s complement. In other words, all you need to do in order to subtract one binary number from

another is to take the two’s complement of that number and add it to the other number (which is what

Equation 14-1 is saying). After this addition operation, you need to examine a few items that will tell

you if your result is valid or not because your result may exceed the number range you’re working with.

Some useful definitions involving the addition and subtraction of two numbers are appropriate here.

Consider adding two numbers A and B with a result C. The equation for this operation would look like:

A + B = C. The number represented by the variable A is referred to as the augend, B is referred to as the

addend, and C is referred to as the sum. Consider subtracting one number B from another number A

with a result C. In case, A is referred to as the minuend, B is referred to as the subtrahend, and C is

referred to as the difference. This knowledge could be actually valuable if you were to find yourself on

Jeopardy but it does not get a lot of mileage outside of this discussion.

14.3.2 Addition and Subtraction on Unsigned Binary Numbers

When dealing with unsigned binary numbers, the results of your mathematical operation can either

underflow or overflow the given number range. Underflow would be the result of subtracting a given

binary number from a smaller binary number (the result would be negative which would violate the

unsignedness of the number). Overflow would result when the addition of two numbers exceeds the

top-end of the given range
157

. Table 14.4 and Table 14.5 list everything you need to know about the

overflow and underflow of binary numbers. These two examples arbitrarily use four-bit numbers. Also,

the extra bit to the left of the four-bit result is the carry bit from the given operation.

157

 An issue here is that “overflow” is often used to describe both underflow and overflow. The notion here is that

you can exceed, or “overflow”, the given range in either direction.

Digital McLogic Design Chapter 14

 - 254 -

Overflow in Unsigned Binary Addition

Description
The sum of two binary numbers exceeds the number range associated with the

operation

Indicator The carry-out from the MSB addition is ‘1’.

Example 14-7

1001 + 0011 = ?

 1001

+ 0011

0 1100

The carry from the MSB is 0 which

indicates there was no carry.

Therefore, the sum (the four-bit

result) is a valid.

Example 14-8

1011 + 0111 = ?

 1011

+ 0111

1 0010

The carry out of the MSB is 1 which

indicates there was a carry.

Therefore, the sum (the four-bit

result) is not valid.

Table 14.4: The low-down on unsigned overflow.

Underflow in Unsigned Binary Subtraction

Description
The difference between two binary numbers is below the number range associated

with the operation.

Indicator The carry-out from the MSB addition is ‘0’.

Example 14-9

1001 - 0011 = ?

add the negation of 0011

(two’s complement)

 1001

+ 1101

1 0110

The carry from the MSB is ‘1’,

which indicates there was a

carry. There was no underflow

and the difference (the four-bit

result) is a valid.

Example

14-10

0111 - 1100 = ?

add the negation of 1100

(two’s complement)

 0111

+ 0100

0 1011

The carry out of the MSB is ‘0’,

which indicates there was no

carry. An underflow has occurred

and the difference (the four-bit

result) is not valid.

Table 14.5: The low-down on unsigned underflow.

14.3.3 Addition and Subtraction on Signed Binary Numbers

When dealing with signed binary numbers, the results of your mathematical operations can once again

both underflow and overflow the given number range. The approach to dealing with operations on

signed binary number is much more intuitive than dealing with unsigned binary numbers. The list

below describes two concepts that you’ll always need to keep in mind
158

. There is a science behind all

158

 Remember that we are now dealing with signed binary numbers, which means that the MSB in the numbers is a

sign bit.

Digital McLogic Design Chapter 14

 - 255 -

of this but understanding the basic principles will allow you to work with this type of problem without

clogging your brain by memorizing this stuff.

1) Overflow can never occur if you’re adding a positive number to a negative number. This

concept affects both addition and subtraction keeping in mind that we do subtraction by

negating the subtrahend and adding it. In other words, the result from the operation A - B will

always be valid if both A and B are positive numbers or if A & B are both negative numbers.

In either case, you’re essentially adding a negative number to a positive number. In even other

words, if the two numbers have different sign bits before the final addition is done
159

, the

answer is guaranteed to be valid.

2) Overflow and underflow only occurs when you add to numbers that have the same value

for sign bits but the result has a sign bit of a different value. There is actually an easy way

to check for this but we’ll save the particulars of this operation until we start talking more

about VHDL. The reality is that overflow and underflow can only happen in the following two

scenarios:

a. Overflow: Adding a positive number to a positive number. But due to the indirect

subtraction by addition, this can include subtracting a negative number from a positive

number.

b. Underflow: Subtracting a positive number from a negative number. Also due to indirect

subtraction by addition, this can include adding a negative number to a negative number.

The following examples in Table 14.6 and Table 14.7 spell out every possible scenario for both

overflow and underflow in both addition and subtraction operations. Have fun.

159

 Keeping in mind that we can either add two numbers of different signs, or, we’ll have to change the sign of one

of the numbers when doing subtraction (indirect subtraction by addition).

Digital McLogic Design Chapter 14

 - 256 -

Overflow in Signed Binary Addition and Subtraction

Description
The result of an operation between two binary numbers is beyond the number

range associated with the operation.

Indicator

Two numbers of the same sign are added and the result is a number of a different

sign (this is the direct addition of two numbers or the addition associated with

the indirect subtraction by addition method).

Example 14-11

0011 + 0010 = ?

 0011

+ 0010

0 0101

The sign of addend and augend

are positive and the sign of result

is positive. No overflow has

occurred in this operation and the

result is valid.

Example 14-12

0100 + 1110 = ?

 0100

+ 1110

1 0010

The sign of addend and augend

are different so there can be no

overflow or underflow. The

result is valid (the carry is

discarded).

Example 14-13

0110 + 0101 = ?

 0110

+ 0101

0 1011

The sign of the addend and

augend are the same (both

indicate positive numbers) but

are different from the sign of the

result. The result is not valid: an

overflow has occurred.

Example 14-14

0100 - 1110 = ?

add the negation of

1110

 0100

+ 0010

0 0110

The sign of addend and augend

are positive (based on the indirect

subtraction by addition) and the

sign of result is positive. No

overflow has occurred in this

operation and the result is valid.

Example 14-15

0100 - 0011 = ?

add the negation of

0011

 0100

+ 1101

1 0001

The sign of addend and augend

are different (based on the

indirect subtraction by addition)

so there can be no overflow or

underflow. The result is valid

(the carry is discarded).

Example 14-16

0100 - 1100 = ?

add the negation of

1100

 0100

+ 0100

0 1000

The sign of the addend and

augend are the same (based on

the indirect subtraction by

addition) but are different from

the sign of the result. The result

is not valid: an overflow has

occurred.

Table 14.6: The low-down on overflow in signed binary numbers.

Digital McLogic Design Chapter 14

 - 257 -

Underflow in Signed Binary Addition and Subtraction

Description
The result of an operation between two binary numbers is below the number

range associated with the operation.

Indicator

Two numbers of the same sign are added and the result is a number of a different

sign (this is the direct addition of two numbers or the addition associated with

the indirect subtraction by addition method).

Example 14-17

1111 + 0010 = ?

 1111

+ 0010

1 0001

The sign of addend and augend

different so there can be no

overflow or underflow. The

result is valid (the carry is

discarded).

Example 14-18

1110 + 1111 = ?

 1110

+ 1111

1 1101

The sign of the addend and

augend are the same (both

indicate negative numbers) and

match the sign of the result. The

result is valid (and the carry is

discarded).

Example 14-19

1100 + 1001 = ?

 1100

+ 1001

1 0101

The sign of the addend and

augend are the same (both

indicate negative numbers) but

are different from the sign of the

result. The result is not valid.

Example 14-20

1110 - 1111 = ?

add the negation of

1111

 1110

+ 0001

0 1111

The sign of addend and augend

are different (based on indirect

subtraction by addition) so there

can be no overflow or underflow.

The result is valid.

Example 14-21

1100 - 0011 = ?

add the negation of

0011

 1100

+ 1101

1 1001

The sign of the addend and

augend are the same (based on

indirect subtraction by addition)

and match the sign of the result.

The result is valid (and the carry

is discarded).

Example 14-22

1001 - 0110 = ?

add the negation of

1101

 1001

+ 1010

1 0011

The sign of the addend and

augend are the same (based on

indirect subtraction by addition)

but are different from the sign of

the result. The result is not valid.

Table 14.7: The low-down on underflow in signed binary numbers.

Digital McLogic Design Chapter 14

 - 258 -

Example 14-23: SM Sign Changer

Design a circuit that compares the magnitude of two 8-bit binary numbers in signed magnitude form.

Solution: The first step in this problem is to determine the inputs and outputs of the circuit that the

problem describes. The circuit has two 8-bit inputs for the two binary numbers, and, it seems only to

have one output. Figure 14.4 shows the black box diagram for our interpretation of this problem. The

one output of the circuit indicates whether the magnitude of the two numbers is equal or not.

Figure 14.4: A block box diagram that supports the description of this problem.

The problem practically does itself. The problem statement mentions the word “compares”, which cries

out for the fact that we need a comparator in the solution. Since binary numbers in SM form use all but

the sign-bit to represent the magnitude, all we need to do is compare the magnitude portion of the

numbers; we do this by feeding just those inputs into a 7-bit comparator. Figure 14.5 shows the final

solution to this problem.

Figure 14.5: The final solution for this example.

One interesting thing worth noting in Figure 14.5 is the fact that we sort of “made up” our own

terminology for this problem. Note that we put a connection dot on the bundle in an effort to indicate

that we are doing something to the bundle. Next, we changed the effective width of the bundle and

indicated in an arbitrary, but hopefully clear manner that only the seven lower-order bits (the magnitude

bits) of the 8-bit bundle are being inputted to the comparator. Once again, this approach is arbitrary.

Whenever you do something “different”, you should make sure you adequately document it. Having a

healthy explanation of what you’re doing and writing it down is always a great approach.

Digital McLogic Design Chapter 14

 - 259 -

Chapter Summary

 Signed binary numbers typically use a sign-bit to indicate the sign (negative or positive) of a given

number. Signed binary numbers commonly use one of three representations: sign magnitude (SM),

Diminished Radix Complement (DRC), or Radix Complement (RC).

 Each of the methods used to represent binary numbers have their own ranges of values that can be

represented by those methods.

 Binary addition and subtraction has special meaning in the context of signed binary number

representations. One of the key concerns when performing binary arithmetic operations is whether

the result is valid or not. The validity of the result is based on the range of values that can be

represented by a given set of bits.

 Binary subtraction is often done by using addition. This technique is referred to as the indirect

subtraction by addition method. The accepted advantage of this approach is that the hardware used

for addition can also be used for subtraction (after adding hardware that implements changing the

sign of the hardware).

Digital McLogic Design Chapter 14

 - 260 -

Chapter Exercises

1) Explain why adding two numbers of a different sign will always result in a valid number in terms

of fixed hardware widths.

2) Explain the difference between the concept of overflow/underflow and the concept of carry-out.

3) Explain why “underflow” is sometimes classified as “overflow”.

4) Complete the following table:

bits unsigned binary range signed binary range (RC)

4

6

8

10

11

12

14

15

16

5) Complete the following mathematical operations on the unsigned binary numbers. Indicate which

results are valid based on the given number range.

a) 001100 + 000011

b) 001110 + 000111

c) 100101 + 101010

d) 001000 + 111100

e) 000100 + 101111

6) Complete the following mathematical operations on the unsigned binary numbers. Indicate which

results are valid based on the given number range.

a) 001100 - 000111

b) 100101 - 001000

c) 111010 - 111100

d) 010001 - 011011

e) 010010 – 000110

Digital McLogic Design Chapter 14

 - 261 -

7) Complete the following mathematical operations on the unsigned binary numbers. Indicate which

results are valid based on the given number range.

a) 01001010 + 00010000

b) 11110000 + 00010001

c) 11100100 + 00100101

d) 01000000 + 01110000

e) 01001000 + 01111111

8) Complete the following mathematical operations on the unsigned binary numbers. Indicate which

results are valid based on the given number range.

a) 01000001 - 00111100

b) 11000000 - 01001110

c) 00100101 - 10001110

d) 10000001 - 11000010

e) 11010011 - 11111100

9) Complete the following mathematical operations on the signed binary numbers (RC

representation). Indicate which results are valid based on the given number range.

a) 00011 + 00111

b) 01110 + 00011

c) 01001 + 00100

d) 01010 + 00111

e) 01011 + 01001

f) 00011 - 00111

g) 01110 - 00011

h) 01001 - 00100

i) 00110 - 10100

j) 00111 - 11100

k) 01010 - 11000

l) 01010 - 11110

m) 01110 - 11001

Digital McLogic Design Chapter 14

 - 262 -

10) Complete the following mathematical operations on the signed binary numbers (RC

representation). Indicate which results are valid based on the given number range.

a) 10111 + 01000

b) 11001 + 01111

c) 11101 + 00100

d) 11010 - 01010

e) 11101 - 00100

f) 11010 - 01110

g) 10100 - 01110

h) 11111 - 01001

i) 10111 - 10111

j) 11101 - 11010

k) 11000 - 11110

11) Which of the following two signed binary (SB) number are greater? Assume the numbers are given

in radix complement (RC) form. 1110 1110 0000 0010

12) Which of the following two signed binary (SB) number has a larger magnitude? Assume the

numbers are given in radix complement (RC) form. 1110 1110 0001 0011

13) Which of the following three SB numbers has the largest magnitude?

a) = 1110 0001 (SM)

b) = 1001 1101 (DRC)

c) = 1001 1100 (RC)

14) The three numbers below are listed in hex but they represent 8-bit signed binary numbers in the

given formats. Which of the three numbers is the most negative?

a) = B4 (SM)

b) = CC (DRC)

c) = D1 (RC)

15) Write the decimal equivalents of the number 1011 11002 if the number is in SM, DRC and RC

forms.

Digital McLogic Design Chapter 14

 - 263 -

Chapter Design Problems

1) Design a circuit the changes the sign of an 8-bit signed binary number in sign magnitude form.

2) Design a circuit the changes the sign of an 8-bit signed binary number in diminished radix

complement form.

3) Design a circuit that changes the sign of an 8-bit signed binary number in radix complement form.

4) Design a circuit generates the absolute value of an 8-bit signed binary number in sign magnitude

form.

5) Design a circuit that compares the magnitude of two signed binary numbers in diminished radix

form

 - 265 -

15 Chapter Fifteen

(Bryan Mealy 2012 ©)

15.1 Chapter Overview

Digital circuits can be designed using many different approaches. In an attempt to present material on

digital design, we attempted to classify these design approaches in to one of three methods. In reality, if

you one day find yourself “doing digital design”, you probably won’t be thinking to yourself that, hey,

I’m using the (file in the blank) approach to digital design; you’re just going to do it. However, we’re

still leaning digital design so we’ll continue with our attempts to classify what we’re doing.

Up until now, we’ve used either brute force design (BFD) or iterative modular design (IMD) to design

our digital circuits. This chapter outlines our final approach: Modular Design, or MD. In truth, IMD is

actually a special case of MD. It’s the most powerful approach to digital design, though you won’t see a

lot of that power in this chapter due to the fact that we’ve still not introduced some of the extremely

important standard digital devices as of yet. This chapter presents MD in the context of the digital

devices we’ve discussed in previous chapters, which as you’ll find out as you read more chapters, is

somewhat limited.

In the end, you’ll start getting the feel for the notion that digital design means different things to

different people; what I’m presenting here is my version of digital design that I’ve done my best to put

into a learning context. I encourage you to form your own versions and take your digital designs

techniques into the direction you want to go it. In other words, this chapter sums up what digital design

is to me; I encourage everyone to figure out their own approach to digital design and run with it.

Main Chapter Topics

 MODULAR DESIGN: This chapter presents the basics of Modular Design (MD)

starting with an overview and ending with design examples that are best solved

using the MD approach.

Why This Chapter is Important

This chapter is important because modular design approach is the most powerful of all

digital design approaches. It is hierarchical in nature and thus works well with VHDL

structural modeling techniques. Most importantly, modular design supports the

understanding of complex digital designs by directly supporting the hierarchical

designs.

15.2 The Big Digital Design Overview

Digital McLogic Design Chapter 15

 - 266 -

Now that you’ve learned about binary arithmetic circuits (previous chapters), you’re to the point where

you can start doing some mildly interesting designs. Because your knowledge and abilities has

increased, it’s time to introduce a more powerful design approach. However, before we do this, it seems

worthy to put the new design approach into a context of what we already know.

There are three approaches to digital design; any possible digital design you do necessarily fits into one

of these approaches
160

. The list below highlights the three design approaches and includes some boring

explanation as well. Table 15.1 represents an even more pointless piece of drivel.

1) Brute Force Design (BFD): Also known as iterative design, this was the first design approach

we worked with and was based on assigning outputs to every possible input combination via a

truth table. The fast growing size of truth tables limited this approach (as the number of inputs

increased, the truth tables became unwieldy).

2) Iterative Modular Design (IMD): This was the second approach to design we worked with.

Most appropriately, IMD would be included as a subset of modular design, but we’re opting to

call it a design approach all its own. This design approach allowed us to bypass the truth table

approach of BFD and enabled us to create mildly complex circuits such as the ripple carry

adder (RCA), the comparator, and parity circuits.

3) Modular Design (MD): This approach is similar to what we did in the first chapter. Do you

remember the black box design approach? This was actually a good example of MD. In the

approach presented in the early chapter, we were most interested in drawing bunches of black

boxes to model our designs. We also drew boxes within boxes within boxes which we labeled

as hierarchical design
161

. Recall that we’ve been claiming all along that hierarchical design is

massively powerful; now we’ll state that modular design is also massively powerful.

Design Approach Pros Cons

Brute Force Design Really straight forward Limited by truth table size

Iterative Modular Design Straight forward Not applicable to all designs

Modular Design Massively powerful Requires a working brain
162

Table 15.1: Matrix explaining why Modular Design can save the world.

In case you have not gotten the point yet, here it is: modern digital design consists primarily of Modular

Design. You do modular design by plopping down black boxes and connecting them up in intelligent

ways. The black box diagrams are of course a form of modeling. The black box models convey various

levels of information regarding the digital circuit, but most importantly, someone can take your model

and actually convert it to a working circuit.

The general approach to modular-based design is to collect a bag full of standard digital modules and

assemble those modules in such a way as to solve digital design problems. You may not realize it, but

you already have started collecting this bag of digital modules: the half-adder, the full-adder, and the

ripple carry adder (RCA), the comparator, and the parity circuits are currently in that bag. The problem

now is that your bag does not present a lot to work with. This chapter aims to show you new and

160

 But let me know if you think of another approach, I’ll for sure add it to this list.
161

 Thus, hierarchical design is a form of modular design.
162

 Thus, you will find not viable digital designers in an academic administrative setting.

Digital McLogic Design Chapter 15

 - 267 -

exciting ways to work with what you already have in your digital bag of tricks
163

. We’ll add to the bag

in later chapters.

The overall approach of MD is to abstract circuits to a higher level in order to increase our efficiency in

the digital design process. The potential problem with designing at high levels is that the designer can

make too many assumptions in the design process and not properly convey these assumptions to other

entities. Because MD is highly model based, the issue here is to make sure the entity that is going to

read your design
164

, can fully comprehend what you’re trying to convey with your design. That being

said, there are a few rules you should always follow when doing the MD thang; and these are really not

rules (they’re more like guidelines, whatever those are). Here are MD modeling rules:

 Be clear and concise: A messy black box model or circuit diagram is a tragedy that hinders

the efficient transfer of information. Strongly consider using a ruler if you’re modeling by

hand.

 Don’t make assumptions: You don’t really know who is going to read your models or

anything about their knowledge base. Therefore, any assumption you make could quickly

confound your design if the reader of your design does not know and/or understand the

assumptions you made in your design.

 Label everything: Make sure the reader of your model does not need to make any

assumptions about anything. This is a special case of not making any assumptions.

 Provide a definition for all black boxes: Black box modeling facilitates modern digital

design. Every box you use in your model should either be clearly defined somewhere (such as

at another level) or be a standard digital “box”. There are many standard digital “boxes” out

there. If you call out one of these boxes in your models, everyone will know what you’re

talking about and there is no need to define it at a lower level. At this point, we’ve seen

relatively few of these boxes: HAs, FAs, RCAs, comparators, and the various gates we’ve

talked about. The catch here is that you must use these boxes in the exact way there were

defined; if you don’t, people will not know what you’re modeling. Table 15.2 shows that this

point is best presented in a visual manner.

163

 They’re not really tricks, they’re actually standard digital circuits.
164

 It could be a person or a computer (such as the VHDL synthesizer).

Digital McLogic Design Chapter 15

 - 268 -

Model Comment

This model sort of looks like a 3-input OR gate, but having

two outputs makes it non-standard. Being non-standard, it’s

a mystery how any of the outputs are assigned. This is a bad

model. To make it valid would required that it be defined

somewhere so we all know what it is.

This is a true digital box. Since we know what an RCA is,

and the inputs and outputs of the box labeled RCA match

what we know about RCAs, we know exactly how it works

and how to build it. This is a valid model and there is no

need to define it anywhere else in your model. This RCA

does not have a listed carry in input, but that is no big deal;

the reader will quickly figure out that you must have used a

HA in the least significant bit position for your RCA. This is

a valid model.

This is also a true digital box. If you replace the HA in a

RCA with a FA, you’ll have the extra carry-in input as is

listed in this model. Having this input is very handy in

various digital design applications. This is a valid model.

This is labeled RCA but since we know RCAs to have

multiple inputs (bundles) for the addend and augend, we’re

left scratching our heads. You could assume it’s a RCA but

you could be wrong. The SUM output has the same issue.

This is an invalid model.

This has all the correct inputs for an RCA, but since it has

the ADDER label, we can’t assume we know exactly what

this box is doing. This is an invalid model. You could make

this model valid by providing a definition for the ADDER

somewhere in your design.

Table 15.2: Some good and bad example of standard digital black boxes.

This chapter has one good trait that was purportedly lacking in other chapters: More example problems

and less bloviation. The explanations of MD are contained within the example problems; thus, there is

less of the verbage you’ve grown tire of in previous chapters.

Not that rules are good things, but they can help out when first embarking on the MD approach to

digital design. It’s happy to note here an excellent quality regarding MD: the problems have a strange

way of doing themselves based primarily on the problem description. We’ve outlined this approach in

Figure 15.1 below and apply this approach in the design examples that follow.

Digital McLogic Design Chapter 15

 - 269 -

1. Read the problem: Yes, a great start.

2. Draw a high-level black box diagram that shows the design’s interface (inputs and

outputs of the high-level black box): This is not always an easy step based on the way the

problem is stated as sometimes the important information is buried in the problem

description
165

. The benefit of completing this step is that it inevitably helps you understand

the complete problem.

3. Fill in the sub-design entities listed by the original design: This can be an easy step

because major clues are typically provided by the problem. For example, if a problem says

something like “add” or “sum”, they you know right away to include an RCA box in your

design. As we learn about other standard digital devices, this becomes even more obvious.

4. Connect the Lower-level Design Entities: The result of the previous step is to have a

bunch of black boxes in your design; this step entails connecting those black boxes to

something intelligent.

5. Provide Adequate Models for Any Non-Standard Black Boxes used in the Design: The

hope is that you can use as many standard digital design boxes as possible in your design.

However, don’t hesitate to create new boxes with “special” functionality that helps you

solve the problem at hand. Keep in mind that these new black boxes can be boxes that

contain other black boxes as a true hierarchical design approach. The overall requirement is

that you list and describe every aspect of your design at the same time as keeping your

design as simple as possible; the hierarchical approach supports simplicity and

understanding of your design.

6. Check your final diagram for the following: Somewhat self-explanatory...

a. Make sure the highest-level black box is labeled.

b. Make sure all inputs to lower-level design entities (black boxes) are connected to

something (either other signals, ‘1’, or ‘0’).

c. Make sure all signals are adequately labeled.

d. Make sure all bundle widths are labeled.

e. Make sure all lower-level design entities (black boxes) are labeled

f. Make sure all labels are self-commenting in nature.

Figure 15.1: The desired approach to solving modular design problems.

The final comment: you need to be creative and clever with your diagram-type solutions. You will

inevitably run into situations that you have not seen listed any example you’ve studied. The best

approach to use in this situation is to make do what you need to do in the simplest way possible. If your

approach is not patently obvious, provide adequate annotation and/or description somewhere in your

diagram.

Finally, the nice thing about VHDL is that it supports all three of the stated design approaches.

Although we could consider VHDL-based designs a design approach on its own, we’re opting to view

VHDL as a tool to implement one of the three standard design approaches. In other words, VHDL

supports any type of standard digital design approach; we do not consider VHDL a design approach of

165

 It’s called a crappy problem description. You’ll find a lot of them on exams.

Digital McLogic Design Chapter 15

 - 270 -

its own. Moreover, when you need to solve a digital design problem, you start with a block box

diagram; only total wankers start coding VHDL before they complete a black box diagram.

Example 15-1: RC Sign Changer

Design a circuit that changes the sign of an 8-bit signed binary number in radix complement form.

Provide your solution in the form of a black box model. Minimize your use of hardware in your final

model. If you use something other than a standard digital circuit, make sure you adequately provide an

adequate description.

Solution: This is a really important and instructive circuit out in digital design-land. At this point in

your design career, you may be wondering what to do. Keep in mind that the first step is always to draw

a black box diagram of your solution. Note the nicely labeled model shown in Figure 15.2.

Figure 15.2: Black box diagram for RC Sign Changer.

The next step is to gather in what you know about changing the sign of binary numbers in RC notation.

The standard method we learned was the visual algorithm method of starting at the right-most bit in the

number and looking for the first ‘1’ etc. Although this worked great on paper, it does not work for

digital hardware
166

. What we need to do is use the other approach to changing the sign which was to

take the 1’s complement and add ‘1’. Taking the 1’s complement of the input only requires an inverter

for each individual bit input to the circuit. Adding ‘1’ can be done in several ways (though we’ll only

use one way for this problem).

Without too much hoopla, Figure 15.3 shows the final solution for this example. Take a look at it then

read and understand the comments that follow: there are a lot of important digital practices taking place

in this problem that you need to know.

166

 Actually, you could use VHDL to model a circuit using this algorithm. The resulting circuit would be valid but

it would be less optimal than using a more intelligent approach.

Digital McLogic Design Chapter 15

 - 271 -

Figure 15.3: Black box diagram for RC Sign Changer.

 The box in Figure 15.3 is consistent with the box in Figure 15.2: the inputs and outputs match

in both bundle size and name.

 The bundles notation in Figure 15.3 appears on both the inside of the RC_SGN box as well as

the outside. Probably either listing would have been fine, but including both is fine also. If you

were going to include in only one place, it would be on the outside of the box, which would

make the diagram in Figure 15.3 match the diagram in Figure 15.2.

 It appears that the 8-bit bundle uses a single inverter. This is actually an accepted shorthand

notation for indicating the inversion of every signal in the bundle. We could have drawn eight

inverters but it would have messed up our diagram. When you use this notation, the digital

world understands that there are really eight appropriately connected inverters.

 The Cin signal has a funny thing connected to it; the funny thing indicates that the Cin input to

the RCA is connected to ‘1’. You see this notation often; sometimes you also see a “Vcc” or a

“Vdd” which indicates the signal is connected to the higher voltage rail in the circuit which is

generally considered to be a logical ‘1’.

 The B signal has a funny thing connected to it. This funny thing indicates that the B input of

the RCA is connected to “ground” or a logical‘0’. You also see this notation often in digital

design so get used to it. Once again, this notation signifies that each of the eight individual

signals in the bundle is connected to ground.

 The Cout signal of the RCA is unconnected. This is no big deal, as your design is not using it.

Although you always need to connect your inputs to something, generally speaking, the

outputs don’t need to be connected if you’re not using them. It’s a good choice to include

unconnected outputs but certainly not a requirement.

 Lastly, you may be wondering why this actually circuit works. The RCA as drawn in this

problem uses a FA for the LSB. This means that the total equation for the RCA is: SUM = A +

B + Cin. The way the circuit is connected in this problem is that the B value is always zero, the

A signal is always inverted, and Cin is always ‘1’. The final implemented equation is

therefore: SUM = (not A) + 1. This equation therefore implements a viable approach to a 2’s

complement, which is the 1’s complement plus one.

Digital McLogic Design Chapter 15

 - 272 -

Example 15-2: Special RC Addition Circuit

Design a circuit that adds ‘2’ to an 8-bit signed binary number in radix complement form. This circuit

has an output signal VALID that is ‘1’ when the addition operation is valid. Minimize your use of

hardware in your final model. If you use something other than a standard digital circuit, make sure you

adequately provide an adequate description.

Solution: This is another important and instructive circuit in that it’s does not seem trivial at first, but

does in fact have a relatively simple solution. The solution starts with drawing a black box diagram of

your solution. Figure 15.4 shows the nicely labeled black box model. Note that you could have drawn

this diagram even if you knew nothing else about how to proceed with the solution.

Figure 15.4: Black box model for solution.

The next step is to start speculating about what goes on the inside of the box. To do this, always look

back to the original problem for clues. The first clue is that you’ll be adding a number to another

number which means that we’re going to need an adder. The only adder we know about is a RCA so

that’s that well use. The next thing we’ll need is some type of circuitry indication when the solution is

valid or not. This is known as “control” circuitry. OK… let’s put it down; check out Figure 15.5.

Figure 15.5: The next step in the solution.

Here are some interesting to note about Figure 15.5 that will help you move toward the solution. Figure

15.6 shows the result of listing all of these interesting things.

 The RCA is going to add two things: the IN_VAL and the number “00000010” (which is 2 in

binary). Therefore, we can connect IN_VAL to one of the RCA operands and “hardwire” a

binary “2” to the other operand. We’ve indicated this in the diagram by listing “00000010”

near the bundle in question.

Digital McLogic Design Chapter 15

 - 273 -

 The output of this circuit is going to be the result of the sum so we can connect the output of

the RCA to the OUT_VAL signal.

 The CTRL circuit is going to indicate if the operation was valid or not. Although the inputs to

the CTRL box are still unknown, we know the output is going to be the VALID signal.

 The big question is how are we going know if the addition operation is valid or not? The

answer lies in the fact that since we’re adding two signed binary numbers in RC form, the

answer will only be valid if the sign of the result is the same as the sign of the two input

operands. Therefore, the CTRL box will need three inputs: the sign bits of the two RCA

operands and the sign-bit of the SUM operand.

 We will not need the Cout signal for our approach to this solution so we can leave it

unconnected since it’s an output.

The next step in the solution is to design the interior of the CTRL box. The best way to do with is with a

truth table
167

. The key to filling out this table is to note that the result of the binary addition is only

going to invalid when the sign bits of the operands are the same and the sign bit of the result is

different. Figure 15.7 shows the resulting truth table. Note that because the sign-bit of the A input will

always be ‘0’, table entries were A=1 are listed as don’t cares.

Figure 15.6: The next step in the solution.

167

 It may not be the best way, but it’s a valid way since there are only three inputs.

Digital McLogic Design Chapter 15

 - 274 -

A B S VALID

0 0 0 1

0 0 1 0

0 1 0 1

0 1 1 1

1 0 0 -

1 0 1 -

1 1 0 -

1 1 1 -

Figure 15.7: The truth table modeling the CTRL box.

The equation that describes the truth table of Figure 15.7 is: SBF . Note that we did not need the

A sign-bit input after all. In the end, the fact that the sign bit of the A input to the RCA does not affect

the problem makes sense, it you think about it for a few minutes.

Figure 15.8 and Figure 15.9 show the final solution. Note that there are two parts to the solution; each

of these parts represents a different level of the design. Figure 15.8 represents the higher-level portion

of the solution while Figure 15.9 represents the lower-level of the solution

Figure 15.8: The final solution to this problem.

Figure 15.9: The other part of the final solution.

Digital McLogic Design Chapter 15

 - 275 -

A few comments… yes, this is a true hierarchical design. It did not have to a hierarchical design; we

could have placed the OR gate of Figure 15.9 into the black box diagram of Figure 15.8. However, this

approach is more structured and thus, more clear. Also note that we never really had an idea of the final

solution when we started the problem; we instead just started working towards a solution starting with

what little we knew about the problem. Using this approach, we eventually ended up at the solution.

This is an important concept because you’ll not always have a good idea as to how the solution will

appear, but you’ll have a direction to go in. As you traverse that direction, you’ll pick up clues to the

solution. You may be well on your way or you may realize that your approach needs tossing.

For the record, another approach to this problem would be to utilize the carry-out of the RCA as

follows. The only instance the 8-bit output is not valid is when the value of two is added to a large

positive number. If you add two to a negative number, the magnitude always decreases. However, if

you added two to a large positive number, you could exceed the range associated with the 8-bit result.

In this case, the carry-out of the RCA will indicate that with a ‘1’.

Example 15-3: Three-Value 10-Bit Comparator

Design a circuit that compares three 10-bit values. If all three 10-bit values are equivalent, the EQ3

output of the circuit will be a ‘1’, otherwise it will be a ‘0’. Use only standard comparators in this

design. Use any support logic you may require but minimize the amount of hardware used in this

circuit. Use the modular design approach and provide both a block-level diagram for your solution.

Solution: The main constraint in this problem is the required use of standard comparators in the

solution. Other than that, you should stand back for a minute and view this problem from a wider

perspective. If someone asked you to determine if three numbers were equivalent, what would you do?

It’s an old math thang to say, “if A = B and B = C then A = C”. You mission is then to translate that

probable intuitiveness to digital hardware. A good start, as always, is drawing a black box diagram as

shown in Figure 15.10.

Figure 15.10: Black box diagram for Example 15-3 solution.

From here, you need to reconsider the standard comparator constraint on this problem. Since a standard

comparator only compares two numbers, you’ll need two comparators to determine if all three inputs

are equivalent. From this point in this problem, note that the problem directly states the required extra

logic in the quoted statement in the previous paragraph: the “and” indicates that this solution requires an

AND gate. Figure 15.11 shows the final block diagram for this problem. Note that the block diagram

directly implements the quoted statement in the previous paragraph.

Digital McLogic Design Chapter 15

 - 276 -

Figure 15.11: The final circuit for Example 15-3.

Example 15-4: 8-Bit Adder/Subtractor

Design a circuit that acts as both an adder and subtractor. This circuit has a control input SUB and two

eight-bit inputs A and B. When the SUB input is high, the 8-bit circuit output indicates the result of B

subtracted from input A. Otherwise, the output of the circuit indicates of addition of the A and B.

Assume that you have no reason to worry about the carry-out from the adder. Use any support logic you

may require but minimize the amount of hardware used in this circuit. Use the modular design approach

and provide both a block-level diagram for your solution.

Solution: The point behind this problem is gathering up all of the standard circuits you’ve learned

about up until now. These include half adders, full adders, ripple carry adders (RCAs), and

comparators. You’ll also need to recall all the information you learned regarding binary number and

particularly signed binary numbers. In addition, as always, the first step in this solution is drawing a

black-box diagram of the circuit; Figure 15.12 shows the black box diagram for this solution.

Figure 15.12: Black-box diagram of the Adder/Subtractor circuit.

Although we took a thorough approach to designing the RCA, we’re going to try not to go that long and

arduous design route with this problem and its requirement of doing a subtraction operation. What is

going to save us is the fact we’ll remember that subtraction in binary can be done by first multiplying

the appropriate operand by -1 (1’s complement) and then adding the result to the other operand. For this

problem, that means doing a two’s complement on one of the operands. So… let’s first review some of

the properties of the RCA.

The approach we took to designing the RCA was to have the least significant bit location as a half adder

and all of the other elements as full adders. For this problem, we’re going to use full adders for all of the

Digital McLogic Design Chapter 15

 - 277 -

adder elements. Figure 15.13(a) show the RCA with a HA as the MSB and Figure 15.13(b) shows RCA

with a FA in the MSB position. As you can see by comparing these circuits, they differ by the inclusion

of the carry-in (Cin) for the RCA shown in Figure 15.13(b).

(a) (b)

Figure 15.13: A diagram of the HA-based (a) and FA-based (b) ripple carry adder.

The key to completing this problem is noting that we’ll use the indirect subtraction by addition

approach. In other words, the subtraction is going to be done by first taking the two’s complement of

the operand that is being subtracted and adding the result to the other operand. As you no doubt know,

the two’s complement is obtained by taking a 1’s complement (complementing all the bits) and adding

1. The cool thing to notice here is that Equation 15-1 shows the final result of the entire RCA in Figure

15.13(b). In other words, the SUM output of the circuit shown in Figure 15.13(b) represents the result

of the addition operations shown in Equation 15-1.

SUM = A + B + Cin

Equation 15-1: What exactly the RCA is adding.

The SUB input to the circuit has two functions: 1) to select the complemented or non-complemented

operand to one of the RCA’s inputs, and 2) to select a ‘1’ for the Cin input on the RCA_FA. The final

circuit is thus going to look like something shown in Figure 15.14. Another way to look at this is that

the value of the SUB signal is always included in the addition operation of the RCA_FA. If the SUB

input is a ‘0’, it will have no effect on the final result as the addition of zero changes nothing.

Figure 15.14: The final circuit.

The last thing you need to do here is define what is in the B_LOGIC block shown in Figure 15.14.

There is actually a well-known approach to this problem. The approach is to notice that signal B

sometimes needs to be inverted before it is sent to RCA_FA and sometimes it does not. When SUB is a

Digital McLogic Design Chapter 15

 - 278 -

‘1’, the ADD_SUB module performs an A – B operation which means we want to invert the B signal

and add ‘1’ to the RCA_FA module via the Cin input.

The Cin input to the RCA_FA already works correctly for both addition and subtraction (see Table 15.3

for some extra details). For the B_LOGIC, we need to invert individual signals in B before they are sent

to the RCA_FA when SUB is a ‘1’. The most straightforward way to do this is to use known properties

of the XOR gate; specifically, when one input to an XOR gate is ‘1’, the output of gate is an inversion

of the other input. Similarly, when one input to a XOR gate is a ‘0’, the other input effectively passes

through the XOR gate output. Figure 15.15 shows the final circuit for the B_LOGIC block.

Figure 15.15 show a few interesting features worth noting. First, signal B is decomposed into its parts

on the diagram with the assumption that B(7) is the MSB while B(0) is the MSB. The output is

reassembled from its parts back into a bundle. Since the bundle has no name on the higher-level

diagram of Figure 15.14, it was not named in Figure 15.15 either.

SUB value RCA_FA operation Comment

‘0’ 0 BASUB A + B

‘1’ 1 BASUB A - B

Table 15.3: Tabular view of RCA_FA operation.

Figure 15.15: The schematic for the B_LOGIC block.

Lastly, this is a typical and well-known solution to this type of problem. Note that the schematic of

Figure 15.15 required a long time to draw. Figure 15.16 shows a better approach to the final solution of

this problem; this solution is better in the sense that it was easier to draw but is actually the same circuit

as the previous solution. Note that Figure 15.16 uses a special shorthand notation. Although XOR gates

only have two inputs, Figure 15.16 seems to indicate that the XOR gate can accept a bundle input. In

actuality, the special XOR gate shown in Figure 15.16 is the same circuit as the B_LOGIC block shown

in Figure 15.15.

Digital McLogic Design Chapter 15

 - 279 -

Figure 15.16: An alternate and popular approach to the final circuit.

Example 15-5: Timing Diagrams

Based on the solution to Example 15-4, complete the following timing diagram.

Solution: The problem states the value on signal B will either be subtracted from or added to signal A

based on the value of signal B. Figure 15.17 shows the final solution to this problem keeping in mind

that when SUB is a ‘0’, the RESULT signal represents an addition of signal A & B.

Figure 15.17: The solution to Example 15-5.

Digital McLogic Design Chapter 15

 - 280 -

Example 15-6: Special Arithmetic Circuit

Design a circuit that has three 8-bit inputs A, B, and C. The single output of the circuit indicates

whether the sum of A and B is equal to the sum of B and C. For this problem, assume that the addition

of the two input values will never cause a carry out. Use the modular design approach for this problem

and provide a circuit diagram that solves this problem. Minimize your use of hardware for this design.

Solution: Once again, you need think on a higher digital level in order to solve this problem. With the

eight inputs, is would be impossible to do this any other way. So… the first step is drawing a block

diagram of the final circuit as shown in Figure 15.18.

Figure 15.18: Block diagram of the final circuit.

The key to step one is decomposing the problem. From the problem statement, you can see that the final

circuit is going to require two RCAs in order to perform the two required addition operations (A + B

and B + C). The second clue given in the problem statement is that something needs to be compared. In

this case, you’ll need to check whether the results of the two addition operations are equivalent. And

that’s it. For this problem, you’ll need two RCAs and one comparator. Note that the problem statement

itself provided many of these clues.

The required connections of the three modules are based upon the requirements of the final circuit.

Figure 15.19 shows the final result of Step 2) and the entire problem. Note that in this solution, the

carry-in and carry-outs of the RCAs are not specified which implies they are irrelevant to this solution.

Also, we did not include carry-in inputs to the RCAs so we can assume that the RCA did not have a

carry-in input or the carry-input was connected to ‘0’ and thus did not affect the problem.

Figure 15.19: The final circuit solution for this problem.

Digital McLogic Design Chapter 15

 - 281 -

Keep in mind that for this problem, you know how to create a RCA and a comparator (the module

labeled COMP is an 8-bit comparator in this problem. The bit-width of these devices for this problem

was not really a big deal; you can use iterative modular design or VHDL modeling to overcome the

problems presented by the wider data paths.

Example 15-7: Special Arithmetic Circuit

Based on the solution to Example 15-6, complete the following timing diagram.

Solution: The problem states (after you read it a few times) that the EQ output is a ‘1’ when ever A =

C. Figure 15.20 shows the final solution to this example. Note that signal B does not affect the answer.

Also, note that the carry-outs from the RCAs also do not affect the outputs as they do not change the

value of the RCA sum outputs.

Figure 15.20: The solution to Example 15-7.

Digital McLogic Design Chapter 15

 - 282 -

Chapter Summary

 There are three basic approaches to digital design 1) Brute Force Design (BFD), 2) Iterative

Modular Design (IMD), and 3) Modular Design (MD). By far, Modular Design is the most

powerful, particularly since hierarchical design is a form of MD.

 All black box diagrams should be a simple as possible. If you need to create some special notation

for your solution, be sure to describe it fully.

 An overview of the approach to MD-type problems can be stated as:

1. Read the Problem.

2. Draw a High-level Black-box Interface Diagram.

3. Include the Lower-level Design Entities.

4. Connect the Lower-level Design Entities.

5. Provide Adequate Models for Any Non-Standard Modules.

6. Check Your Final Diagram for All Important Details.

Digital McLogic Design Chapter 15

 - 283 -

Chapter Exercises

1) Why is IMD actually considered a subset of MD? Briefly but fully explain.

2) List several advantages to using a self-commenting style in your black box diagrams.

3) Describe how it is that MD is more powerful than BFD. Feel free to use 4-letter words in your

answer.

Digital McLogic Design Chapter 15

 - 284 -

Chapter Design Problems

1) Design a circuit the changes the sign of an 8-bit binary number in sign magnitude form. Your

solution should in the form of a black box model. Minimize your use of hardware in your final

model.

2) Design a circuit the changes the sign of an 8-bit binary number in diminished radix complement

form. Your solution should in the form of a black box model. Minimize your use of hardware in

your final model.

3) Design a circuit that provides the absolute value for an 8-bit signed binary number. Assume the

number is in sign magnitude form. Your solution should in the form of a black box model.

Minimize your use of hardware in your final model.

4) Design a circuit that provides the absolute value for an 8-bit signed binary number. Assume the

number is in diminished radix complement form. Your solution should in the form of a black box

model. Minimize your use of hardware in your final model.

5) Design a circuit that subtracts ‘3’ from an 8-bit signed binary number. Assume the number is in

radix complement form. This circuit has an output signal VALID that is ‘1’ when the subtraction

operation is valid. Your solution should in the form of a black box model. Minimize your use of

hardware in your final model.

6) Design a circuit that multiplies an 8-bit signed binary number by two. Assume the number is in

radix complement form. This circuit has an output signal VALID that is ‘1’ when the operation is

valid. Your solution should be in the form of a black box model. Minimize your use of hardware in

your final model.

7) Design a circuit that multiplies an 8-bit signed binary number by three. Assume the number is in

radix complement form. This circuit has an output signal VALID that is ‘1’ when the operation is

valid. Your solution should be provided in the form of a black box model. Minimize your use of

hardware in your final model.

8) Design a circuit that translates an 8-bit number in signed magnitude form to an 8-bit number in

diminished radix complement form. Provide your solution in the form of a black box model.

Minimize your use of hardware in your final model.

Digital McLogic Design Chapter 15

 - 285 -

9) Design a circuit that translates an 8-bit number in diminished radix complement form to an 8-bit

number in signed magnitude form. Provide your solution in the form of a black box model.

Minimize your use of hardware in your final model.

10) Design a circuit that translates an 8-bit binary number in radix complement form to an 8-bit number

in diminished radix complement form. For this problem, assume the RC number will always be less

than zero. Provide your solution in the form of a black box model. Minimize your use of hardware

in your final model.

11) Design a circuit that adds five 10-bit unsigned binary numbers, A, B, C, D, and E. No matter

what, the final sum should always be output, but this sum output is only a 10-bit number also.

The catch is that this circuit has a “VALID” output indicates when the 10-bit output is a valid

represents the actual sum of the five input values. You’re only allowed to use 10-bit RCAs for

this circuit. If you use anything other than a standard digital circuit, be sure to adequately

describe that circuit, but do not use VHDL. Minimize your use of hardware in this design.

Include a black box diagram for both the top-level circuit as well as the underlying circuitry.

12) Design a circuit that has two 8-bit inputs A and B, and one output. The output value is a ‘1’

when the A input value is one greater than, equal to, or one less than the B input value;

otherwise, the output is a ‘0’. Consider both inputs to be signed binary numbers in radix

complement form. For this problem, assume both input values are always between 2010 and

12010. If you use anything other than a standard digital circuit, be sure to adequately describe

that circuit, but do not use VHDL. Minimize your use of hardware in this design. Include a

black box diagram for both the top-level circuit as well as the underlying circuitry.

 - 287 -

16 Chapter Sixteen

(Bryan Mealy 2012 ©)

16.1 Chapter Overview

The purpose of this VHDL presentation is to provide a guide to help develop the skills necessary to use

VHDL in the context of modern introductory and intermediate level digital design courses. The skills

presented with this and subsequent chapters allow budding digital designers to not only navigate

modern digital design, but also give them the skills and confidence to continue with VHDL-based

digital design and develop the skills required to solve more advanced digital design problems.

Main Chapter Topics

 VHDL INTENT, PURPOSE, AND INTRODUCTION: This chapter describes the

motivation and justifications used by this text to introduce VHDL. The chapter

briefly describes the primary uses of VHDL

 VHDL DESIGN UNITS: This chapter introduces the notion of the entity and the

architecture, the basic VHDL design units.

 VHDL MODELING INTRODUCTION: This chapter introduces VHDL modeling in

various example problems

Why This Chapter is Important

This chapter is important because it describes the principles behind VHDL. Modern

digital design uses VHDL extensively to design and test digital circuits.

16.2 VDHL in Modern Digital Design

Although there are many online books and tutorials available dealing with VHDL, these sources are

often troublesome for several reasons. First, much of the information regarding VHDL is either

needlessly confusing or poorly written. Material with these characteristics is written from the standpoint

of someone who is painfully intelligent or has forgotten that their audience may be seeing the material

for the first time. Secondly, the common approach for most VHDL manuals is to introduce too much

extraneous information and too many topics too early. It’s much better to present most of this material

later in the learning cycle. Material presented in this manner has a tendency to be confusing and easily

forgotten if it is never applied. This chapter is to provide students with only what they need to know in

order to get them quickly up and running in VHDL. As with all learning, once you obtained and applied

some useful information, it is much easier to build on what you know as opposed to continually adding

information that is not directly applicable to the subjects at hand.

Digital McLogic Design Chapter 16

 - 288 -

Most modern introductory digital design texts suffer from similar drawbacks. One common problem

with digital design texts is that they rarely integrate VHDL into the learning experience. It is blatantly

obvious that in these texts, the authors had previously written the non-HDL portion of the text, and later

tried to integrate the HDL concepts into existing material. Although these texts make for worthy

reference material, they do not make for a good learning experience.

Another common problem with many digital design texts is that they attempt to simultaneously

integrate the introduction of several HDLs (include VHDL, Verilog, and ABEL)
168

. This attribute leads

to the now famous TMI syndrome (too much information) and serves no useful purpose. Lastly, worthy

of comment is the fact that some texts include the HDL information only at the end of the text. The

worst digital design textbook ever written uses this format
169

.

The intent of this introduction to VHDL is to present topics in the context of the average student who

has some knowledge of digital logic and has some skills with algorithmic programming languages such

as Java or C. The information presented in this text focuses on a base knowledge of the approach and

function of VHDL. With a proper introduction to the basics of VHDL combined with a logical and

intelligent introduction of basic VHDL concepts, digital design students should be able to quickly and

efficiently create useful VHDL models and enhance their understanding of digital systems and the

modern digital design paradigm. In this way, students will be able to view VHDL as a valuable design,

simulation, and test tool rather than another batch of throwaway technical knowledge encountered in

some forgotten class or laboratory.

Lastly, VHDL is a powerful tool. The more you understand in the time you put into studying and

working with VHDL, the more it will enhance your learning experience. The VHDL modeling

paradigm is also an interesting companion to algorithmic programming. It is well worth noting that

VHDL and other similar hardware design languages are used to create most of the digital integrated

circuits found in the various electronic gizmos that currently overwhelm our modern lives. The concept

of using software to design hardware that is controlled by software will surely cause you endless hours

of contemplation.

You could be learning one of many HDLs out there. The two major HDLs are VHDL and Verilog. This

text opts to use VHDL for modeling digital circuits. Using an HDL is much like using a computer

language. Once you learn the basic concepts of programming, you can quickly learn a different

programming language because you’ll only need to learn the syntax of the new language. In computer

programming, the basic programming concepts do not change and are directly applicable most any

programming language. The same is true when learning an HDL. If you understand the basic concepts

of the HDL modeling paradigm, you only need to learn the syntax of the new language. Keep in mind

that HDLs do have special “concepts” that you must know that are different from the basic concepts of

a programming language. There are only a few, however, and they’re not that complicated.

One final comment: the VHDL introduction presented in this text quickly brings you down the path to

understanding VHDL and writing solid VHDL code. Being able to write solid VHDL code facilitates

the design and understanding of digital circuits. The ideas presented herein represent the core ideas

you’ll need to get up and running with VHDL. This approach to VHDL in no way presents a complete

description of the VHDL language. In an effort to expedite the learning process, this approach omits

some of the fine details of VHDL. Anyone who has the time and inclination should feel free to further

explore the true depth of the VHDL language. There are many online VHDL references and tutorials as

168

 This is a blatant attempt to increase the sales of the text without giving thought to the trials and tribulations of

the digital design students who’ll be using the text.
169

 There was such a book used at Cal Poly for years. The author worked at Cal Poly and I can tell you first hand

that this guy knew close to nothing about VHDL. Cal Poly students were stuck with that book for years and only

one person in the EE Department actually did something about it (no one else cared about the low quality of

instruction that the book provided). Sort of strange, but welcome to the politics of academia.

Digital McLogic Design Chapter 16

 - 289 -

well as many relatively inexpensive VHDL texts available from online booksellers
170

. If you find

yourself becoming curious about what you’re not being told about VHDL in this text, be sure to take a

look at some of these references.

16.3 VHDL Introduction

VHDL has a rich and interesting history. But since knowing this history is probably not going to help

you write better VHDL models, we’ll only give it a brief mention here. It is, however, worthy to state

what the VHDL acronym stand for. Actually, the “V” in VHDL is short of yet another acronym:

VHSIC or Very High-Speed Integrated Circuit. The HDL stands for Hardware Description Language.

Obviously, the state of technical affairs these days has obviated the need for nested acronyms. The

“HDL” acronym is vastly important. VHDL is a true computer language with the accompanying set of

syntax and usage rules. But VHDL is different from higher-level computer languages such as C and

Java because “describing hardware”, or hardware modeling, is the primary use for VHDL.

The tendency for most people familiar with a higher-level computer language such as C or Java is to

view VHDL as just another computer language. This is not altogether a bad approach in that such a

view facilitates a quick understanding of the language syntax and structure. The common mistake made

by this approach is to attempt to “program” in VHDL, as you would “program” a higher-level computer

language. Higher-level computer languages execute instruction in a sequential nature; VHDL does not.

The main function of VHDL is describing digital circuits
171

. Another way to look at this is that higher-

level computer languages are used to describe algorithms (inherently sequentially executed algorithms)

and VHDL is used to describe hardware (inherently parallel execution). These inherent differences

should encourage and inspire you to rethink how you write VHDL models. Attempts to write VHDL

code with a higher-level language style generally results in VHDL code that no one understands.

Moreover, the tools used to synthesize the circuits described by this type of code have a tendency to

generate circuits that generally don’t work correctly and have bugs that are nearly impossible to trace.

In addition, if the circuit does actually work, it will most likely be inefficient because the resulting

hardware is needlessly large and overly complex
172

. This problem compounds once the size and

complexity of your digital circuits becomes greater. Understanding the basics of VHDL allows you to

avoid these problems.

Once again, VHDL represents a modern digital design paradigm. In other words, the emphasis in

modern digital design is to develop skills that are immediately applicable and easily built upon. Modern

digital design is more about appropriately
173

 modeling digital circuits and maintaining a quality

description of the circuit as opposed to learning a bunch of throwaway knowledge that only serves to

allow the instructor to write and grade pointless exams more easily
174

.

16.3.1 Primary Uses of VHDL

170

 Check Ebay or www.addall.com.
171

 Probably a better way to view VHDL is as a tool to “model” digital circuit. This leads to a more appropriate

vernacular to describe a pile of VHDL source code: you generate VHDL models as opposed to writing VHDL

source code. The latter terminology is more of a computer science-type lingo so we’ll definitely try to steer clear of

using it.
172

 And often times, circuits with these characteristics simply don’t work and will never work despite the fact that

you may be throwing a lot of time at them in order to wishfully get them working.
173

 The word appropriately here means that you stay within the designated boundaries of the modeling system. In

this case, you understand the VHDL design paradigm and you use it to your advantage rather than fight it.
174

 Just think how smart you would be if everything you learned was actually useful and important…

http://www.addall.com/

Digital McLogic Design Chapter 16

 - 290 -

Although HDLs have many uses, there are four primary purposes for learning and using hardware

description languages such as VHDL. These four main purposes of VHDL align perfectly with a

beginning digital designer’s typically uses for VHDL.

1) Modeling Digital Circuits and Systems: A digital circuit/system is any circuit that processes

or stores digital information. Although the word model is one of those overly used words in

engineering, in this context is simply refers to a description of something that presents a certain

level of detail. One of the primary great features of modeling digital circuits with VHDL is that

the rich syntax rules associated with VHDL force you to describe the circuit in an unambiguous

manner. In other words, modeling a circuit using VHDL guarantees a specific operation (this

assumes a correctly synthesized model; see the next item). VHDL provides everything that is

necessary in order to describe the operation any digital circuit.

2) Digital Circuit Synthesis: With readily available software tools, you’ll be able to quickly

translate your VHDL models into actual functioning circuits. VHDL models are magically
175

interpreted by software tools in such a way as to create actual digital circuits in a process known

as synthesis. This allows you to implement relatively complex circuits in a relatively short

period and allows you to spend more time designing your circuits and less time actually

constructing your circuits
176

.

3) Digital Circuit Simulation: Once you’ve generated a VHDL model, software tools can use this

model in order to simulate how an actual implementation of the circuit would operate. VHDL

was used for circuit simulation before software tools were created to use the VHDL models for

circuit synthesis. There are other digital circuit simulators available to model your digital

designs. These simulators typically contain some type of graphical method to model circuits.

The problem with this approach is that as your digital circuits become more complex, you’ll

find yourself explicitly connecting a bunch of lines on the computer screen which quickly

becomes tedious. The more intelligent approach to digital design is to start with a system that is

to be able to describe exactly how your digital circuit works without having to worry about the

details of connecting massive quantities of signal lines. VHDL fulfills these promises with the

notion of “testbenches” (presented in a later chapter).

4) Hierarchical Design Support: As was previously stated, the only possible way to understand

complex digital circuits is to model them on different levels of abstraction. VHDL contains the

functionality necessary to support multiple levels of abstraction. As you will see later, the

approach to representing complex digital circuits with VHDL is similar to the representing large

software programs.

16.3.2 The Golden Rules of VHDL

Before we go further, here are a couple of items that you should never forget when working with

VHDL. Adherence to these rules will save you time and heartache in your digital careers.

 VHLD has Limitations: Although VHDL is flexible enough to allow the modeling of a given

circuit in a virtual infinite number of ways, do not push the limits of this flexibility. Keep in

mind that humans write the software tools and thus they inherently have limitations. Just

because your circuit synthesizes does not mean you have created a robust model. In other

words, work with the limitations of the VHDL toolset in order to generate solid VHDL

175

 It’s not really magic. There is actually a well-defined science behind it.
176

 Modern engineering companies no longer pay engineers to construct circuits. So why should you have to

contruct them as part of your engineering education?

Digital McLogic Design Chapter 16

 - 291 -

models. The awards go to those who can best model their complex circuits in simple ways

rather than relying on the synthesizer to do the dirty work. Moreover, if you’re using a

synthesizer that was provided for free, it is far less likely that this synthesizer will actually do

what you’re hoping it will do
177

 (you’ll have to pay real money for the secret sauce).

 VHDL is a Hardware Design Language: Although most people have probably had

previously exposure to some type of higher-level computer language, these skills are only

indirectly applicable to VHDL. When you’re working with VHDL, you’re not “programming”,

you are “modeling hardware”; your VHDL code should reflect this fact. If your VHDL code

appears too similar to code of a higher-level computer language, it’s probably bad VHDL

code
178

. As you will soon discover, several structures in VHDL appear similar to constructs in

higher-level languages. Regardless of this fact, VHDL does not use these structures in the

same way as the higher-level language. This point relates closely to the item in the previous

bullet. In other words, it is vitally important that you don’t abuse the VHDL syntax.

 Have a general concept of what your hardware should look like. Although VHDL is vastly

powerful, if you don’t understand the basic digital constructs
179

, you won’t be able to generate

solid VHDL models, and thus your circuits will be inefficient (if they actually work in the first

place). Digital design is similar to higher-level language programming in that even the most

complicated programming at any level are decomposable into some simple programming

constructs
180

. There is a strong analogy between higher level programming languages and

digital design in that even the most complex digital circuits are describable in terms of basic

digital constructs
181

. If you are not able to roughly envision the digital circuit you’re trying to

model in terms of basic digital building blocks, you’ll probably misuse VHDL, thus angering

the VHDL gods.

16.4 VHDL Invariants

This section contains information regarding the “non-technical” use of VHDL. We present this

information now because it provides valuable direction that is usable anytime time you use VHDL.

Although your approach to VHDL modeling in general will change as you acquire more advanced

modeling skills, the information in this section remains constant. Although it’s rarely a good idea for

people to memorize anything, you should memorize the basic information presented in this section.

Making these ideas second nature should help eliminate some of the drudgery involved in learning the

syntax of a new computer language while laying the foundation for creating more robust VHDL

models. Don’t forget about this section: come back and reread it once you generated a few VHDL

models as it will make more sense at that time.

The primary purpose of the invariants listed in this section is to give the digital designer creating the

VHDL models an extensive amount of control over the final model. If you use this control properly,

you VHDL models, simply stated, will be better
182

. Items such as case sensitivity and white space are

meaningless to the software responsible for interpreting the models, but are of utmost importance for

177

 There is a lot involved with the synthesis process. Companies invest significant time and money into this

process in hopes of synthesizing meaningful digital designs. The “free” (no cost) versions of design tools out there

won’t necessarily represent the best tools from any given company; you have to pay actual money for those.
178

 Meaning that your code will probably not work properly after you synthesize it, or, it will be a massively

inefficient design even if it does work properly.
179

 And there’s really only a few of them…
180

 It’s the structured programming thing all over again…
181

 Basic digital constructs include one of the relatively few “standard” lower-level digital devices. .
182

 More understandable and readable.

Digital McLogic Design Chapter 16

 - 292 -

the humans who may be tasked with understanding the models. A VHDL model with a neat appearance

is a better model in that it transfers more information to the human reader in a faster, more efficient

manner. You have two choices in VHDL land: write beautiful VHDL code or write crap; there is no in-

between.

16.4.1 Case Sensitivity

VHDL is not case sensitive
183

. This means that the two statements shown in Figure 16.1 have the exact

same meaning (don’t worry about the syntax of the statement or what the statements actually means

though). Keep in mind that Figure 16.1 shows examples of VHDL case sensitivity but are not good

VHDL coding practices (as you’ll find out later). The main issue behind case sensitivity is to maintain

consistency in your models; in other words, don’t change the case of items in your code as it makes the

model slightly harder to understand. Keep in mind that often times, there will be a style file provided to

you (and the remainder of your group) that describes the accepted coding practices of the group
184

.

Dout <= A and B; doUt <= a AnD b;

Figure 16.1 An example of VHDL case insensitivity.

16.4.2 White Space

VHDL code is not sensitive to white space (spaces and tabs). The two statements in Figure 16.2 have

the exact same meaning. Once again, Figure 16.2 is not an example of good VHDL coding style in that

neither of the statements is as readable as they could be. Note that Figure 16.2 once again shows that

VHDL is not case sensitive.

In addition, worthy of noting on this topic is the use of tabs in your VHDL models. There are two

reasons not to use tabs in your VHDL models. First, although your code looks great in your editor, it

could possibly look like crap (improper indentation) in an editor that someone else who needs to work

with your code is using
185

. Second, when you generate hard-copies of your code, each printer contains

an evil demon that interprets you tab characters in such a way as to mess up the appearance of your

code. The result is crappy looking VHDL code and loss of friends in your social network.

nQ <= In_a or In_b; nQ <= in_a OR in_b;

Figure 16.2: An example showing VHDL's indifference to white space.

16.4.3 Comments

Comments in VHDL begin with “--“ (two consecutive dashes). The VHDL synthesizer ignores

anything after the two dashes and up to the end of the line in which the dashes appear. Figure 16.3

183

 Deep down in the bowels of VHDL, there are some instances of case sensitivity but you’ll more likely than not

run into these instances for a long time.
184

 Always ask for a copy of the style file; if there isn’t one, look for a new job or better supervisor.
185

 When you’re working on a large project with many people, it is inevitable that many different text editors will

be used. Not all of these editors handle whitespace in the same manner.

Digital McLogic Design Chapter 16

 - 293 -

shows two types of commenting styles. Unfortunately, there are no block-style comments (comments

that span multiple lines but don’t require comment marks on every line) in available in VHDL
186

.

Appropriate use of comments increases both the readability and the understandability of VHDL code.

The general rule is to comment any line or section of code that may not be clear to a reader of your

code. The only inappropriate use of a comment is to state something that is patently obvious. It’s hard

to imagine code that has too few comments: don’t be shy; use lots of comments. Research has shown

that using lots of appropriate comments is a sign of high intelligence.

There is always an issue of where exactly to place comments. The best option is to place comments on

lines before the line of code that you’re commenting. The second best option is to place the comment

after the VHDL code on a particular line. This approach only works for really short comments and

should not be used otherwise. The third option is to place the comment after the line of code that it is

describing. You should never do this: way too confusing and thus ugly. See Figure 16.4 for a few more

exciting examples.

No matter how you use comments, be sure to keep the length of the comment on the given line

relatively short. Long comments can go off the visible page or wrap on a hardcopy; the look really sad.

Your mission, however, is to write happy VHDL code.

-- This next section of code is used to blah-blah

-- blah-blah blah-blah. This type of comment is the best

-- fake for block-style commenting.

PS_reg <= NS_reg; -- Assign next_state value to present_state

Figure 16.3: Two typical uses of comments.

-- The best place for a comment is here

b_val <= a_val AND c_val;

-- Comments after the code on the line are OK, but keep them short

-- Good:

d_val <= d_val AND f_val; -- D calculation

-- BAD:

d_val <= d_val AND f_val; -- calculation of d_val based on previous results

-- Comments on the line of after the code are confusing:

d_val <= d_val AND f_val;

-- D calculation

Figure 16.4: Two typical uses of comments.

16.4.4 Parenthesis

VHDL is relatively lax on its requirement for using parenthesis. Like other computer languages, there

are precedence rules associated with the various operators in the VHDL language. Though it is possible

186

 Many editors, however, are able to comment and uncomment large sections of code automatically. The moral of

this story: know thy editor. Many editors are also able to edit user specified blocks of text; a very handy feature.

Digital McLogic Design Chapter 16

 - 294 -

to learn all these rules and write clever VHDL source code that will ensure the readers of your code will

be scratching their heads, a better idea is to practice the liberal use of parenthesis to ensure the human

reader of your source code understands your code. As an example, the VHDL synthesizer interprets the

two statements shown in Figure 16.5 as being equivalent. Note that in Figure 16.5, the extra white space

in addition to the parenthesis to makes the lower statement more clear. Don’t worry about the syntax

presented in Figure 16.5; we’ll touch on that later.

if x = ‘0’ and y = ‘0’ or z = ‘1’ then

 blah; -- some useful statement

 blah; -- some useful statement

end if;

if (((x = ‘0’) and (y = ‘0’)) or (z = ‘1’)) then

 blah; -- some useful statement

 blah; -- some useful statement

end if;

Figure 16.5: An example of parenthesis use that produces clarity and happiness.

16.4.5 VHDL Statement Termination

Similar to other algorithmic computer languages, VHDL uses a semicolon to terminate statements. This

fact helps when attempting to remove compile errors from VHDL code since semicolons are often

mistakenly omitted during initial coding. The main challenge then becomes to know what constitutes a

VHDL statement in order to know when to include semicolons. The VHDL synthesizer is not as

forgiving as other languages when superfluous semicolons are place in the source code. In other words,

if you forget to include a semicolon on a particular line, the synthesizer rarely flags it as an error.

16.4.6 Control Constructs: if, case, and loop Statements

As you soon will find out, the VHDL language contains if, case, and loop statements. A common

source of frustration that occurs when learning VHDL is the classic dumb mistakes involving these

statements. Always remember the rules stated below when writing or debugging your VHDL code and

you’ll save yourself a lot of time.

 Every if statement has a corresponding then component

 Each if statement is terminated with an “end if”

 If you need to use an “else if” construct, the VHDL version is “elsif”

 Each case statement is terminated with an “end case”

 Each loop statement has a corresponding “end loop“ statement

16.4.7 Identifiers

An identifier refers to the name given to discern various items in VHDL. Examples of identifiers in

higher-level languages include variable names and function names. Examples of identifiers in VHDL

include variable names, signal names, entity names and architecture names (all of which will be

Digital McLogic Design Chapter 16

 - 295 -

discussed soon). The list below shows the hard and soft rules (i.e., you must follow them or you should

follow them, respectively) regarding VHDL identifiers. Remember, intelligent choices for identifiers

make your VHDL code more readable, understandable, and more impressive to coworkers, superiors,

family, and friends. People should quietly mumble to themselves “this is impressive looking code… it

must be good” as they read your code. A few examples of both good and bad choices for identifier

names appear in Table 16.1.

 Identifiers should be self-commenting. In other words, the text you use for identifiers should

provide information as to the use and purpose of the item the identifier represents.

 Identifiers can be any length (contain many characters). Shorter names make for more readable

code, but longer names present more information. It’s up to the designer to choose a reasonable

identifier length.

 Identifiers can only contain some combination of letters (A-Z and a-z), digits (0-9), and the

underscore character (‘_’); VHDL permits no other characters.

 Identifiers must start with an alphabetic character.

 Identifiers must not end with an underscore and must never have two consecutive underscores.

Valid Identifiers Invalid Identifiers

data_bus_val descriptive name 3Bus_val begins with numeric character

WE classic “write enable” acronym DDD not self-commenting

div_flag a real winner mid_$num contains illegal character

port_A provides some info last__value contains consecutive underscores

in_bus input bus (a good guess) start_val_ ends with underscore

clk classic system clock name in uses VHDL reserved word

 @#$%%$ total garbage

 this_sucks true but try to avoid

 Big_vAlUe valid way too ugly

 pa possibly lacks meaning

 sim-val illegal character (dash)

Table 16.1: Examples of desirable and undesirable identifiers.

16.4.8 Reserved Words

As with other computer languages, the VHDL language assigns special meaning to many words. These

special words, usually referred to as reserved words, cannot be used as identifiers. A partial list of

reserved words that you may be more inclined to use appears Table 16.2. A complete list of reserved

words appears in the Appendix. Notably missing from Table 16.2 are standard operator names such as

AND, OR, XOR, etc. (the basic gates used in digital logic).

Digital McLogic Design Chapter 16

 - 296 -

access exit mod return while

after file new signal with

alias for next shared

all function null then

attribute generic of to

block group on type

body in open until

buffer is out use

bus label range variable

constant loop rem wait

Table 16.2: A short list of VHDL reserved words.

16.4.9 VHDL General Coding Style

Coding style refers to the appearance (as opposed to the function) of the VHDL source code.

Obviously, the freedom provided by case insensitivity, indifference to white space, and lax rules on

parenthesis creates a virtual coding anarchy. Generating readable code is therefore the main emphasis in

VHDL coding style. Unfortunately, the level of readability of any document, particularly coding text, is

subjective. Writing VHDL code is similar to writing code in other computer languages such as C and

Java in that you have the ability to make the document more readable without changing the function of

the document. Indenting certain portions of the code increases its readability and understandability, as

does the use of self-commenting identifiers, and provided proper comments when and where necessary.

Instead of stating a bunch of rules for you to follow as to how your document should look, you should

instead strive to make your source code readable. Listed below are a few thoughts on the notion of a

readable document.

 Chances are that if your VHDL source code is readable to you, it will be readable to

others who may need to peruse your document. These other people may include

someone who is helping you get the code working properly, someone who is assigning a

grade to your code, or someone who signs your paycheck at the end of the day. These

are the people you want to please. These people are most likely massively busy and

more than willing to make a subjective glance at your code; nice looking code will slant

their subjectivity in your favor.

 If in doubt, you should model your VHDL source code after some other VHDL

document that you find particularly organized and readable. VHDL code you initially

encounter was most likely written by someone with more VHDL experience than a

beginner such as yourself. Emulate the good parts of their style while on the path to

creating an even more readable style of your own.

 Adopting a good coding style helps you write code without mistakes. As with other

compilers you have experience with, you’ll find that the VHDL compiler does a great

job at knowing a document has error but a marginal job (at best) at telling you the exact

location of the error or what the error is. Using a consistent coding style enables you to

find errors both before compilation and/or after the compiler has noted an error.

Digital McLogic Design Chapter 16

 - 297 -

 A properly formatted document explicitly presents information about your design that

would not otherwise be readily apparent. This is particularly true in the case of

indenting your code.

 Look for and/or request that someone provide you with a VHDL style-file that explicitly

shows how your code should appear. Anyone who is evaluating the appearance of your

VHDL code should provide you with a style-file.

16.5 Basic VHDL Design Units

The “black box” approach to any type of design implies a hierarchical approach where varying amounts

of detail are available at each level of the hierarchy. In the black box approach, units of action which

share a similar purpose are grouped together and abstracted to a higher level. Once this is done, the

module is referred to by its inherently more simple black box representation rather than thinking about

the circuitry that actually performs that functionality.

This “black box” approach has two main advantages. First, it simplifies the design from a systems

standpoint. Examining a circuit diagram containing appropriately named black boxes is much more

understandable than staring at a circuit containing a countless number of logic gates. Second, the black

box approach allows for the reuse of previously written and working code, namely the black boxes.

Previous chapter discussed other great reasons for using black box diagrams.

Not surprisingly, VHDL bases its descriptions of circuits on the black box approach. The two main

parts of any hierarchical design are, 1) the black box, and 2) the stuff that goes in the black box (which

of course can be other black boxes). In VHDL, the black box is specified (or referred to) by the entity

and the stuff that goes inside the black box is specified (or referred to) as the architecture. For this

reason, the VHDL entity and architecture are closely related. As you probably can imagine, creating the

entity is relatively simple while properly describing the architecture requires the major portion of time

and effort in VHDL modeling. Our approach in this chapter is to present an introduction to writing

VHDL code by describing the entity and then moving onto some of basic details of writing the

architecture.

16.5.1 The VHDL Entity

The entity is VHDL’s version of the black box. The VHDL entity construct provides a method to

abstract the functionality of a circuit description to a higher level. The entity essentially provides a

simple “wrapper” for the underlying circuitry. This wrapper describes how the black box interfaces with

the outside world. Since VHDL is describing a digital circuit, the entity simply lists the various inputs

and outputs of the underlying circuitry. In VHDL terms, an entity declaration officially describes the

black box but does not describe anything in the black box.

Figure 16.6 shows the syntax
187

 of the entity declaration. Note that the entity_name provides a method

to reference the entity. The port clause specifies the actual interface of the entity. Figure 16.7 shows the

syntax of the port_clause. Lastly, in big-picture terms, the entity is all that the outside world needs to

know in order to be able to interface with the entity.

187 The bold font is used to describe VHDL keywords while italics are used to show names that are supplied by the

writer of the VHDL code. The concept of boldness is for readability only; your VHDL synthesizer won’t have a use

for it.

Digital McLogic Design Chapter 16

 - 298 -

entity entity_name is

 [port_clause]

end entity_name;

Figure 16.6: Generic form of an entity declaration.

 port (

 port_name : mode data_type;

 port_name : mode data_type;

 port_name : mode data_type

);

Figure 16.7: Syntax of the port_clause.

A “port” is essentially a conduit that interfaces a signal inside the box with a signal in the outside world.

This signal can be either an input to the underlying circuit from the outside world or an output from the

underlying circuit to the outside world. The port clause is nothing more than a list of the signals from

the underlying circuit that are available to the outside world; this is why the entity declaration is often

referred to as an interface specification. The port_name is an identifier used to differentiate the various

signals. The mode specifies the direction of the signal relative to the entity and thus can enter (inputs) or

exit (outputs) the black box
188

. These input and output signals are associated with the keywords in and

out, respectively. The data_type refers to the type
189

 of data associated with that port. There are many

data types available in VHDL but we’ll deal primarily with the std_logic type. We’ll present

information regarding the various VHDL data types in a later chapter; this will all make more sense

once you start writing some actual VHDL models.

Figure 16.8 shows an example of a black box and the VHDL code that describes it. The list below

describes a few things to note about the code in Figure 16.8. Most of the important things to note regard

the readability and understandability of the VHDL code. The bolding of the VHDL keywords reminds

you what the VHDL keywords are; most editors do not allow you to use bold text so don’t expect to

find bold text outside of this textbook.

 Each port name is unique and has an associated mode and data type. This is a requirement.

 The VHDL synthesizer allows several port names to be included on a single line and uses

commas to delineate port names. This is not a requirement; whatever you choose to do, you

should always strive for readability.

 The port names are somewhat lined up in a feeble attempt to increase readability. This again is

not a requirement but you should always be striving for readability. Recall that the synthesizer

ignores white space. There is no one great way to “line things up” so try to at least make it

readable and for sure make it consistent (and don’t use tabs).

 The VHDL code includes comments, which simulates the telling of almost intelligent things.

188

 There are actually other mode specifiers but we’ll discuss them at a later time.
189

 VHDL is a strongly-typed language; there are many typing rules that you must follow.

Digital McLogic Design Chapter 16

 - 299 -

 This example provides a black box diagram of the model. Once again, drawing some type of

diagram helps with any VHDL code and digital design in general. Remember… don’t be a wuss;

draw a diagram, and draw it before you start coding any VHDL model
190

.

--

-- Here’s my interface description of the killer circuit

-- It does a lot of killer things.

--

entity killer_ckt is

 port (life_in1 : in std_logic;

 life_in2 : in std_logic;

 crtl_a, ctrl_b : in std_logic;

 kill_a : out std_logic;

 kill_b : out std_logic;

 kill_c : out std_logic);

end killer_ckt;

Figure 16.8: Example black box and associated VHDL entity declaration.

Figure 16.9 provides another example of a black box diagram and its associated entity declaration. All

of the ideas noted in Figure 16.8 are equally applicable in Figure 16.9.

--

-- out_sel is used to select one inputs based on the

-- conditions of sv0 and sv1 blah blah blah

--

entity out_sel is

 port (big_sig_a, big_sig_b : in std_logic;

 sv0, sv1 : in std_logic;

 fax_add : in std_logic;

 st_1, st_2 : out std_logic;

 a_st_1, a_st_2 : out std_logic);

end out_sel;

Figure 16.9: An example of an input/output diagram of a circuit and its associated VHDL entity.

Hopefully, you’re not finding these entity specifications too challenging. In fact, they’re so straight-

forward, we’ll throw in one last twist before we leave the realm of VHDL entities. Most the more

meaningful circuits that you’ll be designing, analyzing, and testing using VHDL have many similar and

190

 This is massively important; many beginning VHDL coders confuse themselves by starting their code without

first drawing a black box model. Don’t do this; it’s a sure sign that you’re wasting time.

Digital McLogic Design Chapter 16

 - 300 -

closely related sets of inputs and outputs. These sets of signals are commonly referred to as bundles

signals in computer lingo
191

. Bundles are made of more than one signal that differ in name by only a

numeric reference character (or an “index”). In other words, each separate signal in the bundle name

contains the bundle name plus a number to differentiate it from other signals in the bundle. Individual

bundle signals are generally referred to as elements of the bundle.

The VHDL entity can easily describe bundles. VHDL uses a sort of new data type for bundles and a

special notation to indicate when a signal is a bundle or not. Figure 16.10 shows a few examples of the

new data type and associated syntax. In these examples note that the mode remains the same but the

type has changed. The std_logic data type now includes the word vector to indicate each signal name

contains more than one signal. There are ways to reference individual members of each bundle but we’ll

wait until later to discuss that notation.

magic_in_bus : in std_logic_vector(0 to 3);

big_magic_in_bus : in std_logic_vector(7 downto 0);

tragic_in_bus : in std_logic_vector(16 downto 1);

data_bus_in_32 : in std_logic_vector(0 to 31);

mux_out_bus_16 : out std_logic_vector(0 to 15);

addr_out_bus_16 : out std_logic_vector(15 downto 0);

Figure 16.10: A few examples of bundled signals of varying content.

As you can see by examining Figure 16.10, there are two possible methods to describe the signals in the

bundle. The argument lists shows these two methods in the parenthesis that follow the data type

declaration. The signals in the bundle can be listed in one of two orders which is specified by the to or

downto keyword. Producing VHDL code with greater clarity should be the deciding factor on which of

these orientations to use, but strive to be consistent. Be sure not to forget the orientation of signals when

you are using this notation in your VHDL model. A good practice is to adopt either the “to” or

“downto” style and stick with it in all your VHDL models.

A more appropriate introduction to bundles would be to see this notation used to describe an actual

black box. Figure 16.11 shows a black box followed by its entity declaration. Note that the black box

uses a slash/number notation to indicate that the signal is a bundle. The slash across the signal line

indicates the signal is a bundle and the associated number specifies the number of signals in the bundle.

Worthy of mention regarding the black box of Figure 16.11 is that the input lines sel1 and sel0 could

have been made into a single bundle containing two signals.

191

 These are also referred to as “buses”; but the term bundle is much better as the term “bus” has other

connotations in digital-land.

Digital McLogic Design Chapter 16

 - 301 -

--

-- Unlike the other examples, this is actually an interface

-- for a MUX that selects one of four bus line for the output.

--

entity mux4_8 is

 port (a_data : in std_logic_vector(0 to 7);

 b_data : in std_logic_vector(0 to 7);

 c_data : in std_logic_vector(0 to 7);

 d_data : in std_logic_vector(0 to 7);

 sel1,sel0 : in std_logic;

 data_out : out std_logic_vector(0 to 7));

end mux4_8;

Figure 16.11: A black box example containing bundles and its associated entity declaration.

16.5.2 The VHDL Architecture

The VHDL entity declaration describes the interface or the external representation of the circuit. The

architecture describes what the circuit actually does. In other words, the VHDL architecture describes

the internal implementation of the associated entity. As you can probably imagine, describing the

external interface to a circuit is generally much easier than describing the operation of the circuit.

The most challenging part about learning VHDL is becoming familiar with the myriad of possible ways

that VHDL can model a circuit. At this point in your digital design career, we’ll hide a bulk of the

details from you in an effort to make you more comfortable with the basic syntax. The approach we’ll

take is to present some simple examples that utilize simple VHDL operators. Once we introduce more

details regarding digital logic and digital design, we’ll introduce more details regarding VHDL. Don’t

feel bad that you really don’t know what you’re doing because you won’t realize that you don’t really

know what you’re doing until after you’ve been doing it for awhile
192

.

16.5.3 The Architecture Body

The term “architecture body” is the name given to the thing that defines the input/output relationship to

the ports listed in the VHDL entity. Because the input/output relationship for a given digital circuit can

be complex, the VHDL designer can include a myriad of information in the architecture body. For now,

we’ll only present the basics and leave the more challenging stuff until later. Figure 16.12 shows the

generic form of the architecture body.

192

 I have no idea what this means; I put it in here because it sounded incredibly stupid.

Digital McLogic Design Chapter 16

 - 302 -

architecture arch_identifier of entity_name is

 {declarative region}

begin

 {statement region}

end arch_identifier;

Figure 16.12: The architecture body beautiful in all its generic glory.

There are a few key features in the architecture body commenting on. Don’t allow the sheer number of

items in the list below intimidate you; designing simple architecture bodies becomes second nature once

you do it once or twice.

 The bold-face typing lists the VHDL keywords. The italicized text represented items that the

VHDL designer needs to provide. The VHDL designer also provides the stuff in the braced

delineated items; later bullets cover these items.

 The arch_identifier is a label that you must supply. Section 16.4.7 outlined the rules governing

identifiers; try to make your identifier names give a hint as to the function of the architecture. In

other words, all identifiers should be self-commenting.

 The entity_name is the name associated with the entity that a given architecture is describing. Be

sure to apply self-comment when choosing names for your entities.

 The declarative region contains items that are used by the architecture but don’t directly describe

the operation of the circuit. You’re actually able to put many different items in this area which

emphasizes the versatility of VHDL in describing circuit operation; we’ll cover some of the more

useful items in a later chapter.

 The statement region contains VHDL statements that directly describe the operation of the

circuit. We’ll do a few simple example follow this boring description.

 Each architecture body contains one begin statement that terminates the declarative region and

an associated end statement that terminates the architecture body.

16.6 Simple VHDL Models: entity and architecture

You now have enough information in order to model digital circuits using VHDL. The key to VHDL

modeling is that every VHDL model has an entity/architecture pair. The examples used in this section

are complete but they are simple enough such that the declarative region of the architecture is blank.

For the following examples, we’ll use the architectures to directly model Boolean expression that were

presented in the previous chapter
193

. The statement region is filled with basic expressions that model the

logic that implements the required circuit functionality.

VHDL uses various operators to implement standard logic gates. As you may know from higher-level

computer languages, “operators” are used to implement “operations”
194

. VHDL likewise contains many

useful operators. Fortunately, the only operators we’ll need to get started are the operators associated

with these logic functions. Table 16.3 shows an overview of these operators.

193

 The implication here is that there are always other ways to generate your models; we’ll talk about those later.
194

 This sentence is vying for Sentence of the Year Award.

Digital McLogic Design Chapter 16

 - 303 -

Logic

Function

Logic

Symbol

Logic

Example

VHDL

Operator

VHDL

Example

AND • BA AND A AND B

OR BA OR A OR B

NAND n/a BA
NAND A NAND B

NOR n/a BA
NOR A NOR B

XOR BA XOR A XOR B

XNOR BA XNOR A XNOR B

Compliment A NOT (NOT A)

Table 16.3: A few of the logic operators used in VHDL.

Example 16-1

Provide the VHDL code that models the following Boolean equation:

B0B1B2 B0B1B2 B0B1B2 B0)B1,F(B2,

Solution: The place to start with any digital design problem is with a black box diagram. The black box

diagram is particularly helpful in VHDL modeling because does a great job of modeling the entity.

Figure 16.13 shows the black box diagram while Figure 16.14 provides the entire solution to Example

16-1.

Figure 16.13: The black box diagram for Example 16-1.

Digital McLogic Design Chapter 16

 - 304 -

entity ex1 is

 port (B2,B1,B0 : in std_logic;

 F : out std_logic);

end ex1;

architecture ex1_a of ex1 is

begin

 -- implement Boolean expression

 F <= (B2 AND (not B1) AND B0) OR

 (B2 AND B1 AND (not B0) OR

 (B2 AND B1 AND B0);

end ex1_a;

Figure 16.14: The full solution (VHDL model) for Example 16-1.

Although the solution in Figure 16.14 is relatively short, there are some important points to note:

 The entity name (ex1) associates the architecture with a specific entity. In this example, this

architecture described the “ex1_a” version of the “ex1” circuit. In the real world, you may

have multiple versions of the same circuit for various reasons.

 The declarative region of the architecture is blank. This model is relatively simple and we

therefore don’t need to put anything inside the declarative region.

 The solution includes a trivial comment in order to remind you of the importance of

commenting your code.

 The individual product terms in the solution are placed on three separate lines and lined up

nicely which increases the readability of the solution (a good use of white space). If it were not

written this way, it would be really hard to read and may risk running off the page.

 The statement region of the architecture contains one statement. This one statement uses the

signal assignment operator (“<=”) to assign the result of the logic operations to the output. In

other words, the value of the signal is determined by performing the logic operations on the

right side of the signal assignment operator; the signal on the right side of the signal

assignment operator is assigned the result.

 The model extensively uses parenthesis. You could write the statement without using

parenthesis, but it would be confusing. Worst of all, it would require you to know the VHDL

operator precedence rules (which I’ve don’t know because I prefer to use parenthesis).

 If you really don’t want to use parenthesis, the world will keep spinning. But, my general rule

of VHDL is when using the “not” operator, always put the expression that is being inverted

into parenthesis. If you don’t, you’ll generate errors that will be hard to find.

Digital McLogic Design Chapter 16

 - 305 -

Example 16-2

Provide a VHDL model that is equivalent to the following circuit model:

Solution: Be sure to note the similarities between this example and Example 16-1. Figure 16.15 shows

the black box diagram for this example; Figure 16.16 provides the full solution.

Figure 16.15: The black box diagram for Example 16-2.

entity ex2 is

 port (A,B,C : in std_logic;

 F : out std_logic);

end ex2;

architecture ex2_a of ex2 is

begin

 -- implement Boolean expression associated with ckt model

 F <= (A AND (not B)) OR ((not A) AND (not C));

end ex2_a;

Figure 16.16: The VHDL model for Example 16-2.

One good thing to note here is that the entity model name matches the model name provided by the

black box model in Figure 16.15. This is one of those things that should always be done but in actuality

one of those things that is rarely done. The problem is that most people rarely start their designs out by

drawing a black box model; they usually draw the black box model after the completion of the VHDL

model. I strongly encourage you to make drawing the black box model the first step in every design you

embark on.

Digital McLogic Design Chapter 16

 - 306 -

Chapter Summary

 VHDL is an integral part of modern digital design. Any introductory digital design text that does not

integrate VHDL and basic logic concepts will make a good Kleenex substitute in a pinch.

 The main uses of VHDL include: 1) modeling digital circuits in an unambiguous manner, 2)

simulating digital circuits, 3) generating actual hardware from VHDL models, and 4) hierarchical

design support.

 VHDL has several apparent limits; these limitations are avoidable with proper use of VHDL.

1. VHDL synthesis tools have their limits. Strive to keep your circuits simple, particularly by

utilizing hierarchical design.

2. VHDL is a “hardware design language” and not a computer programming language. Don’t use

VHDL constructs that are similar to programming constructs in a “software” manner.

3. Have a general concept of what your hardware should look like and strive for circuit

descriptions that are utilize standard digital circuits.

 The entity declaration describes the inputs and outputs to a circuit. This set of signals is often referred

to as the interface to the circuit since these signals are what the circuitry external to the entity uses to

interact with the given circuit.

 Signals described in the entity declaration include a mode specifier and a type. The mode specifier

can be either an in or an out while the type is either a std_logic or std_logic_vector.

 The word bundle is preferred over the word bus when dealing with multiple signals that share a

similar purpose. The word bus has other connotations that are not consistent with the bundle

definition.

 Multiple signals that share a similar purpose should be declared as a bundle using a std_logic_vector

type (or vector types). Bundled signals such as these are always easier to work with in VHDL as

compared to scalar types such as std_logic.

 VHDL models generally comprise of an entity and architecture. The entity describes the interface of

the circuit (the inputs and outputs to the associated black box) while the architecture describes the

operational characteristics of the circuit.

 Basic VHDL operators include logic operators (AND, OR, and NOT) and signal assignment

operators (“<=”).

Digital McLogic Design Chapter 16

 - 307 -

Chapter Exercises

1) Why is it important never to use tab characters in your text used for coding purposes? Briefly

explain.

2) What is referred to by the word bundle?

3) Why is the word bundle more appropriate to use than the word bus?

4) What is a common method of representing bundles in black box diagrams?

5) Why is it considered a good approach to always draw a black box diagram when using VHDL to

model digital circuits?

6) Write VHDL entity declarations that describe the following black box diagrams:

(a) (b) (c)

(d) (e)

(f) (g)

(h) (i)

Digital McLogic Design Chapter 16

 - 308 -

7) Provide black box diagrams that are defined by the following VHDL entity declarations:

entity ckt_a is

 port (in_a : in std_logic;

 in_b : in std_logic;

 in_c : in std_logic

 out_f : out std_logic);

end ckt_a;

entity ckt_b is

 port (LDA,LDB : in std_logic;

 ENA,ENB : in std_logic;

 CTRLA,CTRLB : in std_logic;

 OUTA,OUTB : out std_logic);

end ckt_b;

(a) (b)

entity ckt_c is

 port (bun_a,bun_b_bun_c : in std_logic_vector(7 downto 0);

 lda,ldb,ldc : in std_logic;

 reg_a, reg_b, reg_c : out std_logic_vector(7 downto 0);

end ckt_c;

(c)

entity ckt_d is

 port (big_bunny : in std_logic_vector(31 downto 0);

 mx : in std_logic_vector(1 downto 0);

 byte_out : out std_logic_vector(7 downto 0));

end ckt_d;

(d)

entity ckt_e is

 port (RAM_CS,RAM_WE,RAM_OE : in std_logic;

 SEL_OP1, SEL_OP2 : in std_logic_vector(3 downto 0);

 RAM_DATA_IN : in std_logic_vector(7 downto 0);

 RAM_ADDR_IN : in std_locic_vector(9 downto 0);

 RAM_DATA_OUT : out std_logic_vector(7 downto 0));

end ckt_e;

(e)

entity ckt_f is

 port (rss_bytes, rss_sux, rss_dogface : in std_logic;

 worthless, way_bad, go_away : in std_logic_vector(23 downto 0);

 big_joke, insecure, lazy : out std_logic_vector(32 downto 0);

 SMD : out std_logic_vector(7 downto 0));

end ckt_f;

(f)

8) The following two entity declarations contain two of the most common syntax errors made in

VHDL. What are they?

entity ckt_a1 is

 port (J,K : in std_logic;

 CLK : in std_logic

 Q : out std_logic;)

end ckt_a1;

entity ckt_d is

 port (mr_fluffy : in std_logic_vector(15 downto 0);

 mux_ctrl : in std_logic_vector(3 downto 0);

 byte_out : out std_logic_vector(3 downto 0);

end ckt_d;

(a) (b)

Digital McLogic Design Chapter 16

 - 309 -

9) Provide VHDL models that implement the following Boolean expressions.

a) CBACBACBACBACBAF),,(

b) ZYXZYXZYXZYXZYXF),,(

c))()()()(),,(CBACBACBACBACBAF

d))()()()(),,(ZYXZYXZYXZYXZYXF

10) Provide VHDL models that implement the following circuit models.

(a) (b)

(c) (d)

11) Provide a VHDL model that implements a half adder (HA). Use only one architecture for your

solution.

Digital McLogic Design Chapter 16

 - 310 -

12) Write an equivalent equation for F in reduced SOP form using the following VHDL model. Do

not draw the circuit.

entity ex1_model is

 Port (A,B,C : in std_logic;

 F : out std_logic);

end ex1_model;

architecture ex1_model of ex1_model is

begin

 F <= (A OR (not B) OR C) AND

 (A OR (not B) OR (not C)) AND

 ((not A) OR B OR (not C)) AND

 ((not A) OR (not B) OR (not C)) ;

end ex1_model;

13) Write an equivalent equation for F in reduced POS form using the following VHDL. Do not

draw the circuit.

entity exam1_model is

 Port (A,B,C : in std_logic;

 F : out std_logic);

end exam1_model;

architecture exam1_model of exam1_model is

begin

 F <= ((not A) AND (not B) AND (not C)) OR

 ((not A) AND B AND (not C)) OR

 (A AND (not B) AND (not C)) OR

 (A AND (not B) AND C);

end exam1_model;

Digital McLogic Design Chapter 16

 - 311 -

Design Problems

1) Provide a VHDL model that could be used to synthesize a circuit that performed as follows. If the

two 2-bit inputs to a circuit are equivalent, the circuit outputs a the value of “11”. Otherwise, the

circuit outputs a value of “00”.

2) Provide a VHDL model that could be used to synthesize a circuit that performed as follows. The

four inputs are equivalent, the circuit outputs a ‘1’. The circuit also outputs a ‘1’ when the circuit’s

inputs considered as a 4-bit unsigned binary value are odd and less than 9. Otherwise, the circuit

outputs a ‘0’.

 - 313 -

17 Chapter Seventeen

(Bryan Mealy 2012 ©)

17.1 Chapter Overview

One of the underlying themes in digital design is the use of modularity. You’ve already seen the power

of the modular approach to digital design in our discussion of modular design (MD). The modularity

theme is also one of the major themes of computer program design. What you’ll find as you work

through this text is that there are simply not that many different types of basic digital circuits out there.

In other words, once you learn the few basic digital circuit types out there and become fluent with their

use, you’ll be well on your way to be coming a great digital designer. This means that you can

subdivide even the most complex digital circuit into a set of the relatively few standard digital

circuits
195

. However, if you take that previous statement and look at it in the opposite way, you can

create complex digital circuit designs by connecting a set of standard digital circuits in an intelligent

way.

It should be no surprise that VHDL fully supports all aspects of modular design. The modular design

approach to modeling in VHDL is referred to as “structural modeling”. Structural modeling supports all

of the intuitive aspects of modular digital design; the only issue here is learning a new set of syntax

associated with structural design.

Main Chapter Topics

 VHDL STRUCTURAL MODELING OVERVIEW: This chapter presents an overview

and the motivation behind VHDL structural models.

 VHDL STRUCTURAL MODELING MECHANICS: This chapter shows some of the

syntax and mechanics involved in using structural modeling. The examples

presented in this chapter are basic but form a complete foundation of VHDL

structural model.

Why This Chapter is Important

This chapter is important because it describes VHDL structural modeling, which is a

modeling approach that supports hierarchical design with VHDL.

17.2 Modular Digital Design

The best approach to becoming an efficient digital designer is to incorporate modular digital design

techniques wherever possible. The modular design approach bypasses some of the basic limitations of

truth table-based design. Modular digital design is done at a higher-level than truth table-based iterative

195

 The “structured programming” approach to modular digital design.

Digital McLogic Design Chapter 17

 -- 314 --

designs
196

. While the main components in truth table-based designs were the independent variables, the

main components of modular digital design are pre-designed circuits (the modules). The modular

design approach is powerful because it generally models circuits using pre-designed (and tested)

modules connected by a combination of signals and possibly something that is generally referred to as

glue logic
197

. The modular design approach increases your efficiency as a digital designer by allowing

you to assemble previously designed modules into new and different circuits. You should never find

yourself reinventing the wheel in your digital designs
198

.

One of the many great attributes about VHDL is its support of modular design and module reuse.

Although we’re not at the point of designing overly meaningful circuits at the modular digital design

level, we are, however ready to understand the VHDL-based support mechanism of modular digital

design. Although the examples in this chapter seem rather simple, they represent the basis of

implementing and understanding even the most complex digital circuits. The VHDL mechanism used to

support modular digital design is referred to as structural modeling. VHDL structural modeling

supports modular digital design by directly supporting the hierarchical design partitioning. It is not a

stretch to state that any complex digital model that does not employ structural modeling techniques

represents a substandard use of VHDL. Try not to be substandard; there are too many people like that

already
199

.

17.3 VHDL Structural Modeling

The design of complex digital circuits using VHDL should closely resemble the structure of complex

computer programs. Many of the techniques and practices used to construct large and well-structured

computer programs written in higher-level languages can and should be applied when using VHDL to

describe digital designs
200

. The common structure we are referring to is the ever so popular modular

approach to coding. The term structural modeling is the terminology that VHDL uses for the modular

design. The VHDL modular design approach directly supports hierarchical design, which is essential

when attempting to understand complex digital designs.

The benefits of modular design to VHDL are similar to the benefits that modular design or object

oriented design provides for higher-level computer languages. Modular designs promote

understandability by packing low-level functionality into modules. These modules are easily reused in

other designs thus saving the designer time by removing the need to reinvent and retest the wheel.

The hierarchical design approach extends beyond code written on the file level. VHDL modules can be

placed in appropriately named files and libraries in the same way as higher-level languages. Moreover,

there are often design libraries out there that contain useful modules that are only accessible using a

structural modeling approach
201

. Having access to these libraries and being fluent in their use serves to

increase your efficiency as a designer and allows you to design better circuits.

196

 Recall the cases of the half and full adders vs. the ripple carry adder. The HA and FA were designed with a

purely iterative approach while the RCA was design with an iterative modular approach. In other words, the HA

and FA used truth tables as a starting point of the design while the RCA used a modular approach.
197

 This term is analogous to the term glue code used in computer science. Many computer programs can be

modeled as a set of modules that are made to interact with each other with the additions of some extra code referred

to as glue code. Similarly in digital design, glue logic is some extra logic that is required to assure the correct

interaction of pre-design hardware modules.
198

 Actually, you should always be looking to reuse previously designed modules in your designs.
199

 And most of them end up being academic administrators (needless to say)…
200

 Simply stated, VHDL is designed to support this form of coding efficiency.
201

 This means that you can use the module but you can’t see the model the VHDL model that generated the

module.

Digital McLogic Design Chapter 17

 -- 315 --

Finally, after all the commentary regarding complex designs, we present a few simple examples.

Though the structural modeling approach is most appropriate for complex digital designs, the examples

presented in this section are rather simplistic in nature. These examples show the essential details and

associated syntax of VHDL structural modeling. It is up to the designer to conjure up digital designs

where a structural modeling approach would be more appropriate.

We are still relatively early into the world of digital design so you’ll probably be thinking that structural

modeling is unnecessary. However, don’t be fooled; you’ll soon be to the point where the only way you

can intelligently model your circuits using VHDL is to use structural modeling. This chapter is

essentially showing you how to design at a higher-level by showing you how to reuse modules in your

current design.

17.3.1 VHDL and Programming Languages: Exploiting the Similarities

The main mechanism for modularity in higher-level languages such as C is the function. In other less

useful computer languages, the use of the methods, procedures, and subroutines accomplish a similar

modularity. Figure 17.1 lists the general approach used to support modularity in C programs.

1. Name the function interface you plan on writing (the function declaration)

2. Code what the function will do (the function definition or function body)

3. Let the program know it exists and is available to be called (the proto-type)

4. Call the function from the main portion of the code.

Figure 17.1: The modular approach to computer programming.

The general approach used to support modularity in VHDL is similar to the modular approach in C

programming; Figure 17.2 outlines this approach. Table 17.1 lists the similarities between the C and the

VHDL approach to modularity in a handier format.

1. Name the module you plan to describe (the entity)

2. Describe what the module will do (the architecture)

3. Let the program know the module exists and can be used (component declaration)

4. Use the module in your code (component instantiation, or mapping).

Figure 17.2: The modular approach to VHDL models.

Digital McLogic Design Chapter 17

 -- 316 --

“C” programming language VHDL

Describe function interface the entity

Describe what the function does (coding) the architecture

Provide a function prototype to main program component declaration

Call the function from main program component instantiation (mapping)

Table 17.1: Similarities between modules in "C" and VHDL.

A well-structured computer program has the form of functions calling functions (calling functions, etc).

Computer programs modeled in this manner are considered to have different levels with the levels

based on the depth of the associated function calls. A VHDL model can be viewed in a similar manner.

A properly constructed complex VHDL model generally is viewed as modules using modules (using

modules, etc)
202

. The different levels associated with a VHDL models are associated with the depth of

structural modeling used in the design. For example, a three-level computer program has at least one

function that calls one other function; this function subsequently calls one other function. Similarly, a

VHDL model contains a base module that contains at least one module; this one module then in turn

uses one other module.

As with the modular approach to computer programming, there is nothing forcing you to use the

modular approach in VHDL. But with both computer programming and VHDL modeling, flat designs,

or the non-modular approach, are considered poor practice
203

 in that they typically obfuscate the

purpose of the program or design, respectively. Besides that, they really piss me off because although

they are technically correct, they take too long to understand and they take even long to debug when

they contain errors.

17.4 Structural Modeling Design Overview

A simple example best explains VHDL structural modeling. As you’ll see, VHDL structural modeling

concepts are primarily syntactical in nature: VHDL structural models do nothing other than allow you

to implement black box designs that hierarchical in nature. The biggest challenging using VHDL for

modeling circuits is designing the modules; accessing modules using structural modeling is a no-brainer

once you get past the associated syntax. The examples that follow primarily instruct you on using and

understanding the special VHDL syntax associated with structural modeling.

The use of structural modeling supports digital design, but it is by no means considered to be digital

design. VHDL structural modeling simply allows you to implement your modular designs, which

should inherently be black box models. The following example introduces structural modeling by

implementing a simple circuit model with a circuit that you’ve already worked with. This example in

reality is not an example of good VHDL modeling in that the circuit can be more easily modeled using

other more straightforward not-yet-mentioned VHDL modeling techniques.

202

 Note the similarity to functions calling functions calling functions, etc.
203

 This is almost too general of a statement. Simple designs should definitely use flat models while complex

designs should always use hierarchical models. Between these two statements is a lot of gray area so the overriding

factor in using VHDL to describe circuits is to make your models as clear and concise as possible.

Digital McLogic Design Chapter 17

 -- 317 --

Example 17-1

Implement the following comparator circuit using a two-level VHDL structural model.

Solution: As you probably have realized, you can model this circuit in VHDL using a single statement

(based on a single Boolean equation). Using one VHDL statement to model this circuit would be an

example of a flat design (only one level). Since the problem states that the solution must use two levels,

we must model this solution using a hierarchical approach and thus use structural modeling to

implement our solution. The approach of this solution is to model each of the discrete gates as

individual modules or “systems”. For this example, these “systems” are actually simple gates but the

interfacing requirements of the VHDL structural approach are the same regardless of whether the circuit

elements are simple gates or complex digital subsystems.

The first step in this solution is to redraw the circuit shown in the problem statement. Figure 17.3 shows

the original circuit model redrawn with some extra information added. The extra information provided

in Figure 17.3 relates to the VHDL structural implementation. First, the dashed line represents the

boundary of the top-level VHDL entity i.e., signals that cross this boundary must appear in the entity

declaration for this implementation. Second, each of the internal signals of Figure 17.3 includes a label

(or name). In this case, signals that do not cross the dashed entity boundary are considered internal

signals. Assigning names to the internal signals is a requirement for VHDL structural implementations

as this provides a mechanism to subsequently assigned signals to the various sub-modules on the

interior of the design (somewhere in the architecture).

Figure 17.3: A redrawn version of the original circuit model.

The first VHDL-based portion of the solution is to provide entity and architecture implementations for

the individual gates shown in Figure 17.3. We need to provided as least one definition for both the

XNOR gate and one definition for the 3-input AND gate. We only need to provide one definition of the

Digital McLogic Design Chapter 17

 -- 318 --

XNOR gate despite the fact that Figure 17.3 shows three XNOR gates. The modular VHDL approach

allows us to reuse circuit definitions and we freely take advantage of this feature. Figure 17.4 shows the

VHDL models for the XNOR and AND gates; these implementations present no new VHDL details.

The new information how VHDL uses the circuit elements listed in Figure 17.4 as modules in a circuit.

--

-- Descriptions of XNOR function

--

entity big_xnor is

 Port (A,B : in std_logic;

 F : out std_logic);

end big_xnor;

architecture ckt1 of big_xnor is

begin

 F <= not ((A and (not B)) or ((not A) and B));

end ckt1;

--

-- Description of 3-input AND function

--

entity big_and3 is

 Port (A,B,C : in std_logic;

 F : out std_logic);

end big_and3;

architecture ckt1 of big_and3 is

begin

 F <= (A and B and C);

end ckt1;

Figure 17.4: Entity and Architecture definitions for discrete gates.

Now that we’ve defined the lower-level modules, we’re ready to implement the higher-level module.

Figure 17.5 lists the basic procedures used for implementing a structural VHDL design. These steps

assume that the entity declarations for the interior modules already exist (for this example, the XNOR

and 3-input AND gate are considered the interior modules) and can be located by the VHDL

synthesizer. Keep in mind that the following rules are not the best approach to “knowing” something,

but are an adequate approach to learning something. After you do a few VHDL structural models,

you’ll not need to refer back to these rules (you’ll find that there’s really not that much to it).

1. Generate the top-level entity declaration

2. Declare the lower-level design units used in design

3. Declare required internal signals used to connect the design units

4. Instantiate and Map design units

Figure 17.5: The basic steps required in a VHDL structural model.

Step One: The first step in a structural implementation is identical to the standard approach we’ve used

for the implementing other VHDL circuits: the entity. The entity declaration is derived directly from

dashed box in Figure 17.3 and is shown in Figure 17.6. In other words, signals that intersect the dashed

lines are signals that the entity uses to interface with the outside world and therefore must be included

Digital McLogic Design Chapter 17

 -- 319 --

in the entity declaration. Note that in Figure 17.3, the parenthetical operators associated with the input

signal names imply that the circuit uses bundle notation. Figure 17.6 shows that subsequent entity

declaration uses bundle notation. In actuality, a more appropriate start to this problem would be drawing

a true higher-level black box such as the one shown in Figure 17.7.

-- Interface description of circuit

entity my_ckt is

 Port (A_IN : in std_logic_vector(2 downto 0);

 B_IN : in std_logic_vector(2 downto 0);

 EQ_OUT : out std_logic);

end my_ckt;

Figure 17.6: Entity declaration for Example 17-1.

Figure 17.7: The proper higher-level black box model for Example 17-1.

Step Two: The next step is to declare the design units that the top-level circuit uses. In VHDL lingo,

declaration refers to the act of making particular design units available for use in a given design. Note

that the act of declaring a design unit, by definition, transforms your circuit into a hierarchical design.

The declaration of a design unit makes the unit available for later placement in the overall design

hierarchy. These design units are essentially modules that are used and/or defined in the lower levels of

the design. For our design, we need to declare two separate design units: an XOR gate and a 3-input

AND gate; Figure 17.4 defines both of these gates.

There are two factors involved in declaring a design unit: 1) how to do it, and, 2) where to place it. A

component declaration is essentially a modification of the original entity declaration for the individual

modules. The difference between an entity declaration and a component declaration is that the word

component replaces the word entity; the word component must also follow the end keyword to terminate

the declaration. The best way to do this is by cutting, pasting, and modifying the original entity

declaration
204

. The resulting component declaration goes into the declarative region of the architecture

declaration. Figure 17.8 shows the two entity declarations and their associated component. Figure 17.9

shows the component declarations as they appear in working VHDL code.

204

 Sometimes the original entity declaration is not available. In these cases, you’ll be using a component from a

design library and the component declaration is provided either directly or by “including” the particular design

library.

Digital McLogic Design Chapter 17

 -- 320 --

entity big_xnor is

 Port (A,B : in std_logic;

 F : out std_logic);

end big_xnor;

component big_xnor

 Port (A,B : in std_logic;

 F : out std_logic);

end component;

entity big_and3 is

 Port (A,B,C : in std_logic;

 F : out std_logic);

end big_and3;

component big_and3

 Port (A,B,C : in std_logic;

 F : out std_logic);

end component;

Figure 17.8: A comparision of entity and component declarations.

Step Three: The next step is to declare internal signals used by your model. The required internal

signals for this design are the signals that do not intersect the dashed lines shown in Figure 17.3 These

three signals are analogous to local variables used in higher-level programming languages in that they

must be declared before they are used in the design. These signals effectively provide an interface

between the various design units that are present in the final.

For this design, three signals are required and used as both the outputs of the XOR gates and inputs to

the AND gate. Internal signal declarations such as these appear with the component declarations in the

declarative region of the architecture. Note Figure 17.9 that the declaration of intermediate signals is

similar to the signal declaration contained in the entity body. The only difference is that the

intermediate signal declaration does not contain the mode specifier. As you quickly find out, the use of

intermediate signals in this manner is an extensively used feature in VHDL. The signal declarations are

included as part of the final solution shown in Figure 17.9. Note that the signals contain the “s_” prefix

which is a useful form of self-commenting that indicates the identifier is associated with a signal.

Step Four: The final step is to create “instances” of the required modules and map these instances to

other components described in the architecture body. Technically speaking, as the word “instance”

implies, the appearance of instances of design units is the main part of the component instantiation

process. In some texts, the process of instantiation includes what we’ve referred to as component

declaration but we’ve opted to keep these ideas separate. The approach presented here is to have the

declaration refer to the component declarations in the declarative region of the architecture body, while

instantiation refers to the creation of individual instances of the component in the statement region of

the architecture body. The component mapping process is therefore included in our definition of

component instantiation.

The mapping process provides the interface requirements for the individual components in the design.

This mapping step associates external connections from each of the components to signals in the next

step upwards in the design hierarchy. Each of the signals associated with individual components “maps”

to either an internal or an external signal in the higher-level design. In other words, each signal

associated with a component either must map to other components or to a signal in the entity associated

with the next higher level in the design. Each of the individual mappings includes a unique name for the

particular instance as well as the name associated with the original entity. The actual mapping

information follows the VHDL keywords of: port map. Figure 17.9 shows all of information

appearing in the final solution.

One key thing to note in the instantiation process is the inclusion of labels for all the instantiated design

units. The design unit instantiation should always include labels in order to the understandability of

your VHDL model. In other words, the proper choice of labels increases the self-commenting nature of

your design; all intelligent uses of VHDL use this technique.

Digital McLogic Design Chapter 17

 -- 321 --

entity my_ckt is

 Port (A_IN, B_IN : in std_logic_vector(2 downto 0);

 EQ_OUT : out std_logic);

end my_ckt;

architecture ckt1 of my_ckt is

 -- XNOR gate --------------------

 component big_xnor

 Port (A,B : in std_logic;

 F : out std_logic);

 end component;

 -- 3-input AND gate -------------

 component big_and3

 Port (A,B,C : in std_logic;

 F : out std_logic);

 end component;

 -- intermediate signal declaration

 signal s_p1, s_p2, s_p3 : std_logic;

begin

 xnor1: big_xnor

 port map (A => A_IN(2),

 B => B_IN(2),

 F => s_p1);

 xnor2: big_xnor

 port map (A => A_IN(1),

 B => B_IN(1),

 F => s_p2);

 xnor3: big_xnor

 port map (A => A_IN(0),

 B => B_IN(0),

 F => s_p3);

 and1: big_and3

 port map (A => s_p1,

 B => s_p2,

 C => s_p3,

 F => EQ_OUT);

end ckt1;

Figure 17.9: VHDL code for the top of the design hierarchy for the 3-bit comparator.

It is worthy to note that the solution shown in Figure 17.9 is not the only approach to use for the

mapping process. Figure 17.9 shows an approach that uses what is referred to a direct mapping of

components. In this manner, each of the signals in the interface of the instantiated design units are listed

and are directly associated with the signals they connect to in the higher-level design by use of the

direct mapping operator “=>”. This approach has several potential advantages: it is explicit, complete,

orderly, and allows the signals to be listed in any order. The only possible downside of this approach is

that it uses up a lot of space in your VHDL source code, a practice that rarely presents problems.

The other approach to mapping is to use implied mapping. In this approach, connections between

external signals from the design units are associated with signals in the higher-level unit by order of

their appearance in the mapping statement. This differs from direct mapping because only signals from

the higher-level design appear in the mapping statement as opposed to direct mapping where signal

names from the both levels are explicitly mapped. The ordering of the signals as they appear in the

component declaration determines the association between signals in the design units and the higher-

level design. This approach uses less space in the source code but requires placing signals using a

Digital McLogic Design Chapter 17

 -- 322 --

particular ordering. Figure 17.10 shows an alternate but equivalent architecture for Example 17-1 using

implied mapping.

In reality, implied mapping provides no real advantage other than to save paper if you have to print out

your VHDL models. I highly suggest you never use implied mapping your VHDL models, as it tends to

create bugs that are terrifically hard to find. Direct mapping is clear and concise and provides a certain

degree of self-commenting to your models. Therefore, use direct mapping.

architecture ckt2 of my_ckt is

 component big_xnor is

 Port (A,B : in std_logic;

 F : out std_logic);

 end component;

 component big_and3 is

 Port (A,B,C : in std_logic;

 F : out std_logic);

 end component;

 signal s_p1, s_p2, s_p3 : std_logic;

begin

 xnor1: big_xnor port map (A_IN(2),B_IN(2),s_p1);

 xnor2: big_xnor port map (A_IN(1),B_IN(1),s_p2);

 xnor3: big_xnor port map (A_IN(0),B_IN(0),s_p3);

 and1: big_and3 port map (s_p1,s_p2,s_p3,EQ_OUT);

end ckt2;

Figure 17.10: Alternative architecture for Example 17-1 using implied mapping.

Because this design was relatively simple, it was able to bypass one of the interesting issues that arise

when using structural modeling. Often when dealing with structural designs, different levels of the

design will often contain the same signal name. The question arises as to whether the synthesizer is able

to differentiate between the signal names across the hierarchy. VHDL synthesizers, like compilers for

higher-level languages, are able to handle such instances.

Signals with identical names at different levels are mapped according to what appears in the component

instantiation statement. Probably the most common occurrence of this is with clock signals. In this case,

a component instantiation such as the one shown in Figure 17.11 is both valid and commonly seen in

designs containing a system clock. Name collision does not occur because the signal name on the left

side of the direct mapping operator (“=>”) is internal to the component while the signal on the right side

is resides in the next level up in the hierarchy. Please avoid the temptation to rename one of these

signals to make the model clearer (it will only make the model more oogly and everyone who reads

your code will know you’re a total wanker).

 x5: some_component port map (CLK => CLK,

 CS => CS);

Figure 17.11: An example of the same signal name crossing hierarchical boundaries.

Digital McLogic Design Chapter 17

 -- 323 --

Example 17-2

Implement the following circuit using both a flat VHDL model and a two-level VHDL

structural model.

Solution: The solution to this example is similar to the solution to the previous example. There are two

points we want to make with this solution beyond which were not present in the previous solution.

Figure 17.12 shows the black-box diagram for this problem and nicely supports the VHDL entity

declaration provided in Figure 17.13. Keep in mind that he same high-level black box diagram is used

for both the flat and hierarchical version of the solution.

Figure 17.14 shows the flat version of the solution. Note that the flat version model is short and to the

point and represents the approach you should take when you’re required to model relatively simple

circuits such as this one. However, since this chapter introduces VHDL structural models, we’ll

continue modeling circuits in a less optimal manner
205

.

Figure 17.12: The entity declaration for Example 17-2.

entity ckt_ex is

 Port (A,B,C : in std_logic;

 F : out std_logic);

end ckt_ex;

Figure 17.13: The entity declaration for Example 17-2.

architecture ckt1 of ckt_ex is

begin

 F <= (A AND B) OR ((not A) AND (not C));

end;

Figure 17.14: The architecture for the flat version of Example 17-2.

205

 In all likelihood, the development tools would interpret these circuits as being functionally equivalent and

generate the exact same hardware. This fact emphasizes that writing clear and concise VHDL models is much more

important than attempting to “optimize” (whatever that means) the length of your VHDL code.

Digital McLogic Design Chapter 17

 -- 324 --

Figure 17.15 shows the solution for the hierarchical version of Example 17-2. Figure 17.15(b) shows

the VHDL models of the 2-input AND and OR gates while Figure 17.15(a) provides the remainder of

the solution. In other words, Figure 17.15(b) provides the lower-level of the solution while Figure

17.15(b) provides the higher-level, or top-level, of the solution. Listed below are a few interesting

points regarding the solution.

 Both architectures share the same entity declaration. In real life, there are often occasions

where the same circuit has different models. For example, one version may be faster but

larger and more power consuming than another version.

 This design used intermediate signals in several areas. The signal names include the “s_”

pre-fix notation to quickly indicate to the reader that they intermediate signals. This helps

the human reader of this solution instantly realize the difference between intermediate

signals and signal appearing on the entity declarations. Adding such a prefix is good

coding practice so you should strongly consider adopting this coding style.

 The model uses two separate statements to model the two inverters in the design.

Although you could have modeled an inverter on a lower-level (as was done with the

AND and OR gates), it is clearer to use the two statements as shown in Figure 17.15(a).

Digital McLogic Design Chapter 17

 -- 325 --

-- model for two-level solution

architecture ckt2 of ckt_ex is

 -- 2-input AND gate declaration -------

 component and_2 is

 Port (A,B : in std_logic;

 F : out std_logic);

 end component;

 -- 2-input OR gate declaration --------

 component or_2 is

 Port (A,B : in std_logic;

 F : out std_logic);

 end component;

 -- intermediate signal declaration

 signal s_a1, s_a2 : std_logic;

 signal s_inv1, s_inv2 : std_logic;

begin

 -- AND gate instantiation

 and1: and_2

 port map (A => A,

 B => B,

 F => s_a1);

 -- AND gate instantiation

 and2: and_2

 port map (A => s_inv1,

 B => s_inv2,

 F => s_a2;

 -- OR gate instantiation

 or1: or_2

 port map (A => s_a1,

 B => s_a2,

 F => F);

 -- inverters for A and C inputs

 s_inv1 <= not A;

 s_inv2 <= not C;

end ckt2;

-- model for 2-input AND gate

entity and_2 is

 Port (A,B : in std_logic;

 F : out std_logic);

end and_2;

architecture and_2 of and_2 is

begin

 F <= A AND B;

end and_2;

-- model for 2-input OR gate

entity or_2 is

 Port (A,B : in std_logic;

 F : out std_logic);

end or_2;

architecture or_2 of or_2 is

begin

 F <= A OR B;

end or_2;

(a) (b)

Figure 17.15: The two-level solution for Example 17-2.

Finally, Figure 17.16 shows yet another solution for Example 17-2. This solution shows that the

inverters can be modeled by placing the NOT operator into port mapping section of the instantiation.

This approach is acceptable but does not work for any other operator other than the NOT operator.

Attempting to place Boolean expressions in the port mapping clauses is not permissible and angers the

VHDL goddesses.

Digital McLogic Design Chapter 17

 -- 326 --

-- another model for two-level solution

architecture ckt3 of ckt_ex is

 -- 2-input AND gate declaration -------

 component and_2 is

 Port (A,B : in std_logic;

 F : out std_logic);

 end component;

 -- 2-input OR gate declaration --------

 component or_2 is

 Port (A,B : in std_logic;

 F : out std_logic);

 end component;

 -- intermediate signal declaration

 signal s_a1, s_a2 : std_logic;

begin

 -- AND gate instantiation

 and1: and_2

 port map (A => A,

 B => B,

 F => s_a1);

 -- AND gate instantiation

 and2: and_2

 port map (A => (not A),

 B => (not B),

 F => s_a2;

 -- OR gate instantiation

 or1: or_2

 port map (A => s_a1,

 B => s_a2,

 F => F);

end ckt3;

Figure 17.16: Yet another solution for Example 17-2.

17.5 Practical Considerations for Structural Modeling

While reading about structural modeling is all good and fine, you don’t really learn it until you actually

implement a few models. It does initially seem like there is a lot of syntactical stuff to remember, but

once you really start doing it and do it a few times, it becomes second nature. Structural modeling is not

something you’ll ever worry about once you get into it as it quickly becomes a no-brainer.You’ll soon

be more concerned with ensuring your digital design actually do what they’re supposed to be doing

rather than worrying about syntax issues.

Once you get deeper into VHDL, you’ll be using structural modeling almost everywhere. However, as a

beginner, there are a few things to note in order to get you going. Similar to higher-level language

programming, there is a world full of previously written VHDL models that you can easily incorporate

into your design using structural modeling. However, since you’re probably learning VHDL now, your

designs will be relatively simple and you won’t be accessing these libraries as of yet.

When it comes to entity objects, you have two choices in the context of structural modeling. Either you

can place all of the entities in the same physical VHDL file or you can use the VHDL development

Digital McLogic Design Chapter 17

 -- 327 --

environment you’re using to make your particular design aware of entity objects that your design uses

as components.

Figure 17.17 shows an example of the approach that places everything required by the structural model

in the same file. The following verbage list a few more things to note about Figure 17.17

 The font is really small… this is because I was trying to fit it all on one page. Sorry

about that. The comments disappeared for the same reason.

 The lower-level components appear in the file before the higher level-components.

This style follows a C programming style in that the objects you use are defined before

you use them; this makes them similar to functions (the function prototype or definition

needs to be known to the compiler before the function is called in the program). This is

not a requirement
206

, but it makes the code more readable to the human viewer.

 There is a library clause before each entity declaration, which is a requirement of

VHDL. While this seems troublesome, what it does is allow you to state which library

you’re using for each object. The idea supported here is that your design reference

modules in different libraries. What you need to remember here is to cut and paste

these lines and drop them in before each entity declaration even if your design only

uses one library.

 Keep in mind that if you do put all your models into one file, make sure that you fully

comment each of the modules. In other words, each module should contain all the

information generally included with stand-alone VHDL files.

Figure 17.18 shows the multiple file approach to structural modeling for Example 17-2. Here

are a few worthwhile things to note:

 The font is small and the meaningful comments are missing…

 Each of the cells in the table is considered to be in different physical VHDL file. In the

end, it is up to you and/or you development environment to make sure the higher-level

entity finds the lower level entities/components. Once again, if you’re using modules

from device libraries, the VHDL synthesizer needs to be able to find all this stuff. As

far as VHDL development environments go, the software generally does all the magic

stuff for you. The software analogy is of course that the environment creates its own

makefile, which is nothing more than a master file that does that is required to

implement your design. .

 The VHDL models in Figure 17.17 and Figure 17.18 are 100% equivalent. My

personal feeling is that separate modules should only be in the same file if they in fact

are somehow related. If they are not related, they should be in different file.

206

 Actually, there may be an environment out there where it is required.

Digital McLogic Design Chapter 17

 -- 328 --

--

--------------- Filename: all_in_one_file.vhd ----------------------------------

--

library IEEE;

use IEEE.STD_LOGIC_1164.ALL;

entity and_2 is

 Port (A,B : in std_logic;

 F : out std_logic);

end and_2;

architecture and_2 of and_2 is

begin

 F <= A AND B;

end and_2;

library IEEE;

use IEEE.STD_LOGIC_1164.ALL;

entity or_2 is

 Port (A,B : in std_logic;

 F : out std_logic);

end or_2;

architecture or_2 of or_2 is

begin

 F <= A OR B;

end or_2;

library IEEE;

use IEEE.STD_LOGIC_1164.ALL;

entity ckt_ex is

 Port (A,B,C : in std_logic;

 F : out std_logic);

end ckt_ex;

architecture ckt2 of ckt_ex is

 component and_2 is

 Port (A,B : in std_logic;

 F : out std_logic);

 end component;

 component or_2 is

 Port (A,B : in std_logic;

 F : out std_logic);

 end component;

 signal a1_s, a2_s : std_logic;

 signal inv1_s, inv2_s : std_logic;

begin

 and1: and_2

 port map (A => A,

 B => B,

 F => a1_s);

 and2: and_2

 port map (A => inv1_s,

 B => inv2_s,

 F => a2_s;

 or1: or_2

 port map (A => a1_s,

 B => a2_s,

 F => F);

 inv1_s <= not A;

 inv2_s <= not C;

end ckt2;

Figure 17.17: The one-file approach to structural modeling.

Digital McLogic Design Chapter 17

 -- 329 --

--

-- here is the first file

--

library IEEE;

use IEEE.STD_LOGIC_1164.ALL;

entity and_2 is

 Port (A,B : in std_logic;

 F : out std_logic);

end and_2;

architecture and_2 of and_2 is

begin

 F <= A AND B;

end and_2;

--

-- here is the second file

--
library IEEE;

use IEEE.STD_LOGIC_1164.ALL;

entity or_2 is

 Port (A,B : in std_logic;

 F : out std_logic);

end or_2;

architecture or_2 of or_2 is

begin

 F <= A OR B;

end or_2;

-- here is the third file

library IEEE;

use IEEE.STD_LOGIC_1164.ALL;

entity ckt_ex is

 Port (A,B,C : in std_logic;

 F : out std_logic);

end ckt_ex;

architecture ckt2 of ckt_ex is

 component and_2 is

 Port (A,B : in std_logic;

 F : out std_logic);

 end component;

 component or_2 is

 Port (A,B : in std_logic;

 F : out std_logic);

 end component;

 signal a1_s, a2_s : std_logic;

 signal inv1_s, inv2_s : std_logic;

begin

 and1: and_2

 port map (A => A,

 B => B,

 F => a1_s);

 and2: and_2

 port map (A => inv1_s,

 B => inv2_s,

 F => a2_s;

 or1: or_2

 port map (A => a1_s,

 B => a2_s,

 F => F);

 inv1_s <= not A;

 inv2_s <= not C;

end ckt2;

Figure 17.18: The multiple file approach to structural modeling.

Digital McLogic Design Chapter 17

 -- 330 --

Example 17-3: Adder/Checker Thing Circuit

Design a circuit that performs and a few interesting tasks. The circuit has four 8-bit inputs: A, B, C, and

D. If the 8-bit sum of A+B equals the 8-bit sum of C+D, then the EQ output of the circuit is a ‘1’. In

addition, if both addition operations generate a carry-out, the CO2 output of the circuit should be a ‘1’.

For this problem, use modular design for the solution with all modules other than simple gates being

instantiated in the final design.

Solution: This is potentially a long problem, but we’ll take some shortcuts in order to emphasize the

structural modeling aspects of the problem. Figure 17.19 show the first task in this solution, which is to

generate a black box diagram. The information required to generate Figure 17.19 is given in the

problem description.

Figure 17.19: The high-level black-box model for this problem.

From the problem description, you can see that the final circuit is going to need two RCAs since we

there are two stated addition operations. In addition, since the problem states that the circuit needs to

check to see if the two intermediate results from the output of the RCAs are equal. Note that the

problem was also careful to state that we did not need to worry about carry-outs from the RCAs as part

of the comparisons. Finally, we need to indicate when the results of the two summation operations

generate carry-outs; this can be done with a simple AND gate. After plopping down these modules and

properly connecting them to each other and the associated inputs and outputs of the high-level block

diagram, we end up with the result shown in Figure 17.20.

Figure 17.20: The full black-black-box model for this problem.

What we need now is a VHDL structural model solution to the problem. The toughest part of any

design is generating the black box diagram; translating that diagram to a VHDL structural model is

Digital McLogic Design Chapter 17

 -- 331 --

essentially grunt work. However, Figure 17.21 shows the VHDL structural model solution to this

problem. The following list shows a few useful comments.

 We’re assuming that that RCA and the comparator have been defined elsewhere and can be

found by the synthesizer. We have worked with these circuits previously so we won’t bore you

with the implementation details here.

 The AND function was implemented with a simple statement. This is a typical approach to

VHDL structural modeling; you’ll use this type of implementation quite often

entity my_ckt is

 Port (A,B,C,D : in STD_LOGIC_VECTOR (7 downto 0);

 EQ,CO2 : out STD_LOGIC);

end my_ckt;

architecture Behavioral of my_ckt is

 -- RCA component declaration

 component RCA

 Port (A,B : in STD_LOGIC_VECTOR(7 downto 0);

 SUM : out STD_LOGIC_VECTOR(7 downto 0);

 CO : out STD_LOGIC);

 end component;

 -- comp component declaration

 component comp

 Port (A,B : in STD_LOGIC_VECTOR(7 downto 0);

 EQ : out STD_LOGIC);

 end component;

 -- intermediate signal declarations

 signal s_sum_ab, s_sum_cd : std_logic_vector(7 downto 0);

 signal s_co_ab, s_co_cd: std_logic;

begin

 -- RCA instantiation

 rca_ab: RCA

 port map (A => A,

 B => B,

 SUM => s_sum_ab,

 CO => s_co_ab);

 -- RCA instantiation

 rca_cd: RCA

 port map (A => C,

 B => D,

 SUM => s_sum_cd,

 CO => s_co_cd);

 -- glue logic for EQ output

 CO2 <= s_co_cd AND s_co_ab;

 -- RCA instantiation

 comp_abcd: comp

 port map (A => s_sum_ab,

 B => s_sum_cd,

 EQ => EQ);

end Behavioral;

Figure 17.21: Most of the final solution for Example 15-5.

Digital McLogic Design Chapter 17

 -- 332 --

Chapter Summary

 Structural modeling in VHDL supports hierarchical design concepts, which are hallmark of all digital

design. The ability to abstract digital circuits to higher levels is the key to understanding and

designing complex digital circuits. VHDL structural modeling is similar to higher-level programming

in its abstraction and modularization capabilities.

 VHDL structural model supports the reuse of design units. This includes units you have previously

designed as well as the ability to use pre-defined module libraries.

 VHDL structural modeling is can be divided into the four distinct steps: 1) generate the higher-level

entity declaration, 2) declare the lower-level design units, 3) declare the intermediate signals, and 4)

instantiated the required design units.

 Design unit instantiation includes the design unit mapping. Instantiation can use either direct

mapping or implied mapping. It is, however, problematic to use implied mapping and always much

better to use direct mapping.

 VHDL structural modeling establishes a design hierarchy, which is considered a multi-level design. A

flat design is a VHDL model that does not use a structural model and is only used by total wankers

such as one professor/author/wanker in the Cal Poly EE Department
207

.

207

 The good news is that this person finally retired. The bad news is that the damage this person did to students

will require a finite amount of time to repair. The bad new is that once an academic wanker retires, new and

younger wankers generally replace them. This is how academia operates.

Digital McLogic Design Chapter 17

 -- 333 --

Chapter Exercises

1) Draw a block diagram of the circuit represented by the VHDL code listed below. Be sure to

completely label the final diagram.

entity ckt is

 Port (EN1, EN2 : in std_logic;

 CLK : in std_logic;

 Z : out std_logic);

end quiz1_ckt;

architecture ckt of ckt is

 component T_FF

 port (T,CLK : in std_logic;

 Q : out std_logic);

 end component;

 signal t_in, t1_s, t2_s : std_logic;

begin

 t1 : T_FF

 port map (T => t_in,

 CLK => CLK,

 Q => t1_s);

 t2 : T_FF

 port map (T => t1_s,

 CLK => CLK,

 Q => t2_s);

 Z <= t2_s OR t1_s;

 t_in <= EN1 AND EN2;

end ckt;

entity ckt is

 port (A,B : in std_logic;

 C : out std_logic);

end ckt;

architecture my_ckt of ckt is

 component bb1

 port (D,E : in std_logic;

 F,G,H : out std_logic);

 end component;

 component bb2

 port (L,M,N : in std_logic;

 P : out std_logic);

 end component;

 signal x1,x2,x3 : std_logic;

begin

 b1: bb1

 port map (D => A,

 E => B,

 F => x1,

 G => x2,

 H => x3);

 b2: bb2

 port map (L => x1,

 M => x2,

 N => x3,

 P => C);

end my_ckt;

(a) (b)

2) Provide VHDL structural models for the circuits listed below. Each of the associated VHDL

models should contain at least two levels.

(a) (b)

Digital McLogic Design Chapter 17

 -- 334 --

(c) (d)

3) Provide a VHDL structural model for a 4-bit ripple carry adder. Assume the lowest order bit is

implemented with a full adder instead of a half adder.

 - 335 -

18 Chapter Eighteen

(Bryan Mealy 2012 ©)

18.1 Chapter Overview

We are not telling you the entire story regarding VHDL. The approach we’ve been taking is to get our

feet wet with VHDL in order to develop a basic understanding of the methodology used to generate

basic digital circuits. However, since your knowledge of digital logic and design has increased, you

need to increase your level knowledge regarding using VHDL to model digital logic circuits. As you’ll

see in this chapter, VHDL is much more structured and more powerful than we’ve been leading on.

You’re ready to understand both this structure and the VHDL modeling paradigm.

The slight problem regarding the material presented in this chapter is the fact that we base it around the

simple logic functions we’ve been dealing with up to this point. As you’ll surely discover in the

upcoming chapters, digital design does not have that much to do with the implementation of functions.

Implementing functions with VHDL is a low-level approach to digital design. We’re at the point now

where we’re ready to perform our designs at a higher level. Digital design performed at a higher level of

abstraction is more efficient than designing at lower levels.

Main Chapter Topics

 VHDL MODELING: The entity/architecture pair forms the interface and functional

description of digital circuit behavior. Various VHDL modeling constructs supports

the inherent parallelism in digital circuit.

 VHDL CONCURRENT STATEMENT TYPES: VHDL contains four major types of

signal assignment statements: concurrent signal assignment, conditional signal

assignment, selective signal assignment, and process statements. These statements

are referred to as concurrent statements in that they are interpreted as acting in

parallel (concurrently) to all other concurrent statements.

 VHDL MODEL TYPES: VHDL contains three major model types: 1) dataflow, 2)

behavioral, and 3) structural models. The type of concurrent statements used in the

model determines its model type.

 VHDL BEHAVIORAL MODELING: The process statement generally describes

digital circuits in terms of its behavior as opposed to its low-level logic functions.

Process statement use sequential statements to describe circuit behavior.

Why This Chapter is Important

This chapter is important because it provides the post-intro basics of modeling digital

circuits using VHDL including the various flavors of concurrent statements.

Digital McLogic Design Chapter 18

 - 336 -

18.2 More Introduction-Type Verbage

Painful as it may sound, implementing functions is the main topic of this chapter. While this is

somewhat stupid
208

, it allows you to get your feet wet with VHDL before doing meaningful

design/modeling. There are times in digital design when you truly need to implement functions, but it is

not the intent of this chapter to show you the best way to do that. The intent of this chapter is to provide

an overview of VHDL from the standpoint of the possibilities that are out there lurking.

The truth here is that when you use VHDL, there is no need to bother reducing your functions.

Essentially, you can assume the VHDL synthesizer will do the reduction for you and do it without

making all the mistakes you probably make when you’re reducing functions by hand. Yes, the

Karnaugh Map is generally a relic of the past glory days of digital design. The only reason you’re

taught to work with K-maps is in case some old dude asks you to reduce a function during a job

interview
209

.

Lastly, really… Something you should become aware of in this chapter is that you’ve been dealing with

“tables” a lot. There is a special type of a table in computer science-and that you should be aware as it is

perfectly analogous to the truth tables you’ve been working with so far. In computer science, look-up

tables, or LUTs are very useful and you find them quite often in viable computer programming code.

Implementing a truth table via a function in digital-land is essentially the same thing as utilizing a LUT

in computer science-land. We’ll discuss this more later, but as with computer programming, you should

always be on the lookout for placed where you can use a LUT rather than trying to use outdated

techniques to generate some fancy logic functionality.

18.3 The VHDL Programming Paradigm

Our previous work with VHDL was limited to the idea of the basic VHDL design units: the entity and

the architecture. We spent most of the time describing the architecture simply because there is so much

less involved when compared to the entity
210

. The underlying theme of this chapter is to describe some

of the structured modeling techniques used by the architecture bodies to describe digital circuits. In

other words, VHDL has the ability to describe complex digital circuits; this chapter introduces some of

those mechanisms.

Before we get into the newer details of architecture specification, let’s step back and remember what it

is we’re trying to do with VHDL. We are, for one reason or another, describing a digital circuit.

Realizing this simple fact is massively important. The tendency for students with computer

programming backgrounds is to view VHDL as another programming language they need to learn to

pass another class. Although many students have used this approach to pass digital design courses, this

is a bad approach.

When viewed correctly, VHDL represents a completely paradigm than standard programming

languages. This misuse of VHDL most likely arises because VHDL has many similarities to other

programming languages. The main similarity is that they both use a syntactical and rule-based language

to describe something relatively abstract. However, the difference is that they are describing two

208

 Digital design is not about “implementing functions”. Even a chimpanzees and academic administrators can

implement digital functions. Generating circuits that do something useful is the more impressive task.
209

 This is not exactly true. Working with K-maps also represents an instructive practice when first learning the

nuts and bolts of digital design. It is sort of fun anyways. Above all, K-map questions appear on exams such as the

EIT.
210

 Recall that the entity declaration describes the interface of a circuit to the outside world. The architecture

describes how the circuit functions.

Digital McLogic Design Chapter 18

 - 337 -

completely different things. Realizing this fact will help you to truly understand the VHDL

programming paradigm and language, to churn out more meaningful VHDL code, and illuminate a nice

contrast between a language that describes hardware and a language that executes software on that

hardware.

18.3.1 Concurrent Statements

The heart of most programming languages is the statements that form the source code. These statements

represent finite quantities of “actions” that the entity running the program needs to take. A statement in

an algorithmic programming language such as C or Java represents an action or actions for the

processor to take. Once the processor finishes one action, it moves onto the next action specified

somewhere in the associated source code
211

. This makes sense and is comfortable to us as humans

because just like the processor, we generally are only capable of doing one thing at a time and once we

finish that one thing, we move onto the next thing. This description lays the foundation for an

algorithmic programming in that the processor does great job at following a set of rules, which are

comprised of instructions in the source code. When the rules are meaningful and well structured, the

processor can do amazing things.

VHDL modeling is significantly different than computer programming. Whereas in computer

programming where a processor steps one-by-one through a set of statements, VHDL can “execute
212

” a

virtually unlimited number of statements at the same time (in other words, in parallel). Once again, the

key thing to remember is that we use VHDL to describe digital hardware. Parallelism, or things

happening concurrently, in the context of hardware is a much more straight-forward concept in

hardware-land than it is in the world of software. As you’ve already had the basic introduction digital

logic and its associated hardware, you’re already both familiar and comfortable with the concept of

concurrency whether you realize it or not.

Figure 18.1 shows a simple example of a circuit that is operating in parallel. As you know, logic gates

are generally stupid in that the gate outputs are a simple function of the gate inputs. Anytime a gate

input changes, there is a possibility that it will cause a change in the gate output. This is true of all the

gates in Figure 18.1 or in any digital circuit in general.

The key here is that the changes in the input to these gates can happen simultaneously. In other words,

changes to gate inputs can occur in parallel; once these changes occur, the inputs are re-evaluated and

the gate outputs may change accordingly; this activity generally happens simultaneously to all gates in a

particular design. Although the circuit in Figure 18.1 only shows a few gates, this idea of concurrent

operation of all the elements in the circuit is the same in all digital circuits no matter how large or

complex the circuits become.

211

 Either the next instruction, or somewhere else in the program in the case of a function call or branch.
212

 But it’s not really executing statements…

Digital McLogic Design Chapter 18

 - 338 -

Figure 18.1: Some common circuit that is well known to "execute" parallel operations.

In computer programming languages, the instructions that form programs are usually targeted for

execution on a single processor. In this case, there is no option for parallelism
213

. The computer

program is generally a fixed set of instructions intended for execution on a pre-designed chunk of

hardware. In contrast, VHDL modeling typically models digital circuits such as those in computers.

Once again, the differences between VHDL and computer programming language are both significant

and distinct. Once again, you need to keep these differences in mind as you learn more about VHDL

and start using VHDL to model digital circuits of increasing complexity.

Here’s the trick. Since most of us are human
214

, we’re only capable of reading one line of text at a time.

This same limitation follows us around when we try to write some text, not to mention entering some

lines of text into a file to be stored on a computer. So how then are we going to use text to describe

some circuit that is inherently parallel using lines of text? We didn’t have this problem when discussing

something inherently sequential such as standard algorithmic programming by a higher level language.

When writing code using an algorithmic programming language, there is generally only one processing

element to do all the work. The processing element generally executes one instruction at a time and

does so in a sequential manner that is determined by the order of appearance of instructions in the

program that is running.

The VHDL programming paradigm built around the concept of expressing parallelism and concurrency

with its textual descriptions of circuits. The heart of VHDL programming is the concurrent statement.

Though these statements appear similar to the statements in algorithmic languages, they are

significantly different because the VHDL statements, by definition, express concurrency. In other

words, individual VHDL statements are interpreted as being concurrent.

Figure 18.2 lists the code that implements the circuit shown in Figure 18.1. This code shows four

concurrent signal assignment statements. The “<=” construct is referred to as a signal assignment

operator, which your currently familiar with from previous chapters. The reality is that we can’t write

these four statements at the same time but we can interpret these statements as actions that occur at the

same time, or better stated, actions that occur concurrently. Once again, the concept of concurrency is a

key concept in VHDL so keep this in mind anytime you are dealing with VHDL code. If you feel that

algorithmic style of thought creeping into your soul, try to snap out of it quickly. A more complete

discussion of concurrent signal assignment appears in the following section.

Because of the concurrent nature of VHDL statements, the three chunks of code appearing in Figure

18.3 are equivalent to the code shown in Figure 18.2. Once again, since the statements are interpreted as

occurring concurrently, the order that these statements appear in your VHDL source code makes no

213

 The processor itself most likely exploits some form of parallelism, but that’s not the form of parallelism we’re

referring to here. This notion of parallelism is considered an advanced concept and you’ll hopefully learn about it

later.
214

 Though most academic personnel don’t qualify for this descriptive label…

Digital McLogic Design Chapter 18

 - 339 -

difference. Generally speaking, it would be a better idea to describe the circuit as shown in Figure 18.2

since it somewhat reflects somewhat of a natural organization of statements.

G <= A AND B;

H <= C AND D;

I <= E AND F;

J <= G OR H OR I;

Figure 18.2: VHDL code that describes the circuit of Figure 18.1.

G <= A AND B;

J <= G OR H OR I;

H <= C AND D;

I <= E AND F;

G <= A AND B;

I <= E AND F;

J <= G OR H OR I;

H <= C AND D;

J <= G OR H OR I;

G <= A AND B;

H <= C AND D;

I <= E AND F;

Figure 18.3: Three equivalent sets of statements describing the circuit shown in Figure 18.1.

Figure 18.4 shows some “C” code that looks similar to the code listed in Figure 18.2. In this case, the

logic functions are replaced with addition operators and the signal assignment operators are replaced by

assignment operators. The statements in this code fragment execute sequentially as opposed to

concurrently as is the case for the VHDL code of Figure 18.2. In other words, the statements shown in

Figure 18.4 are intended for execution by some type of processing element. This processing element

executes one statement and then moves onto the next statement. Once again, although the two snippets

of code appear somewhat similar, they have completely different meanings. Keep in mind that if you

were to rearrange the statements shown in Figure 18.4, they would have a completely different

meaning: the order of statement appearance is massively important for higher-level computer

languages.

A = A + B;

G = A + B;

H = C + D;

I = E + F;

J = G + H + I;

Figure 18.4: Higher-level language code similar to the VHDL code in Figure 18.2.

18.3.2 The Signal Assignment Operator: “<=”

Algorithmic programming languages always have some type of assignment operator. In “C”, this is the

well known “=” sign. In programming languages, the assignment operator signifies a transfer of data

from the right side of the operator to the left side. VHDL uses two consecutive characters to represent

the assignment operator: “<=”. VHDL uses this combination because it is different from the assignment

operators in most other common algorithmic programming languages. The operator is known as a

signal assignment operator to highlight its true purpose
215

. The signal assignment operator specifies a

relationship between signals. In other words, the signal on the left side of the signal assignment operator

is dependent upon the signals on the right side of the operator. In yet other words, the value of the

215

 This operator is actually borrowed from register transfer notation, a higher-level design approach for computer-

oriented circuitry.

Digital McLogic Design Chapter 18

 - 340 -

signal (or expression) on the right side of the signal assignment operator is assigned to the value on the

left side of the operator.

With these new insights into VHDL, you should be able to understand the code of Figure 18.2 and its

relationship to Figure 18.1. The statement “G <= A AND B;” indicates that the value of the signal

named “G” represents an ANDing of the signals A and B. The similar statement in written in an

algorithmic programming language, “G = A + B;” indicates that the value represented by variable A

is added to the value represented by variable B and the result is then represented by variable G. In an

algorithmic programming language, the values of G, A, and B are generally representative of memory

locations somewhere in the associated hardware. The distinction between these two types of statements

in VHDL and higher-level languages will become clearer the more you work with it.

VHDL has four types of concurrent statements. We’ve already briefly discussed the concurrent signal

assignment statement and we’ll soon examine it in greater detail and put it in context of actual circuits.

The three other types of concurrent statements of immediate interest to us are process statements,

conditional signal assignments, and selected signal assignments.

In essence, the four types of statements represent tools that you can use to implement digital circuits.

You’ll soon be discovering the versatility of these statements and applying them liberally.

Unfortunately, this versatility effectively adds a fair amount of steepness to the learning curve. As you

know from your experience in other programming languages, there are always multiple ways to do the

same things. Stated differently, several seemingly different pieces of code can actually produce the

same result. The same is true for VHDL code: several considerably different pieces of VHDL code an

actually generate the exact same or functionally equivalent digital circuit. Keep this in mind when you

look at any of the examples provided in this text.

Any VHDL code used to solve a particular problem is more than likely one of many possible solutions

to that problem. Some of the VHDL models presented in this text are presented to show that something

“can” be done a certain way, but that does not necessarily mean they “should” be done that way. It’s

good that your circuit works, but it’s even better if your circuit both works and was based on a great

looking piece of VHDL code. Always strive for clarity when using VHDL to model digital circuits.

18.4 Signal Assignment Statements in VHDL

As mentioned previously, there are four different types of signal assignment statements in VHDL. In

addition, because we’re discussing VHDL, each of these signal assignment statements is considered

concurrent. There are some advantages to using one type of these statements over another, but these

differences won’t be discussed much in this chapter. This chapter sort of tosses out all the information

but does not do so in the context of useful circuitry. The next chapters discuss some useful digital

circuitry; by the time you get to those circuits, we’ll be able to present them by using different forms of

signal assignment statements.

18.4.1 Concurrent Signal Assignment Statements

The examples presented in earlier VHDL problems in this text used concurrent signal assignment

statements. This section presents a formal introduction to concurrent signal assignment despite the fact

that most of the information presented is not new.

Figure 18.5 shows the general form of a concurrent signal assignment statement. In this case, target is a

signal that receives the values of the evaluated expression. An expression is defined by a constant, a

signal, or a set of operators that operate on other signals and evaluate to some value. The target is

generally considered an output while the expression is generally considered the input or a combination

Digital McLogic Design Chapter 18

 - 341 -

of inputs. Most of the concurrent signal assignment statements you’ve used thus far were examples of

expressions; more examples of expressions are provided in the examples that follow.

 target <= expression;

Figure 18.5: Syntax for the concurrent signal assignment statement.

Example 18-1

Write the VHDL code that models a three input NAND gate. Use A, B, and C for the three

input signal names; use F for the output signal name.

Solution: Even though this is a simple example, it’s always good practice to draw a diagram of the

circuit you’re modeling. Furthermore, though we could draw a diagram showing the familiar symbol for

the NAND gate, we’ll choose to keep the diagram general and take the black box approach instead.

Remember, the black box is a nice aid when it comes to writing the entity declaration. Figure 18.6

shows the dark box diagram for this example and while Figure 18.7 shows the associated VHDL model.

Figure 18.6: Black box diagram for Example 18-1.

entity my_nand3 is

 port (A,B,C : in std_logic;

 F : out std_logic);

end my_nand3;

architecture exa_nand3 of my_nand3 is

begin

 F <= NOT (A AND B AND C);

end exa_nand3;

architecture exb_nand3 of my_nand3 is

begin

 F <= A NAND B NAND C;

end exb_nand3;

Figure 18.7: Solution to Example 18-1

This example contains a few new ideas that are worth further mention.

Digital McLogic Design Chapter 18

 - 342 -

 This example highlights the use of several logic operators. Some of the logic operators available

in VHDL are AND, OR, NAND, NOR, XOR, and XNOR. The NOT operator is technically

speaking not a logic gate but is also available. Moreover, these are binary logic operators in that

they operate on the two values appearing on the left and right side of the operator. The NOT

operator is a unary operator in that it only operates on the value appearing to the right of the

operator. When you use the NOT operator, you should always use parenthesis.

 Two different architectures have been provided in this solution; they are both associated with the

same entity. Note that both architectures reference the same entity declaration.

 The “stuff” between the begin and end keywords is indented. Proper indentation is an

unspeakably good practice as it quickly transfers information to the reader.

Example 18-1 demonstrates the use of the concurrent signal assignment (CSA) statement in an actual

VHDL model. However, since there is only one CSA statement, the concept of concurrency is not

readily apparent. The idea behind any concurrent statement in VHDL is that the output may change

anytime one of the input signals changes. In other words, the output is re-evaluated anytime a signal in

the input expression changes. If this re-evaluation causes the output value to change, the change occurs

immediately
216

. This is a key concept in developing a true understanding of VHDL (so you may want to

read that sentence a few more times). The following examples more clearly define idea of concurrency.

Example 18-2

Write VHDL code to implement the

function expressed in the following truth

table.

L M N F3

0 0 0 0

0 0 1 1

0 1 0 0

0 1 1 0

1 0 0 0

1 0 1 0

1 1 0 1

1 1 1 1

Solution: While you might consider the first step in this solution is to reduce the given function, it’s

really not. The reality is that you never should reduce a function if you’re going to model it with

VHDL; doing so defeats the purpose of using VHDL. The problem is that reducing a function by hand

has severe limitations
217

; the best approach is to allow the VHDL synthesizer to do the optimization

work for you. Keep in mind that the approach we’ll take to solving this problem is not optimal and is

more for academic purposes. We’ll present the preferred approach later in this chapter.

Figure 18.8 shows the black box diagram for this example while Figure 18.9 shows the associated

VHDL model. One important thing to note from this VHDL model is that it is visually appealing. What

makes it so nice to look at is the fact that we’ve constructively used the fact that VHDL ignores white

216

 In the ideal case; non-idealized models include propagation delays (which we’ll talk about in later chapters).
217

 Tools such as K-maps are limited in the number of independent variables. Moreover, anytime you try to do the

reduction yourself, you’re either going to make a mistake in the reduction process. Don’t try this at home.

Digital McLogic Design Chapter 18

 - 343 -

space and lined up stuff to make the code visually pleasing for the human element. You must

continually strive to make your VHDL code as neat and organized as possible. One last comment

regarding the solution shown in Figure 18.9 is that it does not reflect the concept of concurrency since

the architecture only contains one concurrent signal assignment statement.

Figure 18.8: Black box diagram for Example 18-2.

-- non-reduced implementation of F3

entity my_ckt_f3 is

 port (L,M,N : in std_logic;

 F3 : out std_logic);

end my_ckt_f3;

architecture f3_1 of my_ckt_f3 is

begin

 F3 <= ((not L) AND (not M) AND N) OR

 (L AND M AND (not N)) OR

 (L AND M AND N);

end f3_1;

Figure 18.9: The non-reduced solution to Example 18-2.

Although the function itself is somewhat useless, there is some worthwhile information associated with

other approaches to modeling this function. For the other models to this example, let’s deal with a

reduced version of the function; Equation 18-1 shows the reduced version of the function given in this

example. Figure 18.10 shows an alternate solution to Example 18-2; unfortunately, this solution once

again does not demonstrate the concept of concurrency.

LM NML F3

Equation 18-1

architecture f3_2 of my_ckt_f3 is

begin

 F3 <= ((NOT L) AND (NOT M) AND N) OR (L AND M);

end f3_2;

Figure 18.10: Alternate solution to Example 18-2.

Figure 18.11 shows one final alternative solution to Example 18-2. This final solution once again shows

an important feature in VHDL modeling. The solution shown in Figure 18.11 uses some special

statements in order to implement the circuit. These special statements are used to provide what is often

referred to as intermediate results. This approach is analogous to declaring extra variables in an

Digital McLogic Design Chapter 18

 - 344 -

algorithmic programming language to be used for specifically for storing intermediate results. The need

for intermediate results in VHDL is provided by the declaration of extra signal values which are often

referred to intermediate signals.

Note in Figure 18.11 that the declaration of the intermediate signals is similar to the port declarations

appearing in the entity declaration except the mode specification is missing. The intermediate signals

must be declared within the body of the architecture because the associated signals have no linkage to

the outside world and thus do not appear in the entity declaration. Specifically, intermediate signal

declaration appears in the declarative region of the architecture body. In other words, the outside world

does not need to know about these signals so they only need appear in the architecture.

The cool thing about the solution shown in Figure 18.11 is the fact there are three distinct concurrent

signal assignment statements. Despite the fact that these three statements are listed sequentially, the

VHDL synthesizer interprets these statements as being concurrent. Since the statements are interpreted

as being concurrent, the order of their appearance in the architecture statement region has not effect on

the overall function of the VHDL model. To drive this point home, Figure 18.12 shows yet another

functionally equivalent solution to Example 18-2. The solutions shown in Figure 18.11 and Figure

18.12 only differ by the ordering of the concurrent signal assignments. However, since the ordering of

concurrent statements makes no difference in VHDL, the solutions are equivalent.

architecture f3_3 of my_ckt_f3 is

 signal s_a1,s_a2 : std_logic; -- intermediate signals

begin

 s_a1 <= ((NOT L) AND (NOT M) AND N);

 s_a2 <= L AND M;

 F3 <= s_a1 OR s_a2;

end f3_3;

Figure 18.11: Alternative but functionally equivalent architecture for Example 18-2.

architecture f3_4 of my_ckt_f3 is

 signal s_a1,s_a2 : std_logic; -- intermediate signals

begin

 F3 <= s_a1 OR s_a2;

 s_a2 <= L AND M;

 s_a1 <= ((NOT L) AND (NOT M) AND N);

end f3_4;

Figure 18.12: Yet another functionally equivalent architecture for Example 18-2.

Although the approach of using intermediate signals is not mandatory for this example, their use brings

up some good points. First, the use of intermediate signals is the norm for most VHDL models. The use

of intermediate signals was option in this example because the example was modeling a relatively

simple circuit. As circuits become more complex, there are many occasions where you must use

intermediate signals. VHDL structural modeling is an excellent example of where intermediate signals

are required. Secondly, using intermediate signals is technique that you’ll often need to use in your

VHDL models. The thought here is that you’re trying to describe a digital circuit using a textual

description language: you’ll often need to use intermediate signals to accomplish your goal of modeling

the circuit.

Digital McLogic Design Chapter 18

 - 345 -

The important idea regarding the use of intermediate signals is that they allow you to more easily model

digital circuits but do not make the generated hardware more complicated
218

. The tendency in using

VHDL is to think that since there is more text written on your page, that the circuit you’re describing

and/or the resulting hardware is larger or more complex. This is simply not true
219

. The notion of

intermediate signals do not always support the notion of hardware in a synthesized circuit. What you’ll

see many times is that intermediate signals provide a mechanism that supports the textual description of

a circuit using VHDL.

Generally speaking, it’s the VHDL synthesis tools that have the final say in the size of your final

design. The main theme of VHDL is that you should use the VHDL tools at your disposal in order to

model your circuits in the simplest possible way. Simple circuits have a higher probability of someone

understanding them and actually working. Most importantly, the overall complexity of a given VHDL

model does not necessarily relate to the length of the VHDL code describing it
220

.

Finally, the ease of the solution for Example 18-2 made the example trivial because the problem was

not overly complicated. The point is that concurrent signal assignment statements are useful statements.

However, as functions become more complicated (more inputs and outputs), an equation entry

approach, particularly an equation that has been reduced by you, becomes pointless. Luckily, there are a

few other types of concurrent constructs that mitigate this tedium.

18.4.2 Conditional Signal Assignment

Concurrent signal assignment statements discussed in the previous section have only one target and

only one expression. The term conditional signal assignment describes statements that have only one

target but can have more than one associated expression that can be assigned to the target where each of

the multiple expressions is associated with a certain condition. The individual conditions are evaluated

sequentially in the conditional signal assignment statement until the first condition evaluates as TRUE.

In this case, the synthesizer evaluates the expression and assigns the result to the target. In a conditional

signal assignment statement, only one assignment is applied per conditional signal assignment

statement.

Figure 18.13 shows the syntax of the conditional signal assignment. The target in this case is the name

of a signal. The condition is based upon the state of some other signal or signals in the given model.

Note that there is only one signal assignment operator associated with the conditional signal assignment

statement.

target <= expression when condition else

 expression when condition else

 expression;

Figure 18.13: The syntax for the conditional signal assignment statement.

218

 In actuality, intermediate signals are a message to the synthesizer to make a “connection” between two items;

this connection does not necessary correspond to a physical piece of hardware.
219

 Which is yet another reason you should strive to make your VHDL models readable with the liberal use of

white space such as blank lines and meaningful comments.
220 But it is a well-known universal constant that only highly intelligent digital designers can consistently generate

highly understandable VHDL models.

Digital McLogic Design Chapter 18

 - 346 -

The conditional signal assignment statement is probably easiest to understand in the context of a circuit.

For our first example, let’s simply redo the Example 18-2 using conditional signal assignment instead

of concurrent signal assignment.

Example 18-3

Write VHDL code to implement the generic

decoder expressed by the accompanying truth

table. Use only conditional signal assignment

statements in your VHDL code.

L M N F3

0 0 0 0

0 0 1 1

0 1 0 0

0 1 1 0

1 0 0 0

1 0 1 0

1 1 0 1

1 1 1 1

Solution: The entity declaration does not change from Example 18-2 so the solution only needs a new

architecture description. We re-listed the entity declaration here for your enjoyment. Figure 18.14 lists

one possible solution using conditional signal assignment to this example.

-- the same entity declaration as used previously

entity my_ckt_f3 is

 port (L,M,N : in std_logic;

 F3 : out std_logic);

end my_ckt_f3;

architecture f3_5 of my_ckt_f3 is

begin

 F3 <= ‘1’ when (L = ‘0’ AND M = ‘0’ AND N = ‘1’) else -- m1

 ‘1’ when (L = ‘1’ AND M = ‘1’ AND N = ‘0’) else -- m6

 ‘1’ when (L = ‘1’ AND M = ‘1’ AND N = ‘1’) else -- m7

 ‘0’;

end f3_5;

Figure 18.14: Solution to Example 18-2.

There are a couple of interesting points to note about this solution shown in Figure 18.14.

 It’s not much of an improvement over the VHDL code written using only concurrent signal

assignment statements. In fact, it looks a bit less efficient in terms of the amount of code and

general understandability. The important thing to note is that we modeled the function without

first reducing it. Unfortunately, it required a long time to write all the text.

 If you look carefully at this code and notice that there is in fact one target and a bunch of

expressions and conditions. The associated expressions are the single digits surrounded by single

quotes; the associated conditions follow the when keyword. In other words, there is only one

signal assignment operator used for each conditional signal assignment statement.

Digital McLogic Design Chapter 18

 - 347 -

 The conditional signal assignment statement evaluates the conditions sequentially. Once one

statement is evaluates are true, the associated expression is assigned to the target and none of the

other expression/condition pairs are evaluated. However, despite this order of appearance

characteristic, the conditional signal assignment statement is a true concurrent statement
221

.

 The last expression in the signal assignment statement is the catch-all condition. If none of the

conditions listed above the final expression evaluate as TRUE, the last expression is assigned to

the target. In other words, the “else” clause assures that some value will always be assigned to F3

when the conditional signal assignment statement is processed. Unless you have some great

reason not to, make sure you include an else in your conditional signal assignment statements.

This is a massively important point that we’ll come back to in later chapters.

 The solution uses relational operators. There are actually six different relational operators

available in VHDL. Two of the more common relational operators (as opposed to assignment

operators) are the “=” and “/=” operators which are the “is equal to” and “is not equal to”

operators, respectively.

 The choice of listing the minterms associated with the function used in the solution was arbitrary.

The solution could have just as easily worked with maxterms. To drive home this point, Figure

18.15 shows an alternative but functionally equivalent solution to this example. Note that Figure

18.15 shows an alternative solution that requires more code than the solution of Figure 18.14.

-- the maxterm approach to this problem

architecture f3_6 of my_ckt_f3 is

begin

 F3 <= ‘0’ when (L = ‘0’ AND M = ‘0’ AND N = ‘0’) else -- M0

 ‘0’ when (L = ‘0’ AND M = ‘1’ AND N = ‘0’) else -- M2

 ‘0’ when (L = ‘0’ AND M = ‘1’ AND N = ‘1’) else -- M3

 ‘0’ when (L = ‘1’ AND M = ‘0’ AND N = ‘0’) else -- M4

 ‘0’ when (L = ‘1’ AND M = ‘0’ AND N = ‘1’) else -- M5

 ‘1’;

end f3_6;

Figure 18.15: Alternate solution to Example 18-3.

18.4.3 Selected Signal Assignment

Selective signal assignment statements are the third form of concurrent statements that we’ll examine.

As with conditional signal assignment statements, selective signal assignment statements only utilize

one signal assignment operator. Selective signal assignment statements differ from conditional

assignment statements in that the statement bases its assignment on the evaluation of a single expression

as opposed to many different expressions. Figure 18.16 shows the syntax for the selected signal

assignment statement.

221

 No joke: this is a complicated notion and is without doubt the most complicated aspect of VHDL. The sooner

you can wrap some dendrites around this, the better VHDL models you’ll be writing.

Digital McLogic Design Chapter 18

 - 348 -

with choose_expression select

 target <= {expression when choices, }

 expression when choices;

Figure 18.16: Syntax for the selected signal assignment statement.

Example 18-4

Write VHDL code to implement the generic decoder

expressed by the accompanying truth table. Use only

selective signal assignment statements in your VHDL

code.

L M N F3

0 0 0 0

0 0 1 1

0 1 0 0

0 1 1 0

1 0 0 0

1 0 1 0

1 1 0 1

1 1 1 1

Solution: This is yet another version of the my_ckt_f3 example originally appearing in Example 18-2.

Figure 18.17 shows the full solution to Example 18-4. Some highly interesting comments regarding the

solution are soon to follow.

-- the same entity declaration as used previously

entity my_ckt_f3 is

 port (L,M,N : in std_logic;

 F3 : out std_logic);

end my_ckt_f3;

architecture f3_7 of my_ckt_f3 is

begin

 with ((L = ‘0’ and M = ‘0’ and N = ‘1’) or -- m1

 (L = ‘1’ and M = ‘1’ and N = ‘0’) or -- m6

 (L = ‘1’ and M = ‘1’ and N = ‘1’)) or -- m7

 select

 F3 <= ‘1’ when ‘1’,

 ‘0’ when ‘0’,

 ‘0’ when others;

end f3_7;

Figure 18.17: Solution to Example 18-4

Figure 18.17 shows a solution that is somewhat special because it represents poor VHDL modeling

practice. Although this example models the function using selective signal assignment, the solution

is not clear. This is an example of a bad choice of signal assignment statements. We’ll show a

Digital McLogic Design Chapter 18

 - 349 -

much more intelligent use of selective signal assignment later in this chapter. However, there are a

few interesting things to note regarding this solution.

 There is only one signal assignment operator associated with the selective signal assignment

statement. This makes intuitive sense in that only one assignment is made; the body of the

selective signal assignment statement can be thought of as deciding the appropriate assignment

based on the given choosing expression.

 The multiple sub-expressions in the main choosing expression are the confusing part of this

problem. Generally speaking, the choosing expression for selective signal assignment

statements is relatively simple and often times consist of just a single signal name.

 The selective signal assignment statement uses a “when others” clause as the final entry in

the statement. In actuality, the middle clause (“‘0’ when ‘0’”) could be removed from the

solution without changing the meaning of the statement. In general, it is considered good

VHDL programming practice to include all the expected cases in the selective signal

assignment statement followed by the “when others” clause. Similar to the final else clause in

the conditional signal assignment statement, the “when others” clause in selective signal

assignment statements act as a “catch-all” statements. The ramifications of a catch-all

statement are of considerable importance in VHDL
222

. In general, it is bad practice (and

sometimes impossible) to include all the possible cases in the selective signal assignment

statement.

One general rule of programming languages or hardware description languages is that if you find

yourself going to a lot of trouble modeling your circuit, there probably some trick embedded in the

language that you’re not aware of and thus not using to simplify your model. In other words, there’s

always an easier way to model some troubling circuits using VHDL. Unfortunately, some of the easier

ways are out of reach of the beginning VHDL designer.

18.4.4 The Process Statement

The process statement is the fourth and final concurrent statement we’ll look at. To understand the

process statement, we’ll first examine the similarities between it and the concurrent signal assignment

statement. Once you grasp these similarities, we’ll start discussing the differences between the

statements and of course work a few examples.

Figure 18.18 shows the general syntax for the process statement. The main thing to notice about this

syntax is that the body of the process statement comprises of sequential statements. The main difference

between concurrent signal assignment statements and process statements lies with these sequential

statements. The verbage below discusses a few of the more interesting points regarding the process

statement syntax.

 label: process(sensitivity_list)

begin

 {sequential_statements}

end process label;

Figure 18.18: Syntax for the process statement.

222

 Don’t worry too much about this now. We’ll provide a full explanation in a later chapter. It has to do with the

unintended consequence of generating latches (which is not necessarily good).

Digital McLogic Design Chapter 18

 - 350 -

 As the definition in Figure 18.18 implies, all the statements that appear between the begin and

end keywords are evaluated in a sequential manner. This is in stark contrast to concurrent

statements in general which are evaluated concurrently. The reality is that the process statement

is a concurrent statement that necessarily contains sequential statements. There are three main

types of sequential statements, which we’ll describe soon, but once again, let’s stick to the

similarities before we dive into the differences.

 The label listed in Figure 18.18 is optional but should always be included to promote the self-

commenting of your VHDL code.

Example 18-5

Implement an XOR function using both concurrent signal assignment and a process

statement. Feel free to use the XOR operator in your solution.

Solution: Although we should draw a diagram for this circuit, let’s skip it just this one time. No one

will know. Figure 18.19 shows an entity declaration for a XOR function. Figure 18.20 shows both a

concurrent signal assignment and a process statement architecture for the entity of Figure 18.19. The

main difference between the two architecture descriptions is the presence of the process statement in

latter version.

 Recall that the concurrent signal assignment statement operates as follows. Since it is a

concurrent statement, anytime there is a change in any of the signals listed on the right side of the

signal assignment operator, the signal on the left side of the operator is re-evaluated. A similar

mechanism exists for the process statement but you actually have more control compared to the

concurrent signal assignment statements. For the process statement, any time there is a change in

any signal in process sensitivity list, all of the sequential statements in the process are

revaluated
223

. The signals in the sensitivity list control the evaluation of the process statement.

These two approaches are effectively the same but the syntax is significantly different.

 So here’s where it gets strange. Even though both of the architectures listed in Figure 18.20 have

the exact same signal assignment statement (F <= A XOR B;), execution of the statement in

the behavioral style architecture is controlled by what signals appear in the process sensitivity

list. Anytime there is a change in signal A or signal B, the statement appearing in the concurrent

signal assignment architecture is evaluated. This difference is significant in that the process

sensitivity list allows you more degrees of control in modeling the final circuit
224

.

entity my_xor is

 port (A,B : in std_logic;

 F : out std_logic);

end my_xor;

Figure 18.19: Entity declaration for circuit performing XOR function.

223

 This is not exactly true, but good enough for now.
224

 It’s definitely hard to see why more control would be an advantage with a circuit this simple. This will make

more sense as you start modeling more complex circuits.

Digital McLogic Design Chapter 18

 - 351 -

-- concurrent signal assignment

architecture my_xor_con_sig of my_xor is

begin

 F <= A XOR B;

end my_xor_con_sig;

-- process statement

architecture my_xor_process of my_xor is

begin

 xor_proc: process(A,B)

 begin

 F <= A XOR B;

 end process xor_proc;

end my_xor_process;

Figure 18.20: Concurrent signal assignment and process statement descriptions of exclusive OR

function.

18.4.4.1 Sequential Statements

The term “sequential statement” is derived from the fact that the statements within the body of a process

statement are interpreted in a sequential manner. Execution of the sequential statements (the statements

appearing in the process body) is initiated when a change in any signal contained in the process

sensitivity list occurs. Execution of statements within the process body continues until execution

reaches the end of the process body
225

.

The strangeness of process statements evokes a philosophical dilemma: the process statement is a

concurrent statement yet it is comprised of sequential statements. This is actually a tough concept to

grasp so it may take a while to gain a grasp of this concept due to the fact it seems like a contradiction.

Keep in mind that you’re using VHDL to model (or describe) a digital circuit and that VHDL is

primarily a modeling tool. The key to understanding sequential evaluation of statements occurring in a

concurrent statement is to accept the fact that the VHDL synthesizer is going to examine your VHDL

model and attempt to generate a digital circuit from it. In addition, since the ins and outs of this

interpretation are not always readily apparent, we’ll take some implementation details for granted until

the time comes when you really need to fully understand the process statement
226

.

The temporary solution to not fully comprehending this distinction is between sequential statements and

concurrent statements are to keep your process statements as simple as possible. There is a tendency

with new VHDL designers is to use the process statement as a repository for a bunch of loosely related

sequential statements. Although syntactically correct, the code is not understandable in the context of

digital circuit generation. In order to avoid this dilemma, you should strive to keep your process

statements simple and to the point. Divide your intended functionality into several different process

statements that communicate with each other rather than attempting to stuff all of your code into one

giant, complicated, bizarre, ugly, disgusting process statement. Remember, process statements are

concurrent statements: they all execute concurrently; you must take advantage of concurrency in order

to simplify your circuit descriptions.

225

 Process statements are massively versatile; this statement becomes less true as your VHDL models become

more complex.
226

 As you go along in VHDL, you’ll gain more and more knowledge regarding process statement; this chapter is

not attempting to tell you everything.

Digital McLogic Design Chapter 18

 - 352 -

There are three types of sequential statements that we’ll be discussing. We’ll not say too much about

the first type though because we’ve already been sort of dealing with it in that it is identical to a

concurrent signal assignment statement. The other two types of statements are the if statement and the

case statement. The nice part about both the if statement and the case statement is that you’ve worked

with similar statements before in algorithmic programming languages and the VHDL syntax for these

statements is strikingly similar. But alas, keep in mind that you’re not programming a computer; you’re

describing digital hardware.

18.4.4.2 Signal Assignment Statements

The sequential style of a signal assignment statement is syntactically equivalent to the concurrent signal

assignment statement. Another way to look at it is that if a signal assignment statement appears inside

of a process than it is a sequential statement; otherwise, it is a concurrent signal assignment statement.

Once again, Figure 18.20 shows the similarities and differences between these two statements.

18.4.4.3 IF Statements

The if statement is used to create a branch in the execution flow of the sequential statements. Depending

on the conditions listed in the body of the if statement, either the instructions associated with one or

none of the branches is executed when the if statement is processed. Figure 18.21 shows the general

form of the if statement.

if (condition) then

 { sequence of statements }

elsif (condition) then

 { sequence of statements }

else

 { sequence of statements }

end if;

Figure 18.21: Syntax for the if statement.

The concept of the if statement should be familiar to you in two regards. First, its form and function are

similar to the if-genre of statements found in most algorithmic programming languages. The syntax,

however, is a bit different. Secondly, the VHDL if statement is the sequential equivalent to the VHDL

conditional signal assignment statement. These two statements essentially do the same thing but the if

statement is a sequential statement found in a process body while the conditional signal assignment

statement is one specific form of concurrent signal assignment. In other words, the if statement is a

sequential statement version of a conditional signal assignment statement.

Yet again, there are a couple of interesting things to note about the listed syntax for the if statement

shown in Figure 18.21.

 The parenthesis placed around the condition expression is optional. They should be included in

most cases to increase the readability of the VHDL source code, particularly when you use

complex conditional expressions.

 Each if-type statement contains an associated then keyword. The final else clause has no then

keyword associated with it.

Digital McLogic Design Chapter 18

 - 353 -

 As written in Figure 18.21, the else clause is a catch-all statement. If none of the previous

conditions evaluate as true, then the if statement evaluates the sequence of statements associated

with the final else clause. In other words, if an else clause is used in an if statement, every

possible situation is covered and either one of the if clauses or the else clause will be evaluated

when the process itself is evaluated

 The final else clause is optional. Not including the final else clause presents the possibility that

none of the sequence of statements associated with the if statement will be evaluated. This has

deep ramifications that we’ll discuss later
227

. For now, make sure any time you use an if

statement to always include an else clause (which acts as a catch-all statement).

Example 18-6

Write some VHDL code that implements the following function using an if statement.

BC CBA C)B,F_OUT(A,

Solution: Although it is not directly stated in the problem description, the VHDL code for this solution

utilizes a process statement because an if statement can only appear in VHDL source code inside the

body of a process statement. This problem implements a simple function; we mentioned earlier that

functions such as these are not overly popular when designing anything but simple digital circuits. Later

chapters provide better examples of process statements (so try not to get too discouraged now). Figure

18.22 shows the VHDL model for the solution to this example. We’ve opted again to leave out the

black box diagram in this case since the problem is relatively simple.

entity my_ex is

 port (A,B,C : in std_logic;

 F_OUT : out std_logic);

end my_ex;

architecture fun_example of my_ex is

begin

 proc1: process(A,B,C)

 begin

 if (A = ‘1’ and B = ‘0’ and C = ‘0’) then

 F_OUT <= ‘1’;

 elsif (B = ‘1’ and C = ‘1’) then

 F_OUT <= ‘1’;

 else

 F_OUT <= ‘0’;

 end if;

 end process proc1;

end fun_example;

Figure 18.22: Solution to Example 18-6.

There is not too much new information presented in Example 18-6. One good thing worth knowing is

that the conditions portions of the if clauses evaluate to a Boolean value (either true or false). Once the

227

 Once again, it’s the unintended creation of a latch.

Digital McLogic Design Chapter 18

 - 354 -

first if clause evaluates as true, the code performs the assignment associated with that if clause. The

catch-all else statement assures an assignment is made each time one of the signals in the process

sensitivity list changes.

Once again, using an if statement is probably not the optimal approach to implementing Boolean

functions. These examples do, however, show an if statement in action. Just to drive the point further

into the ground, Figure 18.23 shows an alternate architecture for Example 18-6. While the solution

shown in Figure 18.23 is technically correct, it obviously more cluttered and more confusing than the

solution shown in Figure 18.22
228

.

architecture bad_example of my_ex is

begin

 proc1: process(A,B,C)

 begin

 if ((A = ‘0’ and B = ‘0’ and C = ‘0’) or

 (B = ‘1’ and C = ‘1’)) then

 F_OUT <= ‘1’;

 else

 F_OUT <= ‘0’;

 end if;

 end process proc1;

end bad_example;

Figure 18.23: An alternate solution for Example 18-6.

18.4.4.4 Case Statements

The case statement is somewhat similar to the if statement in that a sequence of statements are executed

if an associated expression evaluates as true. The case statement differs from the if statement in that the

resulting choice is made depending upon the value of the single control expression. Only one of the set

of sequential statements executes for each execution of the case statement and is sole dependent upon

the first when branch to evaluate as true. Figure 18.24 shows the syntax for the case statement.

Following Figure 18.24 are some important case statement considerations.

 case (expression) is

 when choices =>

 {sequential statements}

 when choices =>

 {sequential statements}

 when others =>

 {sequential statements}

end case;

Figure 18.24: Syntax for the case statement.

 The case statement is a different and more compact form of the if statement. It is not as

functional, however, because all the choices are based on the same expression.

 The case statement is similar in both form and function to case or switch-type statements in

algorithmic programming languages. Recall in that case-type statements typically remove the

need in many cases to include a long list of if-else clauses.

228

 Cluttered is bad unless you’re an academic administrator trying to justify your continued existence.

Digital McLogic Design Chapter 18

 - 355 -

 The case statement is the sequential equivalent to the VHDL selective signal assignment

statement. The case statement and selective signal assignment statements essentially have the

same capabilities but the case statement is a sequential statement found in a process body

while the selected signal assignment statement is one form of concurrent signal assignment.

 The when others clause is not required but should generally always be used unless you really

know what you’re doing. You know more what you’re doing later, so for now, always use a

when others clause. .

Example 18-7

Write a VHDL model that implements the following function using a case statement.

BC CBA C)B,F_OUT(A,

Solution: This solution once again falls into the category of not being the best way to model a function

using VHDL; it does illustrate another useful feature in the VHDL. The first part of this solution

requires that we list the function as a sum of minterms, which requires us to multiply the non-minterm

product term given in the example by 1. In this case, 1 is equivalent to)A (A . Figure 18.25 shows this

factoring operation.

BCAABCCBACBAOUTF

AABCCBACBAOUTF

BCCBACBAOUTF

),,(_

)(),,(_

),,(_

Figure 18.25: Expanding the equation for Example 18-7.

Once you’ve listed the equation in standard minterm form, generating the VHDL model is based on the

individual indexes associated with the minterms. Figure 18.26 shows the complete solution for Example

18-7. An interesting feature in this solution is the grouping of the three input signals, which allowed for

the use of a case statement in the solution. This approach required the declaration of an intermediate

signal which was appropriately labeled “ABC” in the spirit of self-commentation.

Once again, there are happier approaches to implementing functions but this example does highlight the

need to be resourceful and creative when modeling digital circuits. The general rule you’ll find to be

true in VHDL is the fact that it is easier to do anything with bundled signals rather than work with the

individual signals inside of the bundle.

Digital McLogic Design Chapter 18

 - 356 -

entity my_example is

 port (A,B,C : in std_logic;

 F_OUT : out std_logic);

end my_example;

architecture my_soln_exam of my_example is

 -- intermediate signal declaration

 signal ABC: std_logic_vector(2 downto 0);

begin

 ABC <= A & B & C; -- create bundle from signals

 my_proc: process (ABC)

 begin

 case ABC is

 when “100” => F_OUT <= ‘1’;

 when “011” => F_OUT <= ‘1’;

 when “111” => F_OUT <= ‘1’;

 when others => F_OUT <= ‘0’;

 end case;

 end process my_proc;

end my_soln_exam;

Figure 18.26: Solution to Example 18-7.

Another similar approach to Example 18-7 is to use the “don’t care” feature built into VHDL. This

allows the implementation of the logic function without having to massage the inputs. As with

everything, if you have to modify the problem before you arrive at the solution, you stand a finite

chance of creating an error that would not have been created had you taken a more clever approach.

Figure 18.27 shows an alternative solution (architecture only) for the Example 18-7. One definite

drawback of using don’t cares in your VHDL code is that some synthesizers and some simulators often

times do not handle them correctly. Most VHDL-type textbooks recommend not to use don’t care

symbols in your VHDL models, so beware. All and all, it’s not a good idea to use don’t cares in VHDL.

The VHDL model of Figure 18.26 is a better approach despite the fact that you had to massage the

equation before you were able to model it in VHDL.

-- a solution that uses a don’t care

architecture my_soln_exam2 of my_example is

 signal ABC: std_logic_vector(2 downto 0);

begin

 ABC <= A & B & C; -- create bundle from signals

 my_proc: process (ABC)

 begin

 case (ABC) is

 when “100” => F_OUT <= ‘1’;

 when “-11” => F_OUT <= ‘1’;

 when others => F_OUT <= ‘0’;

 end case;

 end process my_proc;

end my_soln_exam2;

Figure 18.27: An alternate solution for Example 18-7.

Digital McLogic Design Chapter 18

 - 357 -

18.4.4.5 Caveats Regarding Sequential Statements

As you begin to work with sequential statements, you tend to start getting the feeling that you’re doing

algorithmic programming using a higher-level language. This is because sequential statements have a

similar look and feel to some of the similar programming constructs in higher-level languages. The bad

part of this tendency is when your VHDL coding approach becomes similar to that of higher-level

languages.

Using VHDL sequential statements as higher-level language programming constructs is a common

error made by those new to VHDL. This being the case, it is appropriate to remind you once again that

VHDL is not computer programming: VHDL is a tool to describe hardware designs. You are

generally not implementing algorithms in VHDL; you’re describing hardware. It’s a massively

different paradigm and requires a different mindset.

If you attempt to implement a relatively large circuit using one process statement, you’re going to fail at

many levels. Although your code appears like it should work in terms of the provided statements, this is

an illusion based on the fact that your mind is interpreting the statements in terms of a higher-level

language. What’s even worse is when your code simulates as you expect it to but the synthesized

hardware does not work properly. In this case, you have no choice but to change your original VHDL

model. A better approach is simply not to abuse VHDL sequential statements.

The reality is that circuit design methodology using VHDL is somewhat mysterious in that you are

trusting that the VHDL synthesizer to magically know what you’re trying to describe. If you don’t

understand the ins and outs of VHDL at a low level, you’re circuit is not going to synthesize properly a

good portion of the time. Small and simple VHDL models are easy to understand and generally

straightforward to make work. The general VHDL programming approach is to break large and/or

complex VHDL modules into small and simple sub-modules.

You should strive to keep your VHDL models simple, particularly your process statements. The best

approach is to keep your process statements centered about a single purpose and have many process

statements that communicate with each other
229

. The bad approach is to have one massive process

statement that does everything for you. The magic of VHDL is that if you provide simple code to the

synthesizer, it’s more than likely going to provide you with a circuit that works and an implementation

that is simple and eloquent. If you provide with synthesizer with complicated VHDL code, the circuit,

may work as intended but it may not be efficient in both time and space considerations.

As opposed to higher-level languages where small amounts of code often translates to code of relatively

high efficiency, efficiency in a VHDL model is obtainable by compact and simple partitioning of the

VHDL code based on the underlying hardware constructs
230

. In other words, simple VHDL models are

better and you’ll achieve simplicity by proper partitioning and description of the model. So try to fight

off the urge to impress your friends with the world’s shortest VHDL model; your hardware friends will

know better.

18.5 Standard Models in VHDL Architectures

As you remember, the VHDL architecture describes the functionality associated with a VHDL entity

declaration. The architecture is comprised of two parts: the declarative region and followed by a

229

 Communication such referenced here is done with “signals” in the overall design.
230

 And, having a good synthesizer helps. Companies that provide free synthesis tools will not generally give you

their latest and/or greatest: you have to pay for that.

Digital McLogic Design Chapter 18

 - 358 -

collection of concurrent statements. We’ve studied four types of concurrent statements thus far:

concurrent signal assignment, conditional signal assignment, selected signal assignment, and process

statements. Concurrent statements pass information to other concurrent statements though the use of

signals
231

.

There are three main accepted approaches to writing VHDL architectures. These approaches are known

as dataflow style, behavioral style, and structural style architectures. The standard approach to learning

VHDL is to introduce each of these architectural styles individually and design a few circuits using that

style. Although this approach is good from the standpoint of keeping things simple while immersed in

the learning process, it’s also somewhat misleading because more complicated VHDL circuits generally

use a mixture of these three styles.

Because the digital circuits we’ve modeled up to this point are relatively simple, one of the three model

styles could easily describe our VHDL models. As our circuits become more complex, most VHDL

models employ some type of structural modeling. In other words, structural modeling supports the

interconnection of black boxes but does not have the ability to describe the logic functions used to

model the circuit operation. For this reason, structural modeling is less of a modeling style and more of

an approach for interfacing previously designed modules.

In the end, the concept of using either a dataflow, behavioral, or structural approach to VHDL modeling

is somewhat of a pointless matter. The reality is that you’ll find yourself “doing what needs to be done”

in order to model a circuit. As you gain experience modeling digital circuits with VHDL, you simply

don’t put much thought into the style of architecture you’re using. The most important factor in VHDL

is to make your models as simple as possible. Simple models are more robust, require less testing, and

are easier to reuse. Moreover, the better approach is always to ensure that your complex VHDL models

are comprised of a collection of relatively simple sub-modules. But then again, the terms presented in

this section are somewhat standard in the world of VHDL so you really need to be aware of them.

18.5.1 VHDL Dataflow Style Architecture

A “dataflow style architecture”, or “dataflow model” specifies a circuit as a concurrent representation of

the flow of data through the circuit. Dataflow models describe circuits by showing the input and output

relationships using the various built-in components of the VHDL language. The built-in components of

VHDL include operators such as AND, OR, XOR, etc. The three forms of concurrent statements we’ve

talked about up until now (concurrent signal assignment, conditional signal assignment, and selective

signal assignment) are all statements that are found in dataflow style architectures. In other words, if

you exclusively use concurrent, conditional, and selective signal assignment statements in your VHDL

models, you are using a dataflow model.

If you were to re-examine some of the examples we’ve done so far, you can in fact sort of see how the

data “flows” through the circuit. To put this in other terms, if you have a working knowledge of digital

logic, it’s fairly straight-forward to imagine the underlying circuitry in terms of standard logic gates.

These signal assignment statements effectively describe how the data flows from the signals on the right

side of the assignment operator (<=) to the signal on the left side of the operator.

The dataflow style of architecture has its strong points and weak points. It is good that you can see the

flow of data in the circuit by examining the VHDL code. The dataflow models also allow you to make

an intelligent guess as to how the actual logic will appear should you decide to synthesize the circuit.

Dataflow modeling works fine for small and relatively simple circuits. However, as circuits become

more complicated, it is usually advantageous for many reasons to switch to another modeling style.

231

 Also included in architecture bodies are component instantiations. There are not concurrent statements, though

it is something comforting to think of them as such.

Digital McLogic Design Chapter 18

 - 359 -

18.5.2 VHDL Behavior Style Architecture

In comparison to the dataflow style architecture, the “behavioral style architecture”, or “behavioral

model”, does not necessarily provide details as to how the design is implemented or synthesized in

actual hardware. VHDL code written in a behavioral style does not necessarily reflect how the

synthesizer implements the circuit. Instead, the behavioral style models how the circuit outputs will

react to (or “behave”) the circuit inputs or the sequence of circuit inputs.

Whereas in dataflow modeling you somewhat needed to have a feel for the underlying logic in the

circuit, behavioral models provide you with various tools to describe how the circuit will behave and

leaves the implementation details up to the synthesis tool. In other words, dataflow modeling describes

how the circuit should look in terms of gates whereas behavioral modeling describes how the circuit

should act. For these reasons, behavioral modeling is higher-up on the circuit abstraction level as

compared to dataflow models. In one sense, behavioral style modeling is the ultimate “black box”

approach to designing circuits.

The heart of the behavioral style architecture is the process statement, which was the fourth type of

concurrent statement that we’ll discuss in this chapter. As you’ve seen, the process statement is

significantly different from the other three concurrent statements in several ways. The major difference

lies in the process statement’s approach to concurrency with its notion of containing nothing but

sequential statements, which is the major sticking point in learning to deal with process statements.

18.5.3 VHDL Structural Models: Not a Behavioral vs. Dataflow Argument

The third type of model in VHDL is the structural model. We’ve dealt with structural models in

previous chapters so we’ll not say too much about it here. The issue is that it seems that dataflow and

behavioral models represent two approaches to the same thing. In contrast, structural models seem like

a different beast
232

.

Maybe I’m simply unclear on the concept regarding modeling. What I do know is that VHDL models

can quickly become complex. When this occurs, you absolutely have to resort to representing the model

in a hierarchical manner, which means a structural model in VHDL terms. While pure structural

modeling is an issue of component declaration and instantiation of pre-defined modules, structural

models can also be a mixture of components, dataflow models, and/or behavioral models. In addition,

the modules that are instantiated as part of structural models can be implemented using some

combination of these three model types.

In the end, you need to do whatever you need to do in order to model your digital circuits. Your goal is

to make the models as simple as possible as this makes the synthesizer, the simulator, and any human

reading your circuit much happier. Placing a label on a model in an attempt to classify it as something

meaningful serves no purpose and has a tendency to confuse the matter.

18.5.4 Behavioral vs. Dataflow

232

 At least to me, anyway. I’ve included these terms in this chapter because you may actually run into them out

there in digital design-land.

Digital McLogic Design Chapter 18

 - 360 -

Often times when using VHDL, you’ll find yourself faced with a small dilemma: should you use a

dataflow or behavioral model? The answer to this question is not simple. The bottom line is that as you

gain experience, you’ll be able to answer this question without too much thought. In reality, when

making this decision, you need to think about the ultimate goal of your VHDL model. In all likelihood,

you’re modeling a circuit using VHDL because that circuit will eventually be implemented in one form

or another. The truth is that the VHDL synthesizer is the intermediary between your VHDL model and

the final form of your circuit. This being the case, you need to defer to the characteristics of the

synthesizer you’re using.

Listed below are a few simple guidelines governing the issues of behavioral models vs. dataflow

models. These items were gathered from personal experience and reading many books on VHDL. As

you gather your own experience with VHDL, you’ll be able to generate your own set of guidelines.

 The constructs of behavioral modeling allow you to describe circuits at a relatively high level

of abstraction, which allows you to describe the operation of circuits without bogging yourself

down with the low-level implementation details. Therefore, if you need to model a complex

circuit or a complex behavior, your optimal choice is using a behavioral model. However, keep

in mind that modeling at this high of level forces you to put a lot of faith into the VHDL

synthesizer. This is sometimes less that a good decision. No matter what you do, make sure

you at least have some remote vision of what hardware your circuit implementation should be

using. There are not that many basic types of digital modules out there and even your most

complex circuitry will be comprised of these modules.

 Although you don’t know it yet, none of the circuits we’ve been designing have the ability to

“memorize” things
233

. We’ll get to this in later chapters, but for now, keep in mind that

behavioral modeling is usually more useful when your circuits have memory elements.

 If you need to design a relatively simple circuit, you’re often faced with the choice of

behavioral vs. dataflow. The word on the street is that if you can model your circuits using a

dataflow model, it sometimes has advantages during circuit synthesis. The “sometimes” in the

previous sentence is based on the synthesizer characteristics and qualities. The “advantages”

refers to the fact that sometimes using a dataflow model magically directs the synthesizer to

generate a physically smaller circuit while exhibiting the desired functionality. In other words,

if the synthesizer needs to thinks less, it often times thinks better
234

.

 In the end, you should always use a dataflow model if you can do so without too much trouble.

Don’t go way out of your way to force a design to be a dataflow model, however: the benefits

generally are not there.

18.6 Mealy’s Third and Fourth Laws of Digital Design

As you progress in digital design, and particular, in the modeling of digital circuits using VHDL, there

are a few key issues to never lose sight of. In general, the VHDL synthesizer is your friend; you

therefore don’t want to expect too much of it. The synthesizer’s job is to take your VHDL model and

translate that into a form that can be ultimately implemented as a real circuit. This is a big process as

some piece of software (written by humans) must take a file of text and somehow create a working

circuit out of that. In the end, it’s not as easy as you would think and can sometimes create problems.

233

 This is a loose reference to the concept of memory and the hallmark of sequential circuits. We’ll introduce these

concepts in an upcoming chapter.
234

 I can personally relate to this.

Digital McLogic Design Chapter 18

 - 361 -

The best way to avoid these types of problems is to follow Mealy’s third and fourth laws of digital

design.

Mealy’s Third Law of Digital Design: Don’t rely on the VHDL synthesizer; create

your VHDL models by having a remote vision of what underlying hardware should

look like in terms of standard digital modules.

Mealy’s Fourth Law of Digital Design: Model circuits using many smaller sub-

modules as opposed to fewer larger sub-modules. In this case, sub-modules should be

true “modules” but can also be process statements.

The truth is that you still have not seen all the standard VHDL modules (we’ll get to those in the

upcoming chapters). What this third law is really stating is that you should always put a finite amount of

faith in your own abilities to model circuits and not rely to heavily upon the magic of the VHDL

synthesizer. What the fourth law is stating is that your circuits should be comprised primarily of smaller

modules as they are easier to understand, write, and test. Keep in mind that even the most complex

digital designs are decomposable into a set of standard digital modules.

18.7 Meaningful CSA Examples

Now that you’ve seen all the concurrent statements in VHDL, it’s time to use them. This section

contains a few examples of CSA usage in VHDL. These examples use the standard digital modules we

previously introduced; better examples appear in later chapters where we’ll introduce other standard

digital modules.

Example 18-8: 8-Bit Comparator

Design a circuit that compares two 8-bit values A & B. This circuit should contain three

outputs: EQ, GT, and LT. These inputs indicate whether A=B, A>B, or A<B, respectively.

Describe your design using a VHDL behavioral model.

Solution: The comparator is a standard digital design circuit that we previously discussed. The new

twist on this problem is the addition of the two non-equality outputs. The unstated purpose behind this

problem is to show off the power of VHDL behavioral modeling, as you certainly would not want do

complete this design with a truth table (BFD) or some sort of IMD. Figure 18.28 shows the high-level

black box diagram for this problem while Figure 18.29 shows the associated VHDL entity.

Digital McLogic Design Chapter 18

 - 362 -

Figure 18.28: High-level black-box diagram for Error! Reference source not found..

entity COMP_8B is

 Port (A,B : in STD_LOGIC_VECTOR (3 downto 0);

 EQ,GT,LT : out STD_LOGIC);

end COMP_8B;

Figure 18.29: High-level black-box diagram for Error! Reference source not found..

There many ways to do this problem despite the fact that the problem states you should use a behavioral

model. We’ll show you two ways as this presents an important point with using behavioral models.

Figure 18.30 shows the first solution, which has a few new items in it.

 The process statement uses a less-than (“<”) and a greater-than (“>”) operator in addition to

the equality operator (“=”). These operators are all binary operators provided as part of the

VHDL language.

 In the process statement, a value is assigned to each of the three outputs in every case. This is a

massively important VHDL consideration. The notion here is that in any given situation, you

need to make sure to assign all the values that are associated with the process statement an

output. In other words, if a process statement assigns values to three signals, you always must

assign values to each of those three signals during each evaluation of the process. If you do not

assign an output in this situation, the VHDL synthesizer assumes you want to “induce

memory”, which is actually something you don’t want or need to do here
235

.

 The if statement has an associated “else” statement. This is a catch-all statement which has a

special purpose. Generally speaking, all your circuit models should contain a catch-all

statement.

Figure 18.31 shows an alternative architectural, which solves Example 18-8. In this solution, the first

thing that occurs during the evaluation of the process is that all of the signals that are eventually

assigned in the process are assigned before the “if” statement is evaluated. This approach then removes

the requirement that each clause of the “if” statement assigned a value to each output.

235

 This topic of memory is something we have not discussed yet in either terms of digital logic or VHDL. In short,

VHDL has a special way of inducing memory; the approach taken in this problem of always making sure that you

don’t induce memory by making sure every output is always specified in each path taken by the process statement.

We’ll talk a lot more about this later.

Digital McLogic Design Chapter 18

 - 363 -

architecture my_comp_8b_1 of COMP_8B is

begin

 comp8ba: process (A,B)

 begin

 if (A < B) then

 EQ <= '0'; GT <= '0'; LT <= '1';

 elsif (A > B) then

 EQ <= '0'; GT <= '1'; LT <= '0';

 else -- catch-all statement

 EQ <= '1'; GT <= '0'; LT <= '0';

 end if;

 end process;

end my_comp_8b_1;

Figure 18.30: One approach to the architecture solving Example 18-8; this approach assigns

every output assigned by the process statement each time one output is assigned.

architecture my_comp_8b_2 of COMP_8B is

begin

 comp8b2: process (A,B)

 begin

 -- initialize all values assigned in process

 LT <= '0'; GT <= '0'; EQ <= '0';

 if (A < B) then

 LT <= '1';

 elsif (A > B) then

 GT <= '1';

 else -- catch-all statement

 EQ <= '1';

 end if;

 end process;

end my_comp_8b_2;

Figure 18.31: Another approach to modeling the solution to Example 18-8; this approach assigns

a default value to every signal that is assigned in each clause of the “if” statement.

The two approaches to his problem illustrate an important point in VHDL. In both of these approaches,

the main goal was to make sure that memory was not induced and we made sure that did not happen by

making sure that we always assigned a value to every signal that is assigned a value somewhere in the

process statement. The fact is that both of these solutions functionally equivalent despite the fact that

there are apparently nine signal assignments in the first solution and six signal assignments in the

second solution. In the end, the synthesizer would most likely generate the exact same hardware in each

case. One other key important item to note is that both solutions contained “else” statements; these are

the famous catch-all statements that your circuits should contain (unless they have a really good reason

not to).

Digital McLogic Design Chapter 18

 - 364 -

Example 18-9: Academic Exercise Problem

Implement the following circuit with a flat design using no more than four concurrent

statements. The following equations describe the functions for the FN_1 and FN_2 black

boxes.

)2,0(1_FN)7,6,4,2,1,0(1_FN

Solution: This is a typical academic exercise problem, but it does show several interesting items. The

notes below describe a few new items presented by this problem. Figure 18.32 shows the black box

model for this solution.

Figure 18.32: Black box diagram for Example 18-9 solution.

Figure 18.33 shows the final VHDL solution for Example 18-9. Here are a few interesting things to note

about this solution beside the fact that this problem could have been done about a gazillion different

ways.

 There are four concurrent statements used. The choice of concurrent statement was arbitrary,

as the problem statement did not provide any specific direction.

 Since the four statements used in the solution are concurrent, the ordering of the statements has

no affect on the solution.

 Since this model contains both a process statements and signal assignment statements, it can’t

be considered strictly a dataflow or behavioral model.

 The solution did not attempt to reduce the stated function. The one thing the solution did do

was to implement one of the functions in POS form despite the fact the function was described

in a compact SOP form.

Digital McLogic Design Chapter 18

 - 365 -

entity MN_12 is

 Port (M,N : in STD_LOGIC_VECTOR (2 downto 0);

 X_1,X_2 : out STD_LOGIC);

end MN_12;

architecture my_ckt of MN_12 is

 -- intermediate signals

 signal s_FN_1, s_FN_2 : std_logic;

begin

 f1: process(N)

 begin

 if (N = "000" OR N = "010") then

 s_FN_1 <= '1';

 else

 s_FN_1 <= '0';

 end if;

 end process;

 s_FN_2 <= ((not M(2)) OR M(1) OR M(0)) AND (M(2) OR (not M(1)) OR M(0));

 X_1 <= s_FN_1 XOR s_FN_2;

 X_2 <= s_FN_1 OR s_FN_2;

end my_ckt;

Figure 18.33: VHDL model for the solution of Example 18-9.

Example 18-10: Three-Value 10-Bit Comparator

Design a circuit that compares three 10-bit values. If all three 10-bit values are equivalent, the

EQ3 output of the circuit will be a ‘1’, otherwise it will be a ‘0’. Use only standard

comparators in this design. Use any support logic you may require but minimize the amount of

hardware used in this circuit. Use the modular design approach for this problem and provide

both a block-level diagram and the VHDL structural model for the solution.

Solution: This is the same problem we solved in a previous chapter; the previous solution was

presented as a structural model as requested. This problem requests the solution as a behavioral model

which means we can exercise the power of behavioral modeling and make this a shorter problem than

before. Figure 15.10 shows the black box model for the solution.

Figure 18.34: Black box diagram for Example 18-10 solution.

Digital McLogic Design Chapter 18

 - 366 -

Using VHDL behavioral modeling, we can describe the circuit’s operation with one process statement.

Figure 15.11 shows the complete solution for this problem. Note that in this solution we used a complex

conditional statement to describe the functionality of the circuit. You’ve seen the equality operators

before, but the conditional statement used in this problem also contains an “AND” conditional. While

this seems like this could be the familiar bit-oriented AND operator, it actually represents a logical

operator, which officially operates on two Boolean-type values. In particular, the expression (A = B)

and (B = C) are evaluated and return a “true” or a “false”. The AND operator is overloaded and is

evaluates Boolean values here and returns a Boolean value to the condition clause of the “if” statement.

This problem provides a rough feel for the power of behavioral modeling in VHDL. Note that modeling

the solution to this problem in any other way would have required much more work and would have

been less straight-forward.

entity COMP3 is

 Port (A,B,C : in STD_LOGIC_VECTOR (7 downto 0);

 EQ : out STD_LOGIC);

end COMP3;

architecture my_comp3 of COMP3 is

begin

 comp: process (A,B)

 begin

 if (A = B AND B = C) then

 EQ <= '1';

 else

 EQ <= '0';

 end if;

 end process;

end my_comp3;

Figure 18.35: The final VHDL model for Example 18-10.

Example 18-11: In the Dark Car Alarm

Design a digital circuit that will control the unlocking of a car door. The car door has

four push-buttons that control the unlocking mechanism of the car door. In most

combination lock-type problems such as this one, the user must have all four of the

buttons in the correct position (thus inputting the correct combination).But in this

design, only three of the four buttons need to be in the correct position in order to

unlock the door.

Solution: Once again, the first step is generating a block diagram of the final circuit. This diagram

simply lists the inputs and outputs to the circuit; the rest of the solution involves deriving a relationship

between the output and inputs in such a way as to solve the given problem. The UNLOCK output is

considered a signal that is directed to some lock mechanism responsible for locking and unlocking the

door. The idea here is that when we assign the UNLOCK signal a ‘1’, the door unlocks; when we assign

the UNLOCK signal a ‘0’, the door locks.

Digital McLogic Design Chapter 18

 - 367 -

Figure 18.36: The black-box diagram of the final circuit.

The key to understanding this problem is knowing that somewhere inside of this circuitry, the code that

unlocks the door has been hard-coded into the circuitry. In order for the door to unlock, the code the

user inputs must be the same was the code that is hard-coded into the circuitry. The catch in this

problem is that the user only needs to have three of the bits of the code correct in order to open the lock.

A 4-bit comparator would have been adequate for this problem had it been the case where the user

needed all of the buttons correct in order to unlock the door.

The solution to this problem is similar to a comparator. Instead of an AND gate on the output of the

comparator, this circuit must add some special logic. We’ll divide this problem into two sections as

follows: the LOGIC_A and the LOGIC_B block as shown in Figure 18.37.

Figure 18.37: Lower-level block diagram of circuit solution.

The LOGIC_A block is similar to the comparator. In this case, the circuit compares each of the external

button outputs to the internal preset combination to the lock. Figure 18.38 shows a diagram of this

circuit. Note that each of the EXNOR gates simply compares the outputs of each of the buttons which is

the expected comparator action. The dotted lines show that the comboX values are internal to the

circuit.

Digital McLogic Design Chapter 18

 - 368 -

Figure 18.38: A detailed look at the LOGIC_A block.

The LOGIC_B block is a circuit that has an asserted output when at least three of the inputs are in a ‘1’

state. Figure 18.39 shows a truth table that models the logic for the UNLOCK input. Equation 18-2

shows a reduced expression implementing this functionality. Finally, Equation 18-2 shows an

expression describing the final solution. Figure 18.40 provides a VHDL model for the LOGIC_B block.

BEQ3 BEQ2 BEQ1 BEQ0 UNLOCK

0 0 0 0 0

0 0 0 1 0

0 0 1 0 0

0 0 1 1 0

0 1 0 0 0

0 1 0 1 0

0 1 1 0 0

0 1 1 1 1

1 0 0 0 0

1 0 0 1 0

1 0 1 0 0

1 0 1 1 1

1 1 0 0 0

1 1 0 1 1

1 1 1 0 1

1 1 1 1 1

Figure 18.39: The truth table modeling the UNLOCK output.

BQ0)BQ1(BQ2BQ0)BQ1(BQ3BQ1)BQ2(BQ3BQ0)BQ2(BQ3F

Equation 18-2: Boolean expression describing the solution circuitry.

Digital McLogic Design Chapter 18

 - 369 -

--

-- A standard decoder-type function implementation

-- for the LOGIC_B block.

--

entity my_ex is

 port (BTN : in std_logic_vector(3 downto 0);

 UNLOCK : out std_logic);

end my_ex;

architecture my_ex_arch of my_ex is

begin

 with BTN select

 UNLOCK <= ‘1’ when “0111” | “1011” | “1101” | “1110” | “1111”,

 ‘0’ when others;

end my_ex_arch;

Figure 18.40: The VHDL model for Error! Reference source not found..

Digital McLogic Design Chapter 18

 - 370 -

Chapter Summary

 The entity/architecture pair form the interface and functional description, respectively, of how a

digital circuit behaves.

 The main design consideration in VHDL modeling supports the fact that digital circuits operate in

parallel. In other words, the various design units in a digital design process and store information

independently of each other. The various design units communicate with each other through the use

of signals, often referred to as intermediate signals.

 Signals that are declared as OUTs in the entity declaration cannot appear on the right side of a

signal assignment operator. Intermediate signals are similar to signals declared in entities except

that they contain no mode specifier. Intermediate signals are declared in the declarative region of

the architecture body.

 The four major signal assignment types in VHDL are concurrent signal assignment, conditional

signal assignment, selective signal assignment, and process statements. These statements are

referred to as concurrent statements in that they are interpreted as acting in parallel (concurrently)

to all other concurrent statements.

 Concurrent signal assignment, conditional signal assignment, and signal assignment statements are

considered low-level statements. These statement types are primarily designed to model digital

logic at a low level and are associated with “dataflow” models.

 The process statement is primarily used to describe the behavior of circuits on a high level (higher

than then other three types of concurrent statements). The body of the process statement can

contain any number of sequential statements. There are three types of sequential statements: signal

assignment statements, if statements, and case statements. Process statements are associated with

behavioral models.

 There are three major model types in VHDL: 1) dataflow, 2) behavioral, and 3) structural models.

Most complex designs use a combination of these model types. Use of concurrent signal

assignment, conditional signal assignment, and selective assignment statements indicate you are

using a dataflow model. Use of a process statement indicates that you’re using a behavioral model.

Structural models can employ both dataflow and behavioral model types. Structural modeling is

different from the other two model types in that it is used to gather design units and glue them

together.

 In general, dataflow modeling describes how the circuit should look in terms of gates whereas

behavioral modeling describes how the circuit should act and provides no information regarding

implementation details.

 The if statement has a direct analogy to the conditional signal assignment statement used in

dataflow modeling. The if statement is a sequential statement while the conditional signal

assignment statement is a concurrent statement.

 The case statement has a direct analogy to the selective signal assignment statement used in

dataflow modeling. The case statement is a sequential statement while the selective signal

assignment statement is a concurrent statement.

Digital McLogic Design Chapter 18

 - 371 -

 Both the case statement and the if statement can be nested. Concurrent, conditional, and selective

signal assignment statements cannot be nested.

 It is generally easier in any VHDL model to work with bundled signals rather than work with the

individual signals inside of the bundle. Any time you can work with a bundle, you should work

with a bundle.

 VHDL has the ability to use “don’t cares” in various aspects of modeling. The general rule,

however, is to never use “don’t cares” as they have a tendency to confound the synthesizer and/or

simulator when they are used.

 Mealy’s Third Law of Digital Design: Don’t rely on the VHDL synthesizer; create your VHDL

models by having a remote vision of what underlying hardware should look like in terms of

standard digital modules.

 Mealy’s Fourth Law of Digital Design: Model circuit using many smaller sub-modules as

opposed to fewer larger sub-modules. In this case, sub-modules can be either true “modules” or

individual concurrent statements.

 The table on the following page is a summary of the information presented in this chapter. It is part

of the well-known VHDL cheat sheet.

Digital McLogic Design Chapter 18

 - 372 -

Concurrent Statements Sequential Statements

Concurrent Signal Assignment
(dataflow model)

 Signal Assignment

target <= expression; target <= expression;

A <= B AND C;

DAT <= (D AND E) OR (F AND G);

A <= B AND C;

DAT <= (D AND E) OR (F AND G);

Conditional Signal Assignment
(dataflow model) if statements

target <= expressn when condition else

 expressn when condition else

 expressn;

 if (condition) then

 { sequence of statements }

elsif (condition) then

 { sequence of statements }

else --(the else is optional)

 { sequence of statements }

end if;

F3 <= ‘1’ when (L=‘0’ AND M=‘0’) else

 ‘1’ when (L=‘1’ AND M=‘1’) else

 ‘0’;

 if (SEL = “111”) then F_CTRL <= D(7);

elsif (SEL = “110”) then F_CTRL <= D(6);

elsif (SEL = “101”) then F_CTRL <= D(1);

elsif (SEL = “000”) then F_CTRL <= D(0);

else F_CTRL <= ‘0’;

end if;

Selective Signal Assignment
(dataflow model) case statements

with chooser_expression select

 target <= expression when choices,

 expression when choices;

 case (expression) is

 when choices =>

 {sequential statements}

 when choices =>

 {sequential statements}

 when others => -- (optional)

 {sequential statements}

end case;

with SEL select

MX_OUT <= D3 when “11”,

 D2 when “10”,

 D1 when “01”,

 D0 when “00”,

 ‘0’ when others;

case ABC is

 when “100” => F_OUT <= ‘1’;

 when “011” => F_OUT <= ‘1’;

 when “111” => F_OUT <= ‘1’;

 when others => F_OUT <= ‘0’;

end case;

Process
(behavioral model)

opt_label: process(sensitivity_list)

begin

 {sequential_statements}

end process opt_label;

proc1: process(A,B,C)

begin

 if (A = ‘1’ and B = ‘0’) then

 F_OUT <= ‘1’;

 elsif (B = ‘1’ and C = ‘1’) then

 F_OUT <= ‘1’;

 else

 F_OUT <= ‘0’;

 end if;

end process proc1;

Digital McLogic Design Chapter 18

 - 373 -

Chapter Exercises

1) Why is it a good idea to keep your VHDL models as simple as possible? Briefly describe.

2) Why is it a good idea to break keep individual concurrent statements as simple as possible? Briefly

describe.

3) For the following function descriptions, write VHDL models that implement these functions using

concurrent signal assignment.

(a) (2,3,5) C)B,F(A,

(b) 52 m m C)B,F(A,

(c) (4,3,15) D)C,B,F(A,

(d) (12,14,15) Z)Y,X,F(W,

(e) DBC CB DCA D)C,B,F(A,

(f) (5,7) C)B,(A,F

(g) (2,3,4,7) Y)X,(W,F

(h) (0,1,4,7) T)S,(R,F

(i) (1,2) C)B,F(A,

(j) 761 MMM C)B,F(A,

(k) (1,6) N)M,F(L,

(l) 3)(1,4,5,8,1 Z)Y,X,F(W,

(m) D) A()D C (B)B A(D)C,B,F(A,

(n) (0,2,7) C)B,(A,F

(o) (0,1,5) C)B,(A,F

(p) (5,7) Z)Y,X,(W,F

Digital McLogic Design Chapter 18

 - 374 -

4) For the following function, write VHDL behavioral models that implement these functions using

both a case statements and if statements (two separate models for each function).

(a) (0,3,6) C)B,F(A,

(b) 61 m m C)B,F(A,

(c) BC CB CA D)C,B,F(A,

(d) (1,2,6,7) Y)X,F(W,

(e) 52 MM C)B,F(A,

(f) D) (C D) A()D C (B)B A(D)C,B,F(A,

5) Implement the following functions using concurrent signal assignment.

(a) (b)

6) For the following function, write VHDL behavioral models that implement these functions using

both a case statements and if statements (two separate models for each function).

(a) (b)

Digital McLogic Design Chapter 18

 - 375 -

7) Implement the following functions using concurrent, conditional, and selective signal assignment.

(a) (b)

8) Provide a VHDL model of an 8-input AND gate using concurrent, conditional, and selective signal

assignment as well as a process statement.

9) Provide a VHDL model of an 8-input OR gate using concurrent, conditional, and selective signal

assignment as well as a process statement.

10) Provide a VHDL model for a 5-input NAND gate using concurrent, conditional, and selective

signal assignment as well as a process statement.

 - 377 -

19 Chapter Nineteen

(Bryan Mealy 2012 ©)

19.1 Chapter Overview

As stated earlier, the act of digital design refers to establishing an input/output relationship on a digital

circuit such that it solves some problem or does something useful. This definition is specific in the

result but extremely non-specific in actual implementations. In most cases, this genericity allows for

more freedom regarding the ways you can model a circuit. As you’ve been seeing, VHDL affords you

the ability to model circuits in many different but functionally equivalent ways, particular circuits that

can be characterized by simple Boolean functions. This chapter builds on this genericity by presenting a

generic method to represent the basic input/output relationship of digital circuits.

The slight problem regarding the material presented in this chapter is the fact that we base it around the

simple logic functions we’ve been dealing with up to this point. As you’ll surely discover in the

upcoming chapters, digital design does not have that much to do with the reduction and implementation

of functions. Implementing functions is a low-level approach to digital design, but we’re at the point

now where we’re ready to perform our designs at a higher level. As you may guess, digital design

performed at a higher level of abstraction is always more efficient.

Main Chapter Topics

 DECODERS: The chapter introduces decoders, which is a standard digital circuit.

The two types of decoders include standard and generic decoders. Standard

decoders are useful in memory circuits while generic decoders are facilitate the

implementation of digital circuits represented in tabular formats.

Why This Chapter is Important

This chapter is important because it describes both the generic and standard decoders.

Generic decoders as extremely useful in digital design based on their ability to

implement circuits modeled using a table format.

19.2 An Introduction to Decoders

The standard digital device that represents input/output relationships is what I refer to as the generic

decoder, or just decoder. The term generic decoder is something that I made up in an attempt to classify

the most common approach to digital design. The generic decoder is something you’ve already been

working with although you may not realize it yet. In addition to the generic decoder, there is also a

standard decoder. Please realize that “generic” and “standard” decoders are two terms that you won’t

find in any other digital design text. The standard decoder is a special type of a generic decoder and has

a special relationship between the inputs and outputs. In other words, a standard decoder is a subset of a

Digital McLogic Design Chapter 19

 - 378 -

generic decoder as shown in Figure 19.1. In general, the standard decoder has some specific uses while

the generic decoder is non-specific.

Figure 19.1: Venn diagram showing the hierarchy of decoders.

In general, VHDL uses the generic decoder to model look-up-tables, or LUTs. You’re used to working

with LUTs as the truth table was a very well-known table that you’ve toiled over. Truth tables nicely

model Boolean functions; VHDL supports the implementations of truth tables without the pressing need

for any type of reduction to take place. This means that if you have to implement a function in VHDL,

you need to do your best to represent that function in a tabular format as these formats easily translate to

VHDL models. So for now, we’ll be mixing the notation between “function” and “decoder”, since by

our definition, they’re the same thing.

Our new working definition of a generic decoder is this: any non-sequential digital device that

establishes a functional relationship between the device input(s) and output(s)
236

. Generic decoders are

use to model LUTs. This is so massively important that we need to coin yet another one of Mealy’s new

laws.

Mealy’s Fifth Law of Digital Design: Always first consider modeling a digital circuit

using some type of a look-up table (LUT).

Keep in mind that the main reason this idea is so important is that if you can model something with a

LUT, you can easily implement it in VHDL. You’re probably thinking that items such as truth tables

can quickly become large; but there are typically ways around this issue
237

: You’ve have not seen this

yet, but many digital circuits can be described cleverly in a tabular format without resorting to the

exhaustive representations that you’ve been used to up to this point in regards to truth tables. These

clever digital circuits
238

 also easily translate to VHDL models. We’ll discuss this more later, but as with

computer programming, you should always be on the lookout for opportunities to use decoders rather

than trying to generate some fancy logic functionality.

19.3 Truth-table-based Generic Decoder Implementations

As mentioned earlier, if you really had to implement a generic decoder in VHDL that was defined by a

truth table
239

, you would not attempt to reduce it first. Instead, you whip out one of the following

236

 In case you did not notice, we did not define the term “non-sequential”. This is a simple concept that we can

skip over for now; we’ll get to the full definition in a few chapters.
237

 Meaning that a circuit may have many inputs, but not all of the inputs are meaningful at the same time.
238

 Typically you’ll find many digital ICs are described by using tables in the associated datasheet.
239

 This would also be true of compact minterm and/or maxterm forms. For that matter, it would also be true of

standard SOP and POS forms, but you rarely see those used actual digital designs.

Digital McLogic Design Chapter 19

 - 379 -

shortcut forms and implement it that way. I personally don’t memorize the forms that follow; anytime I

actually need to use one, I need to pull out my cheat notes to remind myself of the proper syntax for

these various forms.

19.3.1 Selective Signal Assignment for Generic Decoders

This is the worn-out example we used for much of the verbage in some previous chapter. Here it is

again for your pleasure.

Example 19-1

Write VHDL code to implement the decoder modeled by

the accompanying truth table. Use selective signal

assignment in your solution.

L M N F3

0 0 0 0

0 0 1 1

0 1 0 0

0 1 1 0

1 0 0 0

1 0 1 0

1 1 0 1

1 1 1 1

Solution: The previous approach to this problem required the user to list the product terms associated

with the function in longhand notation. Even with cutting and pasting on an editor, the previous solution

was tedious. The new approach hopefully makes your generic decoder implementing life a bit more

comfortable. As always, let’s start with a black-box diagram; see Figure 19.2.

Figure 19.2: Black-box diagram for Example 19-1.

The first thing to note about the problem is that it is presented in truth table form. In order to make the

solution more straightforward, you should first convert the problem to a more compact representation.

In other words, this problem cries out for compact minterm form shown in Equation 19-1. You don’t

really need to take this step, but if you don’t be careful as you may flip a bit somewhere.

 (1,6,7) N)M,(L, F3

Equation 19-1

Digital McLogic Design Chapter 19

 - 380 -

Figure 19.3 shows the final solution to Example 19-1; a few valuable comments are sure to follow the

solution.

entity my_ckt_f3 is

 port (L,M,N : in std_logic;

 F3 : out std_logic);

end my_ckt_f3;

architecture f3_8 of my_ckt_f3 is

 -- declaring the bundle

 signal s_sig : std_logic_vector(2 downto 0);

begin

 -- assigning the bundle using concatenation operator

 s_sig <= (L & M & N);

 with (s_sig) select

 F3 <= ‘1’ when “001” | “110” | “111”, -- listing the implicated minterms

 ‘0’ when others;

end f3_8;

Figure 19.3: The no-nonsense solution to standard function implementation problems.

 Note the VHDL model includes comments (as do all good VHDL models).

 The VHDL model once again does not attempt to reduce the code. Any reduction of the code is

thus a responsibility of the VHDL synthesizer.

 The entity declaration happens to describe the inputs as single signals. There certainly is a better

approach to this problem. The solution is to create a bundle out of the individual input signals

and use that bundle in the selective signal assignment statement. This indicates another common

use for intermediate signals. The signal declaration creates the bundle. Assignment of the L, M,

and N signals to the bundle is accomplished using the concatenation operator: “&”.You should

strive to use bundle notation in your VHDL operators whenever possible as it is rare that using

individual signals are a better choice than bundle notation.

 There are two concurrent statements in the solution. It may initially feel like the concurrent

signal assignment statement (the statement using the concatenation operators) is taking up space

and doing something in hardware. The truth is that this is typical VHDL programming practice.

The VHDL synthesizer does not interpret the concurrent signal assignment statement as requiring

new hardware. In essence, this technique is a simple tool that you can use to “do what you need

to do” in order to make your VHDL models more understandable.

 Only the TRUE cases (the cases where the function outputs are ‘1’) are listed in this solution

while the when others clause is used to handle the all of the other cases. This approach saves

listing all of the cases where the function output is ‘0’. If there were fewer “0’s” listed in the

truth table, you would list the maxterm designators instead of the minterm designators and adjust

the VHDL model accordingly.

 Because we are using bundle notation, the literals are assigned constant binary values using

double quotes. Note that VHDL uses single quotes in the assigning of single bits.

Digital McLogic Design Chapter 19

 - 381 -

Figure 19.4 shows one final solution to Example 19-1. This solution differs from the previous solution

in that bundle notation was chosen to represent the three inputs signals instead of the previously used

single signal entries. This approach allows the model to be implemented using less VHDL code. This

may or not be considered a better approach. This example does highlight the fact that if you’re the

designer and you have the option of using bundle notation, you should always use bundle notation.

entity my_new_ckt_f3 is

 port (LMN : in std_logic_vector(2 downto 0);

 F3 : out std_logic);

end my_ckt_f3;

architecture f3_1 of my_new_ckt_f3 is

begin

 with (LMN) select

 F3 <= ‘1’ when “001” | “110” | “111”, -- listing the minterms

 ‘0’ when others;

end f3_1;

Figure 19.4: Use bundle notation in the entity declaration whenever possible.

19.3.2 Conditional Signal Assignment for Generic Decoders

Conditional signal assignment statements are also useful when using generic decoders to implement

functions. The example shows this approach; though not optimal, we provide it here for

completeness
240

.

Example 19-2

Write VHDL code to implement the decoder modeled by

the accompanying truth table. Use conditional signal

assignment in your solution.

L M N F3

0 0 0 0

0 0 1 1

0 1 0 0

0 1 1 0

1 0 0 0

1 0 1 0

1 1 0 1

1 1 1 1

Solution: Figure 19.5 provides the solution to Example 19-2. Note that this solution is somewhat

similar to the solution of the previous example, but with different syntax.

240

 This is a wimpy justification for wasting space.

Digital McLogic Design Chapter 19

 - 382 -

entity my_example is

 port (L,M,N : in std_logic;

 F3 : out std_logic);

end my_example;

architecture my_soln_exam of my_example is

 -- intermediate signal declaration

 signal LMN: std_logic_vector(2 downto 0);

begin

 -- group signals

 LMN <= L & M & N;

 F3 <= '1' when LMN = ("001" or "110" or "111")

 else '0';

end my_soln_exam;

Figure 19.5: A conditional signal assignment implementation of a generic decoder.

19.3.3 Process Statement for Generic Decoders

Implementing generic decoders using process statements follow approaches similar to selective signal

assignment and conditional signal assignment. Once again, there are two approaches to takes when

using process statements: case statements and if statements
241

. Just for kicks, we’ll redo the tired

example using each of these statements. The one important thing to note is that the solution using the

case statement strongly resembles the selective signal assignment statement while the solution using the

if statement resembles the conditional signal assignment. This is not coincidental; there is a strong

correlation between these types of statements.

Example 19-3

Write VHDL code to implement the decoder modeled by

the accompanying truth table. Use a process statement in

your solution. Provide a solution using both if and case

statements.

L M N F3

0 0 0 0

0 0 1 1

0 1 0 0

0 1 1 0

1 0 0 0

1 0 1 0

1 1 0 1

1 1 1 1

Solution: Figure 19.6 provides the solution to Example 19-3 using an “if” statement while Figure 19.7

provides the other solution using a “case” statement. Yes, there are many ways to do the same thing in

VHDL; it’s up to you to decide the best approach.

241

 And also simple signal assignment, but we’ve done that already and won’t mention it here.

Digital McLogic Design Chapter 19

 - 383 -

entity my_example is

 port (L,M,N : in std_logic;

 F3 : out std_logic);

end my_example;

architecture my_soln_exam of my_example is

 signal LMN: std_logic_vector(2 downto 0);

begin

 -- group signals to make thing easier

 LMN <= L & M & N;

 my_proc: process (LMN)

 begin

 if (LMN = "001" or LMN = "011" or LMN = "111")

 then F3 <= '1';

 else F3 <= '0';

 end if;

 end process my_proc;

end my_soln_exam;

Figure 19.6: A process-based implementation of a generic decoder using an “if” statement.

entity my_example is

 port (L,M,N : in std_logic;

 F3 : out std_logic);

end my_example;

architecture my_soln_exam of my_example is

 -- intermediate signal declaration

 signal LMN: std_logic_vector(2 downto 0);

begin

 -- group signals for ease of working with case statement

 s_LMN <= L & M & N;

 my_proc: process (LMN)

 begin

 case s_LMN is

 when "001" | "110" | "111" => F3 <= '1';

 when others => F3 <= '0';

 end case;

 end process my_proc;

end my_soln_exam;

Figure 19.7: A process-based implementation of a generic decoder using a “case” statement.

19.4 Advanced Generic Decoders

The power of VHDL to model generic decoders is more apparent
242

 when modeling functions with

multiple inputs and outputs, which you’ll do often in digital-land. Up until this point, you’ve generally

have been using a truth table to represent this input/output relationship; from there you transferred this

242

 In case you may have not noticed this awesome power in the previous examples.

Digital McLogic Design Chapter 19

 - 384 -

information into a K-map and then implemented the circuit. This approach worked well for single

functions but is tedious when the number of input and/or the number of outputs becomes so large that

you start to question whether you really want to be a digital designer or not. As you’ve already seen the

in the previous examples, the generic decoder provides a method to bypass some of the more tedious

parts of the design process such as the reduction of Boolean equations.

The generic decoder examples that follow highlight the fact that the generic decoder paradigm is

something you should be familiar with from your experience with higher-level programming languages.

Often times in algorithmic type programming, you’ll have a need to perform some calculation over and

over again. But instead of tying up processor resources by grinding out the calculation each time you

need it, you opt to use a look-up table (LUT). With a LUT, you simply pre-calculate and pre-store all

the required calculations somewhere in memory. In this way, you simply “look-up” the answer based on

a given set of inputs instead of wasting computational effort to recalculate the value every time you

need it. This approach is fast and simple and only has the drawback of requiring a finite amount of

memory.

You can also perform look-up table-like operations in VHDL. You’ve actually been doing them for

most of this chapter but this fact will become more obvious in the example that follows. For example,

you’ll sometimes need to add one value to another value. When you see the word “add” you may think

you’ll need to include a ripple carry adder into your circuit (extra hardware). But in some situations
243

,

you can simply use a generic decoder to “assign” the answer to the outputs instead of actually doing the

calculation. This is the LUT approach and is a well known trick in digital design-land, be sure to keep

this fact in mind when you’re asked to design various circuits.

Example 19-4

Provide a VHDL model that implements the functionality described in the

following truth table. Use a generic decoder in your VHDL model. Provide

both a dataflow and a behavior description of the non-standard decoder.

A B C D T1 T2 T3

0 0 0 0 1 1 0

0 0 0 1 0 0 0

0 0 1 0 1 0 0

0 0 1 1 0 1 0

0 1 0 0 0 0 0

0 1 0 1 1 0 1

0 1 1 0 0 0 0

0 1 1 1 1 0 1

1 0 0 0 0 1 0

1 0 0 1 0 0 0

1 0 1 0 0 0 0

1 0 1 1 0 0 0

1 1 0 0 0 0 0

1 1 0 1 0 0 0

1 1 1 0 0 0 0

1 1 1 1 0 0 0

243

 If the cases of numbers being added are limited, for example.

Digital McLogic Design Chapter 19

 - 385 -

Solution: The provided truth table represents a circuit with four inputs and three outputs. Your job is to

design a circuit that would implement the three functional relationships shown in the truth table. Using

a standard approach to digital design would require that you generate three K-maps and generate three

Booleans equations from those K-maps. Modeling the circuit with VHDL is a much better option. As

with most circuits, you can model this circuit in many different ways; this example shows two of the

more intelligent approaches.

Figure 19.8 shows the black box diagram for this solution. Note that we have opted to represent both

the inputs and outputs as bundles; this will make the implementation of the subsequent VHDL models

more straightforward. Also, note that the bundle names conveniently relate to the columns in the

original truth table. Figure 19.9 shows the associated entity declaration.

Figure 19.8: Dark box diagram for Example 19-4.

entity dcdr is

 port (ABCD : in std_logic_vector(3 downto 0);

 T123 : out std_logic_vector(2 downto 0));

end dcdr;

Figure 19.9: The entity declarations associated with Example 19-4.

Figure 19.10 shows two different models that implement the input/output relationship of Example 19-4.

The model in Figure 19.10(a) is a dataflow model while the model in Figure 19.10(b) is a behavioral

model. Both of these models effectively restate the information presented in original truth table but in a

different form. Both of these truth tables also contain another interesting feature. Note that for both of

these cases, the entire truth table is not directly represented. In the model of Figure 19.10(a), the when

others statement covers the last set of cases in the truth table; this is possible because the output

associated with the final rows in the truth table are all “000”. The same type of statement appears in

Figure 19.10(b).

Both of these cases represent typical approaches to using VHDL to model relatively complex functional

relationships. It would have been possible to represent all of the rows in the truth table, but that would

only have served to increase the length of the VHDL model which is this case would be pointless.

Either way, the size of the synthesized circuit would have most likely been the same in each case. The

VHDL architectures shown in Figure 19.10(a) and Figure 19.10(b), and particularly the information

presented in these architecture bodies, does in fact look somewhat like a table
244

.

244

 Squinting your eyes may help you see this mo better.

Digital McLogic Design Chapter 19

 - 386 -

-- dataflow modeling approach

architecture dec_dataflow of dcdr is

begin

 with ABCD select

 T123 <= “110” when “0000”,

 “000” when “0001”,

 “100” when “0010”,

 “010” when “0011”,

 “000” when “0100”,

 “101” when “0101”,

 “000” when “0110”,

 “101” when “0111”,

 “010” when “1000”,

 “000” when others;

end dec_dataflow;

-- behavioral modeling approach

architecture dec_behavioral of dcdr is

begin

 dec: process(ABCD)

 begin

 case ABCD is

 when “0000” => T123 <= “110”;

 when “0001” => T123 <= “000”;

 when “0010” => T123 <= “100”;

 when “0011” => T123 <= “010”;

 when “0100” => T123 <= “000”;

 when “0101” => T123 <= “101”;

 when “0110” => T123 <= “000”;

 when “0111” => T123 <= “101”;

 when “1000” => T123 <= “010”;

 when others => T123 <= “000”;

 end case;

 end process;

end dec_bahavioral;

(a) (b)

Figure 19.10: A dataflow (a) and behavioral (b) model of a decoder implementing the truth table

shown in Example 19-4.

Example 19-5

Provide a VHDL model that implements the functionality described in the

following truth table. Not listed in the following table is a CE input; when the

CE input is a ‘0’, the outputs of the circuit are all ‘0’s; otherwise, the table

below is used. Use a generic decoder in your VHDL model.

A B C D T1 T2 T3

0 0 0 0 1 1 0

0 0 0 1 0 0 0

0 0 1 0 1 0 0

0 0 1 1 0 1 0

0 1 0 0 0 0 0

0 1 0 1 1 0 1

0 1 1 0 0 0 0

0 1 1 1 1 0 1

1 0 0 0 0 1 0

1 0 0 1 0 0 0

1 0 1 0 0 0 0

1 0 1 1 0 0 0

1 1 0 0 0 0 0

1 1 0 1 0 0 0

1 1 1 0 0 0 0

1 1 1 1 0 0 0

Solution: This problem has only seemingly slight modification from the previous problem. The CE

input essentially “enables” this decoder to do something meaningful. This example is therefore the same

as the previous example except the inclusion of the enable input. One other major difference between

Digital McLogic Design Chapter 19

 - 387 -

this problem and the previous problem is that this problem did not state how to model the solution.

Once again, you can solve this problem many ways, but by far Figure 19.12 shows the easiest approach.

However, Figure 19.11 shows the required modifications to the dark box diagram to support this

solution.

Figure 19.11: Dark box diagram for Example 19-4.

The solution shown in Figure 19.12 is classic VHDL. Note that the solution embeds a case statement

into an if statement. This is definitely the best way to model an “enable” input in VHDL. I fully admit

that I borrowed the body of the case statement (cut and pasted) from the solution of the previous

example.

entity dcdr is

 port (ABCD : in std_logic_vector(3 downto 0);

 CE : in std_logic;

 T123 : out std_logic_vector(2 downto 0));

end dcdr;

architecture dec_behavioral of dcdr is

begin

 dec: process(ABCD,CE)

 begin

 if CE = '1' then

 case ABCD is

 when "0000" => T123 <= "110";

 when "0001" => T123 <= "000";

 when "0010" => T123 <= "100";

 when "0011" => T123 <= "010";

 when "0100" => T123 <= "000";

 when "0101" => T123 <= "101";

 when "0110" => T123 <= "000";

 when "0111" => T123 <= "101";

 when "1000" => T123 <= "010";

 when others => T123 <= "000";

 end case;

 else

 T123 <= "000";

 end if;

 end process;

end dec_behavioral;

Figure 19.12: The entity declarations associated with Example 19-4.

19.5 Standard Decoders

The reality is that there are two types of decoders out there. As a result, when you hear the word

“decoder”, it does not actually refer to a specific type of circuit. Decoders come in one of two flavors:

the standard decoder and the non-standard decoder discussed previously. While the non-standard

decoder establishes a specific relationship between circuit inputs and outputs, the standard decoder has

a more rigid definition. What I see is that the references made to decoders in digital-land fall into two

Digital McLogic Design Chapter 19

 - 388 -

categories: what I refer to as standard decoders, and everything else. The approach described in this text

highlights the two general uses of a decoder: a non-standard decoder is look-up table (LUT) while a

standard decoder has a special relationship that we’ll describe in the next few paragraphs.

As with non-standard decoders, the standard decoder also establishes a relationship between circuit

inputs and outputs. The main difference is that the number and function of circuit inputs and outputs are

fixed by the definition of the decoder. Figure 19.13(a) shows a gate-level diagram of a 2:4 standard

decoder. Note that in Figure 19.13(a), due to the configurations of the inputs S1 and S0, only one of the

AND gates will be active at a given time. In other words, at any given instance in time, only one of the

outputs F0, F1, F2 or F3 will be a ‘1’, while the three others will be a ‘0’
245

.

The condition that makes this a standard decoder is the relationship between the number and attributes

of the inputs and outputs. The bulleted item listed below highlight these main attributes:

 Standard decoders always have a binary-type relationship between the inputs and outputs.

For example, standard decoders always come in flavors such as 1:2, 2:4, 3:8, 4:16, etc.

Note that this progression has a n:2
n
 relationship. In this notation, the first digit refers to the

number of control variables that the circuit contains while the second variable refers to the

number of outputs the circuit contains. Also, note that n input variables (binary) can

reference 2
n
 unique binary combinations.

 Although the schematic diagram of circuit of Figure 19.13(b) is an adequate approach to

describing a standard decoder, the schematic diagram of Figure 19.13(c) is more common,

particularly in the context of VHDL. Note that in Figure 19.13(b), the small numbers

associated the circuit inputs and outputs indicate a weighting on those inputs and outputs.

You must attach these numbers unless you are using the bundle notation shown in Figure

19.13(c). Without these numbers in the non-bundle case, there would be no way of

knowing the ordering associated with either of the inputs. The bundled case implies this

ordering.

 Only one of the outputs of the standard decoder is active at a given time. This is true

because the control variables are arranged such that only one of the internal AND gates is

non-dead at a given time. Along these lines, a decoder can also use NAND gates instead of

AND gates for the internal circuitry. In this approach, all of the outputs except one are high

at a given time while the other output is low. Figure 19.14 shows the circuit and the

associated schematic diagram for a NAND gate-based standard decoder. The final result of

the NAND-based decoder is the opposite of the AND-based decoder in that only one of the

outputs is ‘0’ at a given time while the other outputs are in a ‘1’ state. The bubbles on the

output of the Figure 19.14(b) can be thought of a being the same bubbles on the NAND

gates
246

.

245

 A more complete explanation of this circuit appears in the MUX description in Chapter 7.
246

 This is an overly simplified description; there’s actually a lot more to it. We’ll be describing the entire story in a

later chapter.

Digital McLogic Design Chapter 19

 - 389 -

(a) (b) (c)

Figure 19.13: A standard 2:4 decoder in schematic and circuit forms.

(a) (b)

Figure 19.14: A standard 2:4 decoder with inverted outputs.

VHDL easily models standard decoders. Examining the VHDL model provides a viable approach to

understanding the input/output relationship of the circuit if your understanding is still unclear from the

associated circuit diagrams of Figure 19.13 and Figure 19.14. Figure 19.15 shows an entity declaration

for a standard 2:4 decoder using bundle notation. The following figures show dataflow and behavioral

models for the associated architecture.

entity dec4t2 is

 port (SEL : in std_logic_vector(1 downto 0);

 F : out std_logic_vector(3 downto 0));

end dec4t2;

Figure 19.15: Entity declaration for standard 2:4 decoder.

Digital McLogic Design Chapter 19

 - 390 -

Figure 19.16 shows two forms of dataflow models for the standard decoder. Figure 19.16(a) shows the

decoder implemented using one selective signal assignment statement while Figure 19.16(b)

implements the decoder using one conditional signal assignment statement. There are a few important

items to notice in both of these cases.

 There is an implied weighting used by the bundle signals. As specified by the entity

declaration, both the control signals and output signals were declared as bundles. Since the

bundle notation used the “downto” notation (as opposed to the “to” notation), the left-most

bits in the bundle are the most significant bits. The result of this notation is that a SEL of

“00” is the lowest valued selection input value which corresponds to data outputs of “0001”

which shows the least significant bit in a ‘1’ state. This implied numbering is true for all

bundle signals.

 Both dataflow models have similar structures in that they both list every possible case based

on the two input signals and they both contain a “catch-all” clause. The catch-all clause is

handled with the “when others” clause for selective signal assignment and with the final

“else” in the conditional signal assignment. Some type of catch-all statement is massively

important in VHDL models.

 One important feature to note from the VHDL models is that a default case is always

provided. For both of the VHDL models of Figure 19.16, the when others statement is

technically not required but it is considered good VHDL programming practice to include in

the model. In other words, for both models the four lines before the when others statements

provides every possible input combination for the SEL inputs. Because of this, there is

technically no need to include the when others line. In this particular case, providing the

when others line proves to be a great debugging tool in that if you detect the output of the

decoder lines to be all zeros, you know there is a problem with your model.

architecture dec_a of dec4t2 is

begin

with SEL select

F <= "0001" when "00",

 "0010" when "01",

 "0100" when "10",

 "1000" when "11",

 "0000" when others;

end dec_a;

architecture dec_b of dec4t2 is

begin

F <= "0001" when SEL = "00" else,

 "0010" when SEL = "01" else,

 "0100" when SEL = "10" else,

 "1000" when SEL = "11" else,

 "0000";

end dec_b;

(a) (b)

Figure 19.16: Dataflow models for a standard 2:4 decoder.

Figure 19.17 shows two behavioral model implementations of a standard 2:4 decoder. These

implementations are surprisingly similar to the dataflow implementations of Figure 19.16. The dataflow

and behavioral implementations of these two devices clearly shows the analogy between the selected

assignment and the case statement and a similar analogy between the conditional signal assignment and

the if statement. Here are a few other important items:

 Because the process sensitivity list contains the SEL signal, the process statement is re-

evaluated each time a change in the SEL signal is detected.

Digital McLogic Design Chapter 19

 - 391 -

 Both behavioral models contain catch-all statements. For the if statement, the final else is the

catch-all statement while the when others statement is the catch all statement for the case

statement. The catch-all assignments of “0000” is arbitrary since this output is, by definition,

not specified by the description of the standard decoder.

 Both models list every possible combination of the SEL inputs (with desired outputs)

followed by a catch-all statement. Listing every possible case is not required but does

represent good VHDL programming practice.

architecture dec_c of dec4t2 is

begin

 dec: process(SEL)

 begin

 if (SEL = “00”) then F <= “0001”;

 elsif (SEL = “01”) then F <= “0010”;

 elsif (SEL = “10”) then F <= “0100”;

 elsif (SEL = “11”) then F <= “1000”;

 else F <= “0000”;

 end process;

end dec_c;

architecture dec_d of dec4t2 is

begin

 dec: process(SEL)

 begin

 case SEL is

 when “00” => F <= “0001”;

 when “01” => F <= “0010”;

 when “10” => F <= “0100”;

 when “11” => F <= “1000”;

 when others => F <= “0000”;

 end case;

 end process;

end dec_d;

(a) (b)

Figure 19.17: Behavioral models for the standard 2:4 decoder.

Example 19-6

Use the following black box model for a standard 2:4 decoder to complete the following

timing diagram.

Solution: Since the problem states that this is a decoder, the S input must be the selector inputs while

the F are the outputs. The selection input bundle is two bits wide so it can select one of four different

possible outputs. The outputs of a standard decoder have only one signal at a ‘1’ value at any given time

while the other bits are ‘0’. The problem description uses bundle notation in order to simplify the

problem.

Digital McLogic Design Chapter 19

 - 392 -

Note that there are only two selector bits, but the solution uses hex notation. The implication here is that

the unused bits are all zero. For example, the hex value of “0x3” is actually “0011”, but the general

thought here is that the first two bits are not considered to affect the selection of output; arbitrarily, this

problem uses only the two lower bits of the hex notation.

Figure 19.18 shows the final solution to Example 19-6. Note that the solution opts to also use hex

notation. Note that the solution truly has that nice binary relationship between the selector inputs and

the outputs. In addition, if you don’t believe the hex notation, Figure 19.19 shows an alternate solution

to this example. Once again, Figure 19.19 shows that only one of the outputs is at a ‘1’ level at any

given time.

Figure 19.18: The solution to Example 19-6.

Figure 19.19: An alternate solution to Example 19-6; in this solution, the F bundle is expanded to

show it constituent parts.

Digital McLogic Design Chapter 19

 - 393 -

Example 19-7

Use the following black box model for a standard 2:4 decoder to complete the

following timing diagram.

Solution: This problem is similar to Example 19-6, but we start this problem by knowing what the

output values are. What we need to do is determine the values of the selector input S that generates the

given output values. Since this is a standard 2:4 decoder, there can only be four output values. Note that

this solution also uses bundle notation. Fun stuff.

Figure 19.20: The solution to Example 19-7.

Example 19-8

Design a standard 2:4 decoder that has an EN input (enable). When the EN input is ‘1’,

the decoder outputs are all ‘0’. When the EN input is ‘0’, the decoder outputs follow the

accepted definition of a standard decoder.

Solution: This section described the attributes associated with a standard decoder in that the standard

decoder has one set of inputs that directly control the outputs. In reality, decoders often have more

control inputs. One of the typical controls on the decoder’s inputs is an enable signal (or several enable

signals). Once standard decoders add more input control signals, the underlying circuitry becomes more

complicated and is rarely included in digital design textbooks. We’ll not include it here either but we

provide a table that describes the behavior of such a circuit along with a VHDL model. As an added

bonus for your viewing enjoyment, we’ll also provide a timing diagram with partial annotations. For the

Digital McLogic Design Chapter 19

 - 394 -

record, a decoder with an enable input is sometimes referred to as a DMUX
247

 but this is not a

commonly used term
248

. A schematic symbol and a table describing the operation of a standard decoder

with an enable input are shown in Figure 19.21(a) and Figure 19.21(b), respectively.

EN S F

0 - - 0 0 0 0

1 0 0 0 0 0 1

1 0 1 0 0 1 0

1 1 0 0 1 0 0

1 1 1 1 0 0 0

(a) (b)

Figure 19.21: A 2:4 decoder with an enable (a) and its behavior described in tablature format (b).

Figure 19.22 shows the associated VHDL model for this example. Note the ease at which the circuit is

modeled by embedding a case statement inside of an if clause. The VHDL model is a prime example

showing the versatility of behavioral modeling. A few sequential statements easily describe the required

circuit operation. Although this device can be modeled using a dataflow model, it would have been

tricky and the resulting code would have been less understandable.

-- 2:4 standard decoder with enable input (DMUX)

entity decoder is

 port (EN : in std_logic;

 S : in std_logic_vector(1 downto 0);

 F : out std_logic_vector(3 downto 0));

end decoder;

architecture decoder of decoder is

begin

 dec: process(SEL)

 begin

 if (EN = ‘0’) then

 F <= “0000”;

 else

 case SEL is

 when “00” => F <= “0001”;

 when “01” => F <= “0010”;

 when “10” => F <= “0100”;

 when “11” => F <= “1000”;

 when others => F <= “0000”;

 end case;

 end if;

 end process;

end decoder;

Figure 19.22: VHDL model of 2:4 decoder with enable input.

Figure 19.23 shows a timing diagram that describes the behavior of the circuit described in Example

19-8. There are two main features worth noting in this timing diagram.

247

 And, I’ve never understood exactly why; calling it a DMUX generates confusion. Plus, we have not discussed

MUXes as of yet.
248

 The term does not have a commonly accepted definition either.

Digital McLogic Design Chapter 19

 - 395 -

 The F bundle output is only all ‘0’s when the enable input (EN) is ‘0’.

 Any time the EN input is ‘1’, one and only one of the F bundle output signals are ‘1’ while

the remainder of the signals are ‘0’. This characteristic provides a quick but excellent

method to verify proper operation of the decoder.

Figure 19.23: An example timing diagram for Example 19-8.

The following problem is another example of a standard-type decoder. The boundaries between circuit

types can become a little fuzzy in digital design, so don’t go overboard trying to place a proper label on

your circuit. The more important thing is to do what you need to do to make the design work. Once

your circuit works, you can name if George if you really want to.

Example 19-9

Write the VHDL code that implements the following circuit. The circuit contains an input

bundle containing four signals and an output bundle containing three signals. The input

bundle, D_IN, represents a 4-bit binary number. The output bus, SZ_OUT, indicates the

magnitude of the 4-bit binary input number. The table below shows the desired relationship

between the input and output. Use a selected signal assignment statement in the solution.

input range of D_IN output value for SZ_OUT

0000 0011 100

0100 1001 010

1010 1111 001

unknown condition 000

Digital McLogic Design Chapter 19

 - 396 -

Solution: This is another example of a standard decoder circuit. Not that there is too much more to say

about standard decoders, but this example does show some useful VHDL syntax. Figure 19.24 shows

the black box diagram for the solution while Figure 19.25 shows the entire VHDL model.

Figure 19.24: The black box diagram for Example 19-9.

The only comment for the VHDL model for Example 19-9 of is that it uses vertical bars as a selection

character in the choices section of the selected signal assignment statement. This increases the

readability of the code as it does with the similar constructs in algorithmic programming languages

Once again, the selected signal assignment statement is one form of a concurrent statement. We know

this because of the fact that there is only one signal assignment statement in the body of the selected

signal assignment statement. The selected signal assignment statement is evaluated each time there is a

change in the chooser_expression listed in the first line of the selective signal assignment statement.

-- A standard decoder-type circuit for using selective signal assignment

--

entity my_sz_ckt is

 port (D_IN : in std_logic_vector(3 downto 0);

 SX_OUT : out std_logic_vector(2 downto 0));

end my_sz_ckt;

architecture spec_dec of my_sz_ckt is

begin

 with D_IN select

 SX_OUT <= “100” when “0000” | “0001” | “0010” | “0011”,

 “010” when “0100” | “0101” | “0110” | “0111” | “1000” | “1001”,

 “001” when “1010” | “1011” | “1100” | “1101” | “1110” | “1111”,

 “000” when others;

end spec_dec;

Figure 19.25: The VHDL model solving Example 19-9.

Digital McLogic Design Chapter 19

 - 397 -

Chapter Summary

 The more generic term “decoder” can replace a “function”. The official definition of a decoder is: a

combinatorial (or non-sequential) digital device that establishes a functional relationship between

the device input(s) and output(s). This definition defines a generic decoder, which is not to be

confused with the standard decoder defined in a later chapter.

 VHDL uses generic decoders are to implement functional relationships. When using VHDL, there

is no need to reduce the function before implementing it with a generic decoder. Generic decoders

in VHDL have no limits to the number of inputs and outputs that the model can represent. Various

types of VHDL concurrent signal assignment statements can be used to implement decoders; in all

likelihood, these various approaches to implementation synthesize the same hardware.

 Standard decoders are a special type of decoder. The inputs and outputs of the a standard decoder

exhibit a n:2
n
 relationship. In particular, if a standard decoder has n inputs, it will necessarily have

2
n
 outputs. Standard decoders are used often in conjunction with hardware designed to access

memory.

 Mealy’s Fifth Law of Digital Design: Always first consider modeling a digital circuit using some

type of a look-up table (LUT).

Digital McLogic Design Chapter 19

 - 398 -

Chapter Exercises

1) For the following function descriptions, write VHDL models that implement these functions using

concurrent signal assignment. Make no attempt to simplify these functions before you model them.

(q) (2,3,5) C)B,F(A,

(r) 52 m m C)B,F(A,

(s) (4,3,15) D)C,B,F(A,

(t) (12,14,15) Z)Y,X,F(W,

(u) (4,3,15) D)C,B,F(A,

(v) 3)(1,4,5,8,1 Z)Y,X,F(W,

(w) D) A()D C (B)B A(D)C,B,F(A,

2) Implement the following functions using some form of concurrent signal assignment; make no

attempt to simplify the functions before you implement them.

(a) (b)

Digital McLogic Design Chapter 19

 - 399 -

3) Write a VHDL model that implements the following truth table. Use bundles whenever humanly

possible.

A B C D X1 X2 X3 X4 X5

0 0 0 0 1 0 0 0 0

0 0 0 1 0 0 0 1 1

0 0 1 0 0 0 0 0 1

0 0 1 1 0 1 0 1 0

0 1 0 0 0 0 0 0 0

0 1 0 1 1 0 1 1 1

0 1 1 0 0 0 0 0 0

0 1 1 1 0 0 1 1 1

1 0 0 0 0 1 0 0 1

1 0 0 1 0 0 0 0 0

1 0 1 0 1 1 1 0 0

1 0 1 1 0 0 0 0 0

1 1 0 0 0 0 0 1 1

1 1 0 1 0 1 1 0 0

1 1 1 0 0 0 0 0 0

1 1 1 1 0 0 0 0 1

4) Write a VHDL model for a 3:8 decoder using a behavioral model.

5) Write a VHDL model for a 4:16 decoder using a dataflow model.

6) Use the following black box model for a standard 2:4 decoder to complete the following timing

diagram.

Digital McLogic Design Chapter 19

 - 400 -

7) Use the following black box model for a standard 2:4 decoder to complete the following timing

diagram.

8) Use the following black box model for a standard 2:4 decoder to complete the following timing

diagram.

Digital McLogic Design Chapter 19

 - 401 -

7) Based on the standard 2:4 Decoder shown below, complete the following timing diagram by

entering the values for signals s1 and s2 that would generate the listed output waveforms. Assume

that propagation delays are negligible. Be sure to completely annotate this problem.

8) Use the following circuit to complete the listed timing diagram.

Digital McLogic Design Chapter 19

 - 402 -

9) Indicate which of the three architectures best represent the standard 3:8 decoder shown below.

Assume the ENA and ENB inputs are enable inputs which allow the F outputs to behave like a

standard decoder.

entity my_dcdr is

 port (ENA,ENB : in std_logic;

 SEL : in std_logic_vector(2 downto 0);

 F : out std_logic_vector(7 downto 0));

end my_dcdr;

architecture ckt1 of my_dcdr is

begin

 process(ENA,ENB,SEL)

 begin

 if (ENA = '0' and ENB = '0') then

 case SEL is

 when "000" => F <= "00000001";

 when "001" => F <= "00000010";

 when "010" => F <= "00000100";

 when "011" => F <= "00001000";

 when "100" => F <= "00010000";

 when "101" => F <= "00100000";

 when "110" => F <= "01000000";

 when "111" => F <= "10000000";

 when others => F <= "00000000";

 end case;

 end if;

 end process;

end ckt1;

architecture ckt2 of my_dcdr is

begin

 F <= "11111110" when (ENA = '1' and ENB = '1' and SEL = "000") else

 "11111101" when (ENA = '1' and ENB = '1' and SEL = "001") else

 "11111011" when (ENA = '1' and ENB = '1' and SEL = "010") else

 "11110111" when (ENA = '1' and ENB = '1' and SEL = "011") else

 "11101111" when (ENA = '1' and ENB = '1' and SEL = "100") else

 "11011111" when (ENA = '1' and ENB = '1' and SEL = "101") else

 "10111111" when (ENA = '1' and ENB = '1' and SEL = "110") else

 "01111111" when (ENA = '1' and ENB = '1' and SEL = "111") else

 "11111111";

end ckt2;

architecture ckt3 of my_dcdr is

begin

 process(ENA,ENB,SEL)

 begin

 if (ENA = '0' and ENB = '0') then

 if (SEL = "000") then F <= "11111110";

 elsif (SEL = "001") then F <= "11111101”;

 elsif (SEL = "010") then F <= "11111011";

 elsif (SEL = "011") then F <= "11110111";

 elsif (SEL = "100") then F <= "11101111";

 elsif (SEL = "101") then F <= "11011111";

 elsif (SEL = "110") then F <= "10111111";

 elsif (SEL = "111") then F <= "01111111";

 else F_OUT <= "11111111";

 end if;

 end if;

 end process;

end ckt3;

 - 403 -

20 Chapter Twenty

(Bryan Mealy 2012 ©)

20.1 Chapter Overview

Our approach to digital design up until now has been somewhat limited
249

. Although we’ve done a few

interesting designs, we’re still not using what is probably an important piece of digital hardware: the

multiplexor. Having a multiplexor in your digital bag of tricks is going to open the doors to more

interesting digital designs. The basic multiplexor is not complicated; though actual implementations can

become involved on a low level, higher-level abstractions are not a big deal. The good news is that any

flavor of multiplexors are effortlessly modeled in VHDL. I can’t think of anything else to say.

Main Chapter Topics

 STANDARD DIGITAL MODULE: THE MULTIPLEXOR: This chapter introduces the

notion of a multiplexor from both a low-level and user-level standpoint. The low-

level multiplexor hardware is instructive but is multiplexors quickly become

complex as they are given more features.

Why This Chapter is Important

This chapter is important because it describes the Multiplexor, a standard digital model

that serves as the basic “selection” mechanism in digital design.

20.2 Making Decisions in Hardware and Software Land

More likely than not, you probably have some experience programming computers
250

. Since computer

programs generally “react” to various things, there needs to be a programming construct that handles

decisions. The general notion in programming is that there is one processor and this processor does one

thing at a time
251

. The notion of decisions as they relate to programming is based on the notion that

programs make decisions based on the current conditions in a program: the program with either execute

one set of instructions or another set of instructions. In other words, the program will choose to take

either one instructional path or another path based on some condition the program views as important.

Roughly speaking, a “conditional” statement is the mechanism used by the program to choose one path

of execution over another.

249

 If you’re still bored with digital design, then blame it on these limitations.
250

 If you don’t, then this section is not going to make much sense, so you can skip it.
251

 Generally speaking, a processor executes one instruction at a time. Overall, a processor executes one instruction

and then moves on to the next instruction.

Digital McLogic Design Chapter 20

 - 404 -

Hardware design is similar. In general, your hardware will need to react to certain conditions in the

circuit and choose one “result” over another “result” based on those conditions. Don’t worry about the

details right now, but it is a multiplexor that allows the hardware to choose something over another

something in digital design.

I added this section because many students seemed to have issues with the notion of “choosing”

something in software vs. “choosing” something in hardware. Here’s the issue: the notion in software

design is that one path of execution is chosen over another path. The main idea here is that it would be

massively inefficient to somehow “execute” both paths and then choose the result you’re interested in.

The problem arises in hardware when you choose between two “things”. The general notion in

hardware is that all the things you’re choosing between are calculated in parallel (or concurrently). The

multiplexor simply chooses the result based on the state of the hardware. In other words, if you need to

choose between two different results, always plan to create the hardware to generate both results and

then choose the result required by your circuit based on the state of some signal in the circuit
252

.

The trouble that many people get into is that they try to design their hardware to run like a software-

based choosing operation. While there are some good things to say about this approach, they are

advanced issues and we’ll simply pretend that they don’t exist at this point. So for now, when you’re

designing “choosing” operations in hardware, know that you’re going to always need to generate all the

desired results and then simply choose the desired result once everything is ready. I know this may not

make sense as of yet, but take a mental note to come back and read this again once you know more

about multiplexors.

20.3 Multiplexors

The multiplexor is yet another standard and highly used digital circuit. When you hear the word

multiplexor, or MUX as it is more commonly referred to
253

, you need to think selector. A MUX is a

generally a circuit with many inputs and one output; the output of the device generally represents a

direct transfer of one of the inputs. That’s about all there is to a MUX: it’s a device that outputs one of

multiple inputs based on a set of selection inputs (or control inputs).

As boring as it may seem, we need to examine the internals of a simple MUX in order to give you a

solid understanding of how they work. Other standard digital components (namely a standard decoder)

share the gate-level circuitry in a MUX so it is worth looking at here. The MUX also has historical

significance at the gate-level so you’re generally expected to know how they work at both high and low

levels.

The first thing we need to look at is a specific function of the basic AND and OR logic gates. You can

effectively kill the output of a AND and OR gates by tying their outputs to ‘0’ and ‘1’, respectively. In

other words, if you connect one of the inputs to a AND gates to a ‘0’, the output of the gate, regardless

of the state of any of the other inputs, is always be ‘0’. Similarly, if you connect one input of an OR

gate to ‘1’, the output of the OR gate is then always be ‘1’.

Figure 20.1 shows a gate-level depiction of the gate-killing functionality. The circuit in Figure 20.1(a)

uses an inverted arrowhead to indicate a connection with ground (‘0’). Figure 20.1(b) shows the slanted

T symbol to indicate a connection to the circuit’s high voltage (‘1’).

252

 As you start working with digital circuits, you’ll see that this is not always optimal. In reality, any time a

transistor in a digital circuit changes state, there is going to be a loss of power. If you can avoid calculating a result

that you may not need, you avoid it. But for now, don’t worry about efficiency; that will come naturally as you

become more used to dealing with digital circuits.
253

 And for the record, the correct pronunciation is “mucks” and not “mooks”.

Digital McLogic Design Chapter 20

 - 405 -

(a) (b)

Figure 20.1: Killing the AND (a) and OR (b) gates.

The next step in developing the MUX is assembling the selection circuitry shown in Figure 20.2(a). In

this circuit, there are two variables S1 and S0 that are referred to as selection variables. In this circuit,

only one of the P outputs will be a ‘1’ at any given time while all other P outputs will be ‘0’. Note that

each of the four AND gates are connected such that they will each have different input values based on

the state of the selection variables. In other words, the inputs to the AND gates will all be different

based on the method used to connect the selection variables. Convince yourself that one and only one

AND gate will be a ‘1’ at any given time before reading on. The effect this creates is that at any given

time, the output of three of the AND gates will ‘0’ while the other AND gate will have an output of ‘1’.

In relation to Figure 20.1(a), three of the AND gates will be dead.

Figure 20.2(b) shows the final portion of the MUX circuitry. Knowing that three of the AND gates are

officially dead (they have an output of ‘0’), the only hope that the circuit output F will be a ‘1’ is if the

D input on the un-dead AND gate is a ‘1’. In other words, if the D input on the non-dead gate is a ‘0’,

all of the AND gates will be dead and the F output will be a ‘0’. If however, the D input on the non-

dead gate is a ‘1’, then the non-dead AND gate output will be a ‘1’, the OR gate will have an input of

‘1’ and the OR gate output F will be a ‘1’.

What this circuit connection effectively does is transfer the value of one D input to the output F. To put

this in MUX language, the MUX selects one of the D inputs to appear on the F output. The D input that

appears on the F output is dependent upon which AND gate is un-dead which is inherently dependent

on the values of the S1 and S0 variables (the selection variables). In terms of the MUX, the S1 and S0

inputs are the data selection inputs, which effectively select one of the D inputs to appear on the

outputs. In as simple terms as possible, the selector inputs choose which data input will appear on the

output. Once again, in official MUX language, the S1 and S0 inputs are referred to as the data selection

inputs while the D inputs are the data inputs.

Digital McLogic Design Chapter 20

 - 406 -

(a) (b)

Figure 20.2: The MUX input circuitry (a) and the complete MUX (b).

The MUX shown in Figure 20.2(b) is referred to as a 4:1 MUX because the device chooses between one

of four inputs to appear on the output. MUXes generally have that binary relationship between the

number of selection variables and the number of data inputs. Common flavors of MUXes include 2:1,

4:1, 8:1, 16:1 etc
254

. As you’ll see later on, this is the most basic form of a MUX. In reality, MUXes

come in many different flavors and quickly become complicated enough such that you’ll want to avoid

modeling them with gate-level logic. The truth is that you rarely need to model MUXes in anything

other than VHDL. There are discrete ICs that contain MUXes, but they are somewhat limited; you’ll

find yourself using bunches of these to actually do what you need to do.

Example 20-1

Provide the following VHDL models for a 4:1 MUX: conditional signal

assignment, selective signal assignment, if statement, and a case statement.

Consider the data inputs and selection inputs to be bundles.

Solution: As the problem implies, there are many ways to model a MUX. There arguably no best

approach to modeling a MUX using VHDL; but the worst way may be to use concurrent signal

assignment. A MUX is a complicated enough circuit such that we want to avoid low-level data flow

models. Being good digital designers, let’s start this problem off with a black box diagram shown in

Figure 20.3.

254

 But you’re free to model anything you need; there are only a few items you need to pay attention to.

Digital McLogic Design Chapter 20

 - 407 -

Figure 20.3: Black box diagram of bundle-based 4:1 MUX.

Figure 20.4 shows the entity declaration for the 4:1 MUX using bundles for the data and selection

inputs. Each of the requested models uses this entity declaration.

entity mux4t1 is

 port (D : in std_logic_vector(3 downto 0);

 SEL : in std_logic_vector(1 downto 0);

 F : out std_logic);

end mux4t1;

Figure 20.4: The entity declaration associated with the VHDL models of Example 20-1.

Figure 20.5 shows the conditional signal assignment model of a 4:1 MUX. There are a couple of items

worth noting in this solution.

 The solution looks somewhat efficient compared to the amount of logic that would have been

required if concurrent signal assignment statements were used. The VHDL code appears nice and

is pleasing to the eye, which is a quality desirable for readability.

 The “=” is an “equivalence operator” which is a relational operator is used in conjunction with a

bundle signal. In this case, the values on the bundle SEL lines are accessed using double quotes

around the specified values. In other words, VHDL uses single quotes to describe values of

single signals and double quotes to describe values associated with multiple signals, or bundles.

Generally speaking, if you can use a bundle as opposed to individual signals, you should. Just for

the heck of it, Figure 20.6 shows an alternative solution not using bundles for the SEL lines. As

you can see, it does not represent an improvement over the model in Figure 20.5.

 VHDL uses the bundle access operator “()” (the parenthesis) to specify signals within a bundle.

In this example, the MUX needs to apply a single signal to the output F. The data inputs to the

MUX use bundle notation, which subsequently requires the use to the bundle access operator in

the model.

 For the sake of completeness, we’ve included every possible condition for the SEL signal plus a

catch-all else statement. We could have changed the line containing ‘0’ to D0 and removed the

line associated with the SEL condition of “00”. This would be functionally equivalent to the

solution shown in but not nearly as impressive looking. You should clearly provide all the

options in the code and not rely on a catch all statement for intended signal assignment. This is

particular true when you need to debug your VHDL models.

Remember, a conditional signal assignment is a type of concurrent statement. In this case, the

conditional signal assignment statement is “executed” any time a change occurs on the conditional

signals (the signals listed in the expressions on the right side of the signal assignment operator). This is

Digital McLogic Design Chapter 20

 - 408 -

similar to the concurrent signal assignment statement where the statement is “executed” any time there

is a change in any of the signals listed on the right side of the signal assignment operator.

architecture mux4t1a of mux4t1 is

begin

 MX_OUT <= D(3) when (SEL = “11”) else

 D(2) when (SEL = “10”) else

 D(1) when (SEL = “01”) else

 D(0) when (SEL = “00”) else

 ‘0’;

end mux4t1a;

Figure 20.5: Conditional signal assignment model of 4:1 MUX.

architecture mux4t1b of mux4t1 is

begin

 MX_OUT <= D(3) when (SEL(1) = ‘1’ and SEL(0) = ‘1’) else

 D(2) when (SEL(1) = ‘1’ and SEL(0) = ‘0’) else

 D(1) when (SEL(1) = ‘0’ and SEL(0) = ‘1’) else

 D(0) when (SEL(1) = ‘0’ and SEL(1) = ‘0’) else

 ‘0’;

end mux4t1b;

Figure 20.6: An alternative conditional signal assignment solution.

Figure 20.7 shows the selected signal assignment model of a 4:1 MUX. Once again, there are a few

items of interest regarding this solution.

 The VHDL code has several similarities to the conditional signal assignment solution of Figure

20.5. The general appearance is the same; both solutions are organized and clear.

 A when others clause is used as the catch-all statement. For this solution, the output is

assigned a ‘0’ in case each of the other options fails. The truth is that each possible value of the

SEL was previously listed so the when other clause should never be evaluated. Adding the

when others clause is considered good VHDL modeling practice and has ramifications in the

simulation of VHDL models.

architecture mux4t1c of mux4t1 is

begin

 with SEL select

 MX_OUT <= D(3) when “11”,

 D(2) when “10”,

 D(1) when “01”,

 D(0) when “00”,

 ‘0’ when others;

end mux4t1c;

Figure 20.7: Selected signal assignment architecture for 4:1 MUX.

Figure 20.8 shows two flavors of behavioral models for the 4:1 MUX: Figure 20.8(a) shows an if

statement model while Figure 20.8(b) shows a case statement model. It’s more than worthwhile to list

some useful observations regarding these two models.

 The two models of Figure 20.8 are similar. This being the case, there is no real advantage to

using one approach over the other, although the case statement is generally accepted as being a

Digital McLogic Design Chapter 20

 - 409 -

more straightforward solution. In general, if you have more than three “if” conditions, you

should use a case statement instead.

 The two models of Figure 20.8 are also similar to the dataflow model implementations.

Specifically, use of an if statement is similar to conditional signal assignment; use of a case

statement is analogous to selected signal assignment. Convince yourself of this.

 The process sensitivity lists include both the D and SEL inputs. This means that anytime state

of D or SEL change, the process statement is re-evaluated. This makes sense in that the output

of the MUX could change anytime a change in the data or select inputs occurred.

architecture mux4t1d of mux4t1 is

begin

 mux: process(D,SEL)

 begin

 if (SEL = “00”) then F <= D(0);

 elsif (SEL = “01”) then F <= D(1);

 elsif (SEL = “10”) then F <= D(2);

 elsif (SEL = “11”) then F <= D(3);

 else F <= ‘0’;

 end if;

 end process;

end mux4t1d;

architecture mux4t1e of mux4t1 is

begin

 mux: process(D,SEL)

 begin

 case SEL is

 when “00” => F <= D(0);

 when “01” => F <= D(1);

 when “10” => F <= D(2);

 when “11” => F <= D(3);

 when others => F <= ‘0’;

 end case;

 end process;

end mux4t1e;

(a) (b)

Figure 20.8: 4:1 MUX modeled with if statements (a), and case statement (b).

If you haven’t noticed by now, modeling digital circuits using VHDL is massively powerful. In other

words, using the various VHDL constructs, you can model any conceivable digital circuit. This is an

important concept, but its important becomes more obvious in the context of MUXes. The issue in

digital design is that you constantly need to choose between “things” (things in this case mean signals

or bundles), but, there is not necessarily going to be one existing MUX model that covers every possible

case in digital design. Therefore, you really need to understand these modules. Moreover, the better you

understand the basic VHDL concurrent statements, the better
255

 your VHDL models will appear.

255

 By better, we mean more clear, more readable, more understandable, and generally more good.

Digital McLogic Design Chapter 20

 - 410 -

Example 20-2

Use the following block diagram to complete the provided timing diagram. For this problem,

consider the block diagram to represent a 4:1 MUX containing no surprises.

Solution: Since this is a 4:1 MUX, the output will match one of the four data inputs depending upon

which input is selected by the selector inputs. The SEL input is provided in bundle notation while the D

input bundled has been expanded for reasons you’ll see momentarily. Based on how a MUX operates,

and based upon the VHDL models provided in the solution to Example 20-1.

Figure 20.9: The solution to Example 20-2.

Digital McLogic Design Chapter 20

 - 411 -

Example 20-3

Provide a VHDL model that describes the 8:1 MUX as shown below. Model this MUX

using if statements. In the black box diagram shown below, the CE input is a chip

enable. When CE = ‘1’, the output behaves as a standard MUX. When CE is ‘0’, the

output of the MUX is ‘0’; otherwise, the device acts like a normal 8:1 MUX.

Solution: The problem shows an 8:1 MUX with a chip enable (or chip select) input. In general, the chip

enable input turns the device “on” or “off”
256

. There are many approaches to modeling this circuit;

Figure 20.10 show one possible solution. There are a few things to note about this solution.

 The problem stated what the outputs would be when the device was not enabled; this action is

modeled by the “if” statement in the solution in Figure 20.10.

 The solution in Figure 20.10 uses “if” statements as specified by the problem. It probably

would have been easier (and/or clearer) to use a case statement.

entity mux_8t1_ce is

 port (Data_in : in std_logic_vector (7 downto 0);

 SEL : in std_logic_vector (2 downto 0);

 CE : in std_logic;

 F_CTRL : out std_logic);

end mux_8t1_ce;

architecture my_8t1_mux of mux_8t1_ce is

begin

 my_mux: process (Data_in,SEL,CE)

 begin

 if (CE = ‘0’) then

 F_CTRL <= ‘0’;

 else

 if (SEL = “111”) then F_CTRL <= Data_in(7);

 elsif (SEL = “110”) then F_CTRL <= Data_in(6);

 elsif (SEL = “101”) then F_CTRL <= Data_in(5);

 elsif (SEL = “100”) then F_CTRL <= Data_in(4);

 elsif (SEL = “011”) then F_CTRL <= Data_in(3);

 elsif (SEL = “010”) then F_CTRL <= Data_in(2);

 elsif (SEL = “001”) then F_CTRL <= Data_in(1);

 elsif (SEL = “000”) then F_CTRL <= Data_in(0);

 else F_CTRL <= ‘0’;

 end if;

 end if;

 end process my_mux;

end my_8t1_mux;

Figure 20.10: The VHDL model for Example 20-3.

256

 Keep in mind that it if it is not explicitly stated what is meant by “on” and “off”, you the digital design will need

to decide for yourself and implement it in the associated VHDL model.

Digital McLogic Design Chapter 20

 - 412 -

Example 20-4

Using the following diagram of a 4:1 MUX, complete the provided timing diagram. Also provide

a VHDL model that implements the 4:1 MUX.

Solution: The first thing to notice about this example is the fact that it uses a new and distinctive shape

for the MUX. Circuit diagrams usually use this shape to represent MUXes and are therefore important

for all digital designers you to use this shape also. The issue with the shape is that when you see the

shape in a black box diagram, you’ll know immediately what the device is doing: namely, choosing

which of the inputs is going to appear on the output. In other words, the distinctive shape immediately

alerts the reader of the diagram that this particular device is “selecting” an input to appear on the output.

Also of killer importance for this MUX diagram is the notion that the data inputs must also contain

indexing numbers. Notice that the numbers associated with the data inputs range from [0,3], which by

design corresponds to the numbers that can be represented by the control inputs (represented by a 2-bit

wide bundle). If the data inputs are not numbered, you’ll not know exactly how the selection inputs

control which data input will appear on the output. In summary, when using MUXes, you should always

use this distinctive shape and always label the data inputs with selection indexes.

In addition, to note in this example is that the fact that both the data and selection inputs use bundle

notation. This heavily implies that the output “F” is also going to use bundle notation.

Beyond all the supporting details listed above, the problem is rather straightforward. Figure 20.11

shows the solution to this example. One important issue regarding this solution is the use of the vertical

dotted lines; including these lines help you generate the correct answer. This is actually not an overly

complicated timing diagram, but they can often become quite complicated. In order to handle these

Digital McLogic Design Chapter 20

 - 413 -

types of complications, you must do what you can to make sure you don’t mess up the solution. The

first step in arriving at this solution would be to draw the vertical lines that correspond to the change in

selector inputs. More likely than not, these vertical lines indicate on the output variable when the output

is changing. As you can see from the problem, the output also changes at other times based on some of

the data selection inputs; this is something you need to be aware of also.

Figure 20.11: The solution to Example 20-4.

Finally, Figure 20.12 shows a VHDL model for this example. When I created this VHDL model, I did

not start writing from scratch; I instead went back to the 4:1 MUX implemented with selective signal

assignment and used that model as a starting point. It is always easier and more efficient to start from

something that you already have rather than starting from square zero. The only new and useful thing to

notice about the solution in Figure 20.12 is that the “catch-all” statement uses an interesting VHDL

terminology. Notice that the model uses “(others => ‘0’); this means that the output, no matter how

wide it is, is assigned the value of zero. This terminology is quite useful in terms of making your code

generic because now you don’t need to know the width of the output you’re assigning to. In truth, there

are many ways to make your VHDL models generic, but this text does not cover many of them.

entity mux_4t1 is

 Port (SEL : in STD_LOGIC_VECTOR (1 downto 0);

 AW, AX, AY, AZ : in STD_LOGIC_VECTOR (7 downto 0);

 F : out STD_LOGIC_VECTOR (7 downto 0));

end mux_4t1;

architecture my_mux of mux_4t1 is

begin

 with SEL select

 F <= AZ when "11",

 AY when "10",

 AX when "01",

 AW when "00",

 (others => '0') when others;

end my_mux;

Figure 20.12: The VHDL model for the solution for Example 20-4.

Digital McLogic Design Chapter 20

 - 414 -

Example 20-5: Sorting Circuit

Design a circuit that has two 8-bit inputs A and B, and two 8-bit outputs GT and LT.

If the A input is greater than or equal to the B input, the A input will appear on the GT

output and the B input will appear on the LT output. Otherwise, the B input will

appear on the GT output and the A input will appear on the LT output. Support your

solution with a block diagram and any required VHDL modules.

Solution: The key to this classic sorting circuit problem is noticing that there is something similar to a

comparator present in the problem as well as some selection logic. The basic comparator circuit needs

some modifications in order to make the device usable in this problem. Recall that our basic comparator

design only had an EQ output that indicated when the two inputs where equal. We did, however, add

some modifications to the comparator in a later example.

The second key to this problem is that we have some “selection” stuff going on in order to “select” the

correct inputs to feed to the correct outputs. This implies that there will be a MUX in this design. As

always, let’s start with a block diagram of the solution; the diagram appears in Figure 20.13.

Figure 20.13: Block diagram for Error! Reference source not found..

The next consideration is dealing with the “comparator-type” circuit. What we’ll need to do is modify

the standard comparator circuit for this problem. We did this in a previous example so we’ll not need to

say too much about it here. Figure 20.14 shows the VHDL model and block diagram for the required

comparator. The comparator we design for this problem does not actually have all three of the outputs

shown in Figure 20.14 but we include it in the modified comparator design because it will be useful for

other problems.

Digital McLogic Design Chapter 20

 - 415 -

entity comp is

 port (A,B : in std_logic_vector(7 downto 0);

 GT,LT,EQ : out std_logic);

end comp;

architecture my_comp of comp is

begin

 process(A,B)

 begin

 -- pre-assign output values

 EQ <= ‘0’; LT <= ‘0’; GT <= ‘0’;

 if (A = B) then EQ <= ‘1’; end if;

 if (A < B) then LT <= ‘1’; end if;

 if (A > B) then GT <= ‘1’; end if;

 end process;

end my_comp;

(a) (b)

Figure 20.14: Black box diagram for out new comparator (b), and VHDL model for new full-

featured comparator circuit (a).

The next consideration is the data selection portion of the circuit. Once again, the key here is the fact

that we used the word “selection” to roughly describe the solution. This heavily implies a MUX of

some type. Since the circuit we’re trying to design has two outputs, and the MUXes we know about

have only one output, it looks as if we’re going to need two MUXes. This is exactly the type of MUX

used on the second example and is shown again in Figure 20.15.

entity mux2t1 is

 port (A,B : in std_logic_vector(7 downto 0);

 SEL : in std_logic;

 F2 : out std_logic_vector(7 downto 0));

end mux2t1;

architecture mux2t1 of mux2t1 is

begin

 F2 <= A when (SEL = ‘1’) else

 B when (SEL = ‘0’) else

 ‘0’;

end mux2t1;

(a) (b)

Figure 20.15: 2:1 MUX with bundle inputs and outputs: VHDL model (a) and block diagram (b)

So we’re to the point where we know that we’ll need two 2:1 bundle-type MUXes. The only other issue

we need to contend with is how we are going to control the two MUXes. What we are interested in is

the condition where the A input is greater than or equal to the B input. What we could do for the final

circuit is control the data selection function of the two MUXes with an ANDing of the comparator’s GT

and EQ signals. But a more clever way to do this would be to use the LT signal on the comparator to

directly control the MUX. What we need from the MUXes is always to have them choose different

outputs. We could do this by connecting the circuit’s inputs identically to the MUXes and

complementing the MUX control signal from one of the MUXes. A better solution would be to skip the

inverter and connect the inputs to the MUXes differently. Figure 20.16 shows a diagram of the final

circuit. The final trick in this problem was to be careful when setting up the MUX select signals: it

would be easy to get them backwards in this case.

Digital McLogic Design Chapter 20

 - 416 -

Figure 20.16: The diagram of the final circuit.

Finally, as you may have noticed, this entire problem is easily describable with a simple VHDL model.

Figure 20.17 shows the final solution as a single VHDL entity architecture pair. Note that this solution

advertises the power of modeling circuits using VHDL in that only a few lines of VHDL code can

model the entire circuit. The “>=” operator has been used (greater than or equal to) which is one of the

many operators in VHDL. Another thing to note here is that the “less than or equal to” operator is the

now infamous “<=” symbol.

entity sort is

 port (A,B : in std_logic_vector(7 downto 0);

 GT,LT : out std_logic_vector(7 downto 0));

end sort;

architecture my_sort of sort is

begin

 process(A,B)

 begin

 if (A >= B) then

 GT <= A; LT <= B;

 else

 GT <= B; LT <= A;

 end if;

 end process;

end my_sort;

Figure 20.17: The entire solution as a VHDL model.

Digital McLogic Design Chapter 20

 - 417 -

Chapter Summary

 The multiplexor, or MUX, is a standard digital circuit used to “select” a value. In general, the

output of the MUX is one of the data inputs as chosen by the selector inputs. Simple MUX designs

are possible using gate-level implementations. VHDL can model MUXes VHDL using many

different styles of modeling.

 The MUX has a distinctive shape when it appears in circuit diagram; this shape is always used in

circuit diagrams in order to let the reader know a “selection” operation is taking place.

 When modeling MUXes with VHDL, you should always include every possible case in the model

and complete the model with some type of catchall statement. Shortcuts in coding do not lead to

more efficient modeling and can hamper the debugging process.

 Digital design generally uses MUXes as selection devices. Contrary to computer programming,

digital design typically uses hardware to generate all possible results for a given problem and then

“selects” the correct result (via a MUX) based on the value of the signal connected to the MUX’s

data selection inputs.

Digital McLogic Design Chapter 20

 - 418 -

Chapter Problems

1) Briefly describe the special relationship between a MUX and a standard decoder.

2) Use the following block diagram to complete the provided timing diagram. For this problem,

consider the block diagram to represent a basic 4:1 MUX.

3) Use the following block diagram to complete the provided timing diagram. For this problem,

consider the block diagram to represent a basic 4:1 MUX.

Digital McLogic Design Chapter 20

 - 419 -

4) Use the listed circuit to complete signal F in the following timing diagram.

5) Use the listed circuit to fill signal F in the following timing diagram.

6) Using the following diagram of a 4:1 MUX, complete the provided timing diagram. Also provide a

VHDL model that implements the 4:1 MUX.

Digital McLogic Design Chapter 20

 - 420 -

6) Use the following circuit to complete the unlisted signals in the timing diagram. For this

problem, assume there are no propagation delays.

Digital McLogic Design Chapter 20

 - 421 -

7) Use the following circuit to complete the unlisted signals in the timing diagUse the following

circuit diagram to complete the empty rows on the accompanying timing diagram. Use bus

notation for all bundles (Co is the only non-bundle signal; 0x indicates hexadecimal).

Digital McLogic Design Chapter 20

 - 422 -

Digital McLogic Design Chapter 20

 - 423 -

Design Problems

1) Design a circuit that outputs one 8-bit value. If the sum of the circuit’s two 8-bit inputs, A & B,

generate a carry out and are equal, the value of 2A is output; otherwise the sum of 2B is output.

Consider the output value to be an 8-bit number also; don’t worry about carryouts on the output

operations. Provide a block box diagram for this circuit and label everything with great care and

attention. Use only standard digital modules in your design. Minimize your use of hardware.

2) Design a circuit that does the following. If the circuit’s two 2-bit values (A & B) are not equivalent,

then the 8-bit value AA will show up on the circuit’s output; otherwise, the 8-bit value BB will

show up on the output. Consider AA and BB to be inputs to the circuit. Provide a block box

diagram for this circuit and label everything with great care and attention. Use only standard digital

modules in your design. Minimize your use of hardware.

3) Design a circuit that outputs one 8-bit value. If the circuits two 8-bit inputs, A & B are equivalent,

then the sum of A & B are output; otherwise, the value of A + A is output. Provide a block box

diagram for this circuit and label everything with great care and attention. Use only standard digital

modules in your design. Minimize your use of hardware.

4) Design a circuit on a block diagram level that performs one of several mathematical operations.

Your design should use the standard circuits you’ve learned about thus far in digital design.

Minimize the use of hardware in your design; use no more than one adder. Be sure to label

everything! The circuit operates as follows:

 Depending on the value of the two select inputs, the single output should reflect the result of

one of the following operations. It does not matter which select values select which operation

but make sure the combinations associated with the select inputs can generate each of the

following operations:

RES = A + A

RES = A + C

RES = A + B

RES = B + C

 For this problem, make the following assumptions:

 Assume inputs A, B, C and the output are all 12-bit values

 Assume there will no issues or problems with carry out values

Digital McLogic Design Chapter 20

 - 424 -

5) Design a circuit on a block diagram level with an output that represents either a mathematical

operation or another input. Use only standard digital modules in your design. Minimize your use of

hardware. The circuit operates as follows:

 if input SEL equals ‘1’, then the circuit outputs the result of the operations A + B + C

 if input SEL equals ‘0’, then the circuit outputs the value of D directly.

o For this problem, make the following assumptions:

 Assume inputs A, B, C, D, and the output are all 12-bit values

 Assume there will no issues or problems with carry out values

6) Design a circuit that has one 8-bit input A, a single bit input BTN3, and one 8-bit output F. Both 8-

bit input and output are signed binary numbers in radix complement form. If the value of A is equal

to zero, the circuit outputs zero. Otherwise the circuit outputs A if BTN3 is pressed or –A if BTN3

is not pressed. Assume that a button press generates a ‘1’ value for the input. Use only standard

digital modules in your design. Minimize your use of hardware.

7) Design the following digital circuit: if the two 8-bit binary numbers (RC) are both positive, they are

added and the result of the addition becomes the 8-bit output of the circuit. Otherwise, the circuit’s

8-bit output is set to 0. Your design should be on a block level using standard digital module. Be

sure to completely label your diagram. Use only standard digital modules in your design. Minimize

your use of hardware.

8) Design the following digital circuit; consider all inputs to be 12-bit unsigned binary numbers. If the

A and B inputs are equal, and the C and D inputs are equal, the 12-bit output of the circuit is the

sum of A and B. Otherwise, the 12-bit circuit output is the sum of C and D. Your design should be

on a block level using standard digital modules. Be sure to completely label your diagram;

minimize your use of hardware modules for this design. Don’t worry about overflow in this design.

9) Design a circuit that has two 8-bit unsigned binary inputs (A & B) and one 8-bit unsigned binary

output. If both inputs are represent even numbers, are not equal, and the sum of A + B does not

generate a carry-out, then the sum of A + B is output; otherwise, the value of B is output. For this

problem, disregard the carry-out on the final sum output of the circuit. If you use anything other

than a standard digital circuit, be sure to adequately describe the circuit, but do not use VHDL.

Minimize your use of hardware in this design. Include a black box diagram for both the top-level

circuit as well as the underlying circuitry.

10) Design a circuit that does the following. If the sum of the A input added to the B input is less than

or equal to the C input, then the circuit outputs the value of A + C; otherwise, the circuit outputs the

value of B + C. Assume all input and output values are 8-bits. Provide a block box diagram for this

circuit and label everything with great care and attention. Use only standard digital modules in your

design. Minimize your use of hardware.

Digital McLogic Design Chapter 20

 - 425 -

11) Design a circuit that outputs one 8-bit value. If the sum of the circuit’s two 8-bit inputs, A & B,

generate a carry out and are not equal, the value of 2A is output; otherwise the sum of 2B is output.

Consider the output value to be an 8-bit number also. Provide a block box diagram for this circuit

and label everything with great care and attention. Use only standard digital modules in your

design. Minimize your use of hardware.

12) Design a circuit that does the following. If the sum of the A input added to the B input is less than

or equal to the C input, then the circuit outputs the value of A + C; otherwise, the circuit outputs the

value of B + C. Assume all input and output values are 8-bits. Don’t worry about carry-outs form

the addition operations. Provide a block box diagram for this circuit and label everything with great

care and attention. Use only standard digital modules in your design. Minimize your use of

hardware.

13) Design a circuit that performs as follows: If both A and B inputs are both positive or both negative,

the circuit outputs a -1 (in signed binary radix complement form); otherwise the circuit outputs the

sum of A + B. Consider both the inputs and outputs to be 8-bit signed binary numbers in radix

compliment form. For this problem, disregard any issues having to do with a carry-out. Use only

standard digital modules in your design. Minimize your use of hardware. Include a black box

diagram for both the top-level circuit as well as the underlying circuitry.

14) Design a circuit that has one 8-bit input and three 8-bit outputs. Both the inputs and outputs are

signed binary numbers in radix complement form. The circuit’s three outputs represent two less

than, two greater than, and four greater than the circuit’s input, respectively. For this problem,

assume the input value is always between 2010 and 12010. Use only standard digital modules in your

design. Minimize your use of hardware. Include a black box diagram for both the top-level circuit

as well as the underlying circuitry.

15) Design a circuit that has one 8-bit input, A, and two 8-bit outputs. Both the inputs and outputs are

signed binary numbers in radix complement form. The circuit’s two outputs, POS_A and NEG_A,

represent the negative and positive version of the input value, respectively. Use only standard

digital modules in your design. Minimize your use of hardware. Include a black box diagram for

both the top-level circuit as well as the underlying circuitry.

16) Design a circuit that has two 8-bit signed binary inputs and one 8-bit signed binary output. If both

inputs are negative, and the sum of A + B generates a carry-out, then the sum of A + B is output;

otherwise, the value of B is output. For this problem, disregard the carry-out on the final sum

output of the circuit. Use only standard digital modules in your design. Minimize your use of

hardware. Include a black box diagram for both the top-level circuit as well as the underlying

circuitry.

17) Design a circuit that performs as follows: If the sum of the circuit’s two 10-bit unsigned binary

inputs (A, B) generates a carry-out, and both of the two 10-bit inputs are odd, the then the circuit

outputs the A input; otherwise, the circuit outputs B input. Use only standard digital modules in

your design. Minimize your use of hardware. Include a black box diagram for both the top-level

circuit as well as the underlying circuitry.

Digital McLogic Design Chapter 20

 - 426 -

18) Design a circuit that performs as follows: If the circuit’s two 10-bit signed binary inputs (A,B) are

equivalent, the circuit changes the sign of each number before they are output; otherwise, the

circuit outputs the two inputs without changing them. For this problem, you can use a box labeled

(2_COMP) which inputs a 10-bit number and outputs the 10-bit 2-s complement representation of

that number. Use only standard digital modules in your design. Minimize your use of hardware.

Include a black box diagram for both the top-level circuit as well as the underlying circuitry.

19) Design a circuit that performs as follows: The circuit has two 10-bit unsigned binary inputs (A,B).

If the value of A + 2 (addition) is greater than or equal to B + 5 (addition), the circuit outputs the

unchanged A value; otherwise, the circuit outputs the unchanged B value. Use only standard digital

modules in your design. Minimize your use of hardware. Include a black box diagram for both the

top-level circuit as well as the underlying circuitry.

20) Design a circuit that performs as follows: The circuit contains three 5-bit binary inputs and one 5-

bit binary output; both inputs and output are in RC form. The circuit outputs the input value that

has the largest magnitude of the three inputs. Use only standard digital modules in your design.

Minimize your use of hardware. Include a black box diagram for both the top-level circuit as well

as the underlying circuitry.

21) Design a circuit that performs as follows: The circuit contains three 5-bit binary inputs and one 5-

bit binary output; both inputs and output are in RC form. The circuit outputs the input value that

has the largest magnitude of the three inputs. Use only standard digital modules in your design.

Minimize your use of hardware. Include a black box diagram for both the top-level circuit as well

as the underlying circuitry.

22) Design a circuit that adds the magnitude of the three 4-bit signed binary numbers (RC form). The

circuit’s output should be in unsigned binary form with a sufficient amount of bits to accurately

represent the required summation. For this problem, assume that -8 will never be included an input

value.

23) Design a circuit that performs as follows: The circuit contains a single button input (BTN) and a

single 4-bit binary input. The circuit contains one single-bit output. When the button is pressed

(input value is a ‘1’), the circuit treats the 4-bit inputs as an unsigned binary number; the output

indicates when the 4-bit input is greater than 8. When the button is not pressed, the circuit treats the

4-bit input as a signed binary number in RC form and the circuit output indicates when this number

is negative. Use only standard digital modules in your design. Minimize your use of hardware.

Include a black box diagram for both the top-level circuit as well as the underlying circuitry.

24) Design a circuit that adds two unsigned 10-bit numbers (which generates an 11-bit result including

the carryout) and is then “scaled” by removing the three least significant bits to form an 8-bit result.

Regarding the three least significant bits removed, an input to this circuit decides whether the 8-bit

output is the result of a rounding up or truncation operation (for example 31.5 rounds up to 32 and

truncates to 31). HINT: 0.12 = 0.510. Minimize your use of hardware. Use primarily black box

models in this design; in other words, severely limit your use of VHDL. Include a black box

diagram for both the entire circuit and the underlying circuitry. Fully describe any non-standard

sub-modules modules you use in this design.

Digital McLogic Design Chapter 20

 - 427 -

25) Design a circuit that adds four unsigned 10-bit numbers (A, B, C, D). The result should have the

minimum number of bits while generating the correct result (including number of bits) of the

addition operations. Use no more than three 10-bit RCAs in your design. Minimize your use of

hardware. Use primarily black box models in this design; in other words, severely limit your use of

VHDL. Include a black box diagram for both the entire circuit and the underlying circuitry. Fully

describe any non-standard sub-modules modules you use in this design.

26) Design a circuit that adds two signed 12-bit numbers A & B. If this operation generates no carry

and no overflow, then the circuit outputs the result of the operation (A + B). If only a carry is

generated without an overflow, the circuit outputs A ; if only an overflow is generated with no

carry generated, the circuit outputs B ; if the operation generates both an overflow and carry, the

circuit outputs 0x000 (hex). The circuit has an output NO_ERR that indicates when no overflow

and no carry is generated. Use the overflow generator model listed below (be sure to connect it

properly; you don’t need to describe it at a low level). Minimize your use of hardware. Use

primarily black box models in this design; in other words, severely limit your use of VHDL.

Include a black box diagram for both the entire circuit and the underlying circuitry. Fully describe

any non-standard sub-modules modules you use in this design.

27) Design a circuit that adds two signed 12-bit numbers A & B in radix complement form.

 if (A + B) generates no carry and no overflow, then the circuit outputs (A + B)

 if (A + B) generates a carry without an overflow, the circuit outputs A

 if (A + B) generates an overflow without a carry, the circuit outputs B

 if (A + B) generates both an overflow and a carry, the circuit outputs (A – B)

The also circuit has an output NO_ERR that indicates when no overflow and no carry is

generated. Feel free to use the overflow generator (OFLOW) and/or 2’s complement (2sComp)

models listed below in your design (you don’t need to describe it at a low level). If you use

anything other than a standard digital circuit, be sure to adequately describe that circuit, but do

not use VHDL. Minimize your use of hardware in this design. Include a black box diagram for

both the top-level circuit as well as the underlying circuitry.

 - 429 -

21 Chapter Twenty-One

(Bryan Mealy 2012 ©)

21.1 Chapter Overview

The previous chapters were primarily concerned with digital circuits based idealized gate-models.

Although we expended considerable effort describing the operation and representation of many

different types of circuits, we never really considered some of the physical attributes associated with the

actual devices themselves. In this chapter, we’ll be dealing with these issues in the context of

implementing functions with the techniques we’ve learned thus far. Timing diagrams are the best

approach to representing these physical attributes, which turns out to be an art form of its own.

Main Chapter Topics

 GATE-LEVEL MODEL: This chapter introduces the concept of switching times in

digital circuits. While previous chapters modeled gates as ideal devices, this chapter

presents some of the non-idealized characteristics of gates.

 CIRCUIT GLITCHES: The chapter describes glitches and outlines their effect on

digital circuit. Although many different circuit conditions can cause glitches, this

chapter deals primarily with glitches resulting from static logic hazards. This

chapter presents techniques to remove static logic hazards from circuits.

 TIMING DIAGRAMS: This chapter revisits timing diagrams and introduces a method

for providing useful annotations to increase the readability and understandability of

timing diagram.

Why This Chapter is Important

This chapter is important because it introduces non-idealized circuit models. Real digital

circuits contain propagation delays, which can cause unwanted characteristics such as

glitches.

21.2 Real Digital Devices

Our approach to modeling digital circuits has thus far omitted some of the most important aspects of

digital reality in order to smooth-out the learning curve. Although most introductory digital circuit

design courses deal with idealized models (ignoring timing considerations), most digital circuit design

generally deals with as assortment of timing considerations. Robust digital design requires that the

digital designer take into account the actual device parameters that will affect the real world application

Digital McLogic Design Chapter 21

 - 430 -

of the circuit. These considerations are particularly critical when the timing characteristics associated

with physical devices start pushing the speed limits of the devices. As you know, speed, or how fast

your digital circuit operates, is an important attribute out there in digital design-land.

A digital circuit is comprised of logic devices that can be modeled at many different levels. Courses in

semiconductor physics may model these devices at the molecular level. A course in semiconductor

devices may model these devices at the transistor level. A course in world history would most likely not

need to model these devices at all. In the previous chapters, you preformed a gate-level modeling of

these devices when you applied the iterative-based design approach. You’ve also modeled circuits on a

module level and implemented them using VHDL structural modeling using the iterative-modular and

modular-based approaches. Your final approach to circuit design was all the way up at the block level.

The common approach in these methods is the use of models. The model essentially refers to the

characteristics of the devices that are important to your particular need or application. A model is

nothing more than a convenient description of something (as opposed to the real thing). The circuits you

have modeled up to this point have ignored most timing considerations. In reality, the circuits you’ve

designed have the ability to operate at speeds in the nano-second range (10
-9

 seconds) yet you were

considering them from a functional level only. Although this approach works well for many

applications, it won’t work in all cases. To put all of this in other words, you have been considering the

gates you’ve been using to be idealized models. We’ll view them slightly different starting with this

chapter.

Timing issues are a critical in the design of most meaningful digital circuits. The general theme in most

areas of digital design is to create circuits that are able to operate as quickly as possible while

generating the correct result. The general thought here is to make the circuit “fast” so that you can

increase the amount of information your circuit can process.

The underlying goal of practically any digital circuit is to increase the amount of useful information any

circuit can process (referred to as throughput). The throughput increases as the amount of time it takes

inputs to generate the correct output decreases. The problem is that digital logic gates are physical

devices and they require a finite amount of time for changes in circuit inputs to effect circuit outputs.

This delay from the input to the output is the main topic of this chapter.

Another main topic in this chapter is the extended use of timing diagrams. These timing diagrams

provide a visual representation of circuit delays. Knowledge of circuit delays and proper use of timing

diagrams forms the foundation of proper digital circuit design.

21.3 Timing Diagrams Yet Again

We discussed timing diagrams in a previous chapter so a quick overview won’t be too painful. Creating

and analyzing timing diagrams is an important area of digital design. The usefulness of timing diagrams

ranges from producing a visual explanation of how a circuit operates
257

 to providing a valuable

debugging tool. Timing diagrams are able to highlight circuit operation beyond a circuit schematic in

that timing considerations such as propagation delays, set-up and hold time
258

, etc. are easily indicated

by the visual nature of the timing diagram. The use of timing diagrams becomes increasingly important

as the operating speed of the circuit increases. Moreover, the timing diagram is the primary output of

many standard digital design and test tools such as simulators and logic analyzers.

Timing diagrams show the values of signals as a function of time. Time is therefore the independent

variable (horizontal axis) while the signal value is the dependent variable (vertical axis). Since we are

257 Recall that a timing diagram is a viable method to model digital circuits.
258

 You’ll learn about these later.

Digital McLogic Design Chapter 21

 - 431 -

working with digital signals, the output is either “high” or “low”. In addition, because signals are true

functions in the mathematical sense of the word, a signal can’t simultaneously be high and low.

21.4 Gate Delays and Gate Delay Modeling

Up until now, you’ve used an idealized model for the logic gates you’ve worked with. The concept of a

gate modeled as “ideal” and its comparison to a non-idealized model provides a great vehicle to

introduce timing diagrams and the concept of low-level device modeling in general.

Figure 21.1: shows the schematic symbols for an inverter and NAND gate. Figure 21.2 shows two

example timing diagrams associated with the schematic symbols of Figure 21.1: using an idealized

model for the devices. There are several important things to note about the timing diagrams in Figure

21.2.

 Timing diagrams generally show both the inputs to the device and the outputs. The timing

diagrams for these simple devices show all inputs and outputs; timing diagrams may not show

all the inputs and outputs for more complicated circuits. Timing diagrams become less

readable as the number of listed inputs and outputs increase. In the interest of readability,

you’ll only list the most interesting signals in the timing diagram.
259

 The horizontal axis represents time. Moving from left to right on this axis represents the

passing of time. Time is understood to be the horizontal axis and is rarely labeled in timing

diagrams.

 Each of the listed signals is modeled as being either “high” or “low”. In reality, signals require

a finite amount of time to transition from high to low and thus are sometimes somewhere in-

between high and low. Modeling these signals as only high or low is arbitrary but matches the

definition of digital. The actual circuit requires a finite amount of time to switch from ‘0’ to ‘1’

and from ‘1’ to ‘0’. Modeling devices with an infinite slope is generally represents the

functionality of a digital circuit and not its true operating characteristics.

 The concept of ‘1’ and ‘0’ is a model too; timing diagrams rarely list the exact values for high

and low. The high and low values generally represent voltage levels; these levels will differ

depending on the family of ICs used. Once again, the model we’re using opts to represent

voltage levels as high and low which correspond to high and low positions on the given

signals.

 The ramifications of using an idealized model are that there are no delays shown in the timing

diagrams. In other words, the outputs respond immediately to the inputs. Ideal models are nice

to work with but not always appropriate especially in the case where the operating speed of the

circuit increases to the point where idealized models don’t accurately represent the

functionality of the circuit.

259

 Timing diagrams represent a mechanism to show the input and output relationship between particular signals of

interest: uninteresting signals should be, and usually are, omitted.

Digital McLogic Design Chapter 21

 - 432 -

(a) (b)

Figure 21.1: Models of the standard inverter (a), and NAND gate (b).

(a) (b)

Figure 21.2: Timing diagrams associated with idealized models for the inverter and NAND gate.

Figure 21.3 show timing diagrams that use non-idealized models for the circuit elements. This means

that there are delays associated with the signal transitions; the timing diagram clearly shows these

delays. These delays represent the amount of time required for an output signal to respond to a change

in an input signal. In official digital terms, changes in the input signals require a finite amount of time to

propagate to the output. These delay times are referred to as propagation delays, or prop delays. There

are several important things to note about the timing diagrams in Figure 21.3.

 The prop delay times are further broken down into high-to-low transitions and low-to-high

transitions. These times are often labeled as tphl and tplh, respectively (or something similar). In

Figure 21.3, Δt1 and Δt3 are examples of tphl while Δt2 and Δt4 are examples of tplh.

 Figure 21.3(b) shows that the values for tphl and tplh are not necessarily equal for a given digital

device. In particular, Figure 21.3(b) shows different delay times for Δt3 and Δt4.

 The timing diagrams in Figure 21.3 model delay times, but the actual value of these delays is

not given. In actuality, datasheets associated with a device you are using provide this

information. Different flavors of digital devices will have different delay times. In other words,

these devices are implemented using different flavors of transistors; the device characteristics

such as propagation delays and voltage characteristics are primarily dependent upon the

underlying transistor implementations of the gates.

Digital McLogic Design Chapter 21

 - 433 -

(a) (b)

Figure 21.3: Timing diagrams for inverter and NAND gates that includes delays.

21.4.1 Timing Diagram Annotation

By their nature, timing diagrams provide an abundance of information for a given circuit. The state of

each signal listed in the timing diagram is generally present for the entire listed time span in the given

timing diagram. In actuality, interesting and important features that are present in the timing diagram

often only occur in relatively small areas of the provided time span. In order to draw the viewer’s

attention to the important portions of the timing diagram, good timing diagrams
260

 always use a special

type of timing diagram annotation.

Figure 21.4 shows the symbology used to indicate causality in timing diagrams. This annotation style

shows the relationships between signal transitions throughout the timing diagram. The non-timing lines

and arrows drawn in Figure 21.4(b) indicate a relationship between the two timing events. The first

arrow shows the low-to-high transition on signal A causes the subsequent high-to-low transition on the

output of the inverter. Similarly, Figure 21.4(b) also shows that the high-to-low transitions on signal A

causes the low-to-high transition on the output of the inverter.

(a) (b)

Figure 21.4: Timing diagram notation for a single input device.

Figure 21.5 shows a slightly more complicated timing diagram. In this case, the target symbol indicates

when two or more signals are required to cause the switching of another signal. The annotation symbols

on the left of Figure 21.5(b) show that the high-to-low transition of signal F is caused by the state of A

and the low-to-high transition of signal B. The right annotation symbol in Figure 21.5(b) indicates that

the current state of B and the low-to-high transition of signal A causes the low-to-high transition of

signal F. This symbol roughly represents a logical AND relationship between the two signals in that

both the signals are involved in the listed transition. In other words, signal A “and” signal “B” must

both be high in order for the output to be high. The output transition from high-to-low occurs when both

260

 In this context, “good” means clear and easy to understand.

Digital McLogic Design Chapter 21

 - 434 -

the input signals are high (plus some time delay as indicated in the timing diagram). Don’t confuse this

with a bit-wise AND operation.

(a) (b)

Figure 21.5: Timing diagram notation for a multiple input device.

21.4.2 The Simulation Process

The simulation of a digital circuit involves “guessing” how an actual circuit would operate if it were

actually implemented. Though “guessing” is not much of a technical term, it’s basically what the

simulation process is doing. The probability that the guesses made by the simulator are correct

generally increase if the devices used in the circuit are accurately modeled by the simulator. In this case,

the model of a device is essentially a description of the device that the simulator can use when the

device is in a circuit. The models used for circuit elements can range from simple to sophisticated

depending on your particular requirements.

As you probably can imagine, the more sophisticated circuit models require more processing power by

the device performing the simulation and thus the simulation requires more time to complete. On the

other hand, devices using simpler models generally see a reduction in simulation time. The basic rule of

thumb when using a simulator is that the simulation is only as good as the models used for the

simulated devices.

Circuit simulation serves two main functions. First, it is a valuable design tool in that circuits can be

designed and tested before the circuit is actually implemented. Problems can be then be detected and

corrected before implementing the actual circuit, thus saving valuable engineering costs and

irreplaceable party time. Secondly, currently implemented circuits can be modeled in order to debug

portions of the circuit that may not be directly available to the outside world. The timing diagrams

generated from circuit simulations can be compared against the output from other test devices such as

Logic Analyzers for the verification of proper circuit models and the correct circuit outputs.

21.5 Glitches in Digital Circuits

A glitch in a circuit is defined as a momentary error condition. In other words, the digital output of

some circuit element is momentarily high when it should be low (or vice versa). Glitches in circuits can

be caused by many different conditions such as switch bounce, electro-magnetic interference, sun spots,

demonic possession, and apathetic lab partners. The presence of glitches in your circuit can be of grave

concern in that these unwanted signal transitions can cause incorrect and intermittent errors in the

operation of your circuit. We’ll only be considering glitches caused by static logic hazards.

Digital McLogic Design Chapter 21

 - 435 -

21.5.1 Static Logic Hazards

Static logic hazards fit in nicely with the other material discussed so far in this chapter. The presence of

a hazard in your circuit is an indication that a glitch may occur in your circuit under certain circuit

conditions. The root cause of static logic hazards is unequal circuit delays
261

 in the devices used to

implement the circuit. In this section, you’ll learn to detect and correct for those conditions. The

approach you’ll use also serves as a good review of K-map techniques and a bolstering of your K-map

skills.

Figure 21.6(a) shows a K-map with an arbitrary function. This K-map shows the groupings associated

with standard K-map reduction techniques. Figure 21.6(b) shows the circuit associated with the reduced

equation generated from the K-map of Figure 21.6(a). The interior signals of the circuit contain labels

that are used the timing diagram of Figure 21.7. The timing diagram in Figure 21.7 highlights two input

signal transitions and the effect these transitions have on the output and interior signals of the circuit. In

particular, the timing diagram of Figure 21.7 shows the input transitions of ABC = “111” to ABC =

011” and ABC = “011” to ABC = 111”. In other words, we’re only interested in signal A changing

while signals B and C remain constant at their high levels.

(a) (b)

Figure 21.6: The standard K-map approach to function reduction and the resulting circuit.

The two transitions shown in Figure 21.8(a) are generated when the A input changes while the B and C

inputs remain at their high values. The numbers in the cells of the K-map represent the output value of

the function. As indicated in Figure 21.6(b), F is the output of the given function. Since the output does

not change (remains at ‘1’) during the two transitions listed, you would expect the output of the circuit

to remain in its high state. As you can see in Figure 21.7, the output temporarily goes to its low value

before returning to the expected high state. This unexpected signal transition in the circuit output is the

glitch we’ve been talking about.

Unequal circuit delays in the circuit of Figure 21.6(b) cause a glitch in the output of the circuit. The

annotations labeled in Figure 21.7 provide the explanation of the undesirable event. In the timing

diagram, the prop delays for the various circuit elements are model as being equivalent. The numbers

listed below reference the circled numbers shown in Figure 21.7.

1) This signal is the inversion of signal A. The high-to-low transition of signal A causes the low-

to-high transition of the A signal after an appropriate delay.

2) The high-to-low transition of signal A causes the high-to-low transition of signal Y. Signal Y

is an ANDing of signal A and C.

3) The signal labeled X is an ANDing of signals A and B The low to high transition of signal

A causes the low-to-high transition of signal X.

261

 Note that this statement is “unequal circuit delays”; claiming that glitches are caused by “circuit delays” only is

not accurate and somewhat misleading.

Digital McLogic Design Chapter 21

 - 436 -

4) The high-to-low transition of signal Y causes the high to low transition of the output signal F.

This is because the output signal F is an ORing of signal X and Y.

5) The low-to-high transition of signal X causes the low-to-high transition of the output signal F.

This is once again due to the fact the F is a result of ORing signals X and Y.

Figure 21.7: The timing diagram generated from the circuit of Figure 21.6.

(a) (b)

Figure 21.8: The transition of interest and the associated cover term for the function.

The glitch shown in signal F of Figure 21.7 is referred to as a static logic hazard. This particular hazard

is referred to as a static ‘1’ hazard; there are also static ‘0’ hazards which are associated with ‘0’ to ‘0’

transitions in the POS circuit implementations. There are two major types of hazards: function hazards

and logic hazards. These two types of hazards differ by the number of input changes that cause them.

A change in a single input caused the hazard in the previous example, which is what makes it a logic

hazard. If more than one input changed simultaneously and caused a hazard, it is referred to as a

function hazard. As you’ll soon see, it’s not a big deal locate and correct logic hazards because of the

Digital McLogic Design Chapter 21

 - 437 -

unit distance property of K-maps. A unit distance move in a K-map is (a move in the compass

directions: north, south, east, or west) is defined to be caused by a change in a single input variable.

Any move in the K-map that is not from one cell to an adjacent cell is associated with a changing of

more than one input variable.

Logic hazards can be broken into two sub-types: static hazards and dynamic hazards. These terms

describe the desired state of the output when an input change occurs. The previous example is referred

to as a static logic hazard because the output was not expected to change because of the input change (in

other words, it was supposed to remain static). The previous example was a static ‘1’ hazard because

the output should have remained high. Glitching could also occur in when the output is expected to

change as a result of the input transitions. In this case, the hazard would be referred to as a dynamic

logic hazard.

The key to removing static logic hazards is to ensure that all input transitions between the circled

variables terms in a K-map remain in the same grouping. This essentially requires that you include other

groupings in addition to the groupings that provide the best possible minimization of the function.

Although your function will no longer be in reduced form, it will be free of static logic hazards.

Another way to view this approach is that you must include some nonessential prime implicants in your

grouping. This approach ensures that each change in input variable is contained in a grouping of its

own. The reason this approach works is that the each of the input variable transitions are “covered” by a

product term due to the way the variables were grouped. This ensures that each input transition is

associated with a gate that is not affected by the change in that input variable. You can remove the static

logic hazard in the above example by including the grouping indicated with dotted lines in Figure 21.8.

Figure 21.9 shows two examples of removing potential glitches with the inclusion of cover terms in the

K-map reduction. The associated expression lists the normal product terms without parenthesis while

parentheses surround the product terms associated with the cover terms. Note that by the inclusion of

the cover terms, every ‘1’ to ‘1’ transition is included in a K-map grouping. While the resulting

equation is not maximally reduced when the cover terms are included, the resulting circuit will be free

of static ‘1’ logic hazards.

)(CBBDDCF)()(DCBCDACABBDACBAF

(a) (b)

Figure 21.9: Two more examples of removing potential glitches with cover terms (in parentheses).

Digital McLogic Design Chapter 21

 - 438 -

Example 21-1

List the product terms that need to be included in the following circuit that remove

all static logic hazards.

Solution: The only tool you currently know of to detect static logic hazards is the K-map. The mode of

attack for this problem is to first translate the circuit model provided in the problem to a K-map

representation. Figure 21.10(a) shows the K-map model corresponding to the circuit model shown in

the problem description. Figure 21.10(b) shows the K-map with the standard groupings (solid lines) and

the groupings required to remove the static logic hazards. Equation 21-1 shows the product terms

required to remove the static logic hazards from the original circuit. These two product terms are now

included in the original circuit.

(a) (b)

Figure 21.10: The initial (a) and completed (b) K-maps for Example 21-1.

ACDCBA

Equation 21-1: Product terms required to remove static logic hazards.

Digital McLogic Design Chapter 21

 - 439 -

Chapter Summary

 Timing diagrams show the state of digital signals as a function of time. Timing diagrams are useful

for describing circuit behavior and verify correct circuit operation in simulation and actual circuit

testing. Circuit operation in general cal be modeled using a timing diagram.

 Timing diagrams can quickly become large and messy. Special annotation techniques are available

to increase the readability and understandability of timing diagrams. The key to annotating timing

diagrams is to direct the reader’s eye to the important portions of the timing diagram.

 Real digital circuit elements necessarily have delays associated with their operation. Although

some applications do not need to consider delay characteristics of real devices, these factors

become more important as the operating speed of circuits increase. Digital device delays can be

clearly modeled using timing diagrams.

 Glitches are momentary error states in the outputs of digital circuits. Glitches are caused by many

different conditions present in digital circuits.

 Static logic hazards are a potential causes of glitches in digital circuits. Static logic hazards can be

detected in K-map representations of circuits. Extra hardware can be strategically added to a circuit

to remove static logic hazard; this extra hardware is generally referred to as adding cover terms.

Digital McLogic Design Chapter 21

 - 440 -

Chapter Exercises

1) Using timing diagrams to explicitly show whether the given circuit contains glitches due to static

logic hazards. If glitches are present, re-implement the circuit in such a way as to remove the static

logic hazards.

(a) (b)

2) Generate a timing diagram that shows the static-1 logic hazard present in the maximally reduced

SOP implementation of the following function:

 14,15)(1,5,9,13, D)C,B,(A,F

3) List the cover terms that would be required to eliminate the static-1 logic hazards from the

following function if it was implemented in reduced SOP form.

 ,10,11,13)(0,3,4,5,7 D)C,B,F(A,

4) Write an expression for the following function in reduced SOP form. Write the final expression

such that the implemented circuit will contain no static logic hazards.

 ,9,11,14)(1,3,4,6,8 D)C,B,(A,F

5) Reduce the following function. Then, show what term(s) need to be included to remove any static

logic hazards. Don’t use XOR gates.

 ,10,14,15)(0,2,6,7,8D)C,B,F(A,

6) Reduce the following function. Add product terms to prevent glitches caused by static logic

hazards. Don’t use XOR type gates.

)0,11,12,13(1,3,5,7,1D)C,B,F(A,

7) Write an expression for the following function in reduced SOP form. Make sure the function

contains no static logic hazards.

)12,11,10,9,8,6,3,2,1(D)C,B,(A,F

Digital McLogic Design Chapter 21

 - 441 -

8) Write an expression for the following function in reduced SOP form. Make sure the function

contains no static logic hazards.

 (0,10)m15,13,8,7,6,2 D)C,B,F(A, d

9) Using the timing diagram provided below, show whether the listed circuit contains a static logic

hazard. If the circuit does contain a logic hazard, use the provided timing diagram to explicitly

show the associated glitch. Assume each of the circuit elements contain equivalent propagation

delays, tpd, and are indicated with vertical dotted lines in the provided circuit diagram.

Digital McLogic Design Chapter 21

 - 442 -

10) Using the timing diagram provided below, show whether the listed circuit contains a static logic

hazard. If the circuit does contain a logic hazard, use the provided timing diagram to explicitly

show the associated glitch. Assume each of the circuit elements contain equivalent propagation

delays, tpd, and are indicated with vertical dotted lines in the provided circuit diagram.

Digital McLogic Design Chapter 21

 - 443 -

11) Using the timing diagram provided below, show whether the listed circuit contains a static logic

hazard. If the circuit does contain a logic hazard, use the provided timing diagram to explicitly

show the associated glitch. Assume each of the circuit elements contain equivalent propagation

delays, tpd, and are indicated with vertical dotted lines in the provided circuit diagram.

 - 445 -

22 Chapter Twenty-Two

(Bryan Mealy 2012 ©)

22.1 Chapter Overview

If you truly want to be a digital design goddess or god, you need to have a complete understanding of

digital logic. While it is true you can go a long way by only pretending you understand mixed logic,

you’ll eventually run into it and be really bummed that you don’t really understand it. It’s highly

unlikely that any system you work with will only use one type of logic; so you really need to be able to

face the dilemma of designing and/or interfacing digital circuits in a mixed logic environment.

During the previous several chapters, we’ve covered a lot of digital design topics. However, the chapter

verbage has not thus far presented the entire story regarding the ins and outs of digital logic design. This

chapter aims to provide you with the final piece of the basic logic puzzle. Your knowledge and

experience with digital design is such that you can finally digest this new material.

Main Chapter Topics

 MIXED LOGIC: This chapter provides an in-depth summary of mixed logic digital

design. This introduction includes a description of the underlying theory which is

later applied in both circuit design and circuit analysis problems.

Why This Chapter is Important

This chapter is important because it provides the theoretical foundation for designing

and analyzing mixed logic circuits.

22.2 Mixed Logic Overview

The one thing that stands out most in my mind regarding mixed logic was a comment one of my

teachers made when I was taking digital design. The comment was: “nobody really understands mixed

logic”
262

. Although it has been a struggle for me, I feel I’m making headway into understanding mixed

logic. My latest spin on the topic is that, although the stuff is strange, it’s becoming more and more

doable each time I look at it.

What I’ve come to realize is that the reason that “nobody understands” this stuff is two-fold. First, I’ve

never run into a text that explains the topic in a manner that I could understand. This is particularly a

problem when you’re seeing the material for the first time as is the case with beginning digital design

262

 Spoken sometime in the haze of the late 1980’s.

Digital McLogic Design Chapter 22

 - 446 -

students. Secondly, it’s a topic that is not overly used in modern digital design. In reality, you generally

only deal with mixed logic if you really need to and expend a significant amount of effort attempting to

avoid dealing with it.

Although mixed logic is a topic present in just about any digital logic circuit, you generally build up a

repertoire of techniques to deal with it when you run into it so that you really don’t need to understand

it. These techniques are generally good enough because you rarely run into mixed logic in any great

depth, but odds are that you’ll eventually run into it. More likely than not, you’ll act like most digital

designers and find yourself hoping that you can avoid dealing with mixed logic issues in all of your

digital circuit designs.

22.3 Chapter Overview

The underlying theme of all digital logic deals with the basic interpretation of signals. A signal in a

digital circuit is either at a high or low voltage level
263

. We’ve been modeling these high and low

voltage levels thus far with a ‘1’ or a ‘0’. A given signal is generally the output of one gate or device in

the circuit; this given signal is generally the input to another device in the circuit.

In truth, digital circuits are extraordinarily dumb: the gates in a digital circuit do nothing more

interesting than having outputs that react to the gate inputs. Here’s the whole story in a few sentences:

the way we’ve been modeling our circuits so far is that a ‘1’ represented the action state or active state

of things while ‘0’ represented the non-action state or inactive state. In other words, when the circuit

inputs represented a combination that did something we were looking for, we assigned a ‘1’ to the

output. In yet other words, the ‘1’ or the high state, was generally taken to mean something affirmative

or positive.

The entire strangeness that encircles mixed logic is that fact that sometimes ‘1’ does not represent the

active state. Sometimes the ‘0’ state is the active state and ‘1’ represents the inactive state. While you

have a choice of designing your circuits anyway you want (with either ‘1’ or ‘0’ being the active state),

sometimes you need to design your circuit to interface with another circuit that is interpreting the 1’s in

0’s in a different manner than your circuit. Thus, you’re faced with not just coming up with a digital

design, your faced with coming up with a mixed logic design.

The same argument is applicable to the outputs of your circuit: sometimes the outputs of your circuit

drives a circuit that is interpreting the 1’s in 0’s different from your design. You need to be able to both

understand and handle both of these cases. Remember, digital logic gates are really dumb; they only

react to voltage levels. Your digital circuit designs are based on logic levels, and not necessarily voltage

levels; this is a really important distinction. It’s your mission as a digital designer to ensure that your

circuits are reacting in a way that lands you a promotion after your company has finished its next

design. The choice is up to you.

Let’s use a few short definitions to sum up the concepts presented in the previous paragraphs. We’re

presenting these definitions here so that we can use them throughout this chapter. The terminology is

quite common out in digital-land so being familiar with them is considered a good thing: a real good

thing. You’ll for sure want to refer back to them as you read on in this section.

 Positive logic: positive logic is when the ‘1’ state of a signal represents the active state.

 Negative logic: negative logic is when the ‘0’ state of signal represents the active state.

263

 Note that we stay general here by not mentioning the exact voltage levels; it’s suffice to leave it at high and low

voltage. The notion here is that some external entity has pre-decided what the voltage levels are.

Digital McLogic Design Chapter 22

 - 447 -

 Mixed logic: a term referring to the use of both negative and positive logic in a digital

circuit or system.

 Assertation levels: assertation levels are an indirect reference to the form of logic used in a

circuit. These definitions lead to a common digital vernacular in referring to a signal as

being “asserted” or “not asserted” (defined below).

 Asserted high: Another way of referring to a positive logic signal

 Asserted low: Another way of referring to a negative logic signal

 Logic levels: same thing as assertation levels

 Asserted signal: a signal that is currently in its active state (independent of the logic levels).

A positive logic signal is asserted when it is in a high state while a negative logic signal is

asserted with it is in a low state.

 Not-asserted signal: a signal that is currently in its non-active state (independent of logic

levels). A positive logic signal is not-asserted when it is low while a negative logic signal

not asserted when it is high.

The first thing we need to do here is to convince you that the circuits you’ve been working with thus far

have all been positive logic circuits. Figure 22.1(a) shows a circuit that appears to be a typical circuit

you’ve been working with for awhile now. What you may not realize is that by the way the circuit

appears in Figure 22.1(a), the inputs to the circuit and the output of the circuit are all positive logic. In

other words, a ‘1’ appearing on the circuit inputs and/or the circuit output indicates an active state.

When a ‘1’ appears on the output of the circuit, the circuit is indicating some positive condition (vice

versa for a ‘0’ appearing on the circuit outputs).

The question that arises is how exactly should we represent negative and positive logic in a circuit?

There are actually two ways: the Positive Logic Convention (PLC) and Direct Polarity Indicators (DPI).

For this discussion, we’ll only be use DPI since it is easier to deal with while learning mixed logic.

The reality is that you’ve been dealing with PLC ever since your introduction to digital logic. The PLC

uses overbars on signals to indicate that they are negative logic (with positive logic represented by not

having an overbar). For example, the circuit in Figure 22.1(a) contains three input variables and one

output variable. Since none of these variables has overbars on them (and they don’t have direct polarity

indicator either), they are interpreted as being positive logic.

Figure 22.1(b) shows an example of a similar circuit that uses mixed logic; note that in this circuit two

of the inputs contain overbars. This indicates that while signal A is a positive logic signal, signals B and

C are negative logic signals. The important point here is that all the signals listed in both of these

diagrams are represented using Boolean variables: A, B, C, and F. Because these variables are Boolean

variables, they can represent either 1’s or 0’s. Mixed logic once again refers to the fact that sometimes a

‘1’ and a ‘0’ have different meanings. The confusing aspect of mixed logic design lies in the fact that

the logic gates only react to voltage levels and know nothing of the logic levels intended by the circuit

designers. Although the two circuits shown in Figure 22.1 look similar, they perform different logic

functions. What exact logic functions they perform is what we’ll try and figure out in the remainder of

this section.

Digital McLogic Design Chapter 22

 - 448 -

(a) (b)

Figure 22.1: Some generic circuits just for the heck of it.

Assuming there is a good place to start in mixed-logic land, looking at the inverter would be that place.

The approach we’ve taken to inverters up to this point is to think of them as devices that change 1’s to

0’s and 0’s to 1’s. While this model of an inverter is valid, we need to model it in a different form in

order to gives us a foundation for understanding mixed logic. Figure 22.2 shows our new approach to

modeling an inverter.

Figure 22.2(a) shows an inverter drawn as you’re used to seeing it. The thing that is somewhat new

about this diagram is the PLC and DPI indicators provided above and below the signals, respectively.

These two forms of notation are used to indicate that we’re no longer thinking of the inverter as a

device that toggles a signal value. The new view of an inverter is that it changes the logic level of a

signal. In other words, if the input to an inverter is a positive logic signal, the output of the inverter is a

negative logic signal (and vice versa). We use the notation included in Figure 22.2(a) to indicate this

notion.

With the PLC convention (the notation above the signal lines), the A without the overbar indicates the

signal is positive logic. On the output of the inverter, the A has an overbar, which indicates it is a

negative logic signal. We can also express the same model using DPI notation, which we list under the

signal in Figure 22.2(a). With the DPI notation, the A signal is clearly indicated with a directly polarity

indicator of H (indicating positive logic) on the input of the inverter. Once it passes through the

inverter, the direct polarity indicator changes to L (indicating negative logic). These are important

points; you may want to read them again or have some friends read them to you as you contemplate the

vastness of the concept.

(a) (b)

Figure 22.2: A different approach to modeling an inverter.

That was not too painful, was it? Now we need to pass a slight amount of terminology by you. For the

sake of this discussion, we’ll only discuss the DPI convention due to the fact that the polarity indicators

are somewhat easier to working with when you’re first struggling with these concepts. Once you

understand the DPI convention, using either DPI or PLC (or both) should not be a problem. Figure 22.3

shows the terminology we need to work with.

What we’re trying to do here is present some tools to effectively deal with the more complex mixed

logic circuits that arise later. The intentions here are good even though it all may seem strange at this

point. What the equations in Figure 22.3 are saying is that there is more than one way to represent both

negative and positive logic using the DPI convention. In other words, you can indicate a positive logic

signal as an equivalent negative logic signal (Figure 22.3(a)) and you can write a negative logic signal

Digital McLogic Design Chapter 22

 - 449 -

as an equivalent positive logic signal (Figure 22.3(b)). These probably don’t seem to useful now, but

they become worth dying for later. The equations of Figure 22.3 are equivalent forms of the signals.

)()(LAHA)()(HALA

(a) (b)

Figure 22.3: Equivalent signals relating to inversion.

Now let’s apply these concepts in a manner that you’ve already seen. You’ve drawn bunches of circuit

diagrams already and many of them used inverters. A two-input AND gate with an inverter sitting in

front of one of the inputs as is shown in Figure 22.4(a) is therefore nothing new. But let’s reanalyze it

using our budding love of mixed logic.

Figure 22.4 shows a simple circuit implementing a product term. We’ve attached a DPI convention to

the inputs and outputs of this device; both inputs and the single output are positive logic signals. The

inverter changes the logic level of the B signal before it enters the AND gate. In the end, as you’re used

to thinking about it, the logic expression BA is implemented. Note that we suddenly magically

switched to PLC notation, which is what you’re used to dealing with.

In reality, the AND gate used in Figure 22.4 has an output that only becomes a ‘1’ when both inputs are

‘1’. The question that arises is this: what is the relation between the product term BA and having both

inputs being a ‘1’ in order for the output to be a ‘1’? What we need to do in this product term is have

the output be a ‘1’ when both inputs are in their active state. This means that we need to have A be

positive logic and B to be negative logic as they are input to the AND gate.

The problem is that B is a positive logic signal. The solution here is to change the logic level of the B

signal. Once we change the logic level of B from the original positive logic to negative logic, ‘0’ will

then be the active level of the signal; or to use our new terminology, the signal is active low. To sum

this up in one statement, the output of the gate is asserted when the both the A and B inputs are asserted.

It just so happens that the B input is asserted low as it enters the AND gate because its logic level was

changed by the inverter in the circuit. Figure 22.4(b) shows the logic levels of the signal after it passes

through the inverter written in with equivalent forms as presented in Figure 22.3.

(a) (b)

Figure 22.4: A mixed logic approach to analyzing familiar functions.

OK… we’ve driven the inverter analysis into the ground; now let’s go back and look at the logic gates

we’ve dealt with up to this point: (AND, OR, NAND, NOR). Using a strange mixture of mixed logic

concepts and Boolean algebra, we’ll be generating some alternative forms of these gates. We’ll be using

these alternative forms later in our foray into mixed logic concepts. The theme of the following circuits

is to take what we know about the gates we know and start to look at them differently and particularly

in the concept of mixed logic.

The simplest approach to understanding mixed logic is to examine the most basic form of logic: the

logic implemented with the basic gates used in digital design. Until now we’ve implemented our gate-

Digital McLogic Design Chapter 22

 - 450 -

level designs using primarily AND, NAND, OR, NOR gates and inverters
264

. We’ve also implemented

designs on the block diagram level but we won’t be dealing with that in this section. Remember those

bubbles on the outputs of the NAND and NOR gates (and inverters too)? They’re actually significantly

important, and if you understand their actual purpose, you’ll be on your way to understanding mixed

logic. The simplest digital device is the inverter, which is why we started the discussion there. The

following figures describe mixed logic concepts at the gate level

This is the ever-so friendly AND gate. You’ve grown to love this

gate as a device that has a high output when both of its inputs are

high. This is all good and fine but now we want to re-examine it from

another angle. What you see now is an AND gate; this is a device

that provides an AND function with a positive logic output. As you

can see from the equations shown on the left, the AND gate performs

an AND function on the two positive logic inputs. Since there are no

bubbles on the back of the gate (you’ll see some bubbles in next gate

described), this AND gate expects positive logic inputs. This will

make more sense as we look at the next gate. To be consistent with

the following diagrams, the gate on the left is the AND form of an

AND gate.

BAF

)()()(HBHAHF

Figure 22.5: A mixed logic view of an AND gate.

The gate shown on the left is also an AND gate. Why is it an AND

gate? Because you can use DeMorgan’s theorem to generate a

different equation (though functionally equivalent) describing the

gate; once you do this, you can alter the form of the gate based on the

equations you derived. The new form of this gate is derived from

double complementing the equation describing an AND function and

DeMorganizing the resulting equation. The distinctive symbol results

from the two equations on the left; these equations are listed in PLC

and DPI forms. The key to understanding this gate is to interpret both

the bubbles and the gate form. It sort of looks like an OR gate,

doesn’t it? The truth is that if you feed this gate two negative logic

input, it performs an OR function on those inputs and generates a

negative logic output. We use bubbles to indicate the negative logic

inputs (as indicated by the (L) polarity indicators) and negative logic

output of the final equation on the left. The reality here is that you

can use an AND gate to perform an OR function. In other words, this

is an AND gate that performs an OR function. This gate is officially

know as the OR form of an AND gate.

BAF

BAF

BAF

)()()(LBLALF

Figure 22.6: A different mixed logic view of an AND gate

264

 In reality, an inverter is not really a logic gate; but it’s a cool and useful device anyway.

Digital McLogic Design Chapter 22

 - 451 -

This is the ever-so familiar OR gate. This gate provides a high

output when either of the gates two inputs is at a high state. Another

way of looking at this gate is if you provide it with positive logic

inputs, it performs an OR function and generate a positive logic

output. The equations on the left show this characteristic; we write

the equations in both PLC and DPI form. Since there are no bubbles

on the back of the gate, this OR gate expects positive logic inputs.

Since there is not a bubble on the gate outputs, this gate delivers a

positive logic output. In summary, the gate on the left is the OR

form of an OR gate.

BAF

)()()(HBHAHF

Figure 22.7: A mixed logic view of an OR gate.

The gate shown on the left is also an OR gate. We derive this new

gate form from double complementing the equation describing the

OR function and DeMorganizing the resulting equation. We derive

this distinctive symbol from the bottom two equations; we list these

equations in both PLC and DPI forms. The key to understanding this

gate is to interpret both the bubbles and the gate form. It sort of looks

like an AND gate but the reality is this: if you feed this gate two

negative logic inputs, it performs an AND function on those inputs

and generates a negative logic output. We use bubbles on the

resulting gate to indicate the negative logic inputs (as indicated by the

(L) polarity indicators) and negative logic output of the final

equation. Not surprisingly, you can use an OR gate to perform an

AND function (as the equations show). This gate is officially know as

the AND form of an OR gate. In other words, this is an OR gate that

performs an AND function.

BAF

BAF

BAF

)()()(LBLALF

Figure 22.8: A different mixed logic view of OR gate.

The gate shown on the left is a NAND gate. You may have come to

know this gate as a AND gate with an inverted output; this definition

is not too far from a mixed logic view of this gate. In a mixed logic

sense, this gate performs an AND function on the two positive logic

inputs and provides a negative logic output. The inputs are positive

logic due to the absence of bubbles on the inputs; the output is a

negative logic output since there is a bubble on the output. One way

to look at this circuit is that the output of ‘0’ is now the active state

rather than the ‘1’ output that is the active state from a normal AND

gate. This gate is officially known as the AND form of a NAND gate;

this gate performs an AND function on its positive logic inputs and

returns a negative logic output.

BAF

)()()(HBHALF

Figure 22.9: A mixed logic view of an NAND gate.

Digital McLogic Design Chapter 22

 - 452 -

The gate shown on the left is also a NAND gate. Note that if we

apply DeMorgan’s theorem to the gate we can arrive at a slightly

different looking equation describing the gate. The final two

equations on the left describe this gate in the context of mixed logic:

this gate performs an OR function on its two negative logic inputs

and returns a positive logic output. The fact that an OR function will

be performed is indicated by the distinctive OR symbol; this gate

only performs an OR function if the two input values are provided in

negative logic format. The bubbles indicate the negative logic input

format; the absence of a bubble on the output indicates positive logic.

The polarity indicators in the final equation on the left show the logic

level of this gate’s inputs and output. This gate is officially known as

the OR form of a NAND gate; this gate performs an OR function on

its negative logic inputs and returns a positive logic result.

BAF

BAF

)()()(LBLAHF

Figure 22.10: Yet another mixed logic view of an NAND gate.

The gate shown on the left is a NOR gate. You’re probably used to

thinking of this gate as an OR gate with an inverted output. In a

mixed logic context, this gates actually performs an OR function on

its two positive logic inputs and outputs a negative logic result. The

equation on the left nicely describe this gate’s attributes. Note that

absence of bubbles on the inputs indicate that the inputs are positive

logic; the gate’s output is a positive logic output due to the presence

of the bubble on the output. In other words, if this gate receives two

positive logic signals on the input, the gate performs an OR function

and returns a negative logic result. This gate is officially known as

the OR form of a NOR gate. In yet other words, the gate performs an

OR function with an asserted low result.

BAF

)()()(HBHALF

Figure 22.11: A mixed logic view of an AND gate.

The gate shown on the left is also a NOR gate. Note that we can

apply DeMorgan’s theorem to the equation describing the NOR gates

and arrive at a new and even more wonderful equation. The final two

equations on the left describe the operation of this gate in the magical

world of mixed logic. To state this magic directly: this gate performs

an AND operation (note the AND symbol being used here) if we

provide two negative logic signals as inputs; the resulting output of

the AND operation is positive logic. The bubble placement provides

another way of looking at this gate; since there are bubbles on the

inputs, this gate only performs the AND operation if the two inputs

are negative logic. Since the output contains no bubble, the output of

the gate is a positive logic signal. This gate is officially known as the

AND form of the NOR gate. In other words, this gate performs an

AND function if it receives a negative logic input; it subsequently

provides a positive logic output.

BAF

BAF

)()()(LBLAHF

Figure 22.12: A mixed logic view of an AND gate.

Figure 22.13 shows a summary of all the standard gates forms. At this point, you may be wondering

why there are some many different forms of gates out there. It rather seems like we were doing OK with

Digital McLogic Design Chapter 22

 - 453 -

the few gates forms we knew about before breeching the topic of mixed logic. The short answer to this

question is that in some situations, we need a certain amount of flexibility in implementing logic

functions. We’ve done OK up to now, but there are some situations where a mixed logic approach is not

avoidable. If you understand the basics of mixed logic, you will have nothing to fear.

The real reason we have so many different and sometimes equivalent gates is that we need to always

choose the gate that most appropriately represents the actual logic function we are performing. This

desire, however, becomes trickier in a mixed logic environment. In reality, there are still only AND and

OR functions out there; we need to draw our circuits such that they express whether we are performing

an AND function or an OR function. The relatively large set of gates guarantees that we’ll be able to

accurately display the actual logic functions we’re performing in a mixed logic environment. Then

again, if you don’t use the proper gate in your design, you may have a working circuit but no one will

know what the heck you’re really doing
265

.

Standard Gate Forms

AND functions OR functions

AND form of AND gate OR form of OR gate

OR form of AND gate AND form of OR gate

AND form of NAND gate OR form of NOR gate

AND form of NOR gate OR form of NAND gate

Figure 22.13: The giant summary of the strange new gate forms.

For an example in mixed logic analysis, look at Figure 22.14. For this example, you must analyze the

circuit shown in Figure 22.14(a). The first thing you should note is that the both inputs in this circuit are

positive logic. The second thing you should notice is that there is no indication of the output logic level.

Because the diagram does not list the output logic level, you can assume it is either negative or positive

logic
266

. For this example, we’ll examine both cases.

265

 It’s well known that such mystery designs establish job security of sorts for the circuit designer.
266

 Not listing the output logic level is a horrendously bad thing.

Digital McLogic Design Chapter 22

 - 454 -

Figure 22.14(b) shows the case where the output is positive logic; the direct polarity indicator shows the

logic level of the output. The important thing to note here is that the polarity indicator on the output of

the gates matches what the gate states it is providing: since there is no bubble on the gate, we consider

the output logic level as positive logic. This gate is an AND gate and performs an AND function on the

two inputs if they are both provided as positive logic (note the absence of bubbles on the gate inputs).

The first thing we need to do is to write the inputs such that they indicate a positive logic signal as this

is what the AND gate is expecting. The A input is in correct form already because it is a positive logic

signal. The B signal, however, passes through an inverter before entering the AND gate. Although the

inverter changes the logic level from positive to negative, the AND gate is still expecting a positive

logic input. In other words, if you were to input a B(L) signal to the AND gate, it would not look

correct would lead to mass confusion and hysteria. The solution to this dilemma is to use an equivalent

signal representation for the B(L) signal. We can officially list this signal as a positive logic signal by

listing the signal name in complemented form. Once both inputs are written in positive logic form, we

can write the down the resulting equation (shown under the circuit in Figure 22.14(b)). The important

thing to note about this equation is that the polarity indicators on both sides of the equation match. If

they did not match, the equation would make no sense.

))(()(HBAHF))(()(LBALF

(a) (b) (c)

Figure 22.14: An example of mixed logic analysis where (a) shows the original circuit and (b) and

(c) show positive and negative logic interpretations of the output, respectively.

OK, now let’s re-analyze this circuit as having a negative logic output. In other words, we want to know

what logic function is being executed if the output is interpreted as negative logic. The first step in

doing this is to redraw the gate such that there is a bubble on the output. We need to replace the original

AND gate with an equivalent gate; when we replace it with an equivalent gate, we are officially not

changing the circuit in any way.

Figure 22.14(c) shows that the equivalent gate form for an AND gate is the OR form of an AND. Note

that once we replace the gate and the bubble appears on the output, we rewrite the output of the gate to

show that it is negative logic. The inputs to the new gate form need some modification also. The new

gate form is going to perform an OR function when both of the two gate inputs are provided in negative

logic. This requires that we rewrite the input logic levels in forms that reflect the negative logic levels.

The B input is positive logic and the inverter changes it to negative logic; for this input, we do not need

to perform any modifications. The A input is also positive logic but needs to be in negative logic as

directed by the bubbled input to the gate. Since there is no inverter on this input, the approach we’ll take

is to rewrite the signal with an equivalent signal name as shown in Figure 22.14(c). The equivalent

signal names contains a polarity indicator that indicates the gate receives a negative logic signal as

requested. Figure 22.14(c) shows the resulting equation below the circuit diagram.

Figure 22.15 shows another example of mixed logic analysis. This example is slightly different in that

the inputs are in a true mixed logic form: the A and B inputs are in negative and positive logic forms,

respectively. Once again, there is a question of the output level of the circuit so this example will once

again examine both cases of output logic levels.

Digital McLogic Design Chapter 22

 - 455 -

))(()(LBALF))(()(HBAHF

(a) (b) (c)

Figure 22.15: An example of mixed logic analysis.

The circuit in Figure 22.15(a) has two inputs, one input both positive and negative logic. Since the

output level of the device is not stated, let’s analyze this problem assuming the output logic level is

asserted high and then re-analyze it as asserted low. The circuit shown in Figure 22.15(b) assumes the

output is asserted low, which is the implication from the original drawing of the gate (because of the

bubbled output of the gates). In this case, the gate provides an OR function with an asserted low output

under the conditions that the two inputs are positive logic. Since the A input is negative logic, we must

re-write it in positive logic form in order for us to know what logic function the gate is performing; this

is done by using an equivalent signal for the A input. The B input is in positive logic but has its logic

level changed to negative logic by the inverter. Once again, we rewrite the negative logic signal for B in

positive logic form using equivalent signals. Once the two inputs are both in positive logic forms, we

satisfy the gate inputs and we can then write the equation for the circuit (shown under the circuit in

Figure 22.15(b)).

But what if the output was actually a positive logic output? We first need to represent that condition

with a gate that has no bubble on the output; we do this by using an equivalent gate form for the NOR

gate as listed in Figure 22.15(a). In this case, the equivalent gate is the AND form of a NOR gate as

shown in Figure 22.15(c). This gate performs an AND function with a positive logic output if the two

inputs are in a negative logic format. The A input requires no modification because it is already in

negative logic format. The B input is originally in positive logic format but the inverter changes the

logic level to negative logic. Once the two inputs to the circuit are in negative logic forms, we can write

the equation performed by the gate.

Note that in both of the two previous examples we were given the choice of how to interpret the output

of the circuit. The analysis of the circuit entailed using equivalent gates and equivalent signals in order

to discern the logic function performed by the gate. Here are a few key things to notice about this form

of analysis.

 The output logic level always matched the gate output level. In other words, if there is a

bubble on the output of the gate, the gate is providing a negative logic signal. If there is not

bubble on the gate output, the gate is providing a positive logic signal.

 We only used the polarity indicators in the final equation for the output; we did not carry

around the polarity indicators for the internal signals. The assumption made here is that we

matched all the interior logic levels so there is no need to include them in the final equation.

 In the final equation, the polarity indicators match. If they did not match, the equation would

not make sense; it would not really be an equation. It would be evil confusion.

 Although we only had one circuit, we seemed to have generated two equations from it. This

is true because we base the two final equations for these circuits on our interpretation of the

circuit’s output. In other words, depending on how we interpreted the logic level of the

Digital McLogic Design Chapter 22

 - 456 -

circuit output, we were able to consider the function as implementing two different

functions. The reality is that the two equations have sort of a complementary relationship

(think DeMorgan’s theorem).

Figure 22.16 shows a slightly more complicated example that is similar to the previous example. Have

no fear; the analysis approach is the same as the simple gate: match the logic levels to the gate inputs

and outputs using equivalent gates and equivalent signals. The explanation of this example is also

similar to the previous example, so we omit the bloviated description.

Figure 22.16: A slightly more complicated mixed logic example.

))](()[()(LDCBALF))(()(HCDBAHF

(a) (b)

Figure 22.17: The total mixed logic analysis approach.

Up to now, we have been analyzing mixed logic circuits. Let’s switch to the opposite approach and

design some circuits based on mixed logic. The following examples provide such a design problem.

Example 22-1:

Design a circuit that implement the following function: DBDCADCBAF),,,(

For this problem consider the A and B inputs and the output as asserted low; all other

inputs are positive logic. Implement this function using any type of gates.

Digital McLogic Design Chapter 22

 - 457 -

Solution: The first thing to do with this solution is to list the parameters in DPI form. We represent the

negative logic signals by A(L), B(L); we represent the F output as F(L). We represent the two positive

logic signals by C(H) and D(H). The best approach to problems such as these is to start at the output

and work backwards. The following verbage shows this step-by-step approach.

Step 1: Draw and label the output. Since we know

the output is asserted low, draw a bubble and label

it in such a way as it support the original problem

description.

Step 2: Draw a gate such that it satisfies the logic

function requested by the equation given in the

problem description. In this example, the required

logic function is an OR function so we draw a gate

that looks something like an OR gate. Since this

example does not specify which type of gates to

use, we’ll use a NOR gate which provides an OR

function with a negative logic output.

Step 3: The other part of the equation includes two

product terms. For this problem, the product terms

can be implemented with some form of AND

gates. Since this problem did not restrict the type

of gates, choosing an AND form of an AND gate

is sufficient. What makes an AND gate appropriate

is that the input to the OR gate is expecting

positive logic inputs (note the absence of bubbles

on the input). The AND gates provide an AND

function with positive logic outputs. The final

word is that the bubbles (or lack there of in this

case) match and every thing is happy up to now.

Step 4: We’re now ready to assign some logic for

the inputs to the AND gates. We’ve written the

logic that the AND gates are expecting based on

the original equation provided by the problem.

Note that since the AND gates are expecting

positive logic inputs, we listed all of the inputs in

positive logic form.

Step 5: In this step, we’ve included the input

signals with the logic levels as stated in the input

problem. Recall that A and B are provided in

negative logic form while C and D were positive

logic. The dotted lines mean nothing in particular;

we draw them to refer to what each AND gate

needs relative to the original equation and the logic

levels of the inputs from the outside world.

Digital McLogic Design Chapter 22

 - 458 -

Step 6: From the previous step, you can see that

some of the input signals are not in the correct

logic form as required by the AND gates. For these

cases, an inverter is required in order to switch the

logic levels. Note that in some cases, we have

switched the logic levels directly and in other

cases, we have rewritten the signals using

equivalent signal forms.

One of the key elements in the previous problem is that we had the luxury of using any type of gate we

could in the implementation. Let’s redo the previous problem, but this time restrict our gate usage to

NOR gates and inverters. As you’ll see in the section on circuit forms, we usually need to implement

functions using only one type of gate.

Example 22-2:

Design a circuit that implement the following function: DBDCADCBAF),,,(

For this problem consider the A and B inputs and the output as asserted; all other inputs are

positive logic. Implement this function using only NOR gates and inverters.

Solution: We’ll take a few short cuts in this problem since we already choose a NOR gate for the output

stage of this circuit in the previous problem.

Step 4: For this problem, we jump in at Step

4 because the first three steps are the same as

the previous problem. The difference in this

problem is that we need to choose NOR gates

for the input gates rather than the AND gates

of the previous problem. The key here is that

we need to choose a NOR gate that performs

an AND function. Lucky for us, we can

choose the AND form of an NOR gate. This

gate performs an AND function if the inputs

are provided in a negative logic format. The

diagram shows the signal requirements as

they relate to the original problem. Note that

all of the polarity indicators on the signals

have been listed as L as required by the gate

inputs.

Digital McLogic Design Chapter 22

 - 459 -

Step 5: This step is mostly a bookkeeping

step. We need to make sure that we align the

provided signals and their logic levels to the

function we’re implementing. We list the

input requirements of the signal we’re

implementing on the inputs of the NOR

gates.

Step 6: The last step is matching the logic

levels of the provided signals to those of the

require function.

There is something massively important to note in these previous two examples. Although we

essentially did the same problem twice, we ended up with two different solutions. One of the good

things about the second solution is that it uses fewer devices than the first solution. One of the distant

morals of this story is that you can tweak the gates around and end up with many different equivalent

solutions but some of the solutions can be implemented at a lower cost than others
267

. This is somewhat

cool. Well, at least some people think it’s cool.

Example 22-3: Generic Switch Controller

Design a circuit that controls an unspecified output according to the following description.

If the MASTER_OVERRIDE switch is asserted, the output is always asserted. Otherwise,

if the LOCAL_OVERRIDE switch is asserted, the output is also asserted. If both the

override switches are not asserted, the output is only asserted when SW1 and SW2 are both

asserted. For this problem, consider the output to be active low. The two override switches

are active low also; SW1 and SW2 are active high. Specify the solution using POS form.

Solution: This problem is similar to other switch problems you’ve done but with the twist added of

working with both negative and positive logic. Since there are not too many inputs, you can take the

truth table approach to designing this problem. Figure 22.18 shows the empty truth table.

267

 It another version of the minimum cost concept idea as previously discussed

Digital McLogic Design Chapter 22

 - 460 -

MO LO S1 S2 F

0 0 0 0

0 0 0 1

0 0 1 0

0 0 1 1

0 1 0 0

0 1 0 1

0 1 1 0

0 1 1 1

1 0 0 0

1 0 0 1

1 0 1 0

1 0 1 1

1 1 0 0

1 1 0 1

1 1 1 0

1 1 1 1

Figure 22.18: Truth table for design example.

The problem with this problem is that we need to deal with mixed logic. Although there are many

approaches to dealing with mixed logic, the approach we’ll take here is somewhat more straight-

forward than other approaches. Since we’re more used to dealing with positive logic, let’s convert the

negative logic signals to positive logic before we assign the output values. We’ll also convert the

negative logic output to positive logic. Once we’ve specified the output, we’ll complement it before we

generate the subsequent logic. We’ll not have to do anything with the inputs at that point since the

inputs still reflect the order (but not the numbering) required to use a truth table.

Digital McLogic Design Chapter 22

 - 461 -

!MO !LO S1 S2 !F

1 1 0 0 1

1 1 0 1 1

1 1 1 0 1

1 1 1 1 1

1 0 0 0 1

1 0 0 1 1

1 0 1 0 1

1 0 1 1 1

0 1 0 0 1

0 1 0 1 1

0 1 1 0 1

0 1 1 1 1

0 0 0 0 0

0 0 0 1 0

0 0 1 0 0

0 0 1 1 1

!MO !LO S1 S2 F

1 1 0 0 0

1 1 0 1 0

1 1 1 0 0

1 1 1 1 0

1 0 0 0 0

1 0 0 1 0

1 0 1 0 0

1 0 1 1 0

0 1 0 0 0

0 1 0 1 0

0 1 1 0 0

0 1 1 1 0

0 0 0 0 1

0 0 0 1 1

0 0 1 0 1

0 0 1 1 0

(a) (b)

Figure 22.19: The modified truth tables with negative (a) and positive (b) logic outputs.

The final logic we’re looking for is specified in Error! Reference source not found.(b). Once you toss

the column for F into a truth table, you’ll arrive at the POS equation shown in Error! Reference source

not found..

)21)((SSLOMOF

Figure 22.20: The final equation for this problem.

Digital McLogic Design Chapter 22

 - 462 -

Chapter Summary

 The concept of mixed logic is based upon the “action” state of a digital signal. In all cases, either

the ‘1’ or ‘0’ state is considered to be the action state if a digital signal. If a ‘1’ is considered the

action state, the design is considered to be positive logic while if the ‘0’ is the action state, then the

design is considered to be negative logic. A mixed logic system is a digital system that uses both

negative a positive logic in the design.

 Most gate-level circuits deal with mixed-logic concepts at some level. Although mixed logic

concepts are often initially confusing the digital designers, having a basic understanding of the

mixed logic is generally enough for survival in digital design land.

 Logic levels in digital circuits are represented by either the Positive Logic Convention (PLC) or

Direct Polarity Indicators (DPI). Logic levels in a circuit are often referred to as assertation levels.

Digital McLogic Design Chapter 22

 - 463 -

Chapter Exercises

1) Write an equation for F(H) that describes the following circuit. Put your answer in DPI form.

2) Implement the following equation using any type of gate and inverters. Minimize the device count

in your implementation. E)](L)DC)(BA[(F(L) . Consider the inputs and outputs to be:

A(H), B(L), C(H), D(H), E(L), F(L).

3) Write an equation for F(W,X,Y,Z) in NAND/NAND form.

4) Write an equation for F(L) that describes the following circuit using DPI.

5) Draw a circuit that implements the following function:)](H)C A)(D B A([F(H) .

Consider the inputs to be: A(L), B(L), C(H), D(L); use only standard gates and inverters in your

solution.

Digital McLogic Design Chapter 22

 - 464 -

6) Without altering the function implemented by the circuit below, redraw the circuit using only OR

gates and inverters. Minimize device count where possible.

7) Using only NAND gates and inverters, draw a circuit that implements

CD)(H)BAB(F(H) . Consider the inputs and outputs to be: A(L), B(L), C(L), D(H), F(H).

8) Without altering the function implemented by the circuit below, redraw the circuit using only

NAND gates and inverters. Minimize device count where possible.

9) Using only NOR gates and inverters, draw a circuit that implements CD)(L)BBA(F(L) .

Consider the inputs and outputs to be: A(L), B(H), C(L), D(H), F(L).

10) Draw a circuit that implements the following function: BC)(L) DBA(F(L) . Consider the

inputs to be: A(H), B(L), C(L), D(L); use only standard gates and inverters in your solution.

Digital McLogic Design Chapter 22

 - 465 -

Design Problems

1) A logic network is to be designed to implement a seat belt alarm that is required on all new cars. A

set of senor switches is available to supply the inputs to the network. One switch will be turned on

if the gear shift is engaged (not in neutral). A switch is placed under each front seat and each will

turn of if someone sits in the corresponding sear. Finally, a switch is attached to each front seat

which will turn on if and only if the seat below is fastened. An alarm buzzer is to sound (LED

display light) when the ignition is turned on and the gear shift is engaged, provided that either of

the front seats is occupied and the corresponding seat belt is not fastened.

Alarm (sound) - A(H)

Ignition (on) – I(L)

Gearshift (engages) – G(L)

Left Front Seat (occupied) – LFS(H)

Right Front Seat (occupied) – RFS(H)

Left Seat Belt (fastened) – SBL(H)

Right Seat Belt (fastened) – SBR(H)

2) There are four parking slots in the Acme Inc. executive parking area. Each slot is equipped with a

special sensor whose output is active low when a car is occupying the slot. Otherwise, the sensor’s

output is at a high voltage. You are to design and draw schematics for a decoding system that will

generate a low output voltage if and only if there are two (or more) adjacent vacant slots.

 - 467 -

23 Chapter Twenty-Three

(Bryan Mealy 2012 ©)

23.1 Chapter Overview

Back in the dark ages, the K-map was the primary method used for reducing Boolean equations.

Although the practical use of K-maps is limited by the number of input variables in the function, the use

of map entered variables (MEVs) could partially bypass this limitation under certain conditions. The

use of map entered variables does have some interesting uses and they are still commonly used to

describe the operation of many digital integrated circuits. While map entered variables are not too to

hard figure out by staring at them, an appropriate background is rather nice. This chapter provides that

background.

Main Chapter Topics

 MAPPED ENTERED VARIABLES: This chapter also introduces the notion of map

entered variables. Although some of the topics associated with map entered

variables are obsolesced, they do form the underlying theme for several other

subtopics discussed in this chapter including K-map compression and implementing

functions using K-maps.

 MUX-BASED FUNCTION IMPLEMENTATION: Boolean functions can be

implemented in many different ways and with many different devices. A MUX can

also be used to implement functions; the method used to implement these functions

is somewhat related to the notion of mapped entered variables.

Why This Chapter is Important

This chapter is important because it provides the theoretical foundation for using and

understanding map entered variables.

23.2 Map Entered Variables

Without doubt, map entered variables (MEVs) used to be an important topic in digital design. Back in

the days when a digital design course was mostly paper designs, MEVs were more important because

they provided a topic that was easy to test students on. In current digital design courses where students

are actually implementing real circuits (using VHDL modeling), the topic of MEVs is less applicable.

But it’s important enough to require that you have a few MEV skills. Also, it builds your familiarity and

Digital McLogic Design Chapter 23

 - 468 -

skills with K-maps. In summary, this is an important topic; you’ll realize this one day if you continue

onwards into digital design.

MEVs are, as the name implies, variables that are entered directly into a K-map. Up until now, we have

only entered 1’s and 0’s into K-maps. One of the major drawbacks of a K-map is the fact that once your

function in question has more than four variables, your K-map becomes real ugly and you start

regretting ever studying digital design. Using MEVs somewhat mitigates this problem. This is of course

not a great justification because in reality, a computer with the proper software will do a better job of

reducing functions than you and your K-maps.

To develop these ideas, consider a three variable K-map with input variables A, B, and C. A general

expression for such a K-map in standard SOP form can be written as shown in Equation (a) of Figure

23.1. If we AND both sides of the function with the Boolean variable F, no algebra rules are violated

and we preserve the inequality. Figure 23.1 shows the resulting equation. From the Equation in Figure

23.1(b), we can now substitute in the actual values of a given function for the variables F that appear as

part of the product terms on the left-hand side of the equation. For this example, we’ll use the function:

)6,5,3,2(F . The result of these substitutions appears in Equation (c) of Figure 23.1.

From this point, we can massage the resulting equation to the new look of Equation Figure 23.1(d).

Note that in Equation (d) every value of F is represented but we’ve factored out the A and B terms.

Using this notation, the AB-type terms are referred to as sub-minterms and include every possible

combination of the two most significant variables from the associated truth table. Equations Figure

23.1(e) and Figure 23.1(f) are derived by grinding out the math associated with the non-sub-minterm

expression. The final equation presented in Figure 23.1(f) presents a combination of both the sub-

minterms and the MEV terms (the MEV terms are shown in the square brackets).

(a) ABCCABCBACBABCACBACBACBAF

(b) ABCFFCABCFBAFCBABCFAFCBACFBAFCBAFFF

(c))0()1()1()0()1()1()0()0(ABCCABCBACBABCFACBACBACBAF

(d))]0()1([)]1()0([)]1()1([)]0()0([CCABCCBACCBACCBAF

(e)]0[]0[][]00[CABCBACCBABAF

(f)][][]1[]0[CABCBABABAF

Figure 23.1: The derivation of the sub-minterm and MEVs.

The results from the derivation shown in Figure 23.1 are typically not the approach we use to generate

MEVs. Figure 23.2 shows a better way to generate MEVs, although this is still not the best way. Note

that Figure 23.2 was originally the truth table associated with the function in the previous derivation.

This truth table is then divided into two-row pairs; each of the two-row pairs in the truth table is

associated with a sub-minterm. Note that for each of the two-row pairs, the A and B values are

identical. Be sure to note that these values are associated with a 2-bit binary count. The column labeled

“MEV” shows the MEVs associated with this example.

The example of Figure 23.2 was carefully construction to show each of the four possibilities for the

MEVs. The approach we’re taking in this truth table is to make the C variable into an MEV. This

requires that we draw upon the relationship between the C and F columns in the truth table. In this

manner, there are only four possible MEVs as shown in the MEV column of Figure 23.2: “0”, “1”, “C”,

Digital McLogic Design Chapter 23

 - 469 -

and a complemented “C”. From this point, it should be clear that we can enter the MEVs into a two-

variable K-map. Figure 23.2 (b) shows the resulting K-map.

(a) (b)

Figure 23.2: A truth table shown MEVs and sub-minterms (a) and the associated 2-variable truth

table.

The technique of generating MEVs from a truth table as shown in Figure 23.2 works fine for the least

significant variable in the truth table. We can use a better technique to convert an input variable into a

MEV. There is a one interesting thing about the K-map shown in Figure 23.2(b) that is worth

mentioning here. Although this K-map appears the same as any other 2-variable K-map that you’ve

worked with, it is actually significantly different.

With a normal K-map, each cell represents one output value. Each cell in the K-map of Figure 23.2(b)

now represents two output values as you can see from Figure 23.2(a). Another way to look at this is that

every cell in the K-map of Figure 23.2(b) is now a miniature K-map all its own; each of the mini-K-

maps that are represented by these cells are one-variable K-maps. While we have never had the need to

work with a one-variable K-map, such a K-map would contain two cells. In other words, the K-map of

Figure 23.2(b) is actually comprised of four two-variable K-maps. This is somewhat strange but rather

cool at the same time.

23.2.1 Karnaugh Map Compression

The term K-map compression comes from the fact that when generating MEVs, the resulting K-map

shrinks by at least one variable. Shrinking the K-map is one of the great advantages of using K-maps in

that you suddenly have the ability to reduce a six-variable K-map down to a manageable size (such as a

four-variable K-map). You saw this compression in the example in Figure 23.2. What we want to do

now is present a technique that we can use to compress a K-map for any variable instead of just the

least significant variable as was done in the Figure 23.2 example.

For this example, let’s compress the function shown in Figure 23.3. There is nothing special about this

function; it’s just another generic function used for the sake of this example. The approach we’ll take in

Digital McLogic Design Chapter 23

 - 470 -

this example is to compress this function for each of the input variables. Keep in mind that although we

present this technique for a 3-variabl K-map, it works great for K-maps of any reasonable size
268

.

A B C F

0 0 0 0

0 0 1 1

0 1 0 1

0 1 1 0

1 0 0 0

1 0 1 0

1 1 0 1

1 1 1 1

Figure 23.3: A generic function we’ll use to describe the K-map compressing technique.

The heart of this technique is to use the K-map to identify the sub-minterms. Once we identify the sub-

minterms, they can be easily placed into a K-map. The one thing to keep in mind when using this

technique is that there are only the four possibilities presented in the example of Figure 23.2: ‘0’, ‘1’,

the MEV, and a complemented MEV.

Example 23-1

Compress the K-map of Figure 23.3 for the C variable.

Solution: The first step in the solution is to identify the sub-minterms. Figure 23.4(a) shows these sub-

minterms using dotted lines. For the C variable, the sub-minterms are associated with the A and B

variables. Another way to look at this is that the dotted lines are locating all the product terms

associated with standard K-map groupings of the sub-minterm variables. This means that in Figure

23.4(a), the dotted lines represent the four possible AB-type K-map grouping. Yet another way to view

this approach is identify groupings that cut the boundaries of the variable you’re compressing. In Figure

23.4(a), the dotted lines include the decimal equivalent of the binary number associated with the sub-

minterm variables. These decimal numbers function as indexes into the compressed K-map. Figure

23.4(b) shows the compressed K-map with MEVs entered.

(a) (b)

Figure 23.4: A truth table with sub-minterms (a) and the associated 2-variable truth table.

268

 We still fight hard to avoid working with K-maps of more than four variables.

Digital McLogic Design Chapter 23

 - 471 -

The important thing to keep in mind in this problem is that each of the sub-minterms in Figure 23.4(a)

generates a Boolean equation. Table 23.1 shows these four equations. Once again, these equations

represent the four possibilities. Keep in mind that the outputs associated with both the complemented

and uncomplimented C terms comes from the K-map of Figure 23.4(a). The truth is that you may want

to generate these equations for the first couple of times you compress a K-map. After that, you’ll

probably develop your own technique for employing this approach that is more direct than writing out

the equations for every sub-minterm.

Additionally, this technique works for the notion of compressing K-maps for more than one variable at

the same time. You may actually want to do this someday; it used to be popular, but you don’t see it

much anymore. Keep in mind that if you’re compressing a K-map for two variables, you’ll be

generating two-variable K-maps for each sub-minterm. It’s fun stuff, sort of.

Sub

minterm #

Sub

minterm

Sub-minterm

Equation

Final Term

0 BA 10 CC C

1 BA 01 CC C

2 BA 00 CC 0

3 AB 11 CC 1

Table 23.1: Boolean equation explanation of Figure 23.4.

Example 23-2

Compress the K-map of Figure 23.3 for the B variable.

Solution: The first step is to identify the sub-minterms. In this example, the sub-minters are associated

with the A and C input variables. Figure 23.5 shows the associated K-map-type groupings that are

associated with these sub-minterm variables. The transferring of the MEVs from the sub-minterm

grouping to the compressed K-map is slightly more complicated in this example than it was for

compressing the K-map for the C variable in the previous example, but still doable. Since some of the

sub-minterm groupings are broken off the K-map in Figure 23.5, confusion may set in; try hard to

prevent this. We can also generate Boolean equations similar to those of Table 23.1 for this example.

Digital McLogic Design Chapter 23

 - 472 -

Figure 23.5: K-map compression for the B variable of a 3-input K-map.

Example 23-3

Compress the K-map of Figure 23.3 for the A variable.

Solution: This example is once again similar to the previous two examples. Once again, the key to

performing this type of compression is the use of the sub-minterms indexes to generate positional

information into the compressed K-map. Figure 23.6 shows two flavors of K-maps for the solution of

this problem. The overall approach here is to do what you need to do to compress the K-map. There are

many ways to approach this problem; choose the way that makes the most sense to you.

Figure 23.6: A truth table shown MEVs and sub-minterms (a) and the associated 2-variable truth

table.

You can use this K-map compressing technique to compress four-variable K-maps also. There are some

exercise problems that do this but no examples are provided here. Another thing worth noting is that

you can compress a K-map that was previously compressed by also applying this technique. In this

case, each of the K-map cells represents more than two non-compressed K-map cells. This is not a

complicated topic but it does not have much use in modern digital design.

Digital McLogic Design Chapter 23

 - 473 -

23.3 Implementing Functions Using MUXes

Implementing functions using actual digital devices has been the name of the game for many years now.

Back in the old days, before there were programmable logic devices that could do just about anything,

people implemented functions using discrete logic. If you ever have had the opportunity to rip apart old

electronic devices, you’ll generally come across boards that contained an exceeding number of

integrated circuits, or ICs. These ICs were generally digital devices of various sorts; and often times

they were simple devices such as discrete logic gates. The truth was that this flavor of design was

tedious and time consuming and the resulting circuits ate up a lot of power. A partial solution for this

problem was to implement functions using devices such as MUXes. Since some of the required logic

was already built into the MUX (recall the underlying circuit diagram for a MUX), these circuit

implementations required less external circuitry.

However, things have changed these days. Programmable logic devices are massively powerful and can

easily implement even the most complicated digital devices. The need to implement functions on

devices such as MUXes is obsolete. We’ll take a brief look at it here because the topic does arise

occasionally out there in digital design land, particularly during a job interview with dinosaur

interviewers. It does have some relation to the compressed K-map, which provides an opportunity to

practice those types of problems.

A MUX is a selection device; under the control of the selector inputs, one of the several inputs appears

on the single output. The approach for having a MUX implement a function is to have the function’s

independent variables connected to the selector inputs of the MUX and to have the output variable

connected to the other inputs of the MUX. Connecting the MUX in this way allows the selector

variables to select one of the inputs (which are associated with the function’s output) to appear on the

output of the MUX. The best way to see this is through a simple example. We’ll borrow the example we

were working with in the section on compressed K-maps.

Example 23-4

Implement the following function on a 8:1 MUX:)6,5,3,2(),,(CBAF

Solution: The compact minterm form of the function indicates where the 1’s of the circuit live. For this

problem, we simple need to connect power to the 2, 3, 5, and 6 inputs on the 8:1 MUX. Inputs that are

not connected to power are the 0’s of the circuit and are connected to ground. Figure 23.7 shows the

final circuit. The triangular symbol on the bottom is a ground signal which is generally taken to be the

‘0’ value in digital circuit land. The bent-T is the power connection and in this case is labeled “Vcc” for

mostly historical reasons.

The way this circuit works is that the independent variables (A, B, & C) are used to control which of the

MUX’s eight data inputs will appear on the MUX’s single output. For each of the minterms that

“implicate” the function (meaning the rows in the associated truth table that contain a ‘1’), the MUX

input with the same numeric index as the truth table row is connected to a ‘1’; all the other MUX data

inputs are connected to ‘0’. The thought here is that I can now use one digital device, namely a MUX,

to implement this function as opposed to a bunch of logic equations and all that stuff. They really used

to do this in real life; I’m not kidding.

Digital McLogic Design Chapter 23

 - 474 -

Figure 23.7: A MUX-based implementation of a function.

Example 23-5

Implement the following function on a 4:1 MUX:)6,5,3,2(),,(CBAF . Provide three different

solutions to this problem by using AB, AC, and BC and the selector inputs to the 4:1 MUX.

Solution: The trick to this flavor of problem is to realize that there are three independent variables and

only two control variables on the 4:1 MUX. The way around this is to compress the K-map before

implementing it on the MUX: the compressed variable then appears as a MEV on the inputs to the

MUX. Herein lays the connection between K-map compression and implementing functions on

MUXes. Instead of actually redoing this problem, we’ll pull the solutions directly from Figure 23.4,

Figure 23.5, and Figure 23.6. Figure 23.8 show the final MUX-based function implementations for this

problem.

(a) (b) (c)

Figure 23.8: A MUX-based implementations for three different sets of control variables as

specified in Example 23-5.

OK, this stuff is somewhat interesting. This is just a brief view of the material. In reality, it is possible

to configure MUXes in this way in order to implement functions of any number of variables. One

notion that we don’t cover in this text is the fact that you can create a 256:1 MUX using smaller

Digital McLogic Design Chapter 23

 - 475 -

MUXes (such as 4:1 and 8:1 MUXes). If there ever was a textbook definition of academic exercises,

this use of MUXes could actually be it
269

.

Finally, this stuff can be useful in special situations. The notion you may be getting from reading this

text is that functions are similar to each other in the sense that the independent variables show up

relatively often in the final expression. This is not always true. In some cases, you may have a function

of ten variables, which sounds rather complicated. In reality, six of those variables may appear only

once in the associated truth table. In this case, it is relatively easy to represent the function with a 4-

input truth table and/or K-map with the other six variables entered as MEVs. It happens, though, we’ll

not go into it in this chapter.

269

 This may not be 100% true. Because PLDs often implement functions via look-up tables, there is a strong

possibility that the writers of PLD design tools may be interested in this knowledge. From a digital designer’s

standpoint, you’ll probably never even hear mention of the topic ever again.

Digital McLogic Design Chapter 23

 - 476 -

Chapter Summary

 Map entered variables, or MEVs, provide another method of representing functions and describing

the operation of digital hardware. A MEV is a variable that associated with more than one cell in a

K-map, or equivalently, more than one row in a standard truth table. One main use of MEVs is to

effectively reduce the number of independent variables in for a given function which increases the

possibility that a K-map reduction can be applied.

 MUXes can be used to implement functions. In these cases, the independent variables act as the

control inputs to the MUX while the MUX output represents the function output. K-map

compression facilitates the use of MUXes to implement functions. In real digital circuits, functions

are rarely implemented on MUXes but the topic serves as yet another aid to understanding K-maps.

Digital McLogic Design Chapter 23

 - 477 -

Chapter Exercises

1) Compress the K-map on the left for variable B.

2) Compress variable B and draw the corresponding Karnaugh map for the following function:

 (1,2,4,5)C)B,F(A, .

3) Draw a circuit that implements the following function using only NAND gates and inverters.

4) Write a reduced equation in NAND/NAND form for the following circuit.

Digital McLogic Design Chapter 23

 - 478 -

5) The following timing diagram completely defines a function F(A,B,C) that has been implemented

on an 8:1 MUX. The control variables are A, B, and C (A is the most significant bit and C is the

least significant bit) and the output is F. Write an expression for this function in reduced

NAND/NAND form. Assume propagation delays are negligible.

6) The diagram on the lefts shows an implementation of a function F1(A,B,C,D) on an 8:1 MUX

using control variables of A, B, and C. Re-implement the F1(A,B,C,D) on the right MUX using

control variables A, B, and C.

7) Compress the K-maps represented by each of the following four functions. Compress each of the

four variables for each K-map.

a) (1,2,4,5) C)B,(A,F

b))(0,2,5,6,7 C)B,(A,F

c) ,15)(0,2,6,8,9 D)C,B,(A,F

d) 0,11,15)(5,6,8,9,1 D)C,B,(A,F

Digital McLogic Design Chapter 23

 - 479 -

8) Implement 15),10,11,12,(1,3,4,5,7D)C,B,F(A, on a 8:1 MUX with control variables

of:

a) ABC

b) ACD

c) BCD

d) ABD.

9) Implement)14,11,9,7,1,0(),,,(DCBAF on a 4:1 MUX with control variables of:

a) AB

b) BD

 - 481 -

25 Chapter Twenty-Five

(Bryan Mealy 2012 ©)

25.1 Chapter Overview

The previous chapter introduced the concept of state in digital circuits. The concept of “state” is

important when dealing with sequential circuits since the notion of state is refers to the bits a given

circuit is remembering. The previous chapter’s introduction to digital circuits was rather basic and not

overly useful in the real world, as you rarely see latches in modern digital design.

This chapter presents the notion of flip-flops, which are nothing more than latches with an added sense

of control. The notion of flip-flops is somewhat “dated” as modern digital design no longer uses all

flavors of flip-flops. However, the few flavors of flip-flops out there are arguably both interesting and

instructive so we happily delve into them in this chapter. Included in this said delving is the inclusion of

timing diagrams, which are probably more helpful to sequential circuits than they are to combinatorial

circuits. Finally, continuing on our path towards usefulness is the notion of using VHDL to model

memory. While not overly intuitive, the concept of inducing digital memory elements using VHDL is

not overly complicated.

Main Chapter Topics

 FLIP-FLOPS: This circuit describes the three basic types of edge-sensitive latches,

referred to as flip-flops.

 MEMORY REPRESENTATION USING VHDL: This chapter introduces and concept

of modeling storage elements in using VHDL. Modeling memory in VHDL is a

unique but a straightforward process.

 MODELING SYNCHRONOUS AND ASYNCHRONOUS SEQUENTIAL CIRCUIT INPUTS:

This chapter introduces the notion of modeling various flavors of inputs in the

context of modeling flip-flops using VHDL.

Why This Chapter is Important

This chapter is important because it describes the methods used to generate sequential

circuits using VHDL models.

25.2 Flip-Flops

While the latches we’ve been working with are inherently level-sensitive devices, a flip-flop is

essentially an edge-sensitive. Most of what you learned about latches transfers easily to flip-flops as

Digital McLogic Design Chapter 25

 - 482 -

flips-flops are nothing more than edge-sensitive latches. This means that the outputs of the flip-flop can

only change on an active-edge; so when you use the term “flip-flop” everyone knows it’s an edge-

sensitive device and not a level sensitive device.

When we derived the circuitry for the gated latch, we did so using an input referred to as the C input.

The reality is that in most sequential devices, there is an input that is commonly referred to as a clock

input. The edge-sensitivity in flip-flops is based on a clock edge. Some type of clock signal is thus an

input to all flip-flops, or at least the standard flip-flops that we’ll be dealing with.

Most digital logic texts include the derivation of the actual circuitry that creates the “edge sensitivity”,

so take a look if you’re totally bored. The circuitry that achieves the edge triggering is somewhat

complicated but is something we can skip over
270

 without too much worry, as we prefer to keep many

things abstracted to higher levels. The term edge-sensitivity in context of a clock signal means that the

output can only change on a rising edge or falling edge of the signal. Let’s now move into the land of

flip-flops.

There are three main types of flip-flops out there in digital-land: the D, T, and JK flip-flops. We’ll

provide some short definitions and derivations of each of these flip-flops in this section. It’s somewhat

instructive to see where these devices come from although you may never need to go there again.

25.2.1 The D Flip-Flop

The D flip-flop is probably the most commonly used flip-flop. The D stands for Data, so this is a data

flip-flop. The characteristic of a D flip-flop is that the output of the flip-flop follows the D inputs.

Figure 25.1(a) shows a schematic symbol for a simple D flip-flop. The new and possibly shocking thing

to notice about this symbol is the triangular shape on the CLK inputs. This triangle means that the

device is edge-triggered. More importantly, since there is no bubble attached to this triangle, the device

is a rising-edge-triggered (RET) D flip-flop. Had there been a bubble on the CLK input, this device

would have been a falling-edge-triggered (FET) device.

Figure 25.1(b) shows the characteristic table of the D flip-flop. What the characteristic table shows is

that the next state (Q
+
) of the flip-flop follows the D input to the flip-flop. By inspection of the

characteristic table, you can generate the characteristic equation shown in Figure 25.1(b). Figure 25.1(c)

shows the excitation table for the D flip-flop. From this table, you can see what the value of the D input

needs to be in order to force the listed state change to occur. Since this is a D flip-flop, the output

follows the D input.

270

 We’re not skipping it… we’re abstracting the concept to a higher level.

Digital McLogic Design Chapter 25

 - 483 -

D Q Q
+

0 0 0

0 1 0

1 0 1

1 1 1

DQ

Q Q
+
 D

0 0 0

0 1 1

1 0 0

1 1 1

(a) (b) (c)

Figure 25.1: The schematic symbol (a), characteristic table and characteristic equation (b), and

excitation table for the D flip-flop.

Figure 25.2 shows a timing diagram that demonstrates the operation of the RET D flip-flop shown in

Figure 25.1(a). The only times the outputs of this device can possibly change are on the rising edge of

the clock signal. Figure 25.2 uses dotted lines to show the rising edges of the clock across each listed

signal. The timing diagram must provide the initial state of the D flip-flop (Q) otherwise you would not

know the initial state of the device.

For the case of Figure 25.2, the initial state of the flip-flop is ‘0’. Since the D flip-flop is a sequential

circuit, the timing diagram must provide the initial value of the output. At the first rising edge, the D

input is a ‘1’ and the value of this input transfers to the output and becomes the official “state” of the

flip-flop. At the second rising edge, the D input is high once again so no state change in the flip-flop

occurs.

Note in Figure 25.2 that during the time interval between the first and second rising edges, the D input

changes twice. Changes such as these are ignored because the output can only change on the active

edge (rising-edge) of the clock. At the third rising edge, the D input is in a low state, which causes the

output of the flip-flop to change from high to low. At the fourth rising clock edge, the output is low

again and the flip-flop remains in a low state. At the fifth clock edge, the D input is high which in-turn

causes the state of the flip-flop to change from low to high.

Figure 25.2: An example timing diagram for the D flip-flop.

Digital McLogic Design Chapter 25

 - 484 -

25.2.2 The T Flip-Flop

The T flip-flop is another standard flip-flop out there in digital land. The T in flip-flop is referred to as a

toggle flip-flop because when the T input is a ‘1’, the output of the T flip-flop toggles state on the active

edge of the clock. If the T input is a ‘0’, the state of the flip-flop does not change. You should definitely

verify this verbal description of the T flip-flop with both the characteristic and excitation tables shown

in Figure 25.3.

Figure 25.3(a) shows the schematic diagram of the T flip-flop while Figure 25.3(b) shows the

characteristic table for the T flip-flop. Note that in the characteristic table, the output only changes state

when the T input is a ‘1’. Note that by inspection of the characteristic table, you can write the

characteristic equation associated with the T flip-flop (it sure does look like an exclusive OR function).

Figure 25.3(c) provides the excitation table of for the T flip-flop, which is a simple rearrangement of the

T flip-flop’s characteristic table.

T Q Q
+

0 0 0

0 1 1

1 0 1

1 1 0

QTQ

Q Q
+
 T

0 0 0

0 1 1

1 0 1

1 1 0

(a) (b) (c)

Figure 25.3: The schematic symbol (a), characteristic table and characteristic equation (b), and

excitation table for the T flip-flop (c).

Figure 25.4 shows a timing diagram that demonstrates the operation of the RET T flip-flop of Figure

25.3(a). Once again, the output of this device can only change on the rising clock edge, which are nicely

delineated in Figure 25.4. The initial state of the T flip-flop output Q is a ‘1’ as shown in the timing

diagram. At the first rising clock edge, the state of the T input is a ‘1’; this causes the output of the T

flip-flop to toggle state (thus the name toggle flip-flop). Note that the output of flip-flop transitions from

‘1’ to ‘0’ as a result of the rising clock edge and the fact that the T input is in a high state. On the

second clock edge, the output toggles again because the T input is once again at a high state. The

changes in value of the T input between the first and second clock edges have no affect on the state of

the flip-flop because the T flip-flop is only active on the rising edge of the clock. Since the T input is a

‘0’ at the third clock edge, the output of the flip-flop does not change state. On the third and fourth

clock edges, the output once again changes state because in both of these instances, the T input is

asserted.

Digital McLogic Design Chapter 25

 - 485 -

Figure 25.4: An example timing diagram showing the operation of the T flip-flop.

25.2.3 The JK Flip-Flop

The JK flip-flop is the final standard flip-flop that we’ll examine. No one really knows what exactly the

JK stands for but as you will see, the JK flip-flop shares many of the same operating characteristics as

the SR latch. Figure 25.5(a) shows the schematic symbol for the JK flip-flop while Figure 25.5(b)

shows the associated characteristic. We can generate the accompanying characteristic equation by

dropping the Q
+
 column of the characteristic table into a K-map.

The JK flip-flop operates as follows: there are four possible input combinations of the J and K

variables. For JK = “00”, the output of the flip-flop does not change state (hold condition). For JK =

“01”, the output of the flip-flop always resets (clear condition). For the JK = “10” condition, the output

of the flip-flop always sets (set condition). For the JK = “11” condition, the output of the flip-flop

toggles its current state. You should be able to see these actions from examining the characteristic table

of Figure 25.5(b).

You should also note from Figure 25.5(b) that the first three JK conditions are the same as the first three

conditions for the SR latch. The main difference here is that the JK flip-flop uses the JK = “11” input

condition to toggle the current output state of the flip-flop. Figure 25.5(c) show the excitation table for

the JK flip-flop. The important thing to note in this table is that the each of the four possible state

changes can be caused by two different input conditions on the JK inputs in a way that was similar to

the SR latch. For example, a state change of (0 → 0) occurs as a result of either a JK = “01” (reset

condition) or a JK = “00” (hold condition). The first column of Figure 25.5(c) lists these two conditions.

Digital McLogic Design Chapter 25

 - 486 -

J K Q Q
+

0 0 0 0

0 0 1 1

0 1 0 0

0 1 1 0

1 0 0 1

1 0 1 1

1 1 0 1

1 1 1 0

QK QJ Q

Q Q
+
 J K

0 0 0 -

0 1 1 -

1 0 - 1

1 1 - 0

(a) (b) (c)

Figure 25.5: The schematic symbol (a), characteristic table and characteristic equation (b), and

excitation table for the JK flip-flop.

A timing diagram shows the true operation of the JK flip-flop. The JK flip-flop of Figure 25.5(a) is a

RET device which means the JK flip-flop’s outputs can only change on the rising edge of the clock.

Another way of saying this is that the output transitions of this device are synchronized to the rising

edge of the clock. In order to provide a Q output waveform, you must be given the initial state of the Q

output. In the case of the Figure 25.6, the output is in a low state. At the first rising clock edge, the

output of the JK flip-flop toggles due to the fact that both the J and K inputs are ‘1’ (the toggle

condition for the JK flip-flop). At the second clock edge, JK = “00” which is the hold condition for the

flip-flop and thus no output conditions occur. At the third clock edge, the output is reset because of the

clear condition (JK = “01”) on the flip-flop inputs. The fourth clock edge finds that JK = “11” which is

yet another toggle condition and cause the flip-flop to change state. The fifth clock edge has no effect

on the state of the flip-flop due to the fact that despite the presence of a set condition (JK = “10”), the

flip-flop’s state is already at ‘1’.

Figure 25.6: An example timing diagram for the JK flip-flop.

Digital McLogic Design Chapter 25

 - 487 -

25.2.4 The Big D, T, and JK Flip-Flop Summary

Table 25.1 shows everything you were hoping not to know about flip-flops. In theory, it would not be

too tough for you to memorize this stuff. Such an endeavor would not be overly taxing in that these

devices simply make sense if you stare at them for a few minutes. Moreover, understanding the basic

operation of the standard flip-flops provides you with a solid foundation in sequential circuit design.

Type

Symbol

Characteristic Table

Characteristic

Equation

Excitation Table

D

D Q Q+

0 0 0

0 1 0

1 0 1

1 1 1

DQ

Q Q+ D

0 0 0

0 1 1

1 0 0

1 1 1

T

T Q Q+

0 0 0

0 1 1

1 0 1

1 1 0

QTQ

Q Q+ T

0 0 0

0 1 1

1 0 1

1 1 0

JK

J K Q Q+

0 0 0 0

0 0 1 1

0 1 0 0

0 1 1 0

1 0 0 1

1 0 1 1

1 1 0 1

1 1 1 0

QK QJ Q

Q Q+ J K

0 0 0 -

0 1 1 -

1 0 - 1

1 1 - 0

Table 25.1: The major characteristics of the D, T, and JK flip-flops.

25.3 VHDL Models for Basic Sequential Circuits

This section shows the some of the various methods used to model basic sequential circuits using

VHDL. This discussion is somewhat strange because we toss out a bunch of the ideas we’ve just been

working on as we switch over to modeling sequential circuits with VHDL. The truth is that, in general,

VHDL models sequential circuits at a higher level than the level we used to describe those circuits in

the previous sections. This is good because you’ll never need to use VHDL to model a simple latch on

the gate-level (as presented in the previous chapter). Although you’re hopefully well on your way to

understanding each of the three standard types of flip-flops, the approach we’ll take now is to limit our

discussion primarily to VHDL models for D flip-flops.

As you for sure know by now, VHDL is a massively versatile language based on its ability to describe

digital circuits. While it is possible and in some cases desirable to use dataflow models to describe

storage elements in VHDL, clocked storage elements such as flip-flops are best described using

behavior models. This fact should become more obvious as we examine a few VHDL models.

Digital McLogic Design Chapter 25

 - 488 -

25.3.1 Simple Storage Elements Using VHDL

The general approach to learning about simple storage elements in digital design is to study the

properties of a basic cross-coupled cell. Examining a simple model of a D flip-flop is the best approach

to learning how VHDL models simple storage elements. In other words, the study of VHDL

descriptions of storage elements starts at the D flip-flop. The VHDL examples presented are the basic

edge-triggered D flip-flop.

Example 25-1

Write the VHDL code that describes a D flip-flop shown on the

right. Use a behavioral model in your description.

Solution: Figure 25.7 shows the solution to Example 25-1. Listed below are a few interesting things to

note about the solution.

 The given architecture body describes the my_d_ff version of the d_ff entity.

 Because example requested the use of a behavioral model, the architecture body is comprised

primarily of a process statement. The statements within the process execute sequentially. The

process executes each time a change occurs in any of the signals in the process’s sensitivity list.

In this case, the statements within the process execute each time there is a change in logic level

of the D or CLK signals.

 The if statement uses the rising_edge() construct to indicate that changes in the circuit output

only on the rising edge of the CLK input. The rising_edge() construct is actually an example of a

VHDL function which has been defined in one of the included libraries. The circuit is

synchronous based on the given VHDL model; this means that changes in the circuit’s output are

synchronized to the rising edge of the clock signal. In this case, the action is a transfer of the

logic level on the D input to the Q output.

 The process has a label: dff. The VHDL language does not require this but including process

labels promotes self-commenting code and increases its readability and understandability.

Digital McLogic Design Chapter 25

 - 489 -

-- Model of a simple D Flip-Flop

entity d_ff is

 port (D, CLK : in std_logic;

 Q : out std_logic);

end d_ff;

architecture my_d_ff of d_ff is

begin

 dff: process (D,CLK)

 begin

 if (rising_edge(CLK)) then

 Q <= D;

 end if;

 end process dff;

end my_d_ff;

Figure 25.7: Solution to Example 25-1.

The D flip-flop is best known and loved for its ability to store (save, remember) a single bit. The way

that the VHDL code listed in Figure 25.7 is able to store a bit is not obvious, however. The bit-storage

capability in the VHDL is implied by the both the VHDL code and the way the VHDL code is

interpreted. The implied storage comes about as a result of not providing a condition that indicates what

should happen if the listed if condition is not met. We’ve been referring to this condition as the “catch-

all” condition. In other words, if the if condition is not met, the device does not change the current

value of Q and therefore must “remember” that current value.

The “remembering” of the current value, or state, constitutes the famous bit storage quality of a flip-

flop. If you have not specified what the outputs should be for every possible set of input conditions,

there will be conditions where the changes in the output are not defined. In these cases, the option taken

by VHDL is not to change the current output. By definition, if the inputs change to an unspecified state,

the outputs remain unchanged. In this case, the outputs associated with the previous set of inputs are

thought of as being “remembered”. VHDL uses this mechanism, as strange and interesting as it sounds,

to induce memory in VHDL. This is also why we were so careful to always provide a “catch-all”

condition for our previous VHDL models. It was the inclusion of the catch-all condition in our models

that assured us that we were not inducing memory elements
271

.

In terms of the D flip-flop shown in Example 25-1, the only time the output is specified is for that delta

time associated with the rising edge of the clock. The typical method used to provide a catch-all

condition in case the if condition is not met is with an else clause. A quick way to tell if you’ve

induced a memory element is to look for the presence of an else clauses associated with the if

statement. Once again, it is the else statement that provides the “catch-all” characteristic of the model.

The previous two paragraphs are vastly important to understanding VHDL; the concept of inducing

memory in VHDL is massively important to digital circuit design. By definition, the modeling of all

sequential circuits is dependent on this concept. This somewhat cryptic method used by VHDL to

induce memory elements is a byproduct of behavioral modeling based solely on the interpretation of the

VHDL source code. Even if you’ll only be using VHDL to design combinatorial circuits, you need to

understanding these concepts.

271

 Recall that we have mostly dealt with combinatorial circuits until now. Since the circuits are combinatorial,

provided a catch-all statement assures that we will not generate a latch which ensures our combinatorial circuit is

actually combinatorial.

Digital McLogic Design Chapter 25

 - 490 -

One of the classic warnings generated by the VHDL synthesizer is notification that your VHDL code

has generated a “latch”. Despite the fact that this is “only a warning”, if you did not intend to generate a

latch, you should strive modify your VHDL code in such as way as to make this warning go away.

Assuming you did not intend to generate a latch, the cause of your problem is that you’ve not explicitly

provided an output state for all the possible input conditions. Because of this, your circuit will need to

remember the previous output state so that it can provide an output in the case where you’ve not

explicitly listed the current input condition.

25.3.2 Synchronous and Asynchronous Flip-Flop Inputs

The flip-flops we’ve described up to this point have been what are considered synchronous circuits. In

the context of flip-flops, “synchronous” refers to the fact that the changes in the state of the flip-flop are

synchronized to the active clock edge. In the case of the flip-flops we’ve been developing, changes in

the state of the flip-flop were synchronized to the rising clock edge. In reality, most flip-flops out there

in digital land have the ability to change state either synchronously (generally based on the clock input)

or asynchronously. For the asynchronous case, some inputs can cause state changes that are not

synchronized with the clock. In this section, we want to look at a few of those cases.

Dealing with asynchronous flip-flop inputs is somewhat troubling because the actual circuitry that

implements these asynchronous features is beyond the scope of an introductory digital design course.

This is OK though because we can then abstract the concept to a higher level and deal with it there. The

D, T, and JK flip-flops we’re dealing have inputs that force the state of the flip-flop to change at a time

other than on the active clock edge. In other words, the effect that these asynchronous signals have on

the flip-flops occurs immediately, regardless of whether a clock edge is present or not.

As you would probably guess, since there are two different things you can do to a flip-flop’s output,

namely make it a ‘1’ or make it a ‘0’ (“set” or “clear”, respectively). Not surprisingly, there are usually

two different asynchronous inputs to a flip-flop: the set and reset input. These inputs are usually active

low which means when the asynchronous input signal is low, some action occurs on the output of the

flip-flop. Flip-flop diagrams use a bubble to indicate the logic level of the input. Most often, flip-flops

use an “S” to represent the input that asynchronously sets the state of the flip-flop and use an “R” to

represent the input that resets the state of the flip-flop. For the record, flop-flops sometimes list the set

input as a “preset”; the reset input is sometimes listed as a “clear” input. Let’s take a look at a few

examples of flip-flops with asynchronous inputs.

Example 25-2

Write the VHDL code that describes a D flip-flop shown

on the right. Use a behavioral model in your description.

Consider the R input to be an active-low, asynchronous

input that clears the D flip-flop outputs when asserted.

Solution: Figure 25.8 shows the VHDL model for this solution. The first thing you should notice about

this solution is that it is amazing similar to the VHDL model for the standard D flip-flop. There are a

few important items worth noting about this solution.

Digital McLogic Design Chapter 25

 - 491 -

 The R input is included in the process sensitivity list. If R was not included here, the flip-

flop would not operate properly (but it probably would synthesize).

 The associated VHDL code evaluates the reset input (R) before the CLK input. Because of

the sequential nature of the statements inside of process statements, if the first if clause

evaluates are true, the elsif clause is not evaluated and the statement associated with the if

clause is executed. What makes the R input of the flip-flop asynchronous is the fact that

the model evaluates the condition of the R signal before the CLK signal. In other words,

the R input has precedence of the CLK input in this case.

 The active low nature of the flip-flop is modeled by making the action state of R to be ‘0’

as shown in the conditional portion of the if clause. In other words, when R is ‘0’, the

output of the flip-flop resets if it is currently set.

-- RET D Flip-flop model with active-low asynchronous reset input.

entity d_ff_nr is

 port (D,R,CLK : in std_logic;

 Q : out std_logic);

end d_ff_nr;

architecture my_d_ff_nr of d_ff_nr is

begin

 dff: process (D,R,CLK)

 begin

 if (R = ‘0’) then

 Q <= ‘0’;

 elsif (rising_edge(CLK)) then

 Q <= D;

 end if;

 end process dff;

end my_d_ff_nr;

Figure 25.8: VHDL model of D flip-flop with active low asynchronous clear.

We can use our friend the timing diagram to model the operation of the flop-flop in Figure 25.8. Figure

25.9 shows a timing diagram associated with this example. Of course, we need to list a few fantastically

interesting things to note regarding this timing diagram.

 Since the R input is low at the start of the timing diagram, the output of the flip-flop is in

the reset state. Using the R input in this manner is typical in timing diagrams and should

be feature you always look for when asked to deal with timing diagrams.

 On the first rising clock edge, the D flip-flop acts as you expect. In this case, the model

ignores the R input because it is a ‘1’; the model then evaluates the other two inputs.

 Between the second and third clock edges, the R input goes low. Once this occurs, the

output immediately resets
272

. The R input returns to its non-active state (the ‘1’ state) soon

afterwards. Returning to the non-active state has no effect on the state of the flip-flop. This

is typically how synchronous set and reset inputs act on flip-flops.

272

 There is actually an associated propagation delay associated with this state transition but we’re still modeling

these flip-flops using an ideal model.

Digital McLogic Design Chapter 25

 - 492 -

 The timing diagram of Figure 25.9 has two reset “pulses”. Both of these pulses are

negative pulses (high-to-low-to-high) and both pulses cause the output of the flip-flop to

reset.

Figure 25.9: Timing diagram associated D Flip-flop with asynchronous active low clear.

Example 25-3

Write the VHDL code that describes a D flip-flop shown on

the right. Use a behavioral model in your description.

Consider the S input to be an active-low, synchronous input

that sets the D flip-flop outputs when asserted.

Solution: Figure 25.10 shows the solution to Example 25-3. There are a few things of interest regarding

this solution.

 You would not know from the block diagram that the S input is synchronous; the problem

(or datasheet or whatever) needs to state it directly.

 The S input to the flip-flop becomes synchronous by only allowing it to affect the

operation of the flip-flop on the rising edge of the clock. In other words, the S input only

acts on the flip-flop outputs on the active clock edge.

 On the rising edge of the clock, the S input takes precedence over the D input because the

model evaluates the state of the S input prior to examining the state of the D input. In an

if-else statement, once one condition evaluates as true, none of the other conditions are

checked. In other words, the D input transfers to the output only the rising edge of the

clock and only if the S input is not asserted. This once again emphasizes the sequential

nature of statements appearing inside process statements.

Digital McLogic Design Chapter 25

 - 493 -

-- RET D Flip-flop model with active-low synchronous set input.

entity d_ff_ns is

 port (D,S,CLK : in std_logic;

 Q : out std_logic);

end d_ff_ns;

architecture my_d_ff_ns of d_ff_ns is

begin

 dff: process (D,S,CLK)

 begin

 if (rising_edge(CLK)) then

 if (S = ‘0’) then

 Q <= ‘1’;

 else

 Q <= D;

 end if;

 end if;

 end process dff;

end my_d_ff_ns;

Figure 25.10: The VHDL code solving Example 25-3.

Figure 25.11 shows a timing diagram associated with Example 25-3. Here are the cool things to note

about the timing diagram in Figure 25.11.

 For this example timing diagram, the starting state of Q was provided in the timing

diagram. In other words, there was no way you could figure out what it was from the

problem statement; the problem had to provide you with this information.

 The flip-flop ignores the S pulse between the first and second rising clock edge because

the S input in this example is synchronous (meaning that its actions are synchronized to

the clock edge). The same is true of the S pulse between the third and fourth clock edges.

 The flip-flop output sets on the fifth clock edge because the S input was in its active state

at the arrival of the active clock edge.

Figure 25.11: Timing diagram associated with Example 25-3.

Digital McLogic Design Chapter 25

 - 494 -

The previous two examples are important for several reasons. First, the examples provided insight in to

modeling asynchronous and synchronous inputs using VHDL. The timing diagrams associated with

these examples clearly show these characteristics. Secondly, a significant port of sequential circuit

design deals with timing issues associated with where to place control signals relative to the active

clock edge. As with these examples, you need to keep in mind the sequential nature of VHDL

behavioral modeling as you’re generating your VHDL models in order to ensure proper circuit

operation. These two examples are once again massively important. If you totally have nothing better to

do, go back and closely compare these two VHDL models.

25.3.3 Flip-flops with Multiple Control Inputs

Flip-flops models often contain both preset and reset inputs. If this is the case, you need to be careful to

specify the flip-flop operation when both of these inputs are asserted
273

. We’re not going to do that now

but we are going to do a final few examples regarding D, T, and JK flip-flops that include both preset

and reset inputs. The final set of D, T, and JK devices with asynchronous presets and clears are shown

in Figure 25.12. Once again, examining a few timing diagrams should drive home how both the

asynchronous and synchronous inputs affect the output of the flip-flops. The following timing diagram

analysis is primarily concerned with the affects the asynchronous inputs have on the outputs since we

see these quite often in digital design land.

(a) (b) (c)

Figure 25.12: The fully loaded set of D, T, and JK flip-flops.

The next three examples are based on the flip-flop models shown in Figure 25.12. Each of the flip-flops

of Figure 25.12 has S and R inputs, which are asynchronous inputs. Note that these inputs are active

low (the negative logic thing). We consider the D, T, and JK inputs to be synchronous. For each of the

following three timing diagrams, the initial state of the flip-flop is unknown until one of the

synchronous signals put the flip-flop into a known state. As you’ll find out, this is a common approach

in these types of problems and sequential-based digital design in general.

The timing diagram in Figure 25.13 is based on the schematic diagram of Figure 25.12(a): a RET D

flip-flop with active low asynchronous preset and clear. The output of the D flip-flop goes to an initial

‘1’ state by the low pulse on the S input. The first and second clock edges transfer the D inputs of ‘0’

and ‘1’ to the output of the device. The first low pulse of the R signal represents a reset, which makes

the state of the device a ‘0’ independent of the active edge of the clock. Note that when the R signal

returns to the ‘1’ state, the output of the device remains in the ‘0’ state; this represents normal flip-flop

operation for asynchronous inputs. The output of the device once again follows the D input on the next

two clock edges. The second low pulse on the R signal does not affect the state of the flip-flop since the

273

 In general, all VHDL models need to specify what circuit operation in every possible scenario. If you don’t

100% specify circuit operation in the circuit model, the synthesizer will most likely specify it for you. Often times

the synthesizer will generate a warning regarding this condition, but don’t count on it.

Digital McLogic Design Chapter 25

 - 495 -

flip-flop is current in a ‘0’ state. The final low pulse on the S signal sets the output of the flip-flop. Once

again, the output of the flip-flop remains set after the low pulse of S returns to the high state.

Figure 25.13: Example timing diagram for a RET D flip-flop with active low asynchronous preset

and clear (see Figure 25.12(a)).

The timing diagram in Figure 25.14 is based on the schematic diagram of Figure 25.12(b): a RET T

flip-flop with active low asynchronous preset and clear. The initial low pulse on the S input forces the

output of the flip-flop into the ‘1’ state. The first active clock edge causes the output of the flip-flop to

toggle. Since the output of the device is currently in the low state, the first low pulse on the R signal

does not change the flip-flop’s output. The second pulse on the S signal, however, does cause the device

to change state from a reset state to a set state. The clock edge following the S pulse and the high state

of the T input cause the device to reset once again. The final pulse on the R input causes the flip-flop to

return to the ‘0’ state.

Figure 25.14: Example timing diagram for a RET T flip-flop with active low asynchronous preset

and clear (see Figure 25.12(b)).

The timing diagram in Figure 25.14 is based on the schematic diagram of Figure 25.12(b): a RET JK

flip-flop with active low asynchronous preset and clear. The initial low pulse on the R inputs forces the

output of the flip-flop into the ‘0’ state; the flip-flop remains in this state after the low R pulse returns to

its high state. The JK=”10” causes the flip-flop to set on the next active clock edge. Because the flip-

flop is already set when the first low pulse arrives on the S input, the device output does not change.

Digital McLogic Design Chapter 25

 - 496 -

The second low pulse on the R input causes a state change in the flip-flop from high to low. The final

low pulse on the flip-flop causes a similar change near the end of the timing diagram.

Figure 25.15: Example timing diagram for a RET JK flip-flop with active low asynchronous

preset and clear (see Figure 25.12(c)).

The following example has some interesting properties. The good news is that we’ll be able to take a

look at these interesting properties and maybe learn something useful from it. The bad news is that

modeling T flip-flops with VHDL is more of an academic exercise rather that something that is useful

or done often in digital design land. The truth is, and you’ll discover it when you take a look at this

problem, is that D flip-flops are so much easier to model in VHDL that you’re rarely see T or JK flip-

flops models
274

.

Example 25-4

Write the VHDL code that describes a T flip-flop

shown on the right. Use a behavioral model in your

description as well as the characteristic equation for a

T-FF. Consider the S input to be an active-low,

asynchronous input that sets the T flip-flop outputs

when asserted.

Solution: Figure 25.16 shows the solution to Example 25-4. This example has some massively

important techniques associated with it that are well worth mentioning below.

 This implementation of a T flip-flop demonstrates a unique quality of the D flip-flop. The

output of a D flip-flop is only dependent upon the D input and is not a function of the

present output of the flip-flop. The output of a T flip-flop is dependent upon both the T

274

 Except in the problem set associated with this chapter. Sad but true: academic exercises make us more

academically fit.

Digital McLogic Design Chapter 25

 - 497 -

input and the current output of the flip-flop. This adds a certain amount of extra

complexity to the T flip-flop model as compared to the D flip-flop as shown in Figure

25.16. The T flip-flop model in Figure 25.16 uses a temporary signal in order to use the

current state of the flip-flop as in input. In other words, since Q appears as a port to the

entity it must be assigned a mode specifier, and in this case, it has been assigned a mode

specifier of “out”. Signals declared as outputs can therefore not appear on the right side of

a signal assignment operator. The standard approach to bypassing this apparent limitation

in VHDL is to use intermediate signals which, as opposed to port signals, do not have

mode specifications and can thus be used as either inputs or outputs (can appear on both

sides of the signal assignment operator) in the body of the architecture. The approach is to

not only manipulate the intermediate signal in the body of the architecture but to also use a

concurrent signal assignment statement to assign the intermediate signal to the appropriate

output. Note that in the key statement in the solution shown in Figure 25.16 that the

intermediate signal appears on both sides of the signal assignment operator. We’ve seen

this coding style before; get used to it; become one with it.

 This code uses the characteristics equation of a T flip-flop in its implementation. We

technically used a characteristic equation when we implemented the D flip-flop but since

the characteristic equation of a D flip-flop is relatively trivial (Q
+
 = D), you may not have

been aware of it.

 Where there are certain advantages to using T flip-flops in some conditions, D flip-flops

are generally the storage element of choice when using VHDL. If you don’t have a

specific reason for using some type of flip-flop other than a D flip-flop, you probably

shouldn’t unless you’re friends are easily impressed
275

.

--

-- RET T Flip-flop model with active-low asynchronous set input.

--

entity t_ff_s is

 port (T,S,CLK : in std_logic;

 Q : out std_logic);

end t_ff_s;

architecture my_t_ff_s of t_ff_s is

 signal s_tmp : std_logic; -- intermediate signal declaration

begin

 tff: process (T,S,CLK)

 begin

 if (S = ‘0’) then

 Q <= ‘1’;

 elsif (rising_edge(CLK)) then

 s_tmp <= T XOR s_tmp; -- temp output assignment

 end if;

 end process tff;

 Q <= s_tmp; -- final output assignment

end my_t_ff_s;

Figure 25.16: Solution to Example 25-4.

275

 If you actually have any friends.

Digital McLogic Design Chapter 25

 - 498 -

25.4 Inducing Memory: Dataflow vs. Behavior Modeling

A major portion of digital design deals with sequential circuits. In addition, most sequential circuit

design is synchronized to a clock edge. In other words, output changes in sequential circuits generally

only occur on an active clock edge. The introduction to memory elements in VHDL presented in this

section may lead the reader to think that memory in VHDL is only associated with behavioral modeling,

but this is not the case. The same concept of inducing memory holds for dataflow modeling as well: not

explicitly specifying an output for every possible input condition generates memory. On this note,

checking for unintended memory element generation is one of the duties of the digital designer. As you

would imagine, memory elements add an element of needless complexity to the synthesized circuit.

One common approach to learning the syntax and mechanics of new computer languages is to

implement the same task in as many different ways as possible. This approach utilizes the flexibility of

the language and is arguably a valid approach to learning a new language. This is also the case in

VHDL. However, probably more so in VHDL than other languages, there are specific ways of doing

things and you the digital designer should always do these things in these specific ways. Although it

would be possible to generate flip-flops using dataflow models, most knowledgeable people examining

your VHDL code would not initially be clear as to what exactly you’re doing. As far as generating

synchronous memory elements go, the methods outlined in this section are simply the optimal method

of choice. This is one area not be clever with.

Digital McLogic Design Chapter 25

 - 499 -

Chapter Overview

 While a latch is considered a level-sensitive device since the outputs can change any time the

inputs change. When special control inputs are added to latches, name a clock input, and changes in

the state of the circuit can only happen on a clock edge, the circuit is considered to be a flip-flop.

There are three main types of flip-flops: the D, T, and JK flip-flops.

 Flip-flops are generally considered synchronous circuits in that the state of the flip-flop is

synchronized to the active clock edge. Flip-flops can also contain inputs whose effects are not

synchronized to the clock edge; these inputs are referred to as asynchronous inputs.

 Memory in VHDL is model as an incompletely specified input condition. If an output is not

specified by every possible input condition, the device must “remember” the previous output.

Specifying catch-all conditions in VHDL models prevent the VHDL synthesizer from inducing

memory.

 Memory in VHDL can be induced with both dataflow and behavioral models. When modeling

circuits that are sensitive to clock edges, behavioral models are generally used.

Digital McLogic Design Chapter 25

 - 500 -

Chapter Exercises

1) Does the following VHDL model describe a sequential or combinatorial circuit? Briefly justify

your answer.

entity my_ckt1 is

 Port (ABC : in std_logic_vector(2 downto 0);

 F_OUT : out std_logic);

end my_ckt1;

architecture ckt11 of my_ckt1 is

begin

 my_proc: process (ABC)

 begin

 if (ABC = "000") then

 F_OUT <= '1';

 elsif (ABC = "111") then

 F_OUT <= '0';

 end if;

 end process;

 end ckt11;

2) Provide the Q output (sometimes labeled as OUTPUT) signal using the associated flip-flops listed

below. Consider all S and R inputs to be asynchronous. The asynchronous inputs take precedence

over the synchronous inputs. Assume that propagation delays are negligent.

(a)

Digital McLogic Design Chapter 25

 - 501 -

(b)

(c)

(d)

(e)

Digital McLogic Design Chapter 25

 - 502 -

(f)

(g)

(h)

Digital McLogic Design Chapter 25

 - 503 -

(i)

(j)

(k)

(l)

Digital McLogic Design Chapter 25

 - 504 -

(m)

(n)

3) Provide a VHDL behavioral model of the D flip-flop shown

on the right. The S and R inputs are an active low

asynchronous preset and clear. Assume both the S and R

inputs will never be asserted simultaneously.

4) Provide a VHDL behavioral model of the D flip-flop shown

on the right. The S and R inputs are an active low

asynchronous preset and clear. Assume the S input takes

precedence over the R input in the case where both are

asserted simultaneously.

5) Provide a VHDL behavioral model of the D flip-flop shown

on the right. The S and R inputs are synchronous preset and

clear. Assume both the S and R inputs will never be asserted

simultaneously.

Digital McLogic Design Chapter 25

 - 505 -

6) Provide a VHDL behavioral model of the D flip-flop shown

on the right. The S and R inputs are an active low

asynchronous preset and clear. If both the S and R inputs are

asserted simultaneously, the output of the flip-flop will

toggle.

7) Provide a VHDL behavioral model of the T flip-flop shown on

the right. The S and R inputs are an active low asynchronous

preset and clear. Assume both the S and R inputs will never be

asserted simultaneously. Implement this flip-flop first using an

equation description of the outputs and then using a behavioral

description of the outputs.

8) Provide a VHDL behavioral model of the T flip-flop shown on

the right. The S and R inputs are an active low asynchronous

preset and clear. Assume both the S and R inputs will never be

asserted simultaneously.

9) Provide a VHDL behavioral model of the T flip-flop shown at

the right. The S and R inputs are an active high asynchronous

preset and clear. Assume both the S and R inputs will never be

asserted simultaneously.

10) Provide a VHDL behavioral model of the JK flip-flop shown

on the right. The S and R inputs are an asynchronous preset

and clear. Assume both the S and R inputs will never be

asserted simultaneously. Implement this flip-flop first using an

equation description of the outputs and then using a behavioral

description of the outputs.

11) Provide a VHDL behavioral model of the JK flip-flop shown

on the right. The S and R inputs are an active low

asynchronous preset and clear. Assume both the S and R inputs

will never be asserted simultaneously.

Digital McLogic Design Chapter 25

 - 506 -

12) Provide a VHDL behavioral model of the JK flip-flop shown

on the right. The S and R inputs are active low synchronous

preset and clear. Assume both the S and R inputs will never be

asserted simultaneously.

13) Circle the option that best describes the following problem (RET, FET: rising and falling edge

trigger).

RET D flip-flop with complimentary outputs

RET D flip-flop with asynchronous active low S input

RET D flip-flop with synchronous active low S input
RET D flip-flop with asynchronous active low S input

RET D flip-flop with synchronous active low S input

RET Smokin Joe Bob Briggs flip-flop
RET D flip-flop with asynchronous active low S input

RET D flip-flop with synchronous active low S input

RET D flip-flop with asynchronous active low S input
RET D flip-flop with synchronous active low S input

T flip-flop with single-ended outputs

FET D flip-flop with asynchronous active high S input

FET D flip-flop with synchronous active high S input
FET D flip-flop with asynchronous active high S input

FET D flip-flop with synchronous active high S input

This is not a flip-flop
FET D flip-flop with asynchronous active high S input

FET D flip-flop with synchronous active high S input

FET D flip-flop with asynchronous active high S input
FET D flip-flop with synchronous active high S input

entity dff3 is

 port (D,CLK,S : in std_logic;

 Q : out std_logic);

end dff3;

architecture dff3 of dff3 is

begin

 dffx: process (D, CLK)

 begin

 if (S = '1') then

 Q <= '1';

 elsif (rising_edge(CLK)) then

 Q <= D;

 end if;

 end process dffx;

end dff3;

Digital McLogic Design Chapter 25

 - 507 -

Design Problems

1. Configure a T flip-flop such that it will divide the frequency of a clock signal by a factor of two.

2. Provide the logic to turn a D flip-flop into a T flip-flop.

3. Provide the logic to turn a T flip-flop into a JK flip-flop.

4. Provide the logic to turn a JK flip-flop into a D flip-flop.

 - 509 -

26 Chapter Twenty-Six

(Bryan Mealy 2012 ©)

26.1 Chapter Overview

The primary focus of the previous chapters was the introduction of sequential circuits. Although we

went though a couple of major derivations, we did not present much information as to the true purpose

and the subsequent power of sequential circuits. This chapter represents a more towards doing

something actually useful with sequential circuits with its description of various techniques associated

with both designing and analyzing sequential circuits.

The primary focus of this chapter is the Finite State Machine (FSM) analysis and design. One of the

interesting features of FSMs relative to their circuit implementations is that they include major elements

of both combinatorial and sequential design. This is a high-level introduction to FSMs; we’ll be filling

in the details and providing useful problems once you grasp the details of FSMs from a high-level point

of view.

Main Chapter Topics

 INTRODUCTION TO FINITE STATE MACHINES (FSM): This chapter provides the

basic theory behind FSMs. This introduction includes a description of the basic

FSM forms and various FSM representations.

 FSM ANALYSIS AND FSM DESIGN: This chapter explains the basic techniques of

FSM analysis and FSM design. The examples provided in this chapter provide full

explanation of the low-level details regarding FSM analysis and design.

 FSM ILLEGAL STATE RECOVERY: This chapter describes the notion of hang states

and provides techniques on how to avoid this unwanted behavior in FSM.

Why This Chapter is Important

This chapter is important because it describes the basic procedures and theories

regarding the design and analysis of finite state machines.

26.2 Finite State Machines (FSMs)

The term “Finite State Machine” has many official meanings and definitions in digital-land. As you

have seen previously, any circuit that has the ability to remember something (namely bits), can be

regarded as having a “state”. The official definition of state (relative to actual logic circuits) is the

unique configuration of information within a machine. The term “machine” makes the term “FSM” as

Digital McLogic Design Chapter 26

 - 510 -

generic as possible
1
. The term “finite” references the fact that the machine we’re dealing with can be

successfully modeled in some tractable form. Conversely, if the machine had an infinite number of

states, we could not produce a model of its behavior. In the end, a semi-official, circuit-oriented

definition of a FSM is this: a circuit whose behavior can be modeled using the concept of “state” and

the transition between the various states in a that circuit.

FSMs are used in one form or another in many different technical disciplines and each discipline seems

to have its own particular flavor of representing FSMs. Although FSMs in different disciplines are often

implemented in many different ways, they are generally described using, for lack of a better term, the

universal language of state diagrams. The state diagram is a model of a FSM that visually describes the

behavior of the FSM. We developed a few state diagrams to describe the operation of a simple latch and

various flip-flops in a previous chapter. Actually, a state diagram can be implemented in many different

ways; we’ll be implementing them using digital circuitry.

Our workings with FSMs is divided into three distinct steps: 1) a high-level overview of the concepts

and associated terminology, 2) analysis and design of FSMs in circuit form and their relation to the state

diagram, and 3) developing the state diagram. The first two steps are straightforward and almost

mechanical in nature. What we’ll hopefully be learning from these steps is a basic understanding of

state diagrams and their relation to digital circuitry. The third step is where the engineering is involved.

Creating a state diagram requires learning a new language of sorts: the language of state diagrams.

You’ll be using this language to solve various engineering problems in upcoming chapters. FSMs are

amazing devices; the state diagram represents the most useful tool to understanding FSM operation
2
.

Although any digital circuit that contains a memory element is officially a FSM (hence, any sequential

circuit), we’ll not be using this broad definition in the following discussion. At this level of digital

design, we’ll use FSMs primarily as a circuit that controls other circuits. The key word here is control;

keep this word in mind in this chapter. The problem is that this chapter presents definitions and basic

techniques of dealing with FSMs; the fact that the FSM act as a controllers can be easily forgotten in the

details that follow. Try not to lose grasp of the ultimate function of FSMs; we’ll start working with

more interesting problems in upcoming chapters.

26.3 High-Level Modeling of Finite State Machines

Figure 26.1 and Figure 26.2 show that there are two basic types of FSMs: Moore and Mealy machines.

As you can see from a brief perusing of these figures, these two types of FSMs are more similar than

they are different so we’ll discuss the similarities first. The terminology used to describe the three basic

components of FSM differs widely from source to source but the general function of the three

components is equivalent. If by chance you are lucky enough to delve deeper into the field of FSM

design, you’ll find that there are some variations in the functioning of these blocks. However, since this

is simply an introduction, we’ll stick to the basics.

Figure 26.1 shows a basic model of a Moore-type FSM. Although a FSM has lots of internal digital

circuitry, we can easily abstract the functionality into three separate blocks: 1) Next State Decoder, 2)

the State Registers, and 3) the Output decoder. Table 26.1 provides a detailed description of these

individual blocks of Figure 26.1 and Figure 26.2; understanding the basic functioning of the blocks is

the key to understanding how these blocks interact with each other (it’s the system-level thing all over

again) and form the FSM.

1
 Keep in mind that FSMs and the concept of FSMs are used in many other disciplines. In this course we’ll deal

with them primarily in the realm of digital circuitry.
2
 Once again, a state diagram is a visual tool designed to facilitate human understanding of a FSM’s operation.

Other FSM representations may be more appropriate for other applications such as implementing a FSM via

software.

Digital McLogic Design Chapter 26

 - 511 -

Figure 26.1: Model for a Moore-type FSM.

Figure 26.2: Model for a Mealy-type FSM.

Digital McLogic Design Chapter 26

 - 512 -

Module Description and Comments

State

Registers

The state registers represent the memory elements in the FSM. The term register in

digital-land is term that is implies that some type of synchronous storage elements are

involved. In the case of the flip-flops, we’ll be using flip-flops as storage elements and

they can store a single bit of information. The state register is the only sequential part of

the FSM; the other two blocks use combinatorial logic in their implementations. As you

can see from Figure 26.1, the only synchronous portion of the FSM is the state registers.

In other words, the clock signal present in Figure 26.1 only affects the state registers.

The state registers store the state variables of the FSM. As you’ll see in upcoming

examples, the bits that are stored in the flip-flops in the state registers determine the state

of the FSM. The purpose and function of the state registers is identical for both Mealy

and Moore-type FSMs.

Next State

Decoder

The next state decoder is a piece of combinatorial logic that provides excitation input

logic to the flip-flops in the state registers. The next state logic generally has two types of

inputs: 1) the current value of the state variables, and, 2) the current value of the inputs

from the external world. These two sets of values form what is referred to as excitation

inputs to the state register flip-flops. Recall that the inputs to the flip-flops determine the

next state of the flip-flops (following the next active clock edge). The important thing to

notice is that the next state of the flip-flops, or the next state of the FSM, is a function of

both the external inputs and the current present state of the state registers. Once the

active clock edge arrives, the flip-flops act on the excitation inputs and the next state

becomes the current state. This type of cycling occurs every clock edge. The next state

decoder is sometimes referred to as the next state logic, or the next state forming logic.

Keep in mind that the internal inputs are a key feature of the FSM function: the external

inputs to the next state decoder essentially function as status signals from the world

outside of the FSM. If you think about this in an intuitive sense, when the FSM is

controlling something, it needs to be aware of the status of what it is controlling. The

FSM does this via the external inputs to the next state decoder. The purpose and function

of the state registers is identical for both Mealy and Moore-type FSMs.

Output

Decoder

The output decoder is a set of combinatorial logic that generates the external outputs of

the FSM. The difference between a Mealy and Moore-type FSM is based solely upon the

inputs to the output decoder; these differences are shown by comparing and contrasting

the output decoder blocks in Figure 26.1 and Figure 26.2. While the outputs of the next

state decoder module are the same for both a Mealy and Moore-type machine, the inputs

have one difference. In a Mealy-type FSM, the external outputs are a function of both the

state variables and the internal inputs. In a Moore-type FSM, the external outputs are

strictly a function of the state variables. This difference is massively important and one

that we’ll be dealing with often in the discussion that follows. Having a fundamental

understanding of the differences between a Mealy and Moore-type FSM is integral to

understanding and designing FSM-based controllers. The external outputs from the

output decoder generally serve as control signals to the device(s) controlled by the FSM.

Table 26.1: A detailed description of the three main FSM functional blocks.

Digital McLogic Design Chapter 26

 - 513 -

You should now have somewhat of a feel for the operation of a FSM based on the diagrams of Figure

26.1 and Figure 26.2. The heart of the FSM is the state registers; the heartbeat of the FSM is the

clocking signal that controls the state-to-state transitions of the FSM. On each active edge of the clock,

the state of the FSM (the values stored by the flip-flops) can change. The excitation inputs to those flip-

flops determine the state transitions of each flip-flop in the state registers. The excitation inputs to the

flip-flops are the outputs of the next state decoder. The next state decoder outputs are formed by the

logic internal to the next state decoder and are a function of the present state of the FSM and the

external inputs. The external inputs are generally status signals from the outside world. The FSM sends

the control signals to the outside world via the output decoder. The external outputs from the FSM are a

function of the state variables (Moore-type FSM) or a function of both the state variables and the

current external inputs (Mealy-type FSM). Read through this description a few times; we’ll fill in the

details real soon.

26.4 FSM Analysis

The best way to understand the functioning of an FSM is to examine one. Since we’ll be taking a real

close look at the basic operation of one FSM, we can officially refer to our viewing as FSM analysis.

Our initial goal of this analysis is to determine how FSMs work; the secondary goal of this analysis is to

be able to model the behavior of this particular example. Once we do a few analysis examples, we’ll

switch over to design-type examples. Our final goal of analyzing a given FSM is to generate a state

diagram. Let’s do it.

Example 26-1

Analyze the FSM shown in Figure 26.4. Provide a PS/NS table (including the

outputs) and a state diagram that describes the circuit.

Figure 26.3: A typical Mealy-type FSM.

Digital McLogic Design Chapter 26

 - 514 -

Solution: Figure 26.3 shows a circuit that represents a typical FSM implementation. The first step in

any analysis is to stare at the diagram to get a feel for the approach you’ll need to take to successfully

analyze the circuit. Figure 26.3 shows a sequential circuit (the flip-flops provide it with memory) which

officially makes it a FSM. More importantly, it’s in a form that could be considered typical for FSM.

After staring at the FSM for a while, you’ll note the following stuff regarding the FSM of Figure 26.3.

After we stare at it for a minute, we present a procedure for analyzing the FSM. We’ll then switch over

to Figure 26.4, which is a cleaner version of this example.

 The circuit is drawn with a shorthand notation. For example, the outputs of the T

flip-flop are the complimented and uncomplimented values of Y1 (complementary

outputs). These two outputs serve as inputs to other portions of the circuit but are not

explicitly connected. For example, the Y1 output of the T flip-flop acts as an input

the XOR gates on the left; the complemented Y1 output also acts as an input the

AND and OR gates on the right of the diagram. The same story is true of the Y2

output. The X signal acts as an input for the XOR gate and also, once complimented,

acts as an input for the AND gate on the right. The inverter that complements the X

input is not shown. Once again, this shorthand notation de-clutters the circuit

diagram.

 The outputs of the flip-flops, Y1 and Y2, are the state variables for the FSM. Since

there are two state variables and since the variables are binary in nature, this FSM

has four different unique states. There are two flip-flops and each flip-flop can store

one bit of information. The means there are four final states for the machine: Y1Y2 =

“00”, “01”, “10”, and “11”. The number of possible states relates to the number of

bit-storage elements by a power of two
3
. For example, there are two flip-flops, two

flip-flops raised to the power of two is four. If the FSM contained three flip-flops,

there could be up to eight unique states.

 The external inputs, the state variables, and the external outputs are represented by

X, Y, and Z variables, respectively. This is generally done to keep things simple,

which is nice when you’re first dealing with FSMs. The truth is that once you know

more about how state machines generally operate, you’ll change from the X and Z

variables to names that are symbolic, self-commenting and thus more meaningful in

nature.

 There is one external input (X) and two external outputs (Z1 and Z2) for this FSM.

The Z2 output is a Moore-type output while the Z1 output is a Mealy-type output.

 The three standard functional blocks of an FSM are not readily apparent from the

diagram so we explicitly list them. The XOR gate to the left of the JK flip-flop forms

the Next State Decoder logic. The two storage elements (the T and JK flip-flops)

form the State Registers. The AND and the OR gates form the Output Decoder logic.

 This FSM is a Mealy-type FSM. The way you know this is by examining the Output

Decoder block. The presence of the X variable on the input to the AND gates

essentially make the external outputs a function of the external input (remembering

that the X represented external inputs). Even though only one of the external output

is a function of the external input X, it is still considered a Mealy-type FSM. If the

Output Decoder were not dependent upon the external input, we would then classify

this FSM as a Moore-type FSM.

3
 This is true for now but will change in later chapters.

Digital McLogic Design Chapter 26

 - 515 -

Figure 26.4: A cleaner looking version of Example 26-1.

The following list shows the basic steps in the solution to this problem in painful detail below. The idea

here is to drag you through the process one time in excruciating detail and then allow you to decide

upon your own personal level of detail when analyzing FSMs. The following analysis has been broken

up into steps that seem to make sense to me; you need to make them make sense to you. Keep in mind

that engineering is not a matter of following steps
4
; following these steps are simply an aid to your

understanding of FSM analysis. You’ll soon be forced to fend on your own.

Step 1) Stare at the diagram and note the important structure and features

Step 2) Write down the equations for the excitation logic

Step 3) Write down the equations for the output logic

Step 4) Generate the empty of a PS/NS table

Step 5) Provide columns in the PS/NS table for the excitation variables

Step 6) Use the excitation equations to fill in the columns representing the

Step 7) Provide columns for the next state variables

Step 8) Fill in the columns associated with the output logic

Step 9) Draw as state diagram

Step 10) Allow the celebration to begin (not really a step; it just sounds good)

Step 1) We already went through step one in deep detail. The main point of this step in general is to

discern the following:

 The number of external and inputs and outputs

 Whether the FSM is a Mealy-type or Moore-type machine

 The maximum number of FSM states (based on the number of storage elements)

Step 2) Write down the equations for the excitation logic. For this circuit, the excitation logic is the

logic attached to the flip-flop’s synchronous inputs (the stuff connected to the T, J, and K inputs of the

individual flip-flops). From examining the diagram of Figure 26.4, you can generate the equations

shown in Equation 26-1.

4
 Although selectively following and/or enforcing rules is the hallmark of an academic administrator.

Digital McLogic Design Chapter 26

 - 516 -

XYK

XYJ

YT

1

1

2

Equation 26-1

Step 3) Write down the equations for the output decoder logic. In this case, you see that there are two

external outputs from the FSM: Z1 and Z2. From inspection of the circuit, you can generate the

following equations. We know that Z1 is a Mealy-type output because Z1 is a function of X while Z2 is

not.

 Y2 Y12

X Y2 Y11

Z

Z

Equation 26-2

Step 4) Generate the initial PS/NS table which is essentially a truth table. The PS/NS table provides a

listing of the present state, the variables that effect the state transition from the present state to the next

state, and the next state (we’ll also list the output variables at later step). In the beginnings of our PS/NS

table shown Table 26.2, we’ve listed the present state and the external input as the independent

variables in the table. At this point, the only information that matters to us is the present state and the

value of the external input. Only the Y1 and Y2 variables form the present state: the X input is not part

of the present state of the FSM. Recall from Figure 26.1 and Figure 26.2 that the only things affecting

the transition from one state to another are the state variables and the external inputs. Another way of

looking at the PS/NS table is that the number of inputs to the Next State Decoder determines the

number of rows in the truth table. One other thing to note in Table 26.2 is that we have many extra

columns; we’ll fill these in during subsequent steps.

Next State

Decoder Inputs

Present

State

Ext

Input

Y1 Y2 X

0 0 0

0 0 1

0 1 0

0 1 1

1 0 0

1 0 1

1 1 0

1 1 1

Table 26.2: After Step 4).

Digital McLogic Design Chapter 26

 - 517 -

Step 5) Since we need to find out how the next state decoder outputs affect the flip-flops, we need to

examine the excitation inputs of the flip-flops. The logic in the Next State Decoder forms the excitation

logic for the flip-flops that represent the state variable. In this step, we need to provide columns in the

developing PS/NS table to list the logic generated by excitation equations. There are three inputs to the

two flip-flops; Table 26.3 shows that each of these inputs receives a column in the PS/NS table.

Next State

Decoder Inputs

State Register

Excitation Logic

Present

State

Ext

Input

Y1 Y2 X T J K

0 0 0

0 0 1

0 1 0

0 1 1

1 0 0

1 0 1

1 1 0

1 1 1

Table 26.3: After Step 5).

Step 6) In this step, the excitation logic generated from the excitation equations of Step 2) is entered

into the T, J, and K columns of the developing PS/NS table. We enter the 1’s and 0’s in these columns

directly based on the inputs to the Next State Decoder. For example, since the excitation input equation

for the T input is T = Y2, we copy the Y2 column into the T column. A better example is the logic for

the J and K columns: the data in these columns represents an exclusive ORing of the Y1 and X columns

from the Next State Decoder Inputs section of the PS/NS table. Table 26.4 shows the results of this step.

Next State

Decoder Inputs

State Register

Excitation Logic

Present

State

Ext

Input

Y1 Y2 X T J K

0 0 0 0 0 0

0 0 1 0 1 1

0 1 0 1 0 0

0 1 1 1 1 1

1 0 0 0 1 1

1 0 1 0 0 0

1 1 0 1 1 1

1 1 1 1 0 0

Table 26.4: After Step 6).

Step 7) Now that we’ve listed the Next State Decoder information and the excitation equation logic, we

can generated the Next State (NS) values. Keep in mind that the next state values are the values that the

Digital McLogic Design Chapter 26

 - 518 -

flip-flops will have after the next active clock edge. Since we know what the excitation logic is (as

generated from the present state and external input values), we can generate the next state values based

on that logic. We list a few examples below; make sure you understand how these examples relate to

the developing PS/NS table. Table 26.5 shows the complete table for this step.

 In the first row of the truth table, the present state of Y1 is a ‘0’; the current input to the T

flip-flop is a ‘0’. A ‘0’ input on a T flip-flop will cause no change in the state of the flip-

flop so the next state value will thus be a ‘0’.

 In the second row of the truth table, the present state of the Y2 variable is a ‘0’; the current

inputs to the JK flip-flop are JK = “11”. This is the toggle condition for the JK flip-flop

and thus causes the present state input of ‘0’ to toggle which results in a next state output

of ‘1’ for the JK flip-flop.

Next State

Decoder Inputs

State Register

Excitation Logic

Present

State (PS)

Ext

Input

Next State

(NS)

Y1 Y2 X T J K Y1
+
 Y2

+

0 0 0 0 0 0 0 0

0 0 1 0 1 1 0 1

0 1 0 1 0 0 1 1

0 1 1 1 1 1 1 0

1 0 0 0 1 1 1 1

1 0 1 0 0 0 1 0

1 1 0 1 1 1 0 0

1 1 1 1 0 0 0 1

Table 26.5: After Step 7).

Step 8) Now that PS/NS table is complete in terms of the state transition information, we can tack on

the external output logic. There are two external outputs for this FSM: Z1 and Z2. Although this FSM is

officially a Mealy-type FSM, we can consider the outputs as both a Mealy output (Z1) and Moore

output (Z2)
5
. The Z1 output is a Mealy output because it is a function of both the present state (PS)

variables as well as the external input variables X. The Z2 output is a Moore output since it is only a

function of the present state variables. We enter the logic in the Z1 and Z2 columns in Table 26.6 by

examining the output equations from Step 3. For Z1, the only time the output is a ‘1’ is when each of

the three inputs (Y1, Y2, and X) are ‘0’. Conversely, the only time the Z2 output is a zero is when each

of the state variables is ‘1’; this condition occurs in the final two rows of the PS/NS table. There are two

massively important points that are typically sticking points when first working with FSMs.

 The outputs, both Mealy and Moore-types, are always a function of the present state

variables (Y1 and Y2). When entering the logic into the output columns, make sure

you don’t base the output on the next state variables (Y1
+
 & Y2

+
). This is a common

mistake; don’t try it here.

 Note that the Moore output (Z2) is always the same per set of state variables (Y1 &

Y2). In contrast, the Mealy output (Z1) can change for a given set of state variables.

5
 To be considered a Moore-type FSM, all of the outputs would need to be Moore-type outputs.

Digital McLogic Design Chapter 26

 - 519 -

Note that in the first two rows of the PS/NS table, Z1 has two different outputs. This

is because the Z1 output is a Mealy-type output and is a function of both the X input

and the state variables. With the Moore output (Z2), since it is strictly a function of

the state variables, it will not change so long as Y1 and Y2 are the same. Since Y1

and Y2 are based on the first two columns in the PS/NS table, the Moore output is

effectively the same for the pairs of rows.

Table 26.6 shows that the PS/NS table is now officially complete. There is another important point

about the PS/NS table: there is no clock signal listed in the table. The PS/NS table never includes the

clock signal because it all state transitions occur on the active clock edge. In other words, the only time

the values on the state registers can change is on the active clock edge. The clock signal could be

included in the PS/NS table but it would clutter an already cluttered table and provide no information.

And speaking of a cluttered PS/NS table… there is a better way to represent the operation of a given

FSM. While the PS/NS table does in fact provide all the necessary information to describe the operation

of the FSM, it provides the information in an un-friendly manner. A better approach is to use the

information in the PS/NS table to generate a state diagram. This is the final step in the analysis process.

Next State

Decoder Inputs

State Register

Excitation Logic

Output

Decoder

Outputs

Present

State (PS)

Ext

Input

Next State

(NS)
Mealy Moore

Y1 Y2 X T J K Y1
+
 Y2

+
 Z1 Z2

0 0 0 0 0 0 0 0 1 1

0 0 1 0 1 1 0 1 0 1

0 1 0 1 0 0 1 1 0 1

0 1 1 1 1 1 1 0 0 1

1 0 0 0 1 1 1 1 0 1

1 0 1 0 0 0 1 0 0 1

1 1 0 1 1 1 0 0 0 0

1 1 1 1 0 0 0 1 0 0

Table 26.6: After Step 8).

Step 9) The final step is to draw the state diagram associated with the PS/NS table. The state diagram is

simply a visual representation of the information provided by the PS/NS table. There are many

approaches to drawing a state diagram; the most important item is to provide a legend to allow the

human viewer to know what is going on. We decompose the drawing of the state diagram into a bunch

of humongously boring steps in a fashion similar to the development of the PS/NS table. Once you do a

few of these problems, you’ll not need to follow the steps; it becomes second nature because you’ll be

loving it as well as understanding it. One last thing to note is that the order of the steps in drawing the

state diagram are somewhat arbitrary; it can actually be done in many different ways.

 Step 9(a): Draw a bubble representing each possible state in the FSM. Since this

FSM has two state variables (Y1 & Y2) based on two flip-flops, there will be four

states in the state diagram. The four states are come from the notion that each of the

flip-flops can store one bit; thus there are four unique combinations of the two state

variables. The PS/NS table reflects this condition. Another important task to perform

Digital McLogic Design Chapter 26

 - 520 -

in this step is creating a legend to describe some of the pertinent information in your

state diagram. Note that the legend is located on the left.

Figure 26.5: The results of Step 9(a).

 Step 9(b): Enter the Moore-type output information into the state diagram. Recall that

a Moore-type output is only a function of the present state of the FSM. In other

words, the Moore output variable only changes when the state changes which allows

the Moore-type output to be included as part of the state bubbles. We do this by

dividing the state bubble into state information and output information as indicated on

the right. The Z2 information is in the Z2 column of the PS/NS table. Note that

because Z2 is a Moore-type output, changes in the external input variable X do not

affect the Z2 output. This forces the Z2 output to follow pairs of rows in the PS/NS

table. For example, the first two rows in the PS/NS table have the exact same state

variables. Note here that the outputs of the FSM are always based on the present state

of the FSM, and never the next state. Also note that the legend has been updated to

reflect the fact that the Z2 output is indicated in the state bubbles. Figure 26.7 shows

the results of this step.

Figure 26.6: The results of Step 9(b).

 Step 9(c): Enter the state transition information. There are several important tasks associated

with this step. First note from the PS/NS table that all state transitions are a function of both

the present state variables and the external X input. Since there is only one external input, there

can be at most two different transition possibilities in the associated state diagram: these two

possibilities are associated with the two possible state of X: ‘0’ and ‘1’. We represent the state

transitions by drawing singly directed arrows; in the context of the PS/NS table, the arrows

originate in the current state and end in the next state. The arrows reflect the conditions in the

individual rows in the PS/NS table. For example, in the first row of the PS/NS table, the

present state variables are “00”; if the X input is a ‘0’ when the active edge of the clock

arrives, the next state of the FSM will be “00”. Also associated with this transition is the value

Digital McLogic Design Chapter 26

 - 521 -

of the Z1 output. Since Z1 is a Mealy-type output, it is a function of the external X input, and

thus can change based on changes in the X input. For this FSM (as indicated by the first row of

the PS/NS table), when the X input is ‘0’ in state “00”, the Z1 output is ‘1’. Similarly, when

the X input is ‘1’ in state “00”, the Z1 output is ‘0’. Since the output decoder is combinatorial,

the Z1 output has an immediate response to the X input and is not associated with the clock

edge. The value of the X input on the active edge of the clock determines the state transitions.

These two conditions are somewhat confusing based on the way the state diagram indicates

these conditions. The problem is that there is no easy way to reflect both the Mealy-type output

and the state transitions in the state diagram. Figure 26.7 shows the standard approach. Note

that in this approach, the X input and Z1 output are associated with the state transition arrow,

which is somewhat misleading. The important thing to remember here is that the output drawn

with the state transition arrows is associated with the state that the arrow is emanating from

and not the state that the arrow is entering. We’ll deal with this in more detail in an upcoming

chapter.

o Be sure to note that the first row in the truth table forms what we call a self-loop in

the state diagram. This condition indicates that the FSM does not change state on the

next active clock edge. Finally, be sure to note that the state diagram clearly indicates

which values are X and Z variables; you must do this in order for someone to

understand what the state diagram is really doing.

o You interpret the first two arrows drawn in the diagram. For the first left-most arrow

of Figure 26.7, the FSM will not change state on the active clock edge if the X input

is ‘0’. Also, then the X input is ‘0’ in the Y1Y2 = “00” state, the Z1 output is a ‘1’.

Similarly, for the other arrow in Figure 26.7, if the X input is a ‘1’ in the Y1Y2 =

“00” state the Z1 output is a ‘0’; if an active clock edge occurs while X = ‘1’, the

FSM will transition to the Y1Y2 = “01” state.

Figure 26.7: The results of Step 9(c).

 Step 9(d): This step is not really a step; what you need to do from this point is continue to

transfer information from the PS/NS table into the state diagram. Figure 26.8 shows the results

of entering the third and fourth row from the PS/NS table into the state diagram. Figure 26.9

shows the complete state diagram for this example.

Digital McLogic Design Chapter 26

 - 522 -

Figure 26.8: The results of Step 9(d).

Figure 26.9: The completed state diagram.

Here’s a quick summary of this example.

 A legend and legend-type information is always included with the state diagram.

 The state diagram lists each possible state in the state diagram by using a bubble;

different combinations of state variables represent the states. Since there are two state

variables and each state variable can be either a ‘0’ or a ‘1’, there are four possible

states.

 State transitions are represented using arrows; transitions can occur from one state to

that same state or to any other state in the state diagram.

 The external input information that causes the state transitions are listed next to the

state transition arrows.

 The Moore-type outputs are listed inside of the state bubbles since they are a function

of the present state only.

Digital McLogic Design Chapter 26

 - 523 -

 The Mealy-type outputs are listed next to the external inputs controlling the state-to-

state transitions arrow. Note that the Mealy-type outputs are associated with the state

that the arrows are emanating from as opposed to the state to where they are going.

One thing that is glaringly missing from the state diagram and the PS/NS table is the system clock.

Since the FSM uses flip-flops as the storage elements, state transitions can only occur on the active

clock edge. Since this information is inherent to the operation of the FSM, it is never included in either

the PS/NS table of the state diagram. To put this in another way, both the PS/NS table and the state

diagram list the state-to-state transitions of the FSM. Since these transitions only occur on the active

clock edge that controls the flip-flops, explicitly showing this information in the PS/NS table or state

diagram would only serve to clutter them. There probably is a way to include the clock in one of these

representations but I’m not sure what it is and I never seen it listed anywhere.

The style that is used drawing the state diagram is not unique; there are actually many different ways to

draw them. This example uses an approach that is probably the clearest. As you become more fluent

with drawing state diagrams, you’ll probably alter your own approach to drawing them; be sure to

indicate you own particular style somewhere in the state diagram annotation and/or legend. The key to

using a different style to drawing state diagrams is making sure you explicitly state your approach with

the legend provided with the state diagram. A state diagram without legend is useless. If you are clear

with your state diagram style, there will be much joy and the world will be happy.

In the big scheme of things, recall that you have just analyzed a sequential circuit. You characterized

the operation of this circuit by generating a state diagram. You know that a sequential circuit has

memory and that the outputs of a sequential circuit are a function of the “sequence” of inputs to the

circuit. The state diagram explicitly shows this so-called sequence.

One of the most important factors in developing a working knowledge of FSMs is understanding how

the state diagram relates to some of the timing aspects of the circuit. We’ll be spending more time on

this subject later but we’ll take an introductory look at it for this example. Figure 26.10 shows a sample

timing diagram for this example. Note that this is only a sample; we provide it in complete form, which

somewhat obscures the starting point of the state diagram.

The starting point of this state diagram is the state in sometime before the first clock edge. The first

state in this timing diagram was provided for us (it had to be otherwise we would not know what it

was). This timing diagram also provides the entire X input. From the initial state and the X input

information, we can complete the timing diagram as shown in Figure 26.10. Note there are three forms

of information that we need to include in this timing diagram: 1) state information (how the states

change on the active clock edges), 2) Z1 output information, and 3) Z2 output information. Here are a

few things to note about this timing diagram.

 The Z2 output is Moore-type output so it is only a function of the state variables.

This means it can only change when the state changes. This condition manifests

itself in the Z2 output by having changes in the Z2 output always synchronized

with the clock edge.

 The Z1 output is Mealy-type output so it can change in between active clock edges.

As you can see from Figure 26.10, the Z1 output occasionally changes between

clock edges as listed in the state diagram.

 The X input and the current values of the state variables control the state-to-state

transitions. The only time we consider the X input is for the state transitions is on

the active clock edge.

Digital McLogic Design Chapter 26

 - 524 -

Figure 26.10: Example timing diagram associated with the state diagram of Figure 26.9.

The timing diagram was completed by examining the value of the X input and state variables in at each

clock edge in the timing diagram and using this information in conjunction with the state diagram to

glean where the next state value after the active clock edge. Here is a description of a few of the time

slots in Figure 26.10.

 Time Slot (1): In this time slot, the state variables are “10”; the X input value at the next active

clock edge is ‘0’. Cross referencing this information into the state diagram you see that from

state “10”, if X is a ‘0’, then the FSM will transition to the “11” state. Also in state “10”, the

Z1 output is a ‘1’, which is indicated by the number under the line in the “10” bubble. The Z2

output is a ‘0’ independent of the value of X during Time Slot (1); this condition is noted by

the fact that both arrows leaving the “10” state bubble have Z2 outputs of ‘0’.

 Time Slot (7): In this time slot, the Z1 output, which is the Mealy-type output, is changing

between the active clock edges. This is once again because the Z1 output is a function of the X

input. In particular, as you can see from the state diagram, the Z1 output in the “00” state is the

opposite value of the X input. These conditions area listed next to the state transition arrows.

Keep in mind that the Z1 output is the same value for the other three states in the state

diagram, which is why you don’t see the Z1 output changing in-between the active clock edges

as see in this time slow. This is a massively important attribute of the Mealy input; we’ll be

spending much more time with this later.

26.5 FSM Design

Designing counters using FSMs is one of the more basic FSM design exercises. For this reason,

counter-design provides a good introduction to the subject of FSM design. All of the important steps are

here but as you will see later, the specification step is greatly simplified. In this context, the

specification primarily is the count you’ll need to implement. A spec such as a simple counter is more

straightforward than designing a FSM that acts as a controller. Once you become fluent at designing

simple FSMs such as counters, we’ll move onto designing FSMs that are used to control things that

need controlling.

Digital McLogic Design Chapter 26

 - 525 -

The first step in FSM design is defining the state diagram. Once the state diagram is specified, the final

generation of the FSM is pretty much cookbook no matter if you’re implementing it with actual gates or

with a VHDL model. As mentioned earlier, the design of FSMs implies that you’re taking a

specification and generating a circuit.

Example 26-2

Design a counter that counts in the following sequence: 0, 2, 3, 1, 0, 2… . Use one T

and one JK flip-flop for each of the state variables. Show a PS/NS table and state

diagram that describes the FSM. Provide flip-flop excitation equations in reduced form

and draw the final circuit.

Solution: This is a counter design problem; two characteristics make this design straightforward. First,

we implement the desired count as Moore-type outputs of the FSM. This simplifies the problem in that

the FSM does not need to have an output decoder. In other words, the desired count is the direct output

of the flip-flops. In yet other words, the state variables directly represent the count; the external outputs

from this FSM are simply the state variables. Secondly, there are no external input variables. In this

way, all the state transitions are unconditional which simplifies the entire process. As you’ll see in the

upcoming design, there are simply less steps in the process. Here are the basic design steps:

Step 1) Stare at the problem

Step 2) Generate the states in the state diagram

Step 3) Generate the state transitions for the state diagram

Step 4) Generate the initial PS/NS table

Step 5) Enter the next state information into the PS/NS table

Step 6) Generate the excitation logic for the flip-flops

Step 7) Generate the excitation equations for the flip-flops

Step 8) Draw the final circuit

Step 9) Commence celebration: (not a required step)

Step 0) This isn’t really a step but it sure is a great idea. Before we go on with this problem, let’s draw a

timing diagram that would represent the output of this problem. Figure 26.11 shows such a timing

diagram. Notice in Figure 26.11 that the FSM arbitrarily choose the outputs to be Y1 and Y2. For this

case, Y1 is the MSB as judged by the order of appearance. The initial values of the Y1Y2 outputs have

no significance. There are two major items of significance in this drawing. First, the Y1Y2 row does

indeed show the desired sequence listed in binary. In addition, the changes in the Y1Y2 sequence are

synchronized to the rising clock edge. Once again, the problem did not mention anything regarding

active clock edges so we are therefore free to choose either rising or falling clock edge.

Digital McLogic Design Chapter 26

 - 526 -

Figure 26.11: Example timing diagram for Example 26-2.

Step 1) Stare at the problem. From this wanton gaze you’ll be able to gather the following high level

information.

 Looking at required sequence, you can see that there are only four unique numbers in the

sequence. The sequence then repeats itself after encountering each of the four numbers. Since

there are four states, you’ll be able to implement this design using two flip-flops (as is implied by

the problem statement). If there were five numbers in the required sequence, you would have

needed three flip-flops to implement the circuit.

 The problem provides the numbers in the required sequence in decimal form. The implication

here is that the actual implementation is in binary since the outputs of the flip-flops (where the

state variables are stored) hold the count values. Sometimes this will not be the case but since

this is a simple counter, it is the case for this problem.

 After you stare at this problem for a while, you realize that drawing block box diagram for this

FSM is a good idea. Figure 26.12 shows such a block box diagram. For this diagram, the choice

of Y2 and Y1 are arbitrary but these choices match the timing diagram musing of Figure 26.11.

Figure 26.12: Black box diagram for the FSM of Example 26-2.

Step 2) Generate the states in the state diagram. Figure 26.13 shows the initial state diagram along with

a legend. Note that the solution chose variable names of Y1 and Y2 for the state variables (which are

arbitrary). The diagram represents all four states in the count sequence. The diagram also provides the

decimal equivalents of the required binary count below the state variable declarations for each state.

Figure 26.13: Initial state diagram for Example 26-2.

Digital McLogic Design Chapter 26

 - 527 -

Step 3) Generate the state transitions for the state diagram. For this counter, the state transitions occur

unconditionally on each active clock edge of the flip-flops. For this step, we only need to include the

state transition arrows in the state diagram; there are no conditions to associate with these arrows.

Figure 26.14 shows the resulting state diagram.

Once you complete this step, the state diagram is officially complete. From this state diagram, you can

choose to implement the actual FSM using many different approaches. As you will see in the remainder

of this example, none of these approaches is overly complicated. As you get used to the FSM

implementation procedures, you see that they become cookbook. In reality, the only complicated step is

in the design of the state diagram: this is where the engineering and deep thought is required. This is a

simple example and we’re purposely not attempting to gather an all encompassing understand of FSM

(we’ll be doing that soon though).

State diagram design requires a mindset all its own; once you grasp the intricacies of state diagrams

(and there’s not that many of them), you’ll be able to design many powerful circuits. As you’ll no doubt

agree after finishing this example, once the state diagram is generated, it becomes no big deal to

implement the FSM using a circuit model.

Figure 26.14: State diagram for the example problem.

Step 4) Generate the initial PS/NS table. The initial PS/NS table will contain only the present and next

state flavors of the state variables. Since there are two state variables (two flip-flops), the PS/NS table

only contains four rows. Figure 26.15 shows the resulting PS/NS table. Note that this table represents

all possible combinations of the state variables Y1 and Y2 in the columns under the “PS” label.

(PS) (NS)

Y1 Y2 Y1
+
 Y2

+

0 0

0 1

1 0

1 1

Figure 26.15: The initial PS/NS table for the example.

Step 5) Enter the next state information into the PS/NS table. The state diagram of Figure 26.14

provides all the next state information. For example, the first of the PS/NS table is associated with the

Y1Y2 = “00” state of the FSM (present state). From looking at the state diagram of Figure 26.14, the

Digital McLogic Design Chapter 26

 - 528 -

state variables associated with the next state are “10”. This “10” represents the state that the FSM will

transition to on the next active clock edge. This state transition represents the 0 → 2 count in the desired

sequence. We complete the remainder to of the PS/NS table by transferring the information from the

state diagram to the PS/NS table. Figure 26.16 shows the resulting PS/NS table.

(PS) (NS)

Y1 Y2 Y1
+
 Y2

+

0 0 1 0

0 1 0 0

1 0 1 1

1 1 0 1

Figure 26.16: PS/NS table for the example.

Step 6) Generate the excitation logic for the flip-flops used in the FSM implementation. Although the

PS/NS table is complete as shown in Figure 26.16, it is typical to include some extra columns with the

PS/NS table in order to aid in the implementation of the actual circuit. Since we’ll be implementing this

FSM with a T and a JK flip-flop, we need to generate the excitation logic for these devices. The

excitation logic describes the inputs to the flip-flops; in terms of the FSM, the excitation logic forms the

Next State Decoder. This excitation logic forces the flip-flops to output the desired counts in the

specified order.

Since the PS/NS table already lists the desired state transitions for each of the two state variables, we

need to be able to configure the T and JK flip-flops such that these transitions actually occur. While the

state transition information is somewhat generic, we need to make it specific in the context of the T and

JK flip-flops. Our main tool for this operation is the excitation tables associated with each flip-flop.

Figure 26.17 shows the excitation tables for the D, T, and JK flip-flops, which we derived previously.

These tables are vastly important; you should know this information by heart (even if it requires that

you memorize it).

D Flip-flop T Flip-flop JK Flip-flop

Q Q
+
 D

0 0 0

0 1 1

1 0 0

1 1 1

Q Q
+
 T

0 0 0

0 1 1

1 0 1

1 1 0

Q Q
+
 J K

0 0 0 -

0 1 1 -

1 0 - 1

1 1 - 0

(a) (b) (c)

Figure 26.17: Excitation tables for the D, T, and JK flip-flops.

The excitation tables show what input values (D, T, and JK) that will cause the listed change (Q → Q
+
)

in state for a given flip-flop. For our example, the PS/NS table in Figure 26.16 lists the changes in state

variables (Y1 and Y2) that are required for this problem. We need to use the excitation tables to make

Digital McLogic Design Chapter 26

 - 529 -

these changes happen in our flip-flops. More specifically, the PS/NS table lists the present-state and

next-state for each of the state variables (Y1 → Y1
+
 and Y2 → Y2

+
). Even more specifically, the

column labeled “T” actuates the state change in the Y1 state variable for each associated row; columns

labeled J and K actuate the state change in the Y2 variable for each associated row. We’ve somewhat

arbitrarily decided to use a T FF and a JK FF for the state variables Y1 and Y2, respectively. The T and

JK flip-flops are slightly more challenging than using a D flip-flop but we’ll redo this problem using D

flip-flops after we complete this example.

For example, in the first row of the PS/NS table, the Y1→ Y1
+
 transition is a “0 → 1” transition. To

obtain this transition on a T flip-flop, you examine the excitation table for T flip-flop shown in Figure

26.17(b) and search for the (Q → Q
+
) = (0 → 1) transition. You’ll find this transition in the second row

of Figure 26.17(b); the value of T that causes this transition is located in the T column of Figure

26.17(b). This value is a ‘1’; we then enter it into the T column in the PS/NS table for this problem.

We use a similar procedure for entering the JK values in the first row of the PS/NS table. Since the Y2

→ Y2
+
 transition is 0 → 0, the J and K values that force this transition are read from the JK excitation

table of Figure 26.17(c). From this excitation table, a 0 → 0 transition occurs when the JK inputs are

values “0-“; this information is then entered into the JK columns of the first row of the PS/NS table for

this example. The remainder of the table in filled in accordingly. Figure 26.18 shows the PS/NS table

containing all the T and JK logic.

(PS) (NS)

Y1 Y2 Y1
+
 Y2

+
 T J K

0 0 1 0 1 0 -

0 1 0 0 0 - 1

1 0 1 1 0 1 -

1 1 0 1 1 - 0

Figure 26.18: The PS/NS table with logic for the T and JK flip-flops.

Step 7) Generate the excitation equations for the flip-flops. For this step, you’ll need to generate

equations for the T, J, K flip flop inputs. The T, J, and K columns of Figure 26.18 lists the logic that is

required for these equations. From this point, you see that the T, J, and K columns of the table represent

functions; this is good because you’re currently an expert at implementing functions using useful tools

such as K-maps. From here on out, this problem is a matter of using some of your previous skills to

finish the problem. You’ll of course want to reduce the equations since you’ll be provided a circuit

diagram that implements this example. In this case, we use the K-map to generate a Boolean expression

for the data in each of the T, J, and K columns. Figure 26.19 lists the final excitation equations for this

example. The K-maps are not shown so as not to bore you to death any more than you’re already facing

death by boring pointless problems. You are encouraged to generate these equations for yourself or

trying to get some other sucker to do it for you
6
. The good news here is that we can generate all of these

equations by inspection of the T, J, and K logic shown in Figure 26.18. This is generally the case for

two variable K-maps.

6
 If you successfully get someone else to do your work for you, you’ll have the one and only skill necessary to be

an academic administrator.

Digital McLogic Design Chapter 26

 - 530 -

21 YYT 1YJ 1YK

Figure 26.19: The excitation equations for this example.

Step 8) Draw the final circuit: This is generally a waste of time because if you’ve gotten this far, then

you obviously know what you’re doing. But… the final circuit is shown in Figure 26.20 just in case

you’re interested. You should take a minute to get a feel for this circuit and how it operates. A quick

analysis of the circuit shown in Figure 26.20 cries out the following:

 There are no external inputs to the circuit.

 The external outputs in this case are the state variables. This also means there is no need for an

output decoder (see Figure 26.21). This FSM is a Moore-type FSM because the outputs are only

a function of the state variables (in this case, they are the state variables).

 The next-state decoder is a single exclusive-NOR gate.

 The problem never stated which edge of the clock was active; RET flip-flops were arbitrarily

used.

 The active clock edge arrives; at this point, the T, J, and K inputs to the flip-flops become

meaningful and cause state transitions (from the present-state to the next-state). The outputs of

the flip-flops change and the process continues ad-nausuem.

Figure 26.20: The final circuit for the example problem.

Digital McLogic Design Chapter 26

 - 531 -

Figure 26.21: The relisted model for a Moore-type FSM.

Example 26-3

Redo the previous example but use two D flip-flops in your design in place of the T

and JK flip-flops. For the previous problem, you were asked to design a counter that

counts in the following sequence: 0, 2, 3, 1, 0, 2…

Solution: The nice thing about his example is that you can reuse most everything from the previous

example. The state diagram is the same for both of these examples because the count sequence and the

number of flip-flops required to implement this design are independent of the type of flip-flops used in

the design. This being the case, Figure 26.22 shows the state diagram for this example.

Figure 26.22: State diagram reused for this example problem.

Since the state diagram is the same for both examples the PS/NS table necessarily is the same also.

Figure 26.23(a) shows the basic PS/NS table. We’ve modified the PS/NS table to include the columns

for the D flip-flop logic as shown in Figure 26.23(b). The D1 and D2 flip-flops implement the Y1 and

Y2 state variables. Since we are implementing this FSM using D flip-flops, we use the excitation table

shown in Figure 26.17(a) for the D1 and D2 flip-flops. The nice thing about using D flip-flops is the

fact that the NS columns represent the excitation logic for the D flip-flops. You can note this by

comparing the D1 and Y1
+
 columns in the PS/NS table shown in Figure 26.23(b). You can generate the

D1 and D2 excitation logic by inspection of Figure 26.23(b); Figure 26.24 shows this logic.

Digital McLogic Design Chapter 26

 - 532 -

(PS) (NS)

Y1 Y2 Y1
+
 Y2

+

0 0 1 0

0 1 0 0

1 0 1 1

1 1 0 1

(PS) (NS)

Y1 Y2 Y1
+
 Y2

+
 D1 D2

0 0 1 0 1 0

0 1 0 0 0 0

1 0 1 1 1 1

1 1 0 1 0 1

(a) (b)

Figure 26.23: The PS/NS table for Example 26-3.

21 YD 12 YD

Figure 26.24: The excitation equations for Example 26-3.

In addition, as the final act of kindness, Figure 26.25(a) shows the circuit implementation for this

example. The dotted lines are included to impress upon you the fact that all the outside world needs to

know of this circuit is the CLK input and Y1Y2 outputs. Figure 26.25(b) shows the associated block

diagram for this FSM.

(a) (b)

Figure 26.25: The PS/NS table for this example.

Often time in make-believe digital-land, you’ll be given a state diagram and be asked to implement the

state diagram using a specific set of flip-flops. Not like this happens too much, but in case this situation

did come up, it would be helpful to you if you knew how to proceed when the state diagram is the

starting point of your problem as it is in the next example.

Digital McLogic Design Chapter 26

 - 533 -

Example 26-4

Draw a circuit that implements the following

state diagram. Use one T flip-flop and one D

flip-flop in your design. Minimize the amount

of required combinatorial logic used in your

design.

Solution: This type of problem is essentially an undoing of the previous flavor of design problem. If

you can recall from a few pages ago, we used the PS/NS table in order to generate the excitation logic

for the required flip-flops. This leads us to the solution in this particular problem: we must generate the

PS/NS table. This is not overly complicated in that you have previously used the PS/NS table to

generate the state diagram; this problem takes the opposite approach. This approach underscores that

fact that the PS/NS table and the state diagram contain the same information: they are modeling the

same thing. Here is an outline of steps required to solve this problem:

Step 1) Stare at the problem for while

Step 2) Generate the initial PS/NS table

Step 3) Generate the next state logic

Step 4) Generate the excitation logic

Step 5) Generate the output logic

Step 6) Draw the final circuit

Step 1) Stare at the problem for while. This should not be a glazed over stare; this should be a visual

analysis of the information provided to you by the state diagram. Here is a list of some of the items you

should be looking for in this step:

 The state diagram contains four states as indicated by those funny little circle jobbers.

What this should indicate to you is that the circuit that implements this FSM will

require two flip-flops. Note the state diagram lists every possible combination of the

two flip-flops states.

 The state diagram includes a legend which is the key to understanding all the funky

terminology listed in the state diagram.

 The FSM has one external input: X. The FSM also has two external outputs: Z1 & Z2.

Since the state bubbles include the Z1 output, the Z1 output must be Moore-type

output. The Z2 output is listed with the X input with the state transition arrows. The

fact that the Z2 output has different values as associated with the arrows exiting the

“11” state indicates that the Z2 output is a Mealy-type output. In other words, the Z2

output is different in state “11” which indicates that Z2 is a function of the X input;

by definition, the Z2 output is a Mealy-type.

Digital McLogic Design Chapter 26

 - 534 -

Step 2) Generate the initial PS/NS table. The important part of this step is to figure out how many rows

are required in the associated PS/NS table. For this example, the independent variables are the inputs

that directly affect the circuit. For this FSM, that would include both the present state of the state

variables and the external input variable X. Since there are two flip-flops required, there are going to be

two present state variables. This gives a grand total of three inputs and thus eight rows in the truth table.

Figure 26.26 shows the initial PS/NS table. We’ll deal with the extra columns included in this table in

later steps.

Y1 Y2 X

0 0 0

0 0 1

0 1 0

0 1 1

1 0 0

1 0 1

1 1 0

1 1 1

Figure 26.26: The initial PS/NS table for Example 26-4.

Step 3) Generate the next state logic. For this example, since there are two state variables, we’ll need to

represent the excitation logic with two excitation equations. This subsequently requires two columns in

the PS/NS table. We take the data in these columns directly from the state diagram. For example, as

read directly from the state diagram, if the FSM is in the “00” state and the X in put is a ‘0’ when the

next active clock edge arrives, the FSM transitions to the “10” state. The “10” is then entered in to the

table under the Y1
+
 and Y2

+
 headings. Similarly, if the FSM is in state “00” and the X input is a ‘1’, the

next state will be “00”. We complete the entire table by using this approach to transfer information from

the state diagram to the PS/NS table. Figure 26.27 shows the results of this step.

(PS) (NS)

Y1 Y2 X Y1
+
 Y2

+

0 0 0 1 0

0 0 1 0 0

0 1 0 1 1

0 1 1 0 1

1 0 0 0 1

1 0 1 0 0

1 1 0 0 0

1 1 1 0 1

Figure 26.27: The continued PS/NS table for Example 26-4.

Step 4) Generate the excitation logic. This step is dependent upon the type of flip-flops specified in the

design. For this step, apply the excitation tables for the flip-flops specified in the design to translate the

Digital McLogic Design Chapter 26

 - 535 -

Yx → Yx
+
 state transition information to excitation logic for the flip-flop inputs. For this design, we’ll

use a D flip-flop for Y1 and a T flip-flop for Y2. As stated previously, the excitation logic for the D

flip-flop is identical to the next state logic. For the T flip-flop, state changes in the Y2 → Y2
+
 are

represented by entering ‘1’ in the corresponding rows where the Y2 variable changed state. Figure

26.28 shows the resulting PS/NS table.

(PS) (NS)
Excitatin

logic

Y1 Y2 X Y1
+
 Y2

+
 D1 T2

0 0 0 1 0 1 0

0 0 1 0 0 0 0

0 1 0 1 1 1 0

0 1 1 0 1 0 0

1 0 0 0 1 0 0

1 0 1 0 0 0 1

1 1 0 0 0 0 0

1 1 1 0 1 0 1

Figure 26.28: The PS/NS table with including the excitation logic for Example 26-4.

Step 5) Generate the output logic. This FSM has two outputs: Z1 (Moore-type) and Z2 (Mealy-type).

Although the logic for these outputs is typically not part of the PS/NS table, it sure is handy to include it

in the table. From the state diagram, you can see that the Z1 input is a ‘1’ when in states “00” and “10”.

Figure 26.29 shows that we enter this information directly into the table in the Z1 column. Keep in

mind that the output is always based on the present state variables as listed in the PS/NS table. The next

state columns represent the state the machine enter on the next active clock edge. It’s a common

mistake to base the output logic on the next state logic; but please don’t let this happen to you.

Note that since Z1 is a Moore-type output, the output values always appear in pairs in the PS/NS table.

The fact that they come in pairs is a result of our choice of placing X as the least significant of the

independent variables. The Z2 output is a Mealy-type output, which means its value can change while

in a given state (between the active clock edges). Note that in the original state diagram, the only time

the Z2 output is a ‘1’ is in the “11” state under the condition that X equals ‘0’. This results in the only

‘1’ being in the Z2 column of the output logic is located in the Y1Y2X = “110” row. Figure 26.29

shows the complete PS/NS table.

Digital McLogic Design Chapter 26

 - 536 -

(PS) (NS)
Excitation

Logic
Output

Logic

Y1 Y2 X Y1
+
 Y2

+
 D1 T2 Z1 Z2

0 0 0 1 0 1 0 1 0

0 0 1 0 0 0 0 1 0

0 1 0 1 1 1 0 0 0

0 1 1 0 1 0 0 0 0

1 0 0 0 1 0 0 1 0

1 0 1 0 0 0 1 1 0

1 1 0 0 0 0 0 0 1

1 1 1 0 1 0 1 0 0

Figure 26.29: The PS/NS table with including the excitation logic for Example 26-4.

Step 6) Draw the final circuit. Figure 26.30 shows the final circuit. We obtain the excitation logic and

output logic by dropping the D1 and T2 columns into K-maps; we didn’t include these details so as to

spare you a slow death from this weapons grade boredom. One thing worthy to note in the circuit

diagram of Figure 26.30 is that the Z1 output uses a buffer circuit element. The buffer is a circuit

element that does not alter the logic levels of the signal it processes. For this signal, the complemented

Y2 signal is equal to the Z1 signal. Note that our Z2 output logic does in fact contain an X on the input,

which is what we would expect since Z2 is a Mealy-type output. On the other hand, the Z1 output is not

a function of the X input, which is what we’d expect from a Moore-type output.

Figure 26.30: The PS/NS table with including the excitation logic for Example 26-4.

26.6 FSM Illegal State Recovery

The state machines we’ve examined at this point have had a certain quality that is not always present in

all FSM design. Note that all FSM designs up to this point have magically used every code available in

the count sequence or state diagram. For example, both of the examples we’ve explored contained four

states which was the maximum number of states that we could represent using two flip-flops.

Digital McLogic Design Chapter 26

 - 537 -

Now consider the case where we have a count sequence of five numbers that we want to implement

using a FSM. For this case, we will need three flip-flops. The potential problem here is that with three

flip-flops, we can represent up to eight states. The question that arises is what exactly happens to the

other states? The answer is that in a super important solid design, you should know what those states are

doing. The problem is you want you FSM to fix itself if it finds itself in a state that it was not intended

to be in. In general, you need to design a fix into the hardware; this approach is referred to as illegal

state recovery. The next example sheds light on the problem; you’ll hopefully see that this is not a

major concept.

Example 26-5

Design a counter that counts in the following sequence: 0, 5, 7, 3, 6, 0, 5… For this

example, provide a PS/NS table only. Use only D flip-flops in your design. Make sure

all unused states are directed to state “000”.

Solution: This problem is similar to the other counter problems except there are more numbers in the

count sequence. The first step in problems such as these is to draw the state diagram. The tendency here

is to draw the desired sequence first as shown in Figure 26.31. This problem is special in that we need

to represent the states not listed in the counting sequence.

Figure 26.31: The initial state diagram for Example 26-5.

The first attempt to represent the unused states would maybe appear something like the diagram of

Figure 26.32. This state diagram includes the unused states of “001”, “010”, and “100”, but it is initially

unclear what to do with them. If we had not listed these states, meaning we did not care about them, we

could use “don’t cares” in the associated rows of the PS/NS table. In this way, we direct the unused

states to some other state, but we don’t know which state until equations for the excitation logic is

completed
7
. Keep in mind that the excitation logic for these examples is completed using K-maps; the

unused counts in the sequence appear as “don’t cares” in the excitation input columns in the PS/NS

table. Recall that it is the K-map groupings that decided if the don’t cares are assigned a ‘1’ or a ‘0’.

7
 This means that it’s the final K-map groupings that decided whether the “don’t care” cells in the K-map will be

either a ‘1’ or a ‘0’.

Digital McLogic Design Chapter 26

 - 538 -

Figure 26.32: The PS/NS table for Example 26-5.

What we’re trying to avoid in this problem is the generation of as hang states. In the state diagram, if

we do not explicitly direct all the unused states back to the desired counting sequence, we may end up

with a state diagram that has hang states. Figure 26.33 shows an example of a state diagram with hang

states. Note that in Figure 26.33 we do indeed have the desired sequence; but we also have the unused

states included in a pattern that we could implement because of our particular choice for the excitation

logic. The thought here is that there is some magic entity that assures your FSM will always start in a

certain state in the desired sequence. After that, if life is good, FSM never strays from that sequence.

In reality, FSM are implemented with actual circuits (it’s the electronic thing). That means they are

susceptible to various types of noise
8
. It just may happen that the noise places you in a state that is not

part of the desire sequence. If this happens, you’ll never make it back to the desire sequence. The FSM

is thusly hung because it is stuck in a hang state. Figure 26.33 shows two flavors of hang states. The

“001”-“010” pair is a small cycle; the “100” state is a self-looping hang state. In either case, there is no

path back to the original counting sequence, which may or may not be important to the problem at

hand
9
. Bummer!

Figure 26.33: A state diagram containing hang states and other terrible things.

However, all is not lost. The approach that saves the day is to direct the unused states back to a state in

the desired count sequence. In this way, if for some reason your FSM finds itself
10

 in a hang state,

8
 This refers to unwanted electronic effects. A loud stereo will most likely have not effect on your digital circuit

designs.
9
 Imagine if your FSM was controlling a heart pacemaker; it would not be good if your FSM got hung in a state

that no longer directed the heart to beat. Of course, this would not matter for academic administrators as they have

all had their hearts surgically removed as the basic requirement of their employment in academia.
10

 Yes Virginia, FSMs are self-aware (or about as self-aware as the average academic administrator).

Digital McLogic Design Chapter 26

 - 539 -

you’ll quickly (in one clock cycle) return to a count in the sequence. The problem description states that

you should direct all of your unused states back to state “000”. Figure 26.35 shows the resulting state

diagram for this approach. From this point, it is not a big deal to generate the PS/NS table using

techniques we’ve used in previous examples. Figure 26.34 shows the final PS/NS table for this

example.

(PS) (NS)
Excitation

Inputs

Y1 Y2 Y3 Y1+ Y2+ Y3+ D1 D2 D3

0 0 0 1 0 1 1 0 1

0 0 1 0 0 0 0 0 0

0 1 0 0 0 0 0 0 0

0 1 1 1 1 0 1 1 0

1 0 0 0 0 0 0 0 0

1 0 1 1 1 1 1 1 1

1 1 0 0 0 0 0 0 0

1 1 1 0 1 1 0 1 1

Figure 26.34: The final PS/NS table for Example 26-5.

Figure 26.35: The state diagram with hang-state recovery.

Digital McLogic Design Chapter 26

 - 540 -

(PS) (NS)
Excitation

Inputs

Y1 Y2 Y3 Y1
+
 Y2

+
 Y3

+
 D1 D2 D3

0 0 0 1 0 1 1 0 1

0 0 1 0 0 0 0 0 0

0 1 0 0 0 0 0 0 0

0 1 1 1 1 0 1 1 0

1 0 0 0 0 0 0 0 0

1 0 1 1 1 1 1 1 1

1 1 0 0 0 0 0 0 0

1 1 1 0 1 1 0 1 1

Figure 26.36: PS/NS table for the Example 26-5.

Now that we included illegal state recovery in our FSM design, the FSM is said to be self-correcting.

This means that if the FSM were to find itself in some undesired state, the FSM would eventually find

its way back to the desired portion of the state diagram. Making your FSM designs self-correcting is

important because statistically speaking, you’re going to have unused states in your FSM as a result of

the binary nature of the elements that are used to store the state variables.

Digital McLogic Design Chapter 26

 - 541 -

Chapter Summary

 The basic model of a FSM includes three major parts: 1) the Next State Decoder, 2) the State

Variables, and 3) the Output Decoder. Flip-flops are used to implement the state variables and

represent the only sequential part of a FSM.

 The two major types of FSMs include the Mealy machine and the Moore machine. These two FSM

types differ in only the output decoder: the outputs on a Moore machine are a function of the state

variables only while the outputs of a Mealy machine are a function of both the state variables and

the external inputs.

 FSM analysis starts with a circuit diagram and generates a state diagram and/or a PS/NS table.

FSM design starts with either a state diagram or PS/NS table and generates a circuit diagram.

 FSMs can be designed such that they contain no hang states by designing them to have illegal state

recovery attributes. FSM designs that do not contain hang states are self-correcting.

Digital McLogic Design Chapter 26

 - 542 -

Chapter Exercises

1) Analyze the following circuit and provide a PS/NS table and a state diagram

associated with the circuit. Include the Z output in both the PS/NS table and state

diagram.

2) Analyze the following circuit and provide a PS/NS table and a state diagram

associated with the circuit. Include the Z output in both the PS/NS table and state

diagram.

3) For the following circuit, provide a PS/NS

table and a state diagram that describes

the circuit. Include the output variable Z

in both the PS/NS table and the state

diagram. Be sure to provide a legend for

you FSM.

1) For the following output sequence, design a synchronous counter that repeats the given sequence

indefinitely. You should only provide illegal-state recovery from states 3 and 4 (direct these states

to state 6). Use a D flip-flop for the MSB (most significant bit), a T flip-flop for the middle bit, and

a JK flop-flop for the LSB (least significant bit). A Moore output Z is high only when the count is

less than 3 in the intended counting sequence. Show a PS/NS table and state diagram that accounts

for used states. Output sequence = 2,6,1,5,0. Make sure all excitation equations are in reduced

form. Don’t draw the circuit – just provide the required excitation equations.

Digital McLogic Design Chapter 26

 - 543 -

2) For the following output sequence, design a synchronous counter that repeats the given sequence

indefinitely. You should only provide illegal-state recovery from state 7 (direct this state to state 5).

Use a D flip-flop for the MSB (most significant bit), a T flip-flop for the middle bit, and a JK flop-

flop for the LSB (least significant bit). A Moore output Z is high only when the count is less than 3

in the intended counting sequence. Show a PS/NS table and state diagram that accounts for used

states. Output sequence = 2,3,4,0,5. Make sure all excitation equations are in reduced form. Don’t

draw the circuit – just provide the required excitation equations.

3) For the following output sequence, design a synchronous counter that repeats the given sequence

indefinitely. You should only provide illegal-state recovery from states 3 and 4 (direct these states

to state 2). Use a D flip-flop for the MSB (most significant bit), a T flip-flop for the middle bit, and

a JK flop-flop for the LSB (least significant bit). A Moore output Z is high only when the count is

less than 3 in the intended counting sequence. Show a PS/NS table and state diagram that accounts

for used states. Output sequence = 2,1,6,0,5. Make sure all excitation equations are in reduced

form. Don’t draw the circuit – just provide the required excitation equations.

4) 5. For the following output sequence, design a synchronous counter that repeats the given sequence

indefinitely. You should only provide illegal-state recovery from state 2 (direct this state to state 7).

Use a D flip-flop for the MSB (most significant bit), a T flip-flop for the middle bit, and a JK flop-

flop for the LSB (least significant bit). A Moore output Z is high only when the count is an odd

number in the intended counting sequence. Show a PS/NS table and state diagram that accounts for

used states. Output sequence = 0,3,4,6,7. Make sure all equations are in reduced form. Don’t draw

the circuit – just provide the required excitation equations.

5) For the following circuit, provide a PS/NS

table and a state diagram that describes the

circuit. Include the output variables Z1 and

Z2 in both the PS/NS table and the state

diagram.

6) For the following circuit, provide a PS/NS

table and a state diagram that describes the

circuit. Include the Z1 and Z2 output

variables in both the PS/NS table and the

state diagram. Be sure to provide a legend

for you FSM.

Digital McLogic Design Chapter 26

 - 544 -

7) Draw a circuit that implements the

following state diagram. Use one T flip-

flop and one JK flip-flop in your design.

Minimize the amount of required

combinatorial logic.

8) Draw a circuit that implements the

following state diagram. Use only D flip-

flops in your design. Minimize the

amount of required combinatorial logic.

9) For the following circuit, provide a

PS/NS table and a state diagram.

Include the output variable Z in both

the PS/NS table and the state diagram.

Digital McLogic Design Chapter 26

 - 545 -

10) For the following circuit, provide a

PS/NS table and a state diagram. Include

the output variables Z1 and Z2 in both

the PS/NS table and the state diagram.

11) For the following output sequence, design a synchronous counter that repeats the given sequence

indefinitely. Provide illegal-state recovery by directing all unused states to state 6. Use a D flip-flop

for the MSB (most significant bit), a T flip-flop for the middle bit, and a JK flop-flop for the LSB

(least significant bit). Show a PS/NS table and state diagram that accounts for all states. Sequence =

2,3,4,5,6. Make sure all excitation circuits are in reduced form. Don’t draw the circuit – just

provide all excitation equations.

12) For the following output sequence, design a synchronous counter that repeats the given sequence

indefinitely. Provide illegal-state recovery by directing all unused states to state 1. Use a D flip-flop

for the MSB (most significant bit), a T flip-flop for the middle bit, and a JK flop-flop for the LSB

(least significant bit). Show a PS/NS table and state diagram that accounts for all states. Sequence =

7,6,5,2,1. Make sure all excitation circuitry are in reduced form. Don’t draw the circuit – just

provide all excitation equations.

13) For the following output sequence, design a synchronous counter that repeats indefinitely. Provide

illegal-state recovery by directing all unused states to state 7. Use positive edge triggered flip-flops

and use a D flip-flop for the MSB (most significant bit), a T flip-flop for the middle bit, and a JK

flop-flop for the LSB (least significant bit). Show a PS/NS table and state diagram that accounts for

all states. Sequence = 1,2,4,5,7. Make sure all excitation circuits are in reduced form. Don’t draw

the circuit – just provide all excitation equations.

Digital McLogic Design Chapter 26

 - 546 -

14) The following state diagram is to be

implemented using D flip-flops and any

type of discrete logic gates. Write the

reduced excitation equations for the D flip-

flops and the equations for the Z1 and Z2

outputs. Don’t draw the final circuit.

15) Design a counter that counts in the following sequence: 0,3,2,0,3,2,0… Provide illegal-state

recovery into state 3. Use T or JK flip-flops for each of the state variables and use binary encoding.

Show a PS/NS table and state diagram that describes the FSM. Provide flip-flop excitation

equations in reduced form. Don’t draw the circuit.

16) The following equations describe a counter that steps through a 5 number sequence. The counter

only uses D flip-flops. Using the equations below, redesign the counter and make it self-correcting

by sending unused states to any state in the 5-number sequence. Provide new D excitation

equations in compact minterm form. Show the old state diagram and the new state diagram and

account for all possible states. Don’t draw the final circuit.

)7,6,4,3,2()3,2,1(1 YYYD

)7,6,3,1()3,2,1(2 YYYD

)6,4,0()3,2,1(3 YYYD

17) For the following circuit, provide a

PS/NS table and a state diagram.

Include the output variable Z in both the

PS/NS table and the state diagram.

Digital McLogic Design Chapter 26

 - 547 -

18) For the following circuit, provide a

PS/NS table and a state diagram.

Include the output variables Z1 and Z2

in both the PS/NS table and the state

diagram.

19) The following state diagram is to be

implemented using D flip-flops and any

type of discrete logic gates. Write the

reduced excitation equations for the D flip-

flops and the equations for the Z1 and Z2

outputs. Don’t draw the final circuit.

20) For the following circuit, provide a

PS/NS table and a state diagram. Include

the output variable Z in both the PS/NS

table and the state diagram.

Digital McLogic Design Chapter 26

 - 548 -

21) For the following circuit, provide a

PS/NS table and a state diagram. Include

the output variable Z in both the PS/NS

table and the state diagram.

22) For the following circuit, provide a

PS/NS table and a state diagram.

Include the output variable Z in both the

PS/NS table and the state diagram.

23) For the following circuit, provide a

PS/NS table and a state diagram. Include

the output variable Z in both the PS/NS

table and the state diagram.

Digital McLogic Design Chapter 26

 - 549 -

24) For the following circuit, provide a

PS/NS table and a state diagram. Include

the output variables Z1 and Z2 in both

the PS/NS table and the state diagram.

25) For the following circuit, provide a

PS/NS table and a state diagram.

Include the output variable Z in both

the PS/NS table and the state diagram.

26) For the following circuit, provide a

PS/NS table and a state diagram. Include

the output variable Z in both the PS/NS

table and the state diagram.

Digital McLogic Design Chapter 26

 - 550 -

27) For the following circuit, provide a

PS/NS table and a state diagram. Include

the output variable Z in both the PS/NS

table and the state diagram.

28) For the following circuit, provide a

PS/NS table and a state diagram. Include

the output variable Z in both the PS/NS

table and the state diagram.

29) For the following circuit, provide a

PS/NS table and a state diagram.

Include the output variables Z1 and Z2

in both the PS/NS table and the state

diagram.

Digital McLogic Design Chapter 26

 - 551 -

30) For the following circuit, provide a

PS/NS table and a state diagram. Include

the output variables Z1 and Z2 in both

the PS/NS table and the state diagram.

Be sure to include a legend for your state

diagram.

 - 553 -

27 Chapter Twenty-Seven

(Bryan Mealy 2012 ©)

27.1 Chapter Overview

The primary focus of the previous few chapters was the introduction of the various aspects involved in

finite state machines. The idea that we’ve been claiming is that FSMs are typically used as counters and

controllers. We’ve done a few example problems that highlighted FSM use as a counter and upcoming

chapters will show how FSMs act as controller circuits.

A major aspect of working with FSMs is to understand their underlying timing issues. This is

particularly true with FSM circuits that act as controllers, as the FSM’s output signals are what controls

other circuits. We’ve skipped over most timing issues up to now, but we’ll take a look at a few in this

chapter. In the real world, we need to deal with many timing issues. Some of these issues are somewhat

advanced, such as issues dealing with propagation delays through the various sub-blocks of the FSM.

For this chapter, we’ll primarily focus on the differences in timing diagrams associated with the Mealy

and Moore-type FSMs. These issues are not overly complicated but you’ll for sure find it helpful to

work through a few meaningful examples.

Main Chapter Topics

 FSM AND TIMING DIAGRAMS: FSMs have interesting timing aspects, particularly

in the context of Mealy vs. Moore FSMs. The timing associated with state diagrams

represents the key to using FSMs for many applications as these timing aspects are

essential to the proper operation of FSMs when used as controllers.

Why This Chapter is Important

This chapter is important because it introduces some of the major timing aspects

associated with FSMs, particularly the differences between Mealy and Moore output

timing.

27.2 Finite State Machines (FSMs): The Quick Review

Our workings with FSMs is divided into three distinct steps: 1) a high-level overview of the concepts

and associated terminology, 2) analysis and design of FSMs in circuit form and their relation to the state

diagram, and 3) developing the state diagram. The first two steps are straight-forward and almost

mechanical in nature. What we’ve hopefully learned from these steps is a basic understanding of state

diagrams and their relation to digital circuitry. The third step is the engineering step as it involves

creating state diagrams.

Digital McLogic Design Chapter 27

 554

Although any sequential circuit is officially a FSM, we’ll consider FSMs to be circuits that control

other circuits. Figure 26.1 and Figure 26.2 show the two types of FSMs: Moore and Mealy machines.

There are many similarities between these two FSM models but they do have one big difference: The

external outputs of a Mealy machine are a function of both the current state and the external inputs

while the external outputs of a Moore machine are exclusively a function of the current state of the

FSM. We described the functions associated with the basic FSM blocks in a previous chapter and we’ll

not waste the ink here.

Figure 27.1: Model for a Moore-type FSM.

Figure 27.2: Model for a Mealy-type FSM.

27.3 Timing Diagrams: Mealy vs. Moore FSM

Our previous FSM discussions dealt primarily with FSM design and analysis. We knew that the storage

elements (the flip-flops) were edge-triggered which allowed transitions between states to occur only on

the active clock edges. We also had several flip-flops to choose from (D, T, and JK) when

implementing our FSMs
1
. The FSMs were defined with either a PS/NS table or a state diagram (both

presented the same information but in a different format). The FSMs had external inputs and external

outputs which were generally named with X and Z variables, respectively. The external outputs could

be either a Moore-type or Mealy-type; both outputs were a function of the present state of the FSM but

Mealy-type outputs were also a function of external inputs. We also know that ultimately, the FSM

would be used to control some other circuit. The external inputs (X) would provide information to the

FSM, which would subsequently control the Mealy-type outputs and the state-to-state transitions.

Despite what academic-types think, there is more to FSMs than designing counters of various types.

1 Although we could choose between the three different types, PLD-based implementations primarily use D flip-

flops (more on this later). The T and JK flip-flops have their advantages, but these advantages are mitigated in

FPGA-land (because FPGAs have a lot of D flip-flops on-board).

Digital McLogic Design Chapter 27

 555

The study of FSMs can be broken into four parts. You know the first part: the design and analysis of

FSMs. The second part is to develop a basic understanding of state diagrams, which we dealt with in a

previous chapter, and will be deal with further in an upcoming chapter. The third aspect is the timing

diagrams associated with a given state diagram and the timing diagram’s relation to the problem in need

of solution. The final aspect, which is in an upcoming chapter, is to design FSMs from a given problem

specifications.

Up until now, we really have not mentioned too much about FSM timing considerations. Possibly our

only mention of the timing associated with the FSMs was that the state transitions only occurred on a

clock edge. In reality, you’re missing a big part of the story: the underlying timing diagram. Standard

digital logic textbooks
2
 typically dismiss the importance of timing diagrams. This chapter is primarily

concerned with timing diagrams and their relation to FSMs. Because state diagram nice define FSMs,

timing diagrams are the best place to start this discussion. From any state diagram, you can easily

generate an associated timing diagram that adheres to the state diagram.

27.3.1 Timing Diagrams and State Diagrams

There are some classic problems associated with the relationship between the timing aspects associated

with state diagrams. The thought here is that, under most circumstances, you should be able to generate

a state diagram from a timing diagram and/or vice-versa. The good thing about exploring this

relationship is that it clearly shows the relationship between the Mealy outputs listed in state diagrams

and the effect they have on the associated timing diagrams. In my opinion, understanding this

relationship is the most challenging part of developing a solid understanding of FSMs. However, once

you have this understanding, you’ll be able to take the final plunge in FSM-land: generating your own

timing diagram from a set of specifications.

We center this section around a few example problems that will hopefully help you understand FSMs

on an intuitive level. Understanding FSMs on this level is the key to being able to design real FSM

circuits that actually do something other than count (did I already deliver that insult?).

Example 27-1

Draw a state diagram that could generate the timing diagram shown in Figure 27.3. Consider CLR

to be an active low signal that resets the FSM. X is an external input and Z1 and Z2 are external

outputs.

2
 The inadequate treatment of timing diagrams by most digital design textbooks is well known. The other problems

are too numerous to mention here (and painfully well known by all).

Digital McLogic Design Chapter 27

 556

Figure 27.3: Timing diagram for Example 27-1.

Solution: The first thing to do with a problem like this is to stare at it and try to figure things out. If you

were to do this for long enough, you’d notice items such as the things listed below.

 The FSM has one external input: X.

 The FSM has two external outputs: Z1 and Z2.

 The CLR signal places the FSM into a known state in the first time slot and then has no effect

later in the timing sequence. In other words, the CLR signal asserts in the first time slot and then

de-asserts for the remainder of the timing diagram.

 The clock is rising-edge triggered (RET). This fact is evident from examining the timing

diagram: notice that all the state changes occur on the rising-edge of the clock signal.

 The outputs Z1 and Z2 are both Moore outputs. You know this because all of the changes in

these outputs occur at the same time as changes in the state variables. In later examples, we’ll

look at some Mealy-type outputs.

 There are three state variables. Initially you may start thinking that there are eight possible states

in this FSM, which is not a bad thought because there is a possibility that this FSM uses binary

encoding. However, upon further examination of the timing diagram you’ll notice that only one

of the three state variables is in a high state at one time. This indicates that the FSM is one-hot

encoded. The topic of one-hot encoding is not complicated: it simply means that there is one

storage element (or flip-flop) for each state in the FSM. Furthermore, each state is represented by

one storage element being in a ‘1’ state while all other storage elements are in a ‘0’ state
3
. The

3
 Much like a standard decoder’s output.

Digital McLogic Design Chapter 27

 557

timing diagram in this example thus indicates that this FSM has three states. We’ll discuss one-

hot encoding in more detail in a later chapter.

Without doing much work with this example, you can glean a lot of information. This should be your

approach of choice for all of these problems because a solely mechanical approach can sometimes

bypass true understanding of the problem and is certainly not an approach taken by real engineers
4
. The

problem is now ready for solving.

Keep in mind that the hardest part of doing this problem may be to stay neat and organized. The task

you should do is to explicitly list the states in terms of the state variables. This means you should group

the variables into some order such as Y1Y2Y3. You should do the same for the output variables such as

Z1 and Z2. Note that in this step, the ordering does not matter. What does matter is that you document

what you’re doing in a legend that is included with your state diagram. Figure 27.4 shows the results of

this preliminary step in the upper left portion of the diagram.

Step 1) The first real step in the process of solving this problem would be to generate a simple state

diagram that lists only the states and the state transitions. We accomplish this straightforward by

reading the state variable information and the associated transitions from the timing diagram. Figure

27.4 shows the results of this step. Be sure to note the method used to represent the asynchronous CLR

input. In order to stay organized, you may want to explicitly list the state variables in each of the time

slots of Figure 27.3.

Figure 27.4: The results after the first step of Example 27-1 solution.

Step 2) Now that you have listed all the possible state transitions, list the external conditions that allow

the state transitions to occur. As you would expect, since there are two arrows leaving each state

bubble, the external input X is what determines the state transitions. We complete this step by

examining the X input’s value at the end of each state time-slot in the timing diagram. This is because

the X input determines the next state based on the present state. The idea here is that when you

considered any one state slot in the timing diagram, that slot is the “present state” which makes the next

state slot the “next state”. Figure 27.5 shows the results of this step once this entire analysis is complete.

4
 However, it is the approach taken by engineers who can’t wait to become academic administrators: “lottabloat”.

Digital McLogic Design Chapter 27

 558

Figure 27.5: The results after Step 2 in the Example 27-1 solution.

Step 3) The final step is to include the outputs in the state diagram. Since these are Moore outputs, they

can be (and should be) included within the state bubbles. The value of the outputs for each state is

determined by examining the timing diagram for each output. When you perform this step, you can see

that the output Z1 is a ‘1’ except in state “100” and output Z2 is a ‘1’ in all states except “001”. If the

person who drew the state diagram did a decent job, then there should be no ambiguities in the outputs

in the context of the various states. It appears that the person who generated this problem did a fine job.

Figure 27.6 shows the final solution for this example.

Figure 27.6: The final solution for Example 27-1.

Example 27-2

Draw a state diagram that could to generate the timing diagram shown in Figure 27.7. Consider

CLR to be an active low signal that resets the FSM. X1 is an external input and Z is an external

output.

Digital McLogic Design Chapter 27

 559

Figure 27.7: Timing diagram for Example 27-2.

Solution: The approach to solving Example 27-2 is similar to Example 27-1. The main difference

between these problems is that Example 27-2 lists symbolic names for the states rather than listing the

state variables as was the case in Example 27-1. In this way, you don’t need to worry about what bits

are representing the states. Besides that, taking a quick look at the problem (which always should be

your first step in solving these problems) should yield the following information:

 The FSM has one external input: X1.

 The FSM has one external output: Z.

 The CLR signal puts the FSM into a known state in the first time slot and then has no effect later

in the timing sequence.

 The clock is rising-edge triggered (RET). This fact is obvious from examining the timing

diagram: all the state changes occur on the rising-edge of the clock signal.

 The output Z is a Mealy output. You can see this by the fact that changes in this output occur at

places other then the active clock edges. The outputs in Example 27-1 were Moore-type and only

changed with the states (on the clock edge). The Z output in this example is sometimes (but not

always) synchronized to changes in the X1 input (and with the state variables which change on

the active clock edge) which implies that Z is a function of X1.

 There are three states in this FSM, which you can derive by counting the different letters in the

“state” row of the timing diagram.

Step 1) Draw a legend and a state diagram that shows only the state transitions. The information

required for this step comes from the “state” row of the timing diagram shown in Figure 27.7. You can

make the assumption in these types of problems that the timing diagram provides all the information

you need to do the problem. In other words, you should ignore unlisted state transitions, should they

actually exist.

Digital McLogic Design Chapter 27

 560

Figure 27.8: The results of Step 1 for Example 27-2.

Step 2) In the state diagram, list the conditions that cause the various state transitions listed in Figure

27.8. This information comes from examining the X row of the timing diagram. Note that there are two

conditions associated with the transition from state c to state a. Although this may seem like a condition

where you would place a don’t care (a transition that happens on the clock edge regardless of the input

conditions), you need to wait until you see what the output is doing. In other words, it’s an

unconditional transition from state c to a, but the output may be different depending on the X1 input.

We’ll check for this condition in the next step. Figure 27.9 shows the results of the current step.

Figure 27.9: The results of Step 2 for Example 27-2.

Step 3) Add the values for the output variable. The output variable Z is a Mealy-type output its value is

placed along side the input values in the state diagram. Figure 27.10(a) shows the results of this step.

Notice that the value of the input variable does not matter for state (c) to state (a) state transition: the

output Z is always a ‘0’ which is listed in a more intelligent manner with the don’t care symbol

appearing in Figure 27.10(b). The example is complete; allow the celebration to begin.

Digital McLogic Design Chapter 27

 561

(a) (b)

Figure 27.10: The results of Step 3 for Example 27-2; (a) & (b) show two different solutions with

(b) being the better approach.

Example 27-3

Use the state diagram below to complete the timing diagram shown in Figure 27.11. Consider

CLR to be an active low signal that resets the FSM. X1 and X2 are external inputs and Z is an

external output.

Solution: This example is slightly different from the previous two examples. It is the same basic FSM

idea but the state diagram is given and you need to complete the timing diagram. The timing diagram is

missing information for output Z and as well as the values of the states in each of the time slots. The

approach to solving this problem is similar in that before you start, you should stare at the problem and

see what is going on. If you are so bold as to take this step, you will be able to discern the following:

 The FSM has two external inputs: X1 and X2.

 The FSM has one external output: Z.

Digital McLogic Design Chapter 27

 562

 The CLR signal in the first time slot places the FSM into a known state and then has no affect

later in the timing sequence.

 The clock is rising-edge triggered (RET). This fact is obvious from examining the timing

diagram: all the state changes occur on the rising-edge of the clock signal. We show this with the

empty boxes in the state row of Figure 27.11.

 The output Z is a Mealy output. You can see this by examining the state diagram. Notice that the

two transition arrows leaving state (a) have different values of the Z output; this characteristic is

only true of state (a). The key point to remember here is that the outputs are associated with the

state that the arrow is leaving. The fact that the Z output has two different values associated with

state (a) indicates that the output is Mealy-type output. The output from the other two states

essentially acts like a Moore-type output since they are for the given transitions from that state.

You can thus expect the Z output to be changing with the X2 input because the output is a

function of the X2 input, which the state diagram indicates. You should expect to see this

characteristic in the timing diagram once it is completed.

 There are three states in this FSM, which you can discern by counting the different letters in the

state diagram.

Figure 27.11: The uncompleted timing diagram of Example 27-3.

Step 1) The first step in this solution is to once again fill in the state transitions. To do this, you first

need to establish a starting point. Lucky for us, the FSM is initially reset in the time slot before the first

clock edge. By examining the state diagram, the asserted CLR signal places the output into state (a).

Thus, we enter state (a) into the first box in the state row in the timing diagram. To fill in the other

empty state boxes, you need to consider the present state and the input values that control the transitions

from that state.

For state (a), the initial state of this example, the X2 inputs controls transitions from this state, which

you can discern by examining the state diagram. If X2 is a ‘0’, the FSM transitions from state (a) to

state (b); if X2 is a ‘1’, the FSM transitions from state (a) to state (c). To discern the state transition on

Digital McLogic Design Chapter 27

 563

the first clock edge, you must first check the state of the X2 input in the associated state diagram.

Examining the state diagram, you’ll see that this input is a ‘1’ so the FSM transitions to state (c). We

continue this approach for every state in the state row. Notice that the state transitions associated with

states (a) and (c) are dependent upon the X2 variables while state transitions associated with state (b)

are associated with the X1 variable. Figure 27.12 shows the results of this step.

Figure 27.12: The results after the first step in the solution of Example 27-3.

Step 2) The second and final step associated with this example is to fill in the Z output based the

present state and the X1 and Z2 inputs. To do this, you need to examine the state diagram for each state.

For example, in the first time slot (where the resent takes place), the FSM is in state (a). From the state

diagram, in state (a), the value of the Z output is based on the value of the X2 input. More specifically,

if X2 input is a ‘1’, the Z output is a ‘0’. Therefore the Z output would state in the ‘0’ state. The second

time slot is associated with state (c). In state (c), you’ll notice that the output is always a ‘0’ which is

independent of any input variable. You’ll also notice that state (b) has the same condition. In states (b)

and (c), the output Z actually has Moore-type qualities. What makes it a true Mealy-type output is the

output conditions associated with state (a). In other words, in state (a) the Z output is dependent upon

the value of the X2 input. We take this approach for the entire Z row in the timing diagram. Figure

27.13 shows the results. A viable approach to these problems is to fill in the Moore outputs first since

they require less neurons to successfully complete.

Digital McLogic Design Chapter 27

 564

Figure 27.13: The final result for Example 3.

Digital McLogic Design Chapter 27

 565

Chapter Summary

 The Moore-type outputs of a FSM can only change on the active clock edge associated with the

FSM. If a particular output only changes on active clock edges, the output is a Moore-type output.

 The Mealy-type outputs of a FSM can only change either on active clock edges or with external

inputs. If a particular external output changes anywhere else but an active clock edge, then the

output must be a Mealy-type output because Moore-type outputs change only on active clock

edges.

 Timing diagrams provide extremely valuable information describing the operation of a particular

FSM. You can successfully derive a complete state diagram from a complete timing diagram (and

vice versa).

Digital McLogic Design Chapter 27

 566

Chapter Exercises

1) Use the following state diagram to complete the timing diagram provided below. Show how

the inputs affect the state transitions and output Z by filling in the “state” and “Z” lines in the

timing diagram. Assume that propagation delay times are negligible. Assume state transitions

occur on the rising edge of the clock signal. Assume CLR is an asynchronous, active low

input.

Digital McLogic Design Chapter 27

 567

2) Use the following state diagram to complete the timing diagram provided below. Show how the

inputs affect the state transitions and output Z by filling in the “state” and “Z” lines in the timing

diagram. Assume state transitions occur on the rising edge of the clock signal. Assume CLR is an

asynchronous, active low input.

Digital McLogic Design Chapter 27

 568

3) Use the following state diagram to complete the timing diagram provided below. Show how the

inputs affect the state transitions and outputs Z1 and Z2 by filling in the “STATE”, “RD”, and

“CS” lines in the timing diagram. Assume that propagation delay times are negligible. Assume

state transitions occur on the rising edge of the clock signal. Assume INIT is an asynchronous,

active low input.

Digital McLogic Design Chapter 27

 569

4) Use the following state diagram to complete the timing diagram provided below. Show how the

inputs affect the state transitions and outputs Z1 and Z2 by filling in the “STATE”, “Z1”, and “Z2”

lines in the timing diagram. Assume that propagation delay times are negligible. Assume state

transitions occur on the rising edge of the clock signal. Assume INIT is an asynchronous, active

high input.

 - 571 -

28 Chapter Twenty-Eight

(Bryan Mealy 2012 ©)

28.1 Chapter Overview

The previous chapters presented an over view of FSMs as well as some FSM design, analysis, and

timing diagram techniques. Since this was a significant amount of information, it gave the appearance

that the associated issues were complicated. But as you probably discovered after attempting a few

problems on your own, you found these design and analysis techniques rather cookbook
290

. This chapter

also covers more cookbook material. Modeling FSMs using VHDL behavioral modeling is similar to

FSM design and analysis in that once you finish a few problems, you’ll begin to view the topic as

somewhat trivial.

As previously mentioned, FSMs are generally used as controllers in digital circuits. After working

through the previous chapters, you’ve probably designed quite a few state machines on paper, but there

was no real point for the design. You’re now to the point where your designs still won’t have much

point but you’ll be able to implement and test them using actual hardware if you so choose. The first

step in this process is to learn how to model FSMs using VHDL. But have no fear, the theme of

upcoming chapters are to use FSMs as they are intended; that’s when the real fun begins
291

.

Main Chapter Topics

 MODELING FSMS USING VHDL: The approach to representing FSMs using VHDL

is straightforward. The power of VHDL and its behavioral modeling capabilities

allows you to represent FSMs at a high-level of abstraction. The VHDL approach

allows for direct modeling of the state diagram and thus avoiding dealing with

implementation details such as next-state and output decoding logic.

 ONE HOT ENCODING OF STATE VARIABLES: The encoding of state variables is an

important subject that up to now has been omitted. This chapter briefly covers how

the encoding of state variables, and in particular, the use of One-Hot Encoding

using VHDL models.

Why This Chapter is Important

This chapter is important because it describes a straightforward approach to modeling

FSM using VHDL and describes some of the methods used to encode state variables.

290

 Despite this fact, you should have still developed a deep understanding of the general form and function of

FSMs. If you did not, you’ll most likely experience some trouble in the upcoming material.
291

 This chapter, however, has a high fun factor rating, but not as fun as bowling.

Digital McLogic Design Chapter 28

 - 572 -

28.2 FSMs Using VHDL Behavioral Modeling

Figure 28.1 shows the block diagram of a standard Moore-type FSM as we worked with in a previous

chapter. The Next State Decoder is a block of combinatorial logic that uses the current external inputs

and the current state of the FSM to decide upon the next state of the FSM. The circuitry in Next State

Decoder is generally the excitation equations for the storage elements (flip-flops) in the State Register

block. The next state becomes the present state of the FSM when the clock input to the state registers

block becomes active. The state registers block is storage elements that store the present state of the

machine. The Output Decoder is yet another combinatorial circuit in the FSM. The inputs to the Output

Decoder are used to generate the desired external outputs. The inputs to the output decoder are decoded

via combinatorial logic to produce the external outputs. We classify this FSM as a Moore-type FSM

because the external outputs are only dependent upon the current state of the machine.

Figure 28.1: Block diagram for a Moore-type FSM.

Although the model in Figure 28.1 accurately describes the FSM in the context of the low-level design

techniques we presented in a previous chapter, it does not adequately describe FSMs as we typically

model them in VHDL. The true power of VHDL starts to emerge in its dealings with FSMs. As you’ll

see, the versatility of VHDL behavioral modeling removes the need for large paper designs of endless

K-maps and endless combinatorial logic and other boring stuff you may have grown used to in previous

chapters.

VHDL uses several different approaches to model FSMs. These many approaches are a result of the

versatility of VHDL as a hardware description language. What we’ll describe in this section is probably

the clearest approach for FSM modeling using VHDL
292

. Figure 28.2 shows a block diagram of the

approach we’ll use for FSM behavioral modeling using VHDL.

Although it does not look that much clearer, you’ll soon find the FSM model in Figure 28.2 to be a

straightforward method to implement FSMs. The approach we use divides the FSM into two VHDL

processes. One process, referred to as the Synchronous Process, handles all the matters regarding

clocking and other controls associated with the storage elements. The other process, the Combinatorial

Process, handles all the matters associated with the Next State Decoder and the Output Decoder of

Figure 28.1. Recall that the Output Decoder and Next State Decoder blocks in Figure 28.1 use only

combinatorial logic.

There is some new lingo used in the description of signals used in Figure 28.2; the outline below

describes this new lingo:

292

 There are many sources available describing other approaches to FSM modeling in VHDL. Once you

understand the basics presented in this chapter, understanding the other approaches is not a big deal and you are

encouraged to seek these out.

Digital McLogic Design Chapter 28

 - 573 -

 The inputs labeled Parallel Inputs signify inputs that act in parallel to each of the storage

elements in the FSM. These inputs would include enables, presets, clears, etc. The thought

here is that these input types control all of the storage elements as a group (parallel), and not

individually. As you see in more complex FSM designs, there are many times where you’ll

need this level of control of the FSM’s storage elements.

 The inputs labeled State Transition Inputs include external inputs that control state transitions.

Recall that the external inputs to a FSM can have two functions: 1) they control the state

transitions, 2) in the case of Mealy machines, they control the values of the external output

signals. This FSM model lumps them together into one block
293

.

 The Combinatorial Process box uses the Present State signals for both next state decoding and

output decoding. The diagram of Figure 28.2 also shows that the Present State variables can

also serve as outputs to the FSM. The present state variables can also be input to another

combinatorial block (such as a generic decoder) for further massaging.

 The Next State signals are truly VHDL signals. Their sole purpose is to provide a means for the

two processes to communicate. As opposed to the Present State signals, the Next State signals

shown in Figure 28.2 are not outputs to the outside world.

Figure 28.2: Model for VHDL implementations of FSMs.

One final comment before we begin… Although there are many different methods that you can use to

model FSMs using VHDL, two of the more common approaches are the are the dependent and

independent PS/NS styles. We’ve opted to only cover the dependent style in this chapter because it is

clearer than the independent PS/NS style when you’re first dealing with VHDL behavioral models of

FSM. Figure 28.2 shows a model of the dependent PS/NS style of FSMs. One you understand the

dependent PS/NS style of VHDL FSM modeling, understanding the independent PS/NS style or any

other style is relatively painless. You can find more information on the other FSM coding styles in

various VHDL texts or on the web. Keep in mind that if you’re modeling FSMs with VHDL, you’re

handing over a significant amount of control to the VHDL synthesizer, which is generally a happy thing

to do.

293

 Recall that we combinatorial process in the current FSM model now has the functionality of both the Next State

Decoder and Output Decoder blocks of the previous FSM model.

Digital McLogic Design Chapter 28

 - 574 -

Example 28-1

Write the VHDL code that models the FSM shown on

the right. Use a dependent PS/NS coding style in your

implementation.

Solution: This problem represents a basic FSM implementation. It is somewhat instructive to show the

black box diagram which serves as an aid in the writing the entity description. Starting design problems

by drawing a black box diagram is always a healthy approach particularly when dealing with FSMs.

Often times with FSM problems, it sometimes becomes challenging to discern the FSM inputs from the

outputs, particularly when the state diagrams become more complex
294

. Drawing a diagram partially

alleviates this problem. Figure 28.3 shows a black box diagram for this example while Figure 28.4

shows a solution to this example.

Figure 28.3: Black box diagram for the FSM of Example 28-1.

294

 Also, since there are so many ways to draw state diagrams, you may be dealing with an approach that you’re not

used to. In this case, draw a black box diagram for sure.

Digital McLogic Design Chapter 28

 - 575 -

entity my_fsm1 is

 port (TOG_EN : in std_logic;

 CLK,CLR : in std_logic;

 Z1 : out std_logic);

end my_fsm1;

architecture fsm1 of my_fsm1 is

 type state_type is (ST0,ST1);

 signal PS,NS : state_type;

begin

 sync_proc: process(CLK,NS,CLR)

 begin

 -- take care of the asynchronous input

 if (CLR = ‘1’) then

 PS <= ST0;

 elsif (rising_edge(CLK)) then

 PS <= NS;

 end if;

 end process sync_proc;

 comb_proc: process(PS,TOG_EN)

 begin

 Z1 <= ‘0’; -- pre-assign output

 case PS is

 when ST0 => -- items regarding state ST0

 Z1 <= ‘0’; -- Moore output

 if (TOG_EN = ‘1’) then NS <= ST1;

 else NS <= ST0;

 end if;

 when ST1 => -- items regarding state ST1

 Z1 <= ‘1’; -- Moore output

 if (TOG_EN = ‘1’) then NS <= ST0;

 else NS <= ST1;

 end if;

 when others => -- the catch-all condition

 Z1 <= ‘0’; -- arbitrary; it should never

 NS <= ST0; -- make it to these two statement

 end case;

 end process comb_proc;

end fsm1;

Figure 28.4: The final solution for Example 28-1.

And of course, this solution has many things worth noting in it. The more interesting things are listed

below.

 We’ve declared a special VHDL type, state_type, to represent the states in this FSM. This is an

example of how VHDL uses enumeration types. As with enumeration types in other higher-level

computer languages, there are internal numerical representations for the listed state types but we

only deal with the more expressive textual equivalent. In this case, the type we’ve created is

called a state_type
295

 and we’ve declared two variables of this type: PS and NS (which stand for

present state and next state). The key thing to note here is that a state_type is a type that we’ve

created and is not a native VHDL type.

 The synchronous process is generally equivalent in form and function to the simple D flip-flops

we examined when we were dealing with basic storage element representations using VHDL.

The only difference is we’ve substituted PS and NS for D and Q, respectively. The key thing to

note here is that the storage element is associated with the PS signal only. Note that PS is not

295

 The name is arbitrary but it does nice describe the purpose of the new type.

Digital McLogic Design Chapter 28

 - 576 -

specified for every possible combination of inputs (it has no catch-all statement) which is why

VHDL models PS as a storage element.

 Even though this is about the simplest FSM you could hope for, the code looks somewhat

complicated. However, if you examine it closely, you can see that the solution nicely

compartmentalizes everything. There are two processes. The synchronous process handles the

asynchronous reset and the assignment of a new state upon the arrival of the system clock. The

combinatorial process handles the outputs not handled in the synchronous process, the outputs,

and the generation of the next state of the FSM.

 Because the two processes operate concurrently, they are working in a lock-step manner.

Changes to the NS signal generated in the combinatorial process forces an evaluation of the

synchronous process because NS is in the sensitivity list of the combinatorial process. When the

synchronous process institutes those changes on the next clock edge, the changes in the PS signal

causes a new evaluation of the combinatorial process because PS is in the sensitivity list of the

combinatorial process. And so on and so forth.

 The case statement in the combinatorial process provides a when clause for each individual state

of the FSM. This is the standard approach for the dependent PS/NS coding style. A when others

clause is also provided; the signal assignments that are part this catch-all clause is arbitrary since

the code should never actually make it there. This statement provides a sense of completeness

and represents good VHDL coding practice
296

. In reality, catch-all statements are quite useful for

debugging purposes as you can force signals to be at strange values if they make it to parts of the

VHDL model that they should not be in. Thus, if you see these strange values on a Logic

Analyzer or simulator output, you know right where to look to fix the problem.

 The Moore output is a function of only the present state. This is expressed by the fact that the

assignment of the Z1 output is unconditionally evaluated in each when clause of the case

statement in the combinatorial process. In other words, the Z1 variable is inside the when clause

but outside of the if statement in the when clause. This is because the Moore outputs are only a

function of the present and not the external inputs. Note that the external input that controls how

the FSM transitions from a given state. You’ll see later that Mealy outputs, due their nature, are

assigned inside the if statement.

 The first step of the combinatorial process is to pre-assigned the Z1 output. Pre-assigning it in

this fashion prevents the unexpected latch generation for the Z1 signal. When dealing with

FSMs, there is a natural tendency for the FSM designer to forget to specify an output for the Z1

variable in each of the states. Pre-assigning these outputs helps prevents latch generation and can

arguably make the VHDL source code seem neater. The pre-assignment does not change the

function of the VHDL model because if the process makes multiple assignments within the

process, only the final assignment takes affect when the process evaluation completes. In other

words, only the final assignment is effective once the process terminates
297

.

There is one final thing to note about the solution shown in Figure 28.4. In an effort to keep the

example simple, we disregarded the true digital values of the state variables. The black box diagram of

Figure 28.3 indicates the fact that the only output of the FSM is signal Z1. This is reasonable in that it

could be the case where only one output was required in order to control some other device or circuit.

The state variables have an internal representation so the precise representation of the state variables is

not important since the FSM does not provide them as output. So if someone were to ask you how many

296

 Catch-all statements used in this manner are also helpful when used to debug VHDL models.
297

 Keep in mind that process statement is a concurrent statement. Despite the fact that process statements are filled

with sequential statements, the “execution” of the process statement occur concurrently. It’s a tough concept, but

you’ll get used to it with practice and contemplation.

Digital McLogic Design Chapter 28

 - 577 -

flip-flops were associated with a VHDL model such as this one, you would not know. Once again, this

is because we used a VHDL enumerated type to represent the state variables and have thus handed

control over to the VHDL synthesizer
298

.

Some FSM designs use the state variables as outputs. To show this situation, we’ll provide a solution to

Example 28-1 where the state variables are “modeled” as outputs. Figure 28.5 shows the black box

diagram of this solution while Figure 28.6 shows the alternate VHDL model.

Figure 28.5: Black box diagram of Example 28-1 including the state variable as an output.

298

 In reality, this is a problem of “how to encode the state variables”. This is a giant issue as there are many

ramifications regarding how exactly you encode the state variables. But, this is less of an issue in a beginning text

such as this one because modeling things to be massively efficient is simply a more advanced concept and is

beyond the scope of this text.

Digital McLogic Design Chapter 28

 - 578 -

entity my_fsm2 is

 port (TOG_EN : in std_logic;

 CLK,CLR : in std_logic;

 Y,Z1 : out std_logic);

end my_fsm2;

architecture fsm2 of my_fsm2 is

 type state_type is (ST0,ST1);

 signal PS,NS : state_type;

begin

 sync_proc: process(CLK,NS,CLR)

 begin

 if (CLR = ‘1’) then

 PS <= ST0;

 elsif (rising_edge(CLK)) then

 PS <= NS;

 end if;

 end process sync_proc;

 comb_proc: process(PS,TOG_EN)

 begin

 case PS is

 Z1 <= ‘0’;

 when ST0 => -- items regarding state ST0

 Z1 <= ‘0’; -- Moore output

 if (TOG_EN = ‘1’) then NS <= ST1;

 else NS <= ST0;

 end if;

 when ST1 => -- items regarding state ST1

 Z1 <= ‘1’; -- Moore output

 if (TOG_EN = ‘1’) then NS <= ST0;

 else NS <= ST1;

 end if;

 when others => -- the catch-all condition

 Z1 <= ‘0’; -- arbitrary; it should never

 NS <= ST0; -- make it to these two statement

 end case;

 end process comb_proc;

 -- assign values representing the state variables

 with PS select

 Y <= ‘0’ when ST0,

 ‘1’ when ST1,

 ‘0’ when others;

end fsm2;

Figure 28.6: Solution for Example 28-1 including state variable as an output.

Note that the VHDL code in shown in Figure 28.6 differs in only two areas from the code shown in

Figure 28.4. The first area is the modification of the entity declaration to account for the state variable

output Y. The second area is the inclusion of the selective signal assignment statement, which assigns a

value of state variable output Y based on the condition of the state variable. The selective signal

assignment statement evaluates each time the PS signal changes.

Once again, since we have declared an enumeration type for the state variables, we have no way of

knowing exactly how the synthesizer has opted to represent the state variable. The selective signal

assignment statement in the code of Figure 28.6 only makes it appear as if we used only one state

variable to represent the two states shown in the original state diagram. In reality, there are methods we

can use to control how the state variables are represented and we’ll deal with those soon. Lastly, be sure

to note that there are three concurrent statements in the VHDL code shown in Figure 28.6: two process

statements and a selective signal assignment statement.

Digital McLogic Design Chapter 28

 - 579 -

Example 28-2

Write the VHDL code that implements the

FSM shown on the right. Use a dependent

PS/NS coding style in your implementation.

Consider the state variables as outputs of the

FSM.

Solution: The state diagram shown in the problem description indicates that this is a three-state FSM

with one Mealy-type external output (Z2) and one external input (X). Since there are three states, the

solution requires at we use at least two signals to model the state variables, which is sufficient to handle

the three states. These state variables are for output purposes only, as the VHDL synthesizer handles the

true state variable representation. Figure 28.7 shows the black box diagram for this example while

Figure 28.7 shows the full solution. Note that the two state variables are handled as a bundled signal,

which is arbitrary.

Figure 28.7: Black box diagram for the FSM of Example 28-2.

Digital McLogic Design Chapter 28

 - 580 -

entity my_fsm3 is

 port (X,CLK,SET : in std_logic;

 Y : out std_logic_vector(1 downto 0);

 Z2 : out std_logic);

end my_fsm3;

architecture fsm3 of my_fsm3 is

 type state_type is (ST0,ST1,ST2);

 signal PS,NS : state_type;

begin

 sync_proc: process(CLK,NS,SET)

 begin

 if (SET = ‘1’) then

 PS <= ST2;

 elsif (rising_edge(CLK)) then

 PS <= NS;

 end if;

 end process sync_proc;

 comb_proc: process(PS,X)

 begin

 case PS is

 Z2 <= ‘0’; -- pre-assign FSM outputs

 when ST0 => -- items regarding state ST0

 Z2 <= ‘0’; -- Mealy output always 0

 if (X = ‘0’) then NS <= ST0;

 else NS <= ST1;

 end if;

 when ST1 => -- items regarding state ST1

 Z2 <= ‘0’; -- Mealy output always 0

 if (X = ‘0’) then NS <= ST0;

 else NS <= ST2;

 end if;

 when ST2 => -- items regarding state ST2

 -- Mealy output handled in the if statement

 if (X = ‘0’) then NS <= ST0; Z2 <= ‘0’;

 else NS <= ST2; Z2 <= ‘1’;

 end if;

 when others => -- the catch all condition

 Z2 <= ‘1’; NS < ST0;

 end case;

 end process comb_proc;

 -- faking some state variable outputs

 with PS select

 Y <= “00” when ST0,

 “10” when ST1,

 “11” when ST2,

 “00” when others;

end fsm3;

Figure 28.8: Solution for Example 28-2.

As usual, there are a couple of fun things to note about the solution for Example 28-2. Most

importantly, you should note the similarities between this solution and the solution to the previous

example.

 The FSM has one Mealy-type output. The solution essentially treats this output as a Moore-type

output in the first two when clauses of the case statement. In the final when clause, the Z2 output

appears in both sections of the if statement. The fact that the Z2 output is different in state ST2

(depending on the value of the X input) makes it a Mealy-type output and therefore a Mealy-type

FSM. This is always something you should be aware of; it’s easy to think that since the VHDL

Digital McLogic Design Chapter 28

 - 581 -

model is using an if statement in the when clause for the state, it’s automatically going to be a

Mealy type external output. Never make this assumption.

 This original state diagram has a mysterious state transition arrow. The SET arrow on the lower

right of the state diagram seems to enter the lower state out of nowhere. State diagrams use this

symbology to indicate asynchronous inputs to FSMs. This input is a “parallel input” as

previously described since the SET signal simultaneously acts on all of the storage elements.

Modeling the SET signal in the synchronous process uses the same approach as modeling

asynchronous inputs in basic storage elements. Therefore, the approach used to model the SET

signal is nothing new and strange.

 When faking the state variable outputs (keeping in mind that enumeration types represent the

actual state variables), two signals are required since the state diagram contains more than two

states (and less than five states). The solution opted to represent these outputs as a bundle, which

has the effect of slightly changing the form of the selected signal assignment statement appearing

at the end of the architecture description.

Example 28-3

Write the VHDL code that models the

FSM shown on the right. Use a dependent

PS/NS coding style in your model.

Consider the listed state variables as

output.

Solution: The state diagram indicates that the solution contains four states, one external input, and two

external outputs. This is a hybrid FSM in that the if contains both a Mealy and Moore-type output but in

this case, the FSM would be considered a Mealy-type FSM. Figure 28.9 shows the black box diagram

for the solution while Figure 28.10 shows the associated VHDL model.

Digital McLogic Design Chapter 28

 - 582 -

Figure 28.9: Black Box diagram for the FSM of Example 28-3.

Digital McLogic Design Chapter 28

 - 583 -

entity my_fsm4 is

 port (X,CLK,RESET : in std_logic;

 Y : out std_logic_vector(1 downto 0);

 Z1,Z2 : out std_logic);

end my_fsm4;

architecture fsm4 of my_fsm4 is

 type state_type is (ST0,ST1,ST2,ST3);

 signal PS,NS : state_type;

begin

 sync_proc: process(CLK,NS,RESET)

 begin

 if (RESET = ‘1’) then PS <= ST0;

 elsif (rising_edge(CLK)) then PS <= NS;

 end if;

 end process sync_proc;

 comb_proc: process(PS,X)

 begin

 -- Z1: the Moore output; Z2: the Mealy output

 Z1 <= ‘0’; Z2 <= ‘0’; -- pre-assign the outputs

 case PS is

 when ST0 => -- items regarding state ST0

 Z1 <= ‘1’; -- Moore output

 if (X = ‘0’) then NS <= ST1; Z2 <= ‘0’;

 else NS <= ST0; Z2 <= ‘1’;

 end if;

 when ST1 => -- items regarding state ST1

 Z1 <= ‘1’; -- Moore output

 if (X = ‘0’) then NS <= ST2; Z2 <= ‘0’;

 else NS <= ST1; Z2 <= ‘1’;

 end if;

 when ST2 => -- items regarding state ST2

 Z1 <= ‘0’; -- Moore output

 if (X = ‘0’) then NS <= ST3; Z2 <= ‘0’;

 else NS <= ST2; Z2 <= ‘1’;

 end if;

 when ST3 => -- items regarding state ST3

 Z1 <= ‘1’; -- Moore output

 if (X = ‘0’) then NS <= ST0; Z2 <= ‘0’;

 else NS <= ST3; Z2 <= ‘1’;

 end if;

 when others => -- the catch all condition

 Z1 <= ‘1’; Z2 <= ‘0’; NS <= ST0;

 end case;

 end process comb_proc;

 with PS select

 Y <= “00” when ST0,

 “01” when ST1,

 “10” when ST2,

 “11” when ST3,

 “00” when others;

end fsm4;

Figure 28.10: Solution for Example 28-3.

So if you’ve haven’t noticed by now, implementing FSMs using VHDL behavioral modeling is

remarkably straightforward. It’s actually a cookbook approach it’s so straightforward. In reality, you’ll

rarely find yourself having to code VHDL FSM models from scratch. The better approach is to grab a

previously coded model and use that. In other words, there is no need to reinvent the wheel when using

VHDL to model FSMs: use the cut and paste
299

 feature of your text editor instead. Keep in mind that

299

 Particularly useful if you’re a CPE: “cut and paste engineer”.

Digital McLogic Design Chapter 28

 - 584 -

real engineering is rarely cookbook and therefore modeling FSM using VHDL is not true engineering.

For FSM problems, the engineering is in the testing and creation of the state diagram. So don’t get too

comfortable with behavioral modeling of FSMs; the real fun is generating a FSM that solves a given

problem which we’ll start doing in the next chapter.

Finally, Figure 28.11 shows a copy of the famous VHDL FSM implementation cheat sheet. I use this

when I’m unable to find an old VHDL FSM model that I can and paste from.

Digital McLogic Design Chapter 28

 - 585 -

Figure 28.11: Possibly the ultimate VHDL FSM behavioral modeling cheat sheet.

28.3 State Variable Encoding and One-Hot Encoding

In our quest to conquer the wild FSM, we did not pay much attention to the 1’s and 0’s used to

represent the state variables. Our only concern in this matter was to have a unique state variable

assignment for each state in the FSM. The only thought you may have given to deciding upon what

state variables to use was to use as few as possible in an effort to reduce the complexity of the resulting

Digital McLogic Design Chapter 28

 - 586 -

hardware (if you actually had to implement the FSM). By using as few state variables as possible, you

minimized the amount of hardware dedicated to storing the state variables (thus minimizing the number

of flip-flops). This is a viable approach, and it was especially more viable in days where people actually

implemented FSMs using discrete ICs. This focus on minimizing hardware is somewhat less the case

today in non-academic environments, particularly with the current violent revolution in PLDs, and

particularly FPGAs.

You can actually use many different approaches to assign state variables. While is comfortable to make

just any assignment and have the world be happy (which is generally what is done in academia), the

reality is that there is much more involved. You may someday be lucky enough to take a course or to

learn these underlying details from your employer, but for now, we can continue not putting much

thought or effort into the topic
300

. For now, we need to look at one other type of state variable

assignment since it has deep ramifications in the realm of FPGA-based FSM implementations.

28.3.1 Binary and One-Hot Encoding of State Variables

The approach we’ve been using up until now of implementing FSMs was to use as few flip-flops as

possible to encode the state variables. This approach to state variable encoding is referred to as binary

or full encoding. In this approach, as the name implies, the state variable assignments use binary-type

values
301

. This is the typical approach taken in introductory FSM courses. In this approach, there is an

intuitively binary relation between the number of flip-flops (bit storage elements) and the number of

states in the FSM.

There are two ways to look at the flip-flops vs. states relationship as shown by the two relationships of

Equation 28-1. These equations show the relationship between the number of states and the number of

flip-flops required to uniquely encode the states when using binary encoding. The operator used in the

right-hand equation is the ceiling function which is defined as the smallest integer greater than or equal

to its argument.

states#2 flops-flip# states#log flops-flip# 2

Equation 28-1: Relating the number of states and the number of flip-flops for binary encoding.

Many the approaches you can use to encode state variables are based upon the availability of hardware.

Back in the days when people commonly used discrete ICs to implement FSMs, common approaches

were to use hardware such as counters, shift registers, ROMs). Each of these approaches typically had

some advantage or disadvantage over the other approaches. Some of these approaches include gray

codes, unit distance codes, sequential codes, Johnson counts, twisted-ring counts, and one-hot encoding.

We’ll only be looking at one-hot encoding since it is well suited for use implementing FSMs on

FPGAs.

One-hot encoding places no emphasis on minimizing the number of flip-flops as was a characteristic of

binary encoding. One-hot encoding instead places emphasis on minimizing the next-state logic. The

contrast here when compared to binary encoding is where in the FSM that the hardware is applied. In

300

 When FSMs are pushed to their operational limits by fast clock speeds, strange stuff can happen. This

strangeness can somewhat be controlled by an intelligent assignment of state variables. If you know the black

magic of generating intelligent state variable assignments, your FSM will operate more robustly at high clock

speeds.
301 Or to put it more precisely, binary values were used when the number of states requiring representation was a

power of two. If the number of states is not a power of two, some subset of a full set of binary values was used.

Digital McLogic Design Chapter 28

 - 587 -

binary coding, the hardware used to encode the state variables is minimal, but this minimization comes

at the cost of creating more logic in the excitation equations. In one-hot encoding, the hardware used to

encode the state variables is not minimized but it has the overall effect of minimizing the next-state

logic. This is a definite trade-off; there’s a lot more to say about this that we won’t say here.

Equation 28-2 shows the closed-form relationship between the number of flip-flops and the number of

states in one-hot encoding. As indicated by the equation below, there is one flip-flop for each state in

the FSM. Pretty straightforward, huh?

of flip-flops = # of states

Equation 28-2: Relating the number of states and the number of flip-flops for one-hot encoding.

One-hot encoding differs from binary encoding in that it has constraints on both the characteristics and

number of state variables. In a valid one-hot state, only one of the flip-flops can be in a ‘1’ state at any

given time, which is how the name one-hot is derived. Table 28.1 shows the valid one-hot encoded state

assignments for a few different state counts. It should be evident from Table 28.1 that it’s fairly simple

to extrapolate the one-hot code for any number of states. The ordering of the individual codes makes no

difference; the important feature of these codes is the fact that only one state variable is a ‘1’ for all the

states in any codeword.

Though it sounds like a cool name, there is nothing complex about one-hot encoding. Note that the

codes look a lot like the active-high outputs of a standard decoder. The reality is that in using one-hot

encoding, you are increasing the number of flip-flops required to implement the design as opposed to

the number of flip-flops that binary encoding would use for the same FSM. This sounds bad, very bad.

However, the payoff is that you’ll also see a reduction in the amount of logic required to implement the

next state decoder.

Finally, FPGAs have a relatively large number of flip-flops that are readily available for state variable

representation. In this case, using one-hot encoding actually does reduce the overall size of the circuit.

So, all is not bad in FSM-land. The example in Table 28.1 shows that implementing designs using one-

hot encoded state variables is nothing overly complicated.

of states in FSM
Valid Codewords

(valid one-hot state assignments)

2 “10”, “01”

3 “100”, “010”, “001”

4 “1000”, “0100”, “0010”, “0001”

5 “10000”, “01000”, “00100”, “00010”, “00001”

Table 28.1: Valid one-hot encoded state variable assignments for state counts (2-5).

28.4 VHDL Topics: One-Hot Encoding in FSM Behavioral
Modeling

Digital McLogic Design Chapter 28

 - 588 -

The question naturally arises as to how VHDL implements one-hot encoded FSMs. If you want total

control of the process, you’ll need to grab control away from the synthesizer. In addition, since we’re

concerned with learning VHDL, we need to look at the process of explicitly encoding one-hot FSMs.

The other good thing to note here is that this discussion is not really about the one-hot encoding of FSM

state variables; it’s actually about having the ability to encode the state variables any way you please.

One-hot encoding just happens to be a popular approach to encoding state variables particularly suite to

PLD-based implementations
302

.

The modular approach we used to implement FSMs expedites the conversion process from using

enumeration types to actually specifying the representation of the state variables. The changes required

from our previous approach are limited how the VHDL places constraints on the encoding of the state

variables. Modifications to the binary encoded approach are thus limited to a few lines in the VHDL

state variable declaration process. If you need to provide the state variables as outputs, the entity

declaration (you’ll need more variables to represent the states) and the VHDL code controlling the

assignment of output variables will also need modification.

Example 28-4

Write the VHDL code that implements the

FSM modeled by the state diagram shown

on the right. Use a dependent PS/NS coding

style in your implementation. Consider the

listed state variables as output. Use one-hot

encoding for the state variables; provide the

state variables as outputs to the FSM. This

problem is identical to a previous example

but one-hot encoding for the state variables

in this example.

Solution: The state diagram shows four states, one external input X, two external outputs Z1 and Z2

with the Z2 output being a Mealy output. This is a Mealy machine and the state diagram indicates that

the state variables must be encoded using one-hot encoding. We’ll approach this solution in pieces, bits

and pieces.

Figure 28.12 shows the modifications to the entity declaration required to convert the binary encoding

used in standard VHDL behavioral modeling to one-hot encoding. Figure 28.13 shows the required

modifications to the state variable output assignment in order to move from enumeration types to a

special form of assigned types. Forcing the state variables to be truly encoded using one-hot encoding

requires these two extra lines of code as is shown in Figure 28.13.

Most synthesis tool vendors provide the ENUM_ENCODING attribute to allow the digital designer to

specific the binary encoding to that is used by each object of enumerated types. These two lines of code

essentially force the VHDL synthesizer to represent each state of the FSM with its own storage element.

302

 Once again, the notion of how to encode the state variables is a concept involved with advanced FSM design

and is not covered here.

Digital McLogic Design Chapter 28

 - 589 -

In other words, the VHDL code shows that each state is represented by the associated “string” modifier.

In this particular example, the code essentially forces the FSM implementation to remember four bits

per state, which essentially requires four flip-flops. You should strongly consider comparing and

contrasting these three figures. Figure 28.14 shows the total solution for this example.

-- full encoded approach

entity my_fsm is

 port (X,CLK,RESET : in std_logic;

 Y : out std_logic_vector(1 downto 0);

 Z1,Z2 : out std_logic);

end my_fsm;

-- one-hot encoding approach

entity my_fsm is

 port (X,CLK,RESET : in std_logic;

 Y : out std_logic_vector(3 downto 0);

 Z1,Z2 : out std_logic);

end my_fsm;

Figure 28.12: Modifications to convert entity associated with Error! Reference source not found. to

one-hot encoding.

-- the approach to for enumeration types

type state_type is (ST0,ST1,ST2,ST3);

signal PS,NS : state_type;

-- the approach used for explicitly specifying state bit patterns

type state_type is (ST0,ST1,ST2,ST3);

attribute ENUM_ENCODING: STRING;

attribute ENUM_ENCODING of state_type: type is “1000 0100 0010 0001”;

signal PS,NS : state_type;

Figure 28.13: Modifications to convert state variables to use one-hot encoding.

Digital McLogic Design Chapter 28

 - 590 -

entity my_fsm is

 port (X,CLK,RESET : in std_logic;

 Y : out std_logic_vector(3 downto 0);

 Z1,Z2 : out std_logic);

end my_fsm;

architecture fsm of my_fsm is

 type state_type is (ST0,ST1,ST2,ST3);

 attribute ENUM_ENCODING: STRING;

 attribute ENUM_ENCODING of state_type: type is “1000 0100 0010 0001”;

 signal PS,NS : state_type;

begin

 sync_proc: process(CLK,NS,RESET)

 begin

 if (RESET = ‘1’) then PS <= ST0;

 elsif (rising_edge(CLK)) then PS <= NS;

 end if;

 end process sync_proc;

 comb_proc: process(PS,X)

 begin

 -- Z1: the Moore output; Z2: the Mealy output

 Z1 <= ‘0’; Z2 <= ‘0’; -- pre-assign the outputs

 case PS is

 when ST0 => -- items regarding state ST0

 Z1 <= ‘1’; -- Moore output

 if (X = ‘0’) then NS <= ST1; Z2 <= ‘0’;

 else NS <= ST0; Z2 <= ‘1’;

 end if;

 when ST1 => -- items regarding state ST1

 Z1 <= ‘1’; -- Moore output

 if (X = ‘0’) then NS <= ST2; Z2 <= ‘0’;

 else NS <= ST1; Z2 <= ‘1’;

 end if;

 when ST2 => -- items regarding state ST2

 Z1 <= ‘0’; -- Moore output

 if (X = ‘0’) then NS <= ST3; Z2 <= ‘0’;

 else NS <= ST2; Z2 <= ‘1’;

 end if;

 when ST3 => -- items regarding state ST3

 Z1 <= ‘1’; -- Moore output

 if (X = ‘0’) then NS <= ST0; Z2 <= ‘0’;

 else NS <= ST3; Z2 <= ‘1’;

 end if;

 when others => -- the catch all condition

 Z1 <= ‘1’; Z2 <= ‘0’; NS <= ST0;

 end case;

 end process comb_proc;

 -- one-hot encoded approach

 with PS select

 Y <= “1000” when ST0,

 “0100” when ST1,

 “0010” when ST2,

 “0001” when ST3,

 “1000” when others;

end fsm;

Figure 28.14: The final solution to Example 28-4.

Digital McLogic Design Chapter 28

 - 591 -

Chapter Summary

 Modeling FSMs from a state diagram is a straightforward process using VHDL behavioral

modeling. The process is so straightforward that it is cookie cutter. The real engineering involved

in implementing FSM is in the generation of the state diagram that solves the problem at hand.

 Due to the general versatility of VHDL, you can use many approaches to model FSMs using

VHDL. The approach used in this chapter is referred to as the dependent style of FSM model. This

approach used two processes to model FSM behavior: one process for the sequential elements of an

FSM and one process for the combinatorial elements.

 The actual encoding of the FSM’s state variables when enumeration types are used is left up to the

synthesis tool. If you prefer some particular method of variable encoding, using the attribute

approach detail in this section is a simple but viable alternative.

 When enumeration types are used to represent state variables, external outputs of FSM can be

assigned by including concurrent signal assignment statements in the FSM model. Although you

can simulate state variables this approach, the VHDL synthesizer has the ultimate control as to how

the state variables are actually assigned.

 There are VHDL constructs available to force the VHDL synthesizer to encode FSM behavioral

models using a one-hot code. These constructs allow the digital designer to directly control the

state variable encoding. Generally speaking, there are options that can be chosen in the synthesizer

toolset that allow the user to indirectly select the exact flavor of state variable encoding; there are

many standard flavors to choose from though only two were discussed in this chapter.

 You can encode the state variables of FSMs using many different styles. The “binary” encoding

approach minimized the number of flip-flops required to implement a given FSM while the “one-

hot” encoding approach minimized the next-state decoding logic at the expense of using more flip-

flops.

Digital McLogic Design Chapter 28

 - 592 -

Chapter Problems

1) Draw the state diagram associated with the following VHDL code. Be sure to provide a legend and completely

label everything.

entity fsm is

 port (X,CLK : in std_logic;

 RESET : in std_logic;

 Z1,Z2 : out std_logic;

end fsm;

architecture fsm of fsm is

 type state_type is (A,B,C);

 signal PS,NS : state_type;

begin

 sync_proc: process(CLK,NS,RESET)

 begin

 if (RESET = '0') then PS <= C;

 elsif (rising_edge(CLK)) then PS <= NS;

 end if;

 end process sync_proc;

 comb_proc: process(PS,X)

 begin

 case PS is

 Z1 <= '0'; Z2 <= '0';

 when A =>

 Z1 <= '0';

 if (X = '0') then NS <= A; Z2 <= '1';

 else NS <= B; Z2 <= '0';

 end if;

 when B =>

 Z1 <= '1';

 if (X = '0') then NS <= A; Z2 <= '0';

 else NS <= C; Z2 <= '1';

 end if;

 when C =>

 Z1 <= '1';

 if (X = '0') then NS <= B; Z2 <= '1';

 else NS <= A; Z2 <= '0';

 end if;

 when others =>

 Z1 <= '1'; NS <= A; Z2 <= '0';

 end case;

 end process comb_proc;

end fsm;

2) Write a VHDL behavioral model that could

be used to implement the state diagram on

shown in the right. The state variables should

be encoded as listed and also provided as

outputs of the FSM.

Digital McLogic Design Chapter 28

 - 593 -

3) Draw the state diagram associated with the following VHDL code. Be sure to provide a legend and

completely label everything.

entity fsmx is

 Port (BUM1,BUM2 : in std_logic;

 CLK : in std_logic;

 TOUT,CTA : out std_logic);

end fsmx;

architecture my_fsmx of fsmx is

 type state_type is (S1,S2,S3);

 signal PS,NS : state_type;

begin

 sync_p: process (CLK,NS)

 begin

 if (rising_edge(CLK)) then

 PS <= NS;

 end if;

 end process sync_p;

 comb_p: process (CLK,BUM1,BUM2)

 begin

 case PS is

 when S1 =>

 CTA <= '0';

 if (BUM1 = '0') then

 TOUT <= '0';

 NS <= S1;

 elsif (BUM1 = '1') then

 TOUT <= '1';

 NS <= S2;

 end if;

 when S2 =>

 CTA <= '0';

 TOUT <= '0';

 NS <= S3;

 when S3 =>

 CTA <= '1';

 TOUT <= '0';

 if (BUM2 = '1') then

 NS <= S1;

 elsif (BUM2 = '0') then

 NS <= S2;

 end if;

 when others => CTA <= '0'; TOUT <= '0'; NS <= S1;

 end case;

 end process comb_p;

end my_fsmx;

4) Write a VHDL behavioral model that could

be used to implement the state diagram on

shown in the right.

Digital McLogic Design Chapter 28

 - 594 -

5) Draw the state diagram associated with the following VHDL code. Consider the outputs Y to be

representative of the state variables. Be sure to provide a legend. Indicate the states with both the

state variables and their symbolic equivalents.

entity fsm is

port (X,CLK : in std_logic;

 RESET : in std_logic;

 Z1,Z2 : out std_logic;

 Y : out std_logic_vector(2 downto 0));

end fsm;

architecture my_fsm of fsm is

 type state_type is (A,B,C);

 attribute ENUM_ENCODING: STRING;

 attribute ENUM_ENCODING of state_type: type is "001 010 100";

 signal PS,NS : state_type;

begin

sync_proc: process(CLK,NS,RESET)

 begin

 if (RESET = '0') then PS <= C;

 elsif (rising_edge(CLK)) then PS <= NS;

 end if;

 end process sync_proc;

comb_proc: process(PS,X)

 begin

 case PS is

 when A =>

 Z1 <= '0';

 if (X = '0') then NS <= A; Z2 <= '1';

 else NS <= B; Z2 <= '0';

 end if;

 when B =>

 Z1 <= '1';

 if (X = '0') then NS <= A; Z2 <= '0';

 else NS <= C; Z2 <= '1';

 end if;

 when C =>

 Z1 <= '1';

 if (X = '0') then NS <= B; Z2 <= '1';

 else NS <= A; Z2 <= '0';

 end if;

 when others =>

 Z1 <= '1'; NS <= A; Z2 <= '0';

 end case;

 end process comb_proc;

with PS select

 Y <= "001" when A,

 "010" when B,

 "100" when C,

 "001" when others;

end my_fsm;

6) Write a VHDL behavioral model that could

be used to implement the state diagram on

shown in the right. Encode the state

variables as listed and also provided them as

outputs of the FSM.

Digital McLogic Design Chapter 28

 - 595 -

7) Draw the state diagram that corresponds to the following VHDL model and state whether the FSM is a

Mealy or Moore machine. Be sure to label everything.

entity fsm is

 Port (CLK,CLR,SET,X1,X2 : in std_logic;

 Z1,Z2 : out std_logic);

end fsm;

architecture my_fsm of fsm is

 type state_type is (sA,sB,sC,sD);

 attribute ENUM_ENCODING: STRING;

 attribute ENUM_ENCODING of state_type: type is "1000 0100 0010 0001";

 signal PS,NS : state_type;

begin

 sync_p: process (CLK,NS,CLR,SET)

 begin

 if (CLR = '1' and SET = '0') then

 PS <= sA;

 elsif (CLR = '0' and SET = '1') then

 PS <= sD;

 elsif (rising_edge(CLK)) then

 PS <= NS;

 end if;

 end process sync_p;

 comb_p: process (X1,X2,PS)

 begin

 case PS is

 when sA =>

 if (X1 = '1') then

 Z1 <= '0'; Z2 <= '0';

 NS <= sA;

 else

 Z1 <= '0'; Z2 <= '0';

 NS <= sB;

 end if;

 when sB =>

 if (X2 = '1') then

 Z1 <= '1'; Z2 <= '1';

 NS <= sC;

 else

 Z1 <= '1'; Z2 <= '0';

 NS <= sB;

 end if;

 when sC =>

 if (X2 = '1') then

 Z1 <= '0'; Z2 <= '0';

 NS <= sB;

 else

 Z1 <= '0'; Z2 <= '1';

 NS <= sC;

 end if;

 when sD =>

 if (X1 = '1') then

 Z1 <= '1'; Z2 <= '1';

 NS <= sD;

 else

 Z1 <= '1'; Z2 <= '1';

 NS <= sC;

 end if;

 end case;

 end process comb_p;

end my_fsm;

Digital McLogic Design Chapter 28

 - 596 -

8) Write a VHDL behavioral model that could

be used to implement the state diagram on

shown in the right. The state variables should

be encoded as listed and also provided as

outputs of the FSM.

9) Write a VHDL behavioral model that could

be used to implement the state diagram on

shown in the right. The state variables should

be encoded as listed and also provided as

outputs of the FSM.

10) Write a VHDL behavioral model that could

be used to implement the state diagram on

shown in the right. The state variables

should be encoded as listed and also

provided as outputs of the FSM.

Digital McLogic Design Chapter 28

 - 597 -

11) Write a VHDL behavioral model that could

be used to implement the state diagram on

shown in the right. The state variables

should be encoded as listed and also

provided as outputs of the FSM.

12) Write a VHDL behavioral model that could be used to implement the state diagram on shown in

the right. The state variables should be encoded as listed and also provided as outputs of the FSM.

13) Write a VHDL behavioral model that

could be used to implement the state

diagram on shown in the right. The state

variables should be encoded as listed and

also provided as outputs of the FSM.

14) Write a VHDL behavioral model that

could be used to implement the state

diagram on shown in the right. The state

variables should be encoded as listed and

also provided as outputs of the FSM.

 - 599 -

29 Chapter Twenty-Nine

(Bryan Mealy 2012 ©)

29.1 Chapter Overview

Implementing FSMs from a given state diagram was one of our initial focuses when dealing

with FSMs. The skills required to implement the FSM with either discrete logic components

(gate-level implementations) or VHDL behavioral models was not overly challenging once you

did a few examples
303

. Now that we have conquered the mechanics of FSM implementation,

we’ll change our focus to state diagram generation. Afterall, it’s the generation of the state

diagram that represents 99.9% of the engineering involved in FSM design. The idea here is that

anyone can implement a FSM from a given state diagram while it takes a 100% understanding

of FSMs and the problem at hand in order to generate a state diagram for a given problem.

This chapter provides an intuitive look at state diagrams and their associated timing diagrams.

Having an intuitive feel for state diagrams and being familiar with the mechanics of

implementing FSM, you’ll be ready to handle just about any control problem known to both

humans and academic administrators alike. Some of the presented information will seem like

review, but it should help solidifying the various concepts associated with FSMs.

Main Chapter Topics

 THE BASICS OF STATE DIAGRAMS: This chapter presents an intuitive view of all

aspects of state diagram. The key to generating state diagrams is understanding the

basic state diagram symbology and terminology and how they relate to designing a

solution to solving the problem at hand.

 FSM Problem Solving: This chapter introduces basic state diagram generation in

the context of sequence detectors. Sequece detectors provided relatively simple

problems to understand which allows you to focus your efforts on generating the

associated state diagram.

Why This Chapter is Important

This chapter is important because it describes the low level details of representing state

diagrams and also the differences in timing diagrams associated with Mealy and

Moore-type FSM.

303

 But it was a giant pain in the ass.

Digital McLogic Design Chapter 29

 - 600 -

29.2 The Big FSM Picture

The world progressed nicely for billions of years without having the concept of finite state

machines or any other such important items. In recent history, we’ve developed a need for low-

level control of just about everything in our lives, particularly control by tiny electronic things.

In regards to FSMs, the following verbage provides an overview of the control path that has led

us to where we are today (a few details are missing):

 In relatively recent history, digital stuff (computers and things) started happening. It

actually started happening a long time ago, but until relatively recently, the cost of digital

stuff was such that the average human could not afford to take notice.

 All the new digital stuff required some circuitry to control it; FSMs were the logical
304

option. The thought here is that maybe you could use a computer to control a computer,

but, these were still the days where computers were actually expensive (and big) and had

names like “HAL”. The main problem with software-based control was that the required

software increased the complexity of your project (and thus the length of the program)

and increased the overall memory requirements of your design
305

. In order to deal with

these issues, these projects used FSM implemented with discrete components to control

things. This approach was a pure hardware approach that could be implemented with

readily available and relatively inexpensive hardware. This was good.

 Integrated circuits (ICs) started taking over. There generally had been many ICs out

there, but all of a sudden, there were many more ICs out there. These new ICs were

providing more complex functionality, which meant that some of the control functions

handles by FSMs were being built into the various ICs. There were also ICs dedicated to

controlling specific devices, which were essentially required because devices were

becoming complex and control requirements were growing in complexity. In other

words, if you could purchase an IC that controlled some other digital device, you would

not need to design a FSM that controlled the device.

 Microcontrollers (MCUs) started becoming prevalent
306

. This meant that the FSM-

controlled hardware was now controllable by MCUs. This meant that hardware devices

could now essentially be under software control (what drives the MCU) rather than

hardware (what FSMs are constructed from). The upside of this software control is the

flexibility in software (namely its re-programmability characteristic). The downside is

that using the MCU to control hardware requires processing time from the MCU or

dedicating an entire MCU to the control task. This option also requires someone who

possesses the skill to design and program a MCU-based system. Although MCUs nicely

handle some control tasks, they are not appropriate for all such tasks, particulary as the

number of control tasks in a given system increase.

 Programmable Logic Devices (PLDs) such as FPGAs and CPLDs hit the market and

became BIG (in size at least). This means that you could use the PLD to handle logic

functions required by your circuit. Since you may have already been using a PLD, it

makes sense to use that PLD to implement a FSM while you’re at it. And what the heck,

you could use the PLD to implement the entire MCU (known as a soft-core MCU). In

304

 A true play on words.
305

 Keep in mind that back in these days, memory was much more expensive than it was today.
306

 They had actually been around for awhile, but they were now less expensive. More importantly, the

development environments (primarily PC-based) and associated CAD tools were significantly less

expensive also.

Digital McLogic Design Chapter 29

 - 601 -

other words, transferring control from the MCU to the FSM was no longer too costly.

The advent of relatively inexpensive but powerful PLDs as well as the relatively

inexpensive IC fabrication technology
307

 allows the offloading of control tasks from the

system software to some form of external hardware.

In the end, one of the downsides of MCUs is that they are typically limited by the number of

pins they can use to interface to the outside world. The pin count is generally related to the cost

of the MCU also: the more pins you have on your MCU, the more you’re going to pay for it
308

.

Now days, MCUs can do many tasks (generally at the same time, sort of), which is good. The

downside of having MCUs do many tasks is that the associated software becomes more

complicated and error prone based on the number of tasks it is required to control. The type of

errors associated with digital systems such as these are intermittent and hard to reproduce and

thus repair.

So the good news is that FSMs are not quite dead; they are still used quite often to avoid some

of the hassles created by complicating the software associated with the controlling circuits using

MCUs. Although you probably don’t know it, there are most likely quite a few FSMs embedded

in the amazingly complex ICs that control everyday devices such as cell phones, MP3 players,

bowling balls and other such useless devices that we can’t seem to live without.

FSMs generally simplify required control tasks by off-loading the software-based control

requirements to non-software-based circuitry, namely FSMs. In addition, FSMs can help reduce

the I/O pin count requirements in MCU-based applications. In other words, FSMs are massively

useful as well as massively interesting. What a deal! Use them where you can to make your

world nicer. The following sections provide an intuitive overview of FSMs and include a few

examples where somewhat real-world control problems can use FSMs.

The question that arises is: How do I use a FSM to control something? The answer to this

question is based on whether you understand the following:

1. Understand how the FSM operates in terms of the underlying hardware (such as the

storage elements, excitation logic, output decoding logic, next state decoding logic)

2. Understand the various lingo used when dealing with FSM (such as present state, next

state, state transitions, external inputs, external outputs, state variables, next state

decoder, output decoder, Mealy/Moore machine, strike, spare, etc.)

3. Understand the symbology used to describe the FSM (namely, the state diagram

symbology and the PS/NS table content)

4. Understand how to implement the FSM (either flip-flops and discrete logic or some

type of programmable logic device)

5. Understanding the many timing issues involvled in actual FSM implementations. FSM

implementations have all the issues associated with real circuits plus some other issues

associated with non-trivial sequential circuits.

This chapter describes the basic knowledge associated with designing FSMs that act as

controller circuits. Without doubt, you’ll find that FSMs are actually quite intuitive once you get

comfortable with the items listed above. Most of the major issues dealing with the first three

307

 The thought here is that if you’re going to fabricate an IC, including FSMs in on the IC requires a

relatively small amount of real estate which makes them cost effective.
308

 Other things such as speed, memory size, and package affect the cost also.

Digital McLogic Design Chapter 29

 - 602 -

points listed above are mapped out in the following sections; the fourth point is the least

“engineering” related of the four points and amounts to what I refer to as grunt work. This grunt

work includes discrete and VHDL behavioral FSM implementations.

The fifth point is something you’ll need to deal with at some point
309

. The toughest part of any

FSM design is to generate the state diagram; everything beyond that point is straightforward
310

to the point of being tedious grunt work.

29.3 The FSM: An Intuitive Over-Review

Figure 29.1 shows the general model of the FSM acting as a controller circuit. The things that

are important to a controller circuit are the control signals (outputs that do the actual control)

and the status signals (inputs to let you know what’s going on). In the FSM model shown in

Figure 29.1, the external inputs act as the status signals to the circuit your controlling while the

external outputs act as the control signals that interface with hardware outside of the FSM. You

generally need a clock signal to keep things synchronized
311

. The point we’re trying to make

here is that, in theory, FSMs are actually quite intuitive. The only real obstacle to designing

FSMs is learning to represent your intuition with the standard FSM lingo and symbology.

Figure 29.1: The general view of a FSM used as a controller circuit.

29.3.1 The State Bubble

The state bubble is one of the major features of a state diagram-based FSM description. FSMs

use the state bubble to represent a particular “state” in an FSM. Figure 29.2(a) shows a typical

state bubble. The following verbage lists some of the key features regarding the state bubble:

 A state needs some way to delineate it from other states, which is why the state bubble

generally contains some type of identifying information. State bubble indentifying

information includes either a symbolic name, or the actual state variable values used to

encode the FSM. Most state diagrams use some form of symbolic representation except

for sometimes FSMs describing counters. Using symbolic names delivers more

information to the human reader if the state names are chosen such that they describe

the significance of the state (it’s called self-commenting; do it). For example, a state

name such as “WAIT_FOR_SIGNAL” conveys a lot more information than “10”. The

symbolic state names should be unique for state diagrams to disambiguate the states.

309

 A later chapter presents more information regarding sequential circuits, namely set-up and hold times.
310

 Timing issues can be somewhat challenging, however.
311

 There are “clockless” FSMs out there; as a matter of fact, there is a big area of digital design that deals

exclusively with asynchronous FSMs. It’s interesting stuff; I hope some of you make it there someday.

Digital McLogic Design Chapter 29

 - 603 -

 The current values of the underlying storage elements are what officially define the

states themselves. In other words, each different state in a state diagram has a unique

set of bits being stored in the storage elements. Although you could technically provide

duplicate symbolic names for states, the implemented bit-level representations of the

states must be unique.

 Timing diagrams represent the states by the time slots representing the possible state

values. Figure 29.2(b) shows that the boundaries of these time slots delineated the

associated active edges of the system clock. The synchronizing signal used by the

storage elements bound the state timing slots. In the case of the diagram in Figure

29.2(b), the elements are rising-edge triggered (RET) storage elements because the

rising clock edge defines the state boundaries.

(a) (b)

Figure 29.2: The State Bubble and associated timing diagram.

29.3.2 The State Diagram

The state diagram is one of many methods used to model a FSM. The particularly pleasing

aspect of the state diagram is that their main purpose is to convey meaning and understanding to

the human viewer (as opposed to facilitating the actual implementation of the FSM as a VHDL

model generally does).

There are three forms of information presented by state diagrams: 1) the various states in the

FSM, 2) the input conditions controlling the state-to-state transitions, and, 3) the output values

associated with the various states. This section deals primarily with the state-to-state transitions

associated with a state diagram. Figure 29.3(a) shows a typical (and overly generic) state

diagram. The following verbage describes some of the key features of this state diagram.

 The terminology used to describe how a FSM goes from one state to another is referred

to as a state transition or just transition. State diagrams use a “state transition arrow”,

or just “arrow”, directed from the source state to the destination state to represent state

transitions. Roughly speaking, there are only two possible state transitions in a state

diagram from a given state. On the associated clock edge, a transition can occur from,

1) one state to another state (indicated by the “state change” label in Figure 29.3(a)), or,

2) the FSM can remain in the same state (indicated by the “no state change” label in

Figure 29.3(a)). As we previously discussed, the “no state change” arrow is the now

classic “self-loop”. These are truly the only possible transitions
312

 in a state diagram

relative to a given state.

312

 We’ve dealt with asynchronous inputs in a previous chapter. The state transitions caused by

asynchronous inputs (such as presets and clears) are simple to model and implement due to the fact they

represent “special” circumstances in a FSM. What we’re interested now is the typical operation of an FSM.

Digital McLogic Design Chapter 29

 - 604 -

 The state diagram contains no clock signal. State diagrams never show system clock

signal even though the system clock is an integral part of a FSM. The only part of the

clock signal we’re interested in is the active clock edge; the state transition arrows

represent what action occurs on the active clock edge associated with a given FSM

implementation. There is clocking information present in a state diagram, but it’s only

implied as opposed to specifically listed.

 The two states shown in Figure 29.3(a) have unique names. In real life, you would

want to give these more meaningful names such as something to indicate why the state

exists (or what is going on in that state).

 The state names provided Figure 29.3(a) give no indication as to how the states will be

represented when the FSM is actually implemented. In other words, the state diagram

provides no commitment to the actual state variable assignment used to disambiguate

the states on a hardware level.

 The relation between the timing diagram shown in Figure 29.3(b) and the state diagram

in Figure 29.3(a) is the key to understanding state diagrams in general. When we talk

of state, we’re talking about all the time in-between the active edges of the clock. In

other words, the state bubble essentially represents all the time between any two active

edges of the system clock. On the other hand, the state transition arrow represents what

happens on each of the active clock edges. On each clock edge, one of two things must

necessarily occur: the FSM transitions either to another state or the FSM remains in the

same state. A more general way of saying this is that a state transition occurs on every

active clock edge, but sometimes it transitions back to the same state. So once again,

the state transition arrows in Figure 29.3(a) is thought of as the minute piece of time

between two states in the associated timing diagram. The arrows help us model FSM

behaviors but have no true significance in the associated hardware.

 The concept of Present State (PS) and Next State (NS) is somewhat hard to pin down

in a timing diagram such as the one shown in Figure 29.3(b). The problem is that the

present state (and hence the next state) is constantly changing as you travel from left to

right on the time axis. If you declare one state as the present state, then you can declare

the following state as the next state relative to the present state. This definition of

course changes as you traverse the timing diagram. PS/NS tables do a better job of

presenting present and next state information.

(a) (b)

Figure 29.3: A state diagram (a) and the associated timing diagram (b) with some

interesting details.

Digital McLogic Design Chapter 29

 - 605 -

29.3.3 Conditions Controlling State Transitions

As you would guess from examining the state diagram shown in Figure 29.3(a), there must be

some mechanism that decides on which transition will occur from a given state on the next

active clock edge. Note in Figure 29.3(a) that state1 has two arrows leaving the state; this mean

there are conditions associated with those arrows that decide on which transition actually

occurs.

There are two forms of information that decide on what transitions a FSM will take from any

given state: 1) at least one of the external inputs to the FSM, and, 2) the given state the FSM is

currently in (otherwise known as the present state). The second condition is somewhat too

general because when we’re talking about state transitions, we talk about them from the context

of being in one state and transitioning to another state. Each state has it own set of conditions

that govern transitions, so in terms of state diagrams, we’re more so concerned on a state-by-

state basis as to what external input conditions control the state transitions from a given state.

Figure 29.4 shows the way we indicate these conditions. From Figure 29.4 you can see that state

diagrams list the conditions governing transitions by placing the conditions next to the state

transition arrows.

In general, every state transition arrow must have conditions associated with it that describes

what governs the transition
313

. On this note, there are three important things to keep in mind:

1. The conditions associated with the state transition arrows from a given state must be

mutually exclusive. This means that there can never be the same set of input conditions

associated with two different transitions arrows leaving the same state. If this condition

did exist, the FSM would not be able to decide into which state is should transition.

2. The set of conditions associated with a particular state must be complete. If there is a

set of conditions from a given state not covered by the associated state transition

arrows, the FSM will once again not know what to do
314

. Your state diagram should

leave no room for guessing. When you implement FSM using VHDL, you truly must

cover all the cases or else the VHDL synthesizer or some other development tool will

decide for you. Sometimes you may not like the tool’s decision. Worst of all, you may

have created an ugly, hard to trace error. You’re boss will hate you and your modest

raise will become even more modest.

3. If the state transition arrow has no conditions listed with it, this usually means the state

transition is unconditional
315

. Once again, it is generally a better ideal to provide a

“don’t care” indication in the condition portion of the state diagram.

313

 This is sort of not always true. As we saw with counters, when the transitions were unconditional, we

often listed no conditions. In reality, maybe we should have listed a “don’t care” for those particular

transitions.
314

 In cases such as these, the tools you’re working with will generally not tell you about such conditions

and will arbitrarily decide what it wants to do. In general, software design tools are generally make the

assumption you know what you’re doing and that you always do the right thing. With that assumption, the

tools gladly fill in any details that you have have unintentially forgotten.
315

 Such transitions should be explicity noted in the state diagram; doing so will ensure the person reading

the state diagram that you intented on having an unconditional transition.

Digital McLogic Design Chapter 29

 - 606 -

Figure 29.4: How state diagrams indicate the conditions associated with state transitions.

One thing to keep in mind here is that the FSM is a piece of hardware that controls another piece

of hardware. The external inputs to the FSM are status inputs from the circuit that the FSM is

controlling. The idea here is that, depending on the current status of the hardware that is being

controlled, the FSM will transition to one state or another. The thing we haven’t mentioned yet

is that there are also some external outputs from the FSM which the FSM uses to control inputs

to the circuit the FSM is controlling.

29.3.4 External Outputs from the FSM

The external outputs from a FSM are generally “control signals” used to control other circuits.

In that the external input signals serve as status inputs to the FSM, the external output signals

directly control other circuits. The state diagram will have different states and thus the control

signals output from one state are generally not the same as control signals output from other

states. This is because in general, the FSM is performing different control functions based on the

different states in the FSM. If your FSM issues the same control signals from different states,

there is a chance your FSM has redundant states (which is only a problem because redundant

states waste hardware). Once again, the external inputs control the state transitions while the

external outputs are issued based on the individual FSM states (and on external inputs in the

case of Mealy-type outputs).

There are two different types of outputs in a FSM: Mealy-type outputs and Moore-type outputs.

Although these two types of outputs are similar in most aspects, particularly in their controlling

functions, they have one major difference. The outputs Moore-type outputs are a function of the

state variables only while the Mealy-type outputs are a function of both the state variables and

the current external inputs
316

. The common terminology used is to describe you FSM as either a

Mealy-type FSM, or Mealy machine, or a Moore-type FSM, or Moore machine. There are

FSMs that have both Mealy and Moore-type outputs; we generally consider these FSMs to be

Mealy-machines since the overall machine contains external outputs that are a function of

external inputs. This notion is somewhat intuitive in that the Moore-type output is really a

subset of the Mealy-type output. For your viewing pleasure, Figure 29.5 and Figure 29.6

provide block diagrams of a Mealy and Moore-type FSMs, respectively.

316

 How many times do you think you’ll hear about these characteristics?

Digital McLogic Design Chapter 29

 - 607 -

Figure 29.5: Block diagram of Mealy-type FSM.

Figure 29.6: Block diagram of a Moore-type FSM.

What we’re concerned about in this section is how we’re going to represent the Mealy and

Moore-type outputs on the state diagram. Although there are probably many ways to represent

these outputs, the world’s most intelligent people you the approach we describe here (so you

should use it too). The key to understanding any state diagram is the legend that tells the viewer

how to interpret what they’re looking at. So if you deviate from the approach we’ll describe, be

sure to provide a detailed legend or appropriate annotations in order to appease the FSM Gods

(as well as whoever is looking at your circuit).

Since Moore-type outputs are a function of the state variables only, we represent them by

placing their values inside the state bubble. Figure 29.7 shows a state diagram that uses this

approach. There can be any number of outputs represented inside the bubble. A comma usually

delineates different outputs but you can use whatever method you choose
317

. Don’t be afraid to

increase the size of your bubble on your state diagram in order to include all the outputs. Clarity

and readability takes home the prize when drawing state diagrams. Also, you should always use

symbolic names rather than meaningless “1’s” and “0’s” in an effort to make you state diagrams

more readable. The legend only goes so far when describing your state diagram; using symbolic

names is simply a better approach
318

.

317

 As always, make an effort to be as clear as possible.
318

 Yes, these examples often use 1’s and 0’s; but these are instructional problems. We we start doing

something closer to real problems, we’ll shift over to symbolic names.

Digital McLogic Design Chapter 29

 - 608 -

Figure 29.7: The State Bubble with associated Moore outputs.

The state bubble does not represent Mealy-type outputs inside of the state bubble because they

are a function the external inputs as well as the state variables. To account for these

characteristics in a state diagram, we list the Mealy-type outputs next to the external inputs

associated with the individual state transition arrows and differentiated by the addition of the

forward slash. Figure 29.8 shows an example of this approach. Once again, if a particular FSM

has multiple Mealy-type outputs, these should be represented with either a comma separated list

or something equally as readable.

There is a massively important feature shown in Figure 29.8 that can sometimes go without

notice. Note that there are two sets of Mealy outputs shown in Figure 29.8 because there are two

transitions from state1. The arrows are associated with the state transitions, which are based

exclusively upon the current external inputs. But then again, the current Mealy-type outputs are

also a function of those same inputs. Since the Mealy-type outputs are a function of the external

inputs, they are represented by placing them next to the particular external inputs and associated

with a given state transition arrow. Nevertheless, the listed condition of the Mealy-type outputs

is always associated with the state the arrow is leaving (and not the state the arrow is entering).

Figure 29.8 lists this notion if you by chance look close enough, so be sure to look close enough.

Although this is not a complex point, understanding the symbology that state diagrams use to

represent the state transition arrows and their association with the Mealy-type outputs takes

getting used to. Representing the Mealy-type outputs in this manner may not be the clearest

possible way, but if you can think of a better approach, knock yourself out.

Figure 29.8: Representing Mealy-type outputs in a state diagram.

In addition, it should come as not surprise that you can represent both Mealy and Moore-type

outputs in the same state diagram. Figure 29.9 shows an example of a state diagram that

contains both Mealy and Moore-type outputs. Be sure to note the similarity between the state

diagrams of Figure 29.8 and Figure 29.9.

Digital McLogic Design Chapter 29

 - 609 -

Figure 29.9: A state diagram that has both Mealy and Moore-type outputs.

As a final note in this section, the general rule with listing outputs is that you only list the

“important” outputs for a given state. There are generally many outputs from a FSM, but not all

of the outputs need to be assigned for every state. If in any state a given output is not assigned, it

is assumed to be a “don’t care”. In terms of the circuit that the FSM is controlling, the outputs

that werew omitted from a state will not have any effect on that circuit that the FSM is

controlling. As you would imagine, the presence of don’t cares simplifies the output decoding

logic but has no negative side-effects on the FSM as was the case when not all external input

conditions were accounted for in the state transitions from a given state. It is not bad practice to

list all the external output for each state, but if you have many outputs, your state diagram

becomes cluttered, thus causing the FSM Goddesses to shudder and frown upon your state

diagram.

The example state diagrams we’ve work with so far seem to indicate the FSM states are

somehow limited in the number or transition arrows that can leave (or enter) the state. There is

actually no limit as is somewhat shown in the state diagram of Figure 29.10. The point we’re

attempting to make with the state diagram of Figure 29.10 is that there is no limit to the number

of transition arrows leaving a given state. There are two key issues to be aware of regarding the

transition arrows exiting a given state. First, make sure all of the conditions associated with each

state transition are unique (no two arrows can have the same conditions). Secondly, make sure

that the state diagram represents all possible conditions based on the inputs associated with the

state transition arrows leaving the state (don’t assume the FSM will magically stay in the same

state if you don’t explicitly specify all conditions).

Figure 29.10: The State Bubble.

29.3.5 The Final State Diagram Summary

Figure 29.11 provides a quick overview of the relation between the FSM black box and the

example state diagrams we’ve been working with in this section. What you should be gathering

Digital McLogic Design Chapter 29

 - 610 -

from this diagram is that properly designed state diagrams have a particular structure that use a

particular symbology. As Figure 29.11 is trying to show you, there is not that much to it once

you understand a few simple points.

 Singly directed arrows represent state transitions.

 The FSM has external inputs that govern the state transitions.

 Each transition arrow lists the external inputs that control its transistion.

 Tthe state bubbles list the Moore outputs since they are only a function of state

 Mealy-type outputs are listed with the internal inputs (and hence the state

transitions) since they are a function of both the present state and the external

inputs.

Figure 29.11: The relation between the state diagram and the high-level FSM.

Once final comment is in order here… There always seems to be question of how and where to

start problems that require the generation of state diagram. There is no good answer for you; but

there is a small suggestion: start somewhere and start right away. Drawing a black box diagram

listing the FSM’s inputs and outputs is always the best place to start because this allows you to

get a feel for the system’s status and control signals. From that point, try to look for a logical

starting point and immediately draw a state bubble and some signals. The least complicated state

(the state where the least is going on) is always a good initial state in your burgeoning state

diagram. Having something or anything down on paper (even if it’s crap) can often point to a

viable solution
319

. Technically speaking, you can arrive at any viable solution regardless of the

starting point. In other words, the final state diagram should be equivalent, or at least

functionally equivalent, regardless of the initial starting point. Remember, the journey of a

multi-state state diagram begins with the drawing of a single state
320

.

319

 Consider using an eraser or a piece of scratch paper.
320

 This has something to do with the Zen of digital logic design.

Digital McLogic Design Chapter 29

 - 611 -

29.4 Sequence Detectors Using FSMs

The design of sequence detectors is usually one of the earliest topics discussed in FSM design.

This is because the design of sequence detectors is highly instructive and spiritually enriching

while not being overly complicated. In all of the problems we’ve discussed up to now, a state

diagram was provided and it was up to you implement it using either classical FSM design or

VHDL behavioral modeling techniques. You have many methods to choose from to implement

FSM, but you’re still developing skills for generating the original state diagram. The topic of

sequence detectors is primarily a technique to generate the original state diagram; from there

you can you any technique you actually choose to implement the FSM.

Many digital logic books include a “set of rules” to lead you through the process of designing

FSMs that act as sequence detectors. The reality is that you’ll spend more time trying to figure

out the rules than you would spend generating the state diagram. Once again, this is a situation

in which having an understanding of the processes involved ensures that you’ll have the ability

to generate the final state diagram. After you do a few of these problems, you’ll most assuredly

agree that they’re not too compicated.

Figure 29.12(a) shows the general form of a simple sequence detector. In this problem, there is

one external input X and one external output Z. Since this is a FSM, there is also a clock input.

This particular example searches for the sequence “101” to appear on the X input
321

. Figure

29.12(b) shows a sample input sequence for the X input and the resulting outputs for two

different types of outputs. In other words, the value of the Z output is in response to the

sequence of X inputs. The data shown in Figure 29.12(b) is the data present when the active

clock edge on the FSM appears (each column represents one clock edge).
322

X: 0 0 0 0 1 1 0 1 0 0 1 0 1 0 1 0 0

Z (no reset): 0 0 0 0 0 0 0 1 0 0 0 0 1 0 1 0 0

Z (with reset): 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0

Time

(a) (b)

Figure 29.12: A black box diagram (a), and sample inputs/outputs for finding “101”

sequence (b).

Figure 29.12(b) lists two types of outputs: one where the FSM does not reset (non-resetting)

after finding the correct sequence and the other where the Z “does reset” (“resetting”) after

finding the correct. In this context, resetting refers to the ability of the output to reuse past inputs

regardless of whether they were part of a previoiusly successful
323

 sequence or not. In the case

where there is no reset, the Z output will be a ‘1’ anytime the previous three X inputs
324

 are the

321

 This statement is not entirely true and needs some qualification. We’ll come back to this point and

provide much need clarification later in this chapter.
322

 Once again, we will clarify this point later.
323

 Meaning that the sequence led to the finding of desired sequence.
324

 Once again, the most correct wording is that ‘1’ was present on the X input when an active edge clock

edge arrived.

Digital McLogic Design Chapter 29

 - 612 -

sequence “101”. For this case, the FSM can use previous X input values from other “101”

sequences that were previously successfully detected. For the case where the Z does reset, no

values from other sequences that were successfully detected can reused in the new sequence.

These two conditions represent two possibilities in specifying this type of problem. Neither way

is overly taxing and both provide equal satisfaction to the user. The previous sentence has no

meaning whatsoever, but it sure sounds good.

One other consideration regarding sequence detectors is the fact that we can design the Z output

as either a Mealy or a Moore-type output. Therefore, in the end, this type of problem can easily

have one of four solutions based on the type of output (Mealy or Moore) and whether the

machine resets or not after finding the correct sequence.

That’s some of the overhead issues; now let’s crank these things out. The following diagrams

works through the example shown in Figure 29.12(b) thus producing a result in the four

different methods (“Mealy” vs. “Moore” and “resetting” vs. “non-resetting”). We list less detail

in some digrams due to the similarities in the development process. The next three figures have

the solutions that represent all the possible conditions for the reset/no reset and Mealy/Moore

options. Once again, as they say in real textbooks, generating the full solutions for the other

forms of this example are left up to the reader
325

. This necessarily means you. If you understand

the basics of these problems, you’ll be infallible in the underground sequence detector network.

325

 Which is my way of saying I don’t feel like drawing any more diagrams.

Digital McLogic Design Chapter 29

 - 613 -

You need to start somewhere… the best place to start is the

beginning state where no correct values towards the finding the

desired sequence have been found. The transition is the case

where the undesired input of ‘0’ is found and it stays in the state

looking for the desired input of ‘1’. In this case, since the

correct sequence has not been found, the Z output is a ‘0’. We

assign the state bubble a symbolic value of an ‘a’.

Each state bubble must account for two arrows leaving the state

(representing the two possible values of the X input). In this

state, a ‘1’ on the X input causes a transition to the new state. If

you find yourself in state (b), then you know you’ve seen the

first desired value of ‘1’ on the X input. In essence, being in

state (b) advertises the fact that the output of sequential circuits

do indeed depend upon the sequence of inputs as opposed to just

the raw inputs as they do with combinatorial circuits. It’s a cool

sort of memory characteristic.

As long as the FSM receives a ‘1’ on the X input in state (b),

you must stay in the same state as indicated by the self-looping

arrow. A ‘1’ indicates the first value in the desired sequence. If

it repeats, there is no reason to exit this state. No matter how

many ‘1’s you receive while in state (b), you’ll never leave the

state since the ‘1’ still represents the first state in value in the

desired sequence.

Receiving a ‘0’ in state (b) represents the second correct value

in the sequence. In this case, you must transition to a new state.

The output Z is still ‘0’ because the complete correct sequence

is yet to be found. Note that state (b) is complete now that there

are two arrows exiting the state.

Being in state (c) indicates you’ve found the first two values in

the desired sequence. If at this point you were to receive a ‘0’,

you would essentially need to start the search sequence over

which would result in a transition back to state (a). Remember,

anytime you receive two contiguous ‘0’s, you must start over

again because two zeros are not part of the desired sequence.

Finally, to finish off the diagram, if the FSM receives a ‘1’ in

state C, two things happen. First, you’ve found the desired

“101” sequence and the output Z is set to ‘1’. Second, because

the machine does not reset, you can reuse the one that made the

“101” sequence a success as the first ‘1’ in a new sequence; the

transition to state (b) accomplishes this. You would not have

been able to transition back to (b) if the machine was to reset

after finding the correct sequence.

Figure 29.13: Generation of a state diagram that detects a “101” sequence without resetting.

Digital McLogic Design Chapter 29

 - 614 -

The Moore state diagram from the example problem is

similar to the Mealy state diagram. The main difference

is the Mealy state diagram divides the outputs from the

Mealy version of this problem into two states. Each of

the two state bubbles includes a different output Z

because they’re Moore outputs. This solution shows one

of the differences between Mealy and Moore-type

FSMs: the Moore-type FSMs will have more states than

a Mealy-type FSM implementing the same functionality.

This is not good or bad, it just is. It’s the Zen of FSMs.

(a) (b)

Figure 29.14: State diagram (a) and explanation (b) for Moore-output (no reset) for “101”

sequence.

Only one state is different from this diagram and the

non-reset diagram. All cases from state (c) return to the

start case with one output being a ‘0’ to indicate failure

and one output being a ‘1’ to indicate roaring success.

(a) (b)

Figure 29.15: State diagram (a) and explanation (b) for Mealy-output (with reset) for

“101” sequence.

Again, this state diagram is similar to the diagram of

the Figure 29.14. The two differences are associated

with state (d). It is interesting to note the strange

similarities between this state diagram and the state

diagram of Figure 29.15.

(a) (b)

Figure 29.16: State diagram (a) and explanation (b) for Moore-output (with reset) for

“101” sequence.

Digital McLogic Design Chapter 29

 - 615 -

29.4.1 Sequence Detector Post-Mortem

Even though you should never simply “follow rules” when you’re doing these problems, here

are a few “suggestions” to chew on. As you do more of these designs, you’ll develop you own

style and collect your own set of tricks that make doing these problems easier.

1. Construct a sample input to clarify problem description.

2. Construct a path for the correct sequence first; then go back and fill missing transitions.

3. Try to add new arrows to existing states before adding new states.

4. Verify each state has one exit path for each value of the input variable(s).

5. Apply sample sequences to final state diagram to verify proper state diagram operation.

OK, items two and three are the opposite of each other; choose one or the other or somewhere in

between. And the final thing to keep in mind here is that you can easily generate your own

sequence detector practice problems. If you try out some strange sequences, you’ll find that you

run across some unique cases. Be sure to get creative and include some strange conditions such

as decision points based other inputs along the way. You’ll certainly be developing a strong

foundation for future state diagram designs.

29.5 Timing Diagrams: The Mealy and Moore-type Output
Story

The final step in developing a true understanding of FSMs is to understand the relationship

between the state diagram and the timing diagram. This is generally not too hard but the sticking

point always seems to be the how differences in the Mealy and Moore-type outputs show up on

the timing diagram. In order to clarify these points, let’s use the sequence detector FSM that we

previously designed.

The FSM we were previously working with asserted the Z output when the sequence “101”

appeared on the X input. We also added the constraint that the X input only changes no more

than once per clock cycle
326

; Figure 29.17(a) provides a block diagram of this FSM. Figure

29.17(b) and Figure 29.17(c) show the state diagrams for the Moore-type and Mealy-type FSMs

for this problem, respectively. The previous section derived these FSMs in a systematic manner

and we’ll spare the detail here. What interests us in this problem is how the Mealy and Moore-

type outputs affect the timing diagram.

326

 We had to do this in order to simplify the problems. It’s not too far of a stretch. We’ll speak more of

this before the end of this chapter.

Digital McLogic Design Chapter 29

 - 616 -

(a) (b) (c)

Figure 29.17: The block diagram of the sequence detector FSM (a), the associated Moore-

machine approach (b), and the associated Mealy-machine approach (c).

The difference between the Mealy and Moore-type state diagrams is readily evident in that the

Mealy-type has one less state than the Moore-type. If you stare at these to state diagrams, you’ll

see that the main difference between these two diagrams is centered about the final two states in

Moore-type state diagram and the final state in the Mealy-type state diagram. One approach to

describing this difference is to say that the Mealy-type diagram divided state c into states c and

d in the Moore-type state diagram. If you think about it, we had to do it this way because in the

Moore-type state diagram, we required a state to indicate when the final bit to indicate the

detection of the desired sequence.

For the case of the Moore-type FSM, the output Z is asserted for the duration of the state (state

d Figure 29.17(b)) once the final bit in the sequence is detected. The corresponding state in the

Mealy-type state diagram is state c. From this state, the Z output can be either a ‘1’ or a ‘0’

depending on the value of the X input. Because the output can be either a ‘1’ or a ‘0’ in state c,

there is no need to break the single state c into two states (states c and d) as we did in the

Moore-type state diagram. In other words, the output of state c in the Mealy-type state diagram

can immediately indicate when the FSM detects the final bit of the sequence in the third state in

the state diagram (state c). This is worth saying again; when the X input changes to a ‘1’ in the c

state, the correct sequence is “found” and the Z output indicates this by transitioning from ‘0’ to

‘1’. Conversely, in the Moore-type state diagram, the output had to wait for the next clock edge

to transition to state d which has an associated Moore-type output of ‘1’.

Figure 29.18 shows two example timing diagrams associated with the state diagrams of Figure

29.17(b) and Figure 29.17(c). For these two timing diagrams, assume that the FSM’s active

clock edge is the rising edge. By inspection, you can see that the top timing diagram must be the

one associated with the Moore FSM because changes in the Z output are synchronized with state

changes
327

. The arrows in the top timing diagram of Figure 29.18 show this synchronization.

Once again, the external outputs of a Moore machine are a function of state only and therefore

can only change when the state changes (which can only happen on active clock edges)
328

.

In contrast, the lower timing diagram of Figure 29.18 shows that the output associated with the

Mealy-type machine. Note that in the timing diagram for the Mealy-type machine, the output Z

changes at times other than at the same time as the rising edge of the clock. More specifically, in

state c of the low timing diagram of Figure 29.18, the Z input follows the change in the X input.

Figure 29.17(c) show this characteristic by the two state transitions from state C in the Mealy-

327

 And the state changes are synchronized to the active clock edge.
328

 Repetition is a good good thing.

Digital McLogic Design Chapter 29

 - 617 -

type state diagram. Note that transition associated with the X=0 input has an associated output

of ‘0’ while the transition associated the condition that X=1 has an associated output of ‘1’. In

other words, the Z output has two possible values when the FSM is in state c as indicated by the

state diagram. The actual output is a function of the X input as well as the state which is what

makes it a Mealy-type FSM. This fine and important point is by far the most complicated issues

when dealing with FSMs.

Figure 29.18: The timing diagram associated with the Moore-type machine (top) and the

Mealy-type machine (bottom). Figure 29.17(b) shows the state diagram for the Moore-type

FSM while Figure 29.17(c) shows the state diagram for the Mealy-type machine.

29.6 Sequence Detector: Mealy vs. Moore-type
Clarification

Earlier in the chapter, we referred to an issue involed with sequence detectors as they relate to

Mealy vs. Moore-type FSMs. The issue is that technically speaking, we must specify problems

involving Mealy and Moore-type FSMs slightly differently in order for them to make 100%

sense. The problem involves the notion that a given sequence becomes “valid” at different times

based on whether the FSM is a Mealy or Moore-type machine.

For Moore-type FSMs, we only check the external input bit-stream on the active clock edge of

the FSM. This fact makes the problem simpler because the FSM can officially ignore all

changes in the sequence input that do not occur at the active clock edge. So for Moore-type

FSM problems, we don’t need to state extra clarification details in the given problem.

There are, however, some special considerations when dealing with a Mealy-type FSM. The

notion in a Mealy-type FSM is that the bit-stream that is providing the sequence must be

Digital McLogic Design Chapter 29

 - 618 -

monitored continuously because changes in the sequence input are always valid. The idea here

is that any changes in the sequence input officially change the sequence. Therefore, if the

sequence input toggles many times during a particular state, the sequence is officially providing

a “0-1-0-1-0-1-0-1…” sequence. The associated FSM would not easily handle this characteristic

of the sequence bit-stream. In order to simplify sequence detector problems, the approach we

take is to state in the problem description that the sequence input changes (toggles) no more

than once per state. Stating this constraint essentially simplifies the generation of the Mealy-

type FSM.

Digital McLogic Design Chapter 29

 - 619 -

Chapter Summary

 A FSM is generally used as a controller for some other hardware device. The external

inputs to the FSM are status signals from the circuit being controlled while external outputs

from the FSM are used as control signals to the device being controlled.

 State diagrams use state bubbles to represent the various states of the FSM. The state

bubbles generally contain a symbolic name that represents the purpose of a given state.

 State diagrams use arrow notion to represent state transitions. Arrows can either be from

one state to another state or from one state to itself (a self-loop indicating no state change,

or a state change from a given state back into that state). State transitions generally occur on

the active edge of the clock.

 External FSM inputs control state transitions in an FSM. From any given state, transitions

are only a function of the external inputs. Transitions in the overall FSM are a function of

both the external inputs to the FSM and the present state of the FSM.

 FSM can contain both Mealy and Moore-type external outputs. State diagrams represent

Moore-type outputs inside the state bubble since they are only a function of the current

state. State diagrams represent Mealy-type outputs as functions of the external inputs by

placing them next to the state transitions arrows.

 All transitions from a given state must be mutually exclusive from all other transitions from

that state. This means that there can be no combinations of external inputs that are

represented in more than one transition arrow exiting a given state.

 The state transition arrows must represent all possible external input combinations exiting a

given state. Not specifying every possible condition causes undefined FSM behavior.

 Sequence detector design is one of the most basic FSM design problems since they are

instructive and can be relatively easy to do using state diagrams as a starting point.

Digital McLogic Design Chapter 29

 - 620 -

Design Problems

1) Provide a state diagram that can be used to implement a FSM that indicates when the

sequence “1011” appears on the FSM input (X). The FSM has two inputs (CLK,X) and one

output (Z). This FSM does not reset when a ‘1’ occurs on the output. The Z output is ‘1’

only when the desired sequence is detected. Implement the state diagram two times: one

time the output is a Mealy-type, the other time it is a Moore-type.

2) Repeat the previous problem but make the FSM reset when a ‘1’ occurs on the output.

3) Provide a state diagram that can be used to implement a FSM that indicates when the

sequence “01011” appears on the FSM input (X). The FSM has two inputs (CLK,X) and

one output (Z). This FSM does not reset when a ‘1’ occurs on the output. The Z output is

‘1’ only when the desired sequence is detected. Implement the state diagram two times: one

time the output is a Mealy-type, the other time it is a Moore-type.

4) Repeat the previous problem but make the FSM reset when a ‘1’ occurs on the output.

5) Provide a state diagram that can be used to implement a FSM that indicates when the

number of ‘1’s received at the FSM input (X) is divisible by 3. (0,3,6,9… are divisible by

3). This FSM has two inputs (CLK,X) and one Mealy-type output (Z). The Z output is ‘1’

only when the desired sequence is detected.

6) Provide a state diagram that can be used to implement a FSM that indicates when the

sequence “101” or “110” appears on the FSM input (X). This FSM has two inputs (CLK,X)

and one output (Z). This FSM does not reset when one of the two given sequences appears.

The Z output is ‘1’ only when the desired sequence is detected. Implement the state

diagram two times: one time the output is a Mealy-type, the other time it is a Moore-type.

7) Provide a state diagram that can be used to implement a FSM that outputs the following

sequence: “0100 110 110 110 …”. This FSM has one input (CLK) and one Mealy-type

output (Z).

8) Provide a state diagram that can be used to implement a FSM that indicates when at least

two ‘1’s and two ‘0’s have appeared on the FSM input (X). Design the state diagram such

that the order of occurrence of the inputs does not matter. The FSM has two inputs

(CLK,X) and one Moore-type output (Z). The Z output is ‘1’ only when the desired number

of ‘1’s and ‘0’s has occurred.

Digital McLogic Design Chapter 29

 - 621 -

9) Provide a state diagram that describes a FSM that indicates

when the sequence “1101” appears on the FSM input (X). The

output (Z) is ‘1’ only when this condition is detected.

Implement this design as either a Mealy or Moore machine.

Assume the X input is stable when each clock edge arrives

and that X can change no more than once per clock period.

Disregard all setup and hold-time issues.

10) Provide a state diagram that describes a FSM that indicates

when the sequence “11001” appears on the FSM input (X).

The output (Z) is ‘1’ only when this condition is detected.

Implement this design as both a Mealy and Moore machine.

Design your state diagram so that the FSM reset once the

correct sequence is detected. Assume the X input is stable

when each clock edge arrives and that X can change no more

than once per clock period. Disregard all setup and hold-time

issues. Minimize the number of states in your design.

11) Provide a state diagram that describes a FSM that indicates

when the sequence “10011” appears on the FSM input (X).

The output (Z) is ‘1’ only when this condition is detected.

Implement this design as a Mealy machine. Design you state

diagram so that the FSM resets once the correct sequence is

detected. Assume the X input is stable when each clock edge

arrives and that X can change no more than once per clock

period. Disregard all setup and hold-time issues. Minimize the

number of states in your design.

12) Provide a state diagram that describes a FSM that indicates when either one of the

following two sequences are detected on the X input. Your design must use a Moore-type

FSM that resets if either sequence is found. The Z output is asserted only when either

sequence is found. Minimize the number of states you use in your solution.

Assume:

 the X input is stable when each clock

edge arrives

 the W input can change when only when

the proper sequence is found

 full encoding with three flip-flops will be

used to encode the FSM (limits state

diagram to eight states!)

W
Sequence searched for

on X Input

0 1 0 1 1 0

1 1 0 1 1 1

Digital McLogic Design Chapter 29

 - 622 -

12) Design a fundamental mode, asynchronous finite state machine

(AFSM) that detects the following sequence: AB = 11, 10, 11.

The AFSM has two inputs, (A & B) and one output (Z) as

indicated by the circuit diagram. The output Z equals 1 only

when the proper sequence is detected. The AFSM does not

reset when the correct sequence is found. Provide the equations

describing the required state variables and output Z. Your

design should be critical race and oscillation free. Don’t bother

removing static logic hazards.

 - 623 -

30 Chapter Thirty

(Bryan Mealy 2012 ©)

30.1 Chapter Overview

Up until now, our work with FSMs has primarily been an academic exercise. Previous chapters

presented the low-level FSM details, VHDL behavioral models of FSMs, and timing aspects of

FSMs. The examples we completed in previous chapters were not overly close to real world

applications.

Now that you know all the mechanics of FSMs and them implementations, you’re ready to

attack some actual real-world example problems. Solving “real” problems with FSMs will

provide you with a great view of the awesome power of problem solving with FSMs. If you’re

still not sure about how to generate state diagrams, this chapter should tie together the missing

pieces. Consequently, there is much less useless verbage in this chapter as we keep the main

focus on basic problem solving techniques.

Main Chapter Topics

 FSM Problem Solving: This chapter finally introduces the true purpose of the

FSM with their ability to solve real design problems based on their ability to act as

controllers. The wait is finally over.

Why This Chapter is Important

This chapter is important because it describes techniques for solving actual design

problems using FSMs.

30.2 FSM Overview

The Finite State Machine makes a great little controller circuit; Figure 29.1 shows the general

model of the FSM acting as a controller circuit. The things that are important to a controller

circuit are the control signals (to do the actual control) and the status signals (to let you know

what’s going on). In the FSM model shown in Figure 29.1, the external inputs act as the status

signals to the circuit your controlling while the external outputs act as the control signals that

interface with hardware outside of the FSM.

Digital McLogic Design Chapter 30

 - 624 -

Figure 30.1: The general view of a FSM used as a controller circuit.

Your mission when faced with designing a FSM is to generate a state diagram that is able to

solve the given problem. Once you complete the state diagram, the implementation of the FSM

is not a big deal: the only true engineering required by the design is in generating the state

diagram
329

. Truthfully, FSM design is an art form all its own; or maybe better stated, it’s a

language of its own. This language allows you to develop a state diagram that can implement a

FSM that solves the problem at hand. What follows are some example problems of state

diagram generation in painful detail. Take what you need. As you’ll see in the following

examples, developing an understanding of the problem’s requirements is often times more

timing consuming than the actual generation of the state diagram.

We all have a tendency to “look for the rules” on how to do new types of problems when they

arise. I’m not sure is there is a set of rules on how to generate state diagrams to solve problems,

but I sincerely doubt it. The issue is that problems such as these that we solve using FSMs come

in many different forms; thus, there is no set of rules handles all cases. In an effort to toss

something out at you, Figure 30.2 shows a wicked list of the only “rules” I can think of.

Finally, don’t hesitate on any of the listed steps below. For that matter, don’t allow yourself to

get stuck on anywhere in any digital design. Always keep moving; if you go down the wrong

path, toss out your design and start over with the items you learned from going down the wrong

path. Don’t hesitate to toss something down; if it makes no sense, tear it up and start over. The

act of writing something down generally encourages your brain to traverse down various paths

to solving the problem. Doing something is always better than doing nothing
330

.

329

 A group of professors at Stanford was actually able to teach a troupe of wild apes to implement FSMs.

These apes were subsequently given advanced degrees and now parade as academic administrators.
330

 Despite the examples being set by academic administrators.

Digital McLogic Design Chapter 30

 - 625 -

Rule 0: Understand all aspects of FSMs. This includes Mealy vs. Moore machines, the

associated timing diagram characteristics, the terminology associated with FSM, the various

clocking aspects of FSMs, and the symbology associated with state diagrams as they relate to

modeling FSMs.

Rule 1: Completely understand the problem at hand before doing anything. Most likely

means that you’ll have to read the problem many times as problems are typically not stated

well, particularly problems in this text
331

.

Rule 2: Draw a black-box diagram of the problem that clearly shows the inputs to (status

signals) and output from (control signals) the FSM. Refer back to this diagram often.

Rule 3: Make a decision on whether you’ll implement your FSM as a Mealy or Moore

machine. This means you’ll need to decide whether each external output is going to be

implemented as a Mealy or Moore output.

Rule 4: After you put some thought into Rule 3, you should then draw some sort of legend

that is consistent with the decisions you made in Rule 3. So get out a clean piece of paper
332

,

draw a big circle somewhere on it, and call it your legend.

Rule 5: Draw another big circuit somewhere on your paper and call that circle your starting

state for the FSM. The best starting state is the state of the FSM with the least going on (such

as the state where no outputs are asserted). From there, you’ll need to start filling in the

details. The biggest issue here is simply getting started.

Rule 6: Don’t follow any of these rules.

Figure 30.2: A feeble attempt at "rules" for solving FSM-type control problems.

30.3 FSM Design Example Problems

Here are bunches of problems presented in varying amounts of detail. Have fun, and lots of it.

331

 Part of being an engineer is figuring out how to interpret poorly written problem descriptions. You’ll

receive a lot or practice with such problems in this text. Poor writing is part of the plan.
332

 Scratch paper (writing with one blank side and nothing important on the other side) works well here.

Digital McLogic Design Chapter 30

 - 626 -

Example 30-1: Dam Waterflow Controller: Version I

A given dam has four water-level sensors with L1 being the lowest sensor placed vertically

(placed at a greater depth in the dam). A given sensor is “on” (asserted high) when it senses

water at that level and the sensor is low when no water is sensed at that level. The output of the

four sensors drives four water flow controllers to which control the outflow of water from the

dam. There is a one particular flow control associated with each level; for example, the

actuation of Level Sensor 4 (L4) will activate Flow Control 4 (FC4). When the water reaches a

particular Level Sensor, it activates the Flow Controller associated with that level. The flow

controllers associated with the level sensors stay activated as long as the associated level sensor

is activated. In other words, when the L4 sensor activates, all the other sensors are activated

also. Provide a state diagram that describes a solution to this problem. Assume all inputs and

outputs use positive logic.

Solution: A fine start on any solution is drawing the black box diagram associated with the

problem. Figure 30.3 shows a diagram that clearly shows the inputs and outputs of the proposed

FSM. This diagram also helps if you need to model the subsequent FSM in VHDL.

Figure 30.3: Black box diagram for solution of Example 30-1.

A fine place to start this state diagram is by

drawing a legend and listing the seemingly

“do nothing” state. The diagram on the right

shows this starting point. The first state

describes a condition where all the level

sensors in the non-actuated state and the

associated flow controllers turned off.

Figure 30.4: Step 1) State Diagram design.

Digital McLogic Design Chapter 30

 - 627 -

The FSM stays in the OFF state as long as the L1

sensor is not actuated; the complimented L1 in the

state diagram represents this characteristic. This

condition could also have been represented by

nomenclature such as “L1 = 0”. The approach we

chose is technically uses PLC
333

 (positive logic

convention) which often leads to more readable

state diagrams. Note that the act of not listed the

L2, L3, and L4 inputs indicate that these inputs are

officially “don’t cares”. “Not caring” about these

inputs makes sense in the context of this problem

because if the L1 sensor is not actuated, none of

the other sensors will be actuated since all sensors

are based on the level of water behind the dam.

Figure 30.5: Step 2) State Diagram design.

The first meaningful state is when the first

sensor actuates. In this case, the FSM

transitions to the L1ON state. The FSM will

stay in this state as long as the L2 sensor is not

actuated and the L1 sensor remains

activated
334

 (as indicated by the self-loop). If

the L1 sensor were to de-activate, the state

transitions back to the OFF state, as indicated

by the complemented L1. Note that the FC1

flow controller is actuated when in the L1ON

state as indicated with the ‘1’ in the FC1

position; the other outputs remain off. Once

again, not listing all the sensor inputs in the

new state indicate that they are in “don’t

cares”

Figure 30.6: Step 3) State Diagram design.

333

 The use of PLC in this case represents a shorthand notation of sorts. We know that L1 is positive logic

so the complement of L1 is therefore the non-active state for that signal.
334

 Note that this notation does not use an explicit AND operator. This is typical of state diagrams: the

AND operator is understood to be there.

Digital McLogic Design Chapter 30

 - 628 -

From the L1ON state, a transition is made to the

L2ON state when the L2 sensor is actuated. The

FSM remains in the L2ON state so long as the

L2 sensor remains activated and the L3 sensor is

not actuated. If the L2 sensor turns off, the state

transitions back to the L1ON state. Note that the

FC2 flow controller is actuated in the L2ON

state in addition to the FC1 flow controller. One

other thing of interest here is that the conditions

associated with the self-loop in the L2ON state

do not include the L1 variable. This is officially

a “don’t care” with the reasoning that if the L2

sensor is one, then the L1 sensor must be on.

You could list the L1 input in the condition but

it would clutter your state diagram.

Figure 30.7: Step 4) State Diagram design.

This state is similar to the description of the

previous state so we’ll save the verbage

here. You’ll typically be able to exploit

symmetry in the state diagram in problems

such as these; as such, it should be

something you stay on the lookout for. You

can also exploit this symmetry to ensure you

written your equations correctly. Be sure to

exploit this symmetry.

Figure 30.8: Step 5) State Diagram design.

Digital McLogic Design Chapter 30

 - 629 -

Finally, let’s consider the L4ON state.

There is not much new here. Actuation of

the L4 sensor sends the FSM in to the

L4ON state. The FSM remains in that state

so long as the L4 sensor remains actuated.

The FSM transitions back to the L3ON state

from the L4ON state when the L4 sensor

deactivates.

Was this solution trivial? Yeah, probably.

You’re probably thinking that you should

simply attach the output of the water level

sensors other flow controller input. Great

idea! Consider this problem a confidence

builder. We’ll make it a bit more

challenging in after the next example.

Figure 30.9: Step 6) State Diagram design.

We need to revisit this Dam Waterflow control problem. Unfortunately, the last dam failed

miserably in a giant storm (the FSM design was fine but the dam design was bad, particularly

the flow controllers). The town below was flooded, which generated a massive number of

lawsuits.

For the upcoming problem, the dam contains an extra flow controller. This flow controller

requires somewhat specialized control features outlined in the problem description that follows.

Once again, this design acts alone and there is no pressing need to interface the FSM with a

MCU. Once again, this is truly a case where understanding the problem requires more time than

doing the actual design.

Digital McLogic Design Chapter 30

 - 630 -

Example 30-2: Dam Waterflow Controller: Version II

A given dam has four water-level sensors with L1 being the lowest sensor placed vertically

(placed at a greater depth in the dam). A given sensor is “on” (asserted high) when it senses

water at that level and the sensor is low when no water is sensed at that level. The output of the

four sensors drives five water flow controllers to which control the outflow of water from the

dam. There is a one particular flow control associated with each level. The fifth controller

actuates whenever the transition of a state goes from a lower water level to a higher water level;

it is not activated when the water level transitions from a higher level to a lower level. The flow

controllers associated with the level sensors stay activated as long as the associated level sensor

is activated. In other words, when the L4 sensor activates, all the other sensors are activated

also. Assume all inputs and outputs are positive logic.

Solution: As always, a good place to start with this solution is to draw a block diagram of the

FSM. This gives you meager clues and points you to the road of assured success. Figure 30.10

shows the associated black box diagram. The solution with explanation follows of the

developing state diagram happily follows.

Figure 30.10: Black box diagram for the solution of Example 30-2.

A worthy place to start is with the legend. This

is always good place to start especially if you

can’t figure anything else to do. Besides, it’s

the next logical step from generating the FSM

black box diagram of Figure 30.10 (in case

you’re running short of ideas).

Figure 30.11: Step 1) State Diagram design.

Digital McLogic Design Chapter 30

 - 631 -

The first real state is generally the “waiting

for something meaningful to happen” state.

For this example, we’ll call if the OFF state.

In this step, the FSM stays in this state so

long as the L1 sensor remains off as indicated

in the state diagram with the complemented

L1 on the self-loop. Note that all of the flow

controllers remain off in this state (thus the

off name). Very clever.

Figure 30.12: Step 2) State Diagram design.

From the OFF state, the state transitions to the

L1UP state if the L1 sensor is actuated as

indicated by an uncomplimented L1 signal

associated with the transition to the L1UP

state. In the L1UP state, both the EFC and FC1

flow controllers actuate as indicated by the 1’s

in the respected positions in the state bubbles.

Note that the water level is rising in this state.

In other words, to arrive in the L1UP state, the

water level must have risen.

Figure 30.13: Step 3) State Diagram design.

The state diagram on the right shows two new

transitions. The FSM stays in state L1UP under

the condition that the L2 sensor is not actuated

but the L1 sensor is activated. Likewise, the state

diagram leaves the L1UP state under the

condition that the L1 sensor deactivates. In that

case, the FSM transitions back to the OFF state.

Figure 30.14: Step 4) State Diagram design.

Digital McLogic Design Chapter 30

 - 632 -

The next logical state is the L2UP state.

Transition to this state occurs when the L2

sensor activates. The corresponding output

asserts the FC2 output, which actuates the FC2

flow controller. Because the water level has

risen from the L1UP state to the L2UP state,

the EFC output is remains asserted.

Figure 30.15: Step 5) State Diagram design.

The FSM stats in state L2UP so long as the

L2 sensor remains activated and the L3 sensor

is not activated. If the L2 sensor de-actuates

in the L2UP state, the state transitions to the

L1DN state. This state is similar to L1UP

state except for the fact that that the EFC

output is not actuated. In other words, if the

water level is falling as is indicated for this

transition, the EFC output is not asserted. The

L1UP and L1DN states are essentially the

same state aside from the fact that the EFC

output is different in these states.

Figure 30.16: Step 6) State Diagram design.

The FSM stays in the L1DN state so long

as L2 is not actuated and L1 remains

actuated. Looking ahead to the diagram on

the right, if L2 is re-actuates from the

L1DN state, the state transitions back to the

L2UP state and the EFC is turned on. Also

from the L1DN state, if the L1 sensor

deactivates, the state transitions back to the

OFF state (not shown).

Figure 30.17: Step 7) State Diagram design.

Digital McLogic Design Chapter 30

 - 633 -

From the L2UP state, if the L3 sensor

actuates, the state transitions to the L3UP

state. For the next few transitions, there is a

certain symmetry is taking place in this

state diagram. If you understand all the

transitions up until now, the next few

additions to the state diagram are nothing

new. This being the case, we’ve ejected

some of the boring explanatory details.

Figure 30.18: Step 8) State Diagram design.

Here’s the addition of the final state which

results from a transition from state L3UP

under the conditions of the L4 sensor being

activated. The addition of the L4UP state is

similar to the L3UP and L2UP states. The

“down” states associated with the “up”

states are also similar so we do not include

them here.

Figure 30.19: Step 9) State Diagram design.

Digital McLogic Design Chapter 30

 - 634 -

Finally, bunches of more additions made to

the state diagram but they are essentially

nothing you have not already dealt with.

The state diagram is complete. And it’s

beautiful. Note how the symmetry of the

state diagram tugs on your soul strings.

Figure 30.20: Step 10) State Diagram design.

Wow. The state diagram looks amazing. You can easily impress your friends
335

 and

acquaintances with this puppy, but your friends will know that it’s not as amazing as it looks.

Best yet, the dam works happily ever after; the town below is saved. You’re a hero.

The next example problem is somewhat advanced in terms of the devices and ideas that it uses.

Despite this notion, it is still understandable and you’ll be better off if you put the time into

understanding it. Many of the important underlying details of this problem will become clearer

later in this text. The following verbage attempts to describe some of these details without too

much splendor.

Since computers typically are required to interface with an analog world, there exists some type

of analog-to-digital conversion (ADC) in every digital system. ADCs, generally speaking,

generate a digital value (a set of bits) that corresponds to an analog input. The generated digital

value is proportional to the analog value. The range of analog values that can be converted is a

function of the ADC you’re using as are the digital characteristics of the digital values. The bit-

width of the converted value indicates the number range of the converted value. The ADCs

themselves are typically rated by the bit-width, or resolution, of the converted value.

The resolution of ADCs typically runs from 6-bits to 24-bits (depending on how much you’re

willing to pay). ADC’s typically are implemented using different approaches and algorithms but

the following problem omits these details. Any one device will have only one resolution

associated with it. There are lots more details involved in ADCs but they are not relevant to this

discussion.

Generally speaking, a set of control signals are used to control ADCs. Any outside device such

as a microcontroller or a FSM can tweak these control signals. Each ADC will have different

335

 And bowling buddies.

Digital McLogic Design Chapter 30

 - 635 -

control requirements but they generally are somewhat similar. Once again, there are a lot more

details on this but we’ll pass by most of them and examine the simplified specification shown in

Figure 30.21.

Figure 30.21(a) shows a black box diagram of the ADC we’ll work with and Figure 30.21(b)

shows the operating characteristics. To obtain an analog to digital conversion from this object,

you must follow the following sequence of control signals. Your mission for the upcoming

problem is to design a state diagram that will synthesize
336

 the control signals in such a way as

to make the ADC operate properly. Here are the important things to note about the timing

diagram in Figure 30.21(b).

 Drop the RD and CS signals low. This notifies the ADC that you want to initiate a

conversion. Before the conversion initiates, the ADC is considered to be in an idle

state.

 Wait for BUSY to drop low. The ADC drops this signal low after a certain amount

of time designated in the spec for the ADC device. Once this signal drops low, the

ADC has started a conversion. Clock signals drive ADCs (either internal or external)

which effectively times the conversion. The point in this example is that you don’t

know or care how long the clocking is going to take
337

. The important thing is that

once the conversion is complete, the ADC drives the BUSY signal high.

 Wait for the BUSY signal to return high. This indicates that the data on the output

lines is valid digital data from the more recently initiated conversion. The data is

then available to be read and used by some other device in your system.

 Return the RD and CS lines to the high state. This has the effect of returning the

device to an idle state. The ADC’s idle state produces high-impedance
338

 on the

device’s data output. Once the conversion is complete and the data associated from

the conversion is read, the data outputs are driven back to high-impedance by

bringing the RD and CS signals back to a logic high state.

(a) (b)

Figure 30.21: Simplified black box diagram and typical timing specification for an ADC.

336

 The word “synthesize” is used often in this context. It simply means that you’re going to need to design

some hardware (the FSM) that produces the control signals as shown in the ADC’s timing diagram.
337

 This clocking has nothing to do with the system clock driving the FSM.
338

 This is electronics stuff; it’s really complicated (but you don’t need to deal with it now). For now, you

can consider this an on/off function with the high-impedance condition being equated with the off state.

Digital McLogic Design Chapter 30

 - 636 -

Example 30-3: Pin-Limited MCU/ADC Interface

Design a FSM that initiates an analog-to-digital conversion using only one signal (ADC_EN).

The controlling signal is the ADC_EN signal which connects to a microcontroller for this

example. Transitioning the ADC_EN signal from low-to-high initiates the analog-to-digital

conversion process. The FSM initiates the ADC process by dropping CS and RD signals,

waiting for the BUSY signal to drop, and then waiting for the BUSY signal to rise indicating the

ADC has completed the conversion. The high-to-low transition of the ACD_EN signal places

the ADC back into its idle state. It is the job of the MCU to wait the proper amount of time for

the conversion to complete before the data is read. A simplified black-box diagram of the circuit

is shown below (signal such as the analog input are missing). You only need to generate the

state diagram for this FSM.

Solution: The following figures show the solution to Example 30-3 using a modest yet painful

amount of detail.

A good place to start in any FSM design is the state in

which there is the least going on. For this design, we’ll

use symbolic mnemonics to represent the state. We’ll

call the beginning state of this diagram the idle state.

This state signifies that no conversion is currently

taking place.

Figure 30.22: Step 1) State Diagram design.

Moore-type FSM models can most easily

represent the two control outputs (RD and CS).

In the idle state, both of these outputs are high

so the state lists them accordingly. The FSM

will stay in this state so long as the ADC_EN

signal remains low as indicated by the

complemented self-loop in this state.

Figure 30.23: Step 2) State Diagram design.

Digital McLogic Design Chapter 30

 - 637 -

If the ADC_EN signal transitions from

low-to-high, the MCU requested the

initiation of an analog-to-digital

conversion. Once this occurs, the FSM

must actuate the RD and CS signals (these

signals are active low and were “high” in

the idle state). We must add a new state in

order to handle these conditions; transition

to this new state occurs when the

ADC_EN signal is in the high state.

Figure 30.24: Step 3) State Diagram design.

Once the analog-to-digital conversion

initiates in the previous state, the FSM

must wait for the BUSY signal to

transition from high-to-low. The BUSY

signal is controlled by the ADC and

indicates the current state of the ADC

(whether the ADC is currently doing a

conversion or not). The FSM requires

this state because the FSM needs to

monitor this signal to know when the

requested conversion is complete. The

next step shows this condition.

Figure 30.25: Step 4) State Diagram design.

Once the BUSY signal drops low, the

FSM transitions to a new state

(symbolically labeled ADC_GO). In this

new state, the analog-to-digital

conversion has started; the results are

forthcoming.

Figure 30.26: Step 5) State Diagram design.

Digital McLogic Design Chapter 30

 - 638 -

The FSM stays in the ADC_GO state as long

as the BUSY signal remains low. Once the

BUSY signal is driven high (by the ADC), the

conversion is complete. One of the nice things

about this design is this. Both the FSM and

the ADC depend on system signals but they

don’t necessarily need to use the same clock

signal. The purpose of the BUSY signal is to

indicate to the world outside of the ADC

device that the analog-to-digital conversion is

complete. In this way, the two clocking

signals do not need to match or synchronize in

any way. This is a typical digital design

approach as the synchronization of clocking

signals is something everyone tries to avoid.

Figure 30.27: Step 6) State Diagram design.

The BUSY signal is driven high once the

analog-to-digital conversion has

completed. This requires that we

transition to a new state that we’ll call

ADC_DONE. The reason we need to

add this new state will become apparent

in the next box.

Figure 30.28: Step 7) State Diagram design.

Digital McLogic Design Chapter 30

 - 639 -

Finally, in the ADC_DONE state, we must

wait for the MCU to read the conversion

data. The FSM keeps the ADC in this state

as long as the ACD_EN signal remains high.

The underlying thought here is that the

MCU will eventually read the ADC data and

then de-assert the ADC_EN signal. Once the

ADC enable signal is de-asserted (driven to

the high state), the FSM returns to the IDLE

state.

Figure 30.29: Step 8) State Diagram design.

While the previous diagram initially

appears complete, we could actually make

it better. Our goal here is to make the FSM

more robust. In order to do this, we

technically need to cover the unexpected

input cases. The question left unanswered

in the previous state diagram is: what

happens when an unexpected input

sequence occurs? The design approach we

took for this FSM was to generate the state

diagram based on the correct input

sequence occurring; but what would

happen if the ADC_EN input were disabled

soon after it was enabled? The answer to

this depends primarily on the ADC

hardware. Nevertheless, since we don’t

know this level of detail from the program

description, we instead add some extra

transitions to our state diagram. The final

state diagram now has conditions that

return the FSM to the IDLE state if the

ADC_EN input is unasserted from any

state.

Figure 30.30: Step 9) State Diagram design.

Digital McLogic Design Chapter 30

 - 640 -

Example 30-4: Plant Watering Controller (Version 1)

Generate a state diagram that could be used by a finite state machine (FSM) to control can be

used to control a plant watering device. This device has two outputs: one output, DRY, indicates

when the planting medium is in need of water. The other output, FLOOD, indicates when the

water level has reached a given point. The watering device has one input, WATER, that controls

whether water is pumped into the planter or not. The operation of this device is such that if the

planter is dry, the pump actuates until a flooded condition is present.

Solution: The key to understanding this problem is to draw an appropriate circuit diagram that

shows your FSM as well as all the information (inputs and outputs) that you know about the

watering device. Figure 30.31 provides the well-known black box diagram. For this particular

problem, this diagram is massively important due to the wording used in the problem. What is

not immediately apparent from the problem description is input/output description. You need to

read the problem carefully to ascertain that the output from the watering device is a status input

to the FSM while an input to the watering device is an output from the FSM. The black box

diagram helps clarify the input/output specification.

Figure 30.31: The block diagram of the final circuit.

The next thing you need to do is generate the required state diagram. For this diagram, there are

two states: the OFF state and the ON state. A Moore-type output represents the WATER output,

which controls the watering device. Figure 30.32 shows the final state diagram for this problem.

Figure 30.32: The state diagram describing the required FSM for Example 30-4.

Digital McLogic Design Chapter 30

 - 641 -

Example 30-5: Plant Watering Controller (Version 2)

Design a state diagram that could be used by a finite state machine (FSM) to control can be used

to control a plant watering device. This device has two outputs: one output, DRY, indicates

when the planting medium is in need of water. The other output, FLOOD, indicates when the

water level has reached a given point. The watering device has two inputs, WATER, that is used

to control whether water is being pumped to the planter or not, and FERT, that is used to actuate

a pump provides liquid fertilizer to the plant. The operation of this device is such that if the

planter is dry, the pump actuates until a flooded condition is present. The plant need fertilizing

every other time the plant is watered.

Solution: The key to this problem is noticing that it is relatively similar to the previous

problem. As you probably noticed in the previous problem, you could have designed the

required circuit without using a FSM (namely a combinatorial design). This problem is different

because you must fertilize the plant at every other watering. Although you probably could

dream up some combinatorial circuit that would be adequate for this design, a FSM is the best

approach.

As is usually the case, a good place to start with this problem is generating a black box diagram

of the solution circuitry. This diagram explicitly shows all the device and FSM inputs and

outputs, and thusly provides you with an enlightened approach to the problem. Figure 30.33

shows the resulting black box diagram.

Figure 30.33: The block diagram of the final circuit.

The state diagram for this is similar to the state diagram in Example 30-4. In essence, we’ve

repeated the state diagram twice and used one of the repetitions to turn on the FERT input. The

state diagram indicates the FSM’s is ability to “remember” whether it added fertilizer during the

previous dry spell or not. This is pretty cool; the plants in your grow room will love you and

provide you with endless hours of escape from academic drudgery. Figure 30.34 shows the final

state diagram for Example 30-5.

Digital McLogic Design Chapter 30

 - 642 -

Figure 30.34: The state diagram describing the final FSM.

Example 30-6: Signal Synthesizer

Design a state diagram that models a finite state machine (FSM) that synthesizes the following

signals. More specifically, if the FSM receives a GO, the CS, DE, and E, signals are output by

the FSM according to the timing diagram provided below. In the diagram below, each of the

time increments are equivalent and equal to 10μs (10 x 10
-6

 s). As part of this problem, you must

state the system clock frequency of your FSM.

Solution: As with all problems, the best place to start is to draw a black box diagram of the

final circuit. Figure 30.35 shows such a diagram. Note that this diagram shows the GO signal as

an input and the three signals synthesized as outputs.

Digital McLogic Design Chapter 30

 - 643 -

Figure 30.35: Black box diagram of final FSM circuit for this problem.

The next thing we need to establish is the clock frequency used by the FSM. You can calculate

this based on the requirements of the problem, namely, the timing diagram provided in the

problem description. The first thing to note is that all of the time increments are equal. The next

thing to notice is that the output changes seem the fall on the clock edges only which heavily

implies that we can use a Moore machine in for the FSM. Reproduction of the timing diagram

can be satisfied with a clock period that is equal to the clock period of the time increment. The

clock frequency is thus (10 x 10
-6

 s)
-1

, or 100kHZ.

The next part of the problem concerns itself with starting the state diagram. The best place to

start is at the perceived beginning, when the FSM is waiting for the GO command (this is the

state having the least is going on). So long as the GO command is unasserted, the FSM stays in

the initial state. When the GO command asserts on an active clock edge of the FSM, the FSM

then proceeds to implement the given signals. From there, each state in the state diagram

essential creates one time increment in the state diagram. Figure 30.36 shows the final solution

for Example 30-6. Although this is appears to be a large state diagram, hopefully you can see

that it is all straightforward.

Figure 30.36: The state diagram describing the final solution for Example 30-6.

Problem Post mortem: A couple of worthwhile things to note here:

 First, the output signals in the OFF state are somewhat arbitrary, since the problem

statement provided no information as to the state of these signals before the GO signal

asserts, we can effectively state the outputs at any value.

 The conditions that govern the transition from the OFF state are based solely upon the

state of the GO signal. All of the other state transitions are unconditional transitions. In

other words, once the asserted GO signal starts the process, it will step through each of

the states on subsequent clock cycles until the state diagram re-enters the OFF state.

Digital McLogic Design Chapter 30

 - 644 -

 The START state represents the first time increment in the state diagram. Each

subsequent state bubble represents individual time increments in the original state

diagram.

Example 30-7: Mixed Duty Cycle Signal Generator

Design a state diagram that a FSM could use to generate an output signal of different duty

cycles. The FSM has a two-bit input signal, SEL, that selects the duty cycles generated by the

FSM according to the table below. The period of the final signal must be 40μs so you must state

the clock frequency of your FSM. Minimize the number of states you use in your solution.

SEL Input Duty Cycle

00 25%

01 50%

10 75%

11 100%

Solution: The key to this problem is to understand the problem. As always, your first mode of

attack it so draw a black box diagram as shown in Figure 30.37. Note that there is only one

output to this circuit: the SIG signal. This signal will exhibit one of the four duty cycles stated in

the problem description. The SEL signal is a 2-bit bus, which contains SEL1 and SEL0 with

SEL1, being the signal with higher precedence.

Figure 30.37: Black box diagram for Example 30-7.

The next thing to do is to draw the outputs of the FSM under each of the four conditions. This

will once again aid in the understanding of this problem. It also helps you decide a clock

frequency for the FSM. Figure 30.38 shows the FSM outputs based on the SEL input. Since the

problem states a 40μs period for the outputs, and the required duty cycles effectively divide the

40μs period into four sections, the resultant FSM clock frequency is ¼ the total period, or 10μs.

The system clock frequency is thusly the reciprocal of one of these increments or 100kHz.

Digital McLogic Design Chapter 30

 - 645 -

Figure 30.38: How the output should appear under given circuit conditions.

The next thing to do is to start drawing the state diagram. The best place to start on this problem

is to pick one of the duty cycles and implement it. The partial state diagram in Figure 30.39

shows an implementation of the 25% duty cycle. Note that in Figure 30.39 there is only one

conditional transition while all of the other state transitions are unconditional. This one

condition is based directly on the state of the select signals. In other words, if both select signals

are not asserted, the state diagram starts down the 25% duty cycle path.

Figure 30.39: Implementation of the 25% duty cycle sequence.

The next step in this solution is to add the 50% duty cycle to the now emerging solution. Figure

30.40 happily shows the new additions to the state diagram. Note that the transition from state

s1 to s5 is based on any condition not met in the transition condition from s1 to s2. From the s5

state, if the higher weighted select signal, SEL1, is not asserted, then the state diagram turns off

the SIG by transitioning to state s3. State s3 is effectively the final half of the 25% duty cycle

transition sequence.

Figure 30.40: Addition of the 50% duty cycle sequence to the 25% duty cycle sequence.

Digital McLogic Design Chapter 30

 - 646 -

The next step in this solution is to add the 75% duty cycle to the budding state diagram; Figure

30.41 soulfully shows this condition. From the s5 state, if the SEL1 signal asserts, then either

the 75% or the 100% duty cycle is selected which as represented by the transition to the s6 state.

From the s6 state, if the SEL0 signal is unasserted, the state diagram selects the 75% duty cycle

as is indicated by the conditions on the transfer from state s6 to state s4. Note that s4 is the final

state of the 25% duty cycle path.

Figure 30.41: Addition of the 75% duty cycle to the emerging state diagram solution.

The final step in the solution is to add in the 100% duty cycle sequence. This requires only the

addition of the s7 state. The value of the SEL0 signal controls entry to the s7 state. The FSM

exits this state unconditionally and restarts the sequence. The state diagram is now complete and

the rejoicing can now begin.

Figure 30.42: The final state diagram including the 100% duty cycle sequence.

Problem Post mortem: A couple things to note here:

 What would happen if the SEL signal changed midway through the state diagram? It

would probably cause some glitching as the output settled. So why didn’t we address

Digital McLogic Design Chapter 30

 - 647 -

this condition as we did the problem? The answer is because the problem did not

require us to do so. How could we have solved this problem if were asked to do so?

The most straightforward solution I can see if to save (register) the state if the SEL

input in state s1. The registered values of the SEL inputs would then control the

subsequent transitions in the state diagram. This would probably have generated state

diagram with more states but it would have been a straightforward solution.

Digital McLogic Design Chapter 30

 - 648 -

Chapter Summary

 This chapter consisted primarily of example problems. The only verbage worthy of mention

here is the set rules on how to get started on a given FSM problem. We list the rules here

again in order to make sure this page is not left intentionally blank (figuratively speaking).

Rule 0: Understand all aspects of FSMs including Mealy vs. Moore machines, timing

diagram characteristics, FSM terminology, clocking aspects of FSMs, and state

diagram.

Rule 1: Understand the problem at hand; read the problem many times as problems are

typically not stated well.

Rule 2: Draw a black-box diagram of the problem that clearly shows the inputs to

(status signals) and output from (control signals) the FSM.

Rule 3: Decide whether you’ll implement your FSM as a Mealy or Moore machine.

Rule 4: After you put some thought into Rule 3, draw a legend that is consistent with

the decisions you made in Rule 3.

Rule 5: Draw big circle somewhere on your paper and call that circle your starting state

for the FSM. From there, you’ll need to start filling in the details. Don’t hesitate to

simply “get started”.

Rule 6: Don’t follow the rules; make up your own rules instead. Break those too.

Digital McLogic Design Chapter 30

 - 649 -

Design Problems

1) Design a finite state machine that controls a lighting circuit. The FSM has one control input

DAY, and one output, LIGHT. The DAY input is from a sensor that indicates whether it is

daytime (DAY =’ 1’) or nighttime (DAY=’0’). The LIGHT output turns on the light when

equal to ‘1’ and turns off the light then LIGHT = ‘0’. Design your FSM so that the light

turns on every other night. For example, one night the light is on, the next night the light is

off. Use either a Mealy or Moore machine.

2) Design a finite state machine that controls a lighting circuit. The FSM has one control input

DAY, and one output, LIGHT. The DAY input is from a sensor that indicates whether it is

daytime (DAY =’ 1’) or nighttime (DAY=’0’). The LIGHT output turns on the light when

equal to ‘1’ and turns off the light then LIGHT = ‘0’. Design your FSM so that the light

turns on every other night. For example, one night the light is on, the next night the light is

off. Use either a Mealy or Moore machine.

3) Design a state diagram that describes the operation of a FSM that could be used to control a

greenhouse temperature control system.

a. The system to be controlled has two outputs, HOT and COLD, which indicate

when the temperature of greenhouse is too hot or too cold. If both of these inputs

are not asserted, the temperature of the greenhouse requires no action be taken

because the control vent is normally partially open. Assume the HOT and COLD

inputs will never be simultaneously asserted.

b. The system to be controlled has two inputs, OPEN and SHUT, which are used to

completely open or completely close the normally partially open vent. The vent

should be opened when the temperature of the green house is too hot and closed

when the temperature is too cold.

c. Anytime the vent fully opens or closes, it must remain in that state for at least two

minutes.

d. The system clock speed of your FSM is real slow: it has a one minute period.

Digital McLogic Design Chapter 30

 - 650 -

4) For this problem, specify a state diagram what will implement the following timing

diagram. In this timing diagram, the GO signal (active low) initiates the synthesis of signals

in time slots t1 t3. After t3, the FSM waits for GO to be unasserted. When GO is

unasserted, the signal in time slots t1’ t4’ are synthesized. After t4’, the FSM returns to the

starting state with the outputs indicated prior to time t1. Your state diagram should also

generate the given outputs between t3 and t1’.

5) For this problem, specify a state diagram what will implement the following timing

diagram. In this timing diagram, the GO signal initiates the synthesis of signals in time slots

t1 t4. After t4, the FSM waits for GO to be unasserted. When GO is unasserted, the signal

in time slots t0’ t4’ are synthesized. After t4’, the FSM returns to the starting state with the

outputs indicated at time t0.

Digital McLogic Design Chapter 30

 - 651 -

6) Design a state diagram that describes the operation of a FSM that could be used to control

an automobile headlight control system that prevents drivers from unintentionally leaving

their headlights on.

a) The FSM issues a control signal, LITES_OFF, when it has determined the

driver has unintentionally left the lights on. This signal is used by some other

device to turn off the headlights.

b) The FSM runs in two modes: the 2-minute mode and the 4-minute mode

which is determined by the MODE input to the FSM (MODE=’0’ is the 2-

minute mode). The LITES_OFF signal is issued after either two or four

minutes depending on the mode.

c) The FSM will only issue the LITES_OFF signal when the both the engine

status signal ENG_ON and the DRV_SEAT signals have been unasserted for

the set amount of time. Both of these signals are positive logic. If the

DVR_SEAT signal is asserted on a clock edge, the timer starts counting again.

The ENG_ON signal indicates whether the engine is running (the lights are

not turned off if the engine is running) and the DRV_SEAT indicates that

someone is sitting in the driver’s seat (the lights are not turned off if someone

is sitting in the driver’s seat).

d) The system clock speed of the FSM is slow: it has a one minute

period.

7) Provide a state diagram for a FSM that controls a blinking LED according to the following

specifications. The LED is used to visually show the speed setting of a 4-speed motor

which is controlled by signal S according to the table below. The motor speeds can change

asynchronously.

 The LED has two blink

periods (both 50% duty

cycles): 40ms & 20ms.

When the motor is

running at its fastest or

slowest setting, the

LED blink period is

20ms. Otherwise, the

LED blink period is

40ms.

 At no time should the

LED be on or off for

more than 20ms.

S
Motor

Speed

“00” slowest

“01” less slow

“10” faster

“11” fastest

Digital McLogic Design Chapter 30

 - 652 -

8) Design a FSM is required to control a set of four lights: L3, L2, L1, and L0. The FSM reads

the value of five switches, MS, S3, S2, S1, and S0; the S3 switch turns on the L3 light, etc,

under the following conditions:

 The other four switches have priorities assigned to them with S3 being the highest and

S0 being the lowest.

 The MS switch is considered the master switch and must be actuated in order for any

of the lights to be on. When the MS switch is turned off, any light that is on will turn

off on the next clock edge.

 No more than one light can be on at any given time. The light that will be turned on at

any given time is associated with the switch of highest priority.

 The FSM ensures that the lights must turn on in order. For example if the lowest

priority light is on and the highest priority switch is activated, the two lights middle

lights will turn on then off one at a time (synchronized to the clock edge) before the

highest priority light turns on. The same is true for the opposite direction.

9) A FSM is required to control a sound activated beer dispenser. The system clock for this

problem is quite slow: it has a ten-second period. In order to ensure you’ll be able to

dispense the beer, you thus need to scream loudly for at least ten seconds in order to be

screaming on an active clock edge. If you’re screaming when the clock edge arrives, the

beer will start dispensing. The constraints on this problem are than in any 30-second period,

the beer will flow for no more than 20 seconds. In other words, if you were screaming for

the entire 30 seconds, you would only receive 20 seconds of beer. After 30 seconds, the

system resets and eagerly awaits the next thirsty screamer. This FSM has two inputs: the

system clock and the sound sensor. This FSM has only one output: the beer dispenser

control. Provide a state diagram that could implement this FSM. Minimize the number of

states in the state diagram.

Digital McLogic Design Chapter 30

 - 653 -

10) Using the listed circuit, design a FSM that outputs the sum of (A + B) as long as no

carry is generated. If a carry is present on an active clock edge, the circuit outputs a

0x00 then 0xFF for one clock cycle each, then outputs the C value for at least two

clock cycles but for as long as A does not equal B. If and when A equals B, the circuit

once again displays the sum of (A+B), etc. The circuit also asserts ERR output

whenever the circuit output is not the sum of (A + B).

Assume the FSM clock is much faster than then changes in A, B, and C. Disregard all

setup and hold-time issues. You only need to provide a state diagram for this design.

Minimize the number of states in your design.

11) Design a FSM that creates a power-saving control of a set of hallway lights. The hallway

has four sensors (S1,S2,S3,S4) and three lights (L1,L2,L3) as indicated by the diagram

below. The sensors indicate when a person is near and causes the nearest light(s) to turn on.

When a person first enters the hallway, only one light turns on; as a person walks through

the hallway, only the two nearest lights turn on. You need to provide a black box diagram

and a state diagram for this design. Minimize the number of states in your design. For this

problem, make the following assumptions:

 The sensors completely

sense the hallway with

no overlap in the

coverage area

 Only one person at a

time will be in the

hallway

 When a person enters

one side of the hallway,

the person will

eventually exit on the

other side

 - 655 -

31 Chapter Thirty-One

(Bryan Mealy 2012 ©)

31.1 Chapter Overview

Designing and analyzing finite state machines (FSMs) represents the majority of the work we’ve done

in the last few chapters. Although we’ve dealt with some issues related to FSM timing, the emphasis

was primarily on the timing details and differences of Mealy and Moore-type outputs. The topic of

FSMs is a deep subject and there are many issues we have not dealt with and won’t be dealing with in

this text. However, there are some issues we’ll present in order to provide you with a nice collection of

FSM techniques.

The main topic of this chapter is the timing/clocking issues associated with FSM design. The good thing

is that these topics apply to all sequential circuits, particularly circuits that use some sort of system

clock signal for synchronization purposes. While none of these issues is overly complicated, they are

important to creating FSMs that not only work, but also work with the fastest possible clock speeds.

The thought is that if your circuit operates with a high clock speed, then it must be a good circuit
339

.

Main Chapter Topics

 SEQUENTIAL CIRCUIT ATTRIBUTES: Many useful digital circuits contain a system

clock. This chapter therefore describes some of the basic terminology associated

with clocking signal.

 PRACTICAL DEVICE ASPECTS: Digital circuit elements are physical devices and

therefore have basic limitations based on device physics. This chapter describes

some of the attributes in the context of clocking basic FSM circuits.

Why This Chapter is Important

This chapter is important because it describes some of the more important timing

aspects associated with sequential circuits and FSMs.

31.2 Clocking Waveforms

As you know from your previous experience with FSMs, the memory elements in FSM are synchronous

circuits. The term synchronous refers to the fact that changes in the state of the flip-flops representing

the state variables synchronized to the active clock edge. Up until now, we have not dealt with the clock

signals much other than to acknowledge that they exist and that they synchronize changes in the FSM

339

 Although clock speed is a great selling point in digital design land, it generally has little to do with the quality

or robustness of your circuit.

Digital McLogic Design Chapter 31

 - 656 -

state. There are some common clocking terms that everyone in any technical field needs to know of in

order to be able to converse with your friends (real and imaginary) at the many parties you generally

attend (real and imaginary). This section introduces those terms.

31.2.1 Clocking Waveforms

Probably the most important aspect of clocking waveforms is that the clock signal is generally

considered to be periodic. We’ll define this in more technical terms later (once you know the more

technical terms) but for now we’ll define a periodic clock signal as one that does not change in form

over time. In other words, no matter where in time you view the waveform, it always appears to have

the same form. Figure 31.1 shows both a periodic (CLK1) and a non-periodic waveform (CLK2). Note

that you could use either of these signals as the clock input to a flip-flop since they both contain the

required rising and falling edge. However, in reality, most of the circuits we’ll be dealing with use the

more “predictable” waveform of CLK1 over the seemingly random waveform of CLK2.

Figure 31.1: A periodic (CLK1) and non-periodic (CLK2) waveform.

31.2.2 The Period

The more technical definition for a periodic waveform is that the waveform repeats itself “every so

often”. The period of the waveform indicates the amount of time required for the waveform to repeat

itself. Keep in mind that “time” is the units associated with period of a waveform. Figure 31.2 shows a

periodic waveform with one of the periods clearly delineated. This waveform is considered periodic

because the waveform between (a) and (b) is the same as the waveform between (b) and (c). Clocking

waveforms generally use the variable T to represent the time required for the waveform to repeat itself

as shown in Figure 31.2.

Figure 31.2: The variable T is typically used to represent the period of a waveform.

31.2.3 The Frequency

Although the period is a useful measurement, it is not always the best approach to describing a periodic

signal. Often times we may not be specifically interested in the period of the waveform, but we are

interested in how many times the waveform repeats itself in a given space of time. The frequency of the

waveform represents the number of times a signal repeats itself over a given amount of time. This

definition is actually somewhat more generally then we usually work with so we want to refine it

somewhat to make it more usable. The space of time we’re usually interested in is one second (1s); the

Digital McLogic Design Chapter 31

 - 657 -

standard used most often in technical pursuits is the number of time a signal repeats itself in one second

of time. Using this one second time slot simplifies the translation of period to frequency.

Period and frequency have a reciprocal relationship when the amount of time considered is one second;

Figure 31.3 shows these relationships. The units used for frequency are generally Hertz, or Hz for short.

The term Hertz is technically defined as the number of cycles per second (or just “cycles per second”),

which refers to the number of times a given signal repeats itself over time. The term Hertz has units of

s
-1

, which underscores its reciprocal relationship to the period, which is measured in units of time.

1)(
1 frequency

frequency
TPeriod

Units: time (seconds)

1)(
11 T
TPeriod

frequency

Units: Hz (seconds)
-1

(a) (b)

Figure 31.3: The calculations and units for Period and Frequency.

Example 31-1

A given waveform has a 40ns period. What is the frequency of this waveform?

Solution: Taking the reciprocal of the period provides the frequency as shown by the following

calculation:.

MHzHzx
xns

frequency 251025
1040

1

40

1 6

9

Example 31-2

A given waveform has a 50M Hz frequency. What is the period of this waveform?

Solution: Taking the reciprocal of the frequency provides the period. You can find the entire

calculation below.

ssx
sxMHz

TPeriod 201020
1050

1

50

1 6

16

Digital McLogic Design Chapter 31

 - 658 -

31.2.4 Periodic Waveform Attributes

Now that we’ve established that we’re interested in periodic waveforms; let’s now describe some of the

attributes associated with periodic waveforms. All the periodic waveforms we’ve dealt with up to now

have been symmetrical; this means that the portion of time the signal was high was equal to the portion

of time the signal was low. These equivalent times are not always the case. Sometimes the clock signal

high times and the clock signal low times are not equivalent. In these cases, we use the term duty cycle

to describe the waveform.

In rough terms, the duty cycle refers to the percentage of the period that the signal is in its high state. In

technical terms, the duty cycle is the ratio of the time the signal is high to the period of the signal.

Figure 31.4(a) shows the official looking equation for duty cycle. Note that since the duty cycle refers

to a ratio, there are no units associated with duty cycle metric.

T
t

dutycycle h

Units: none

(a) (b)

Figure 31.4: Duty cycle calculations and units.

Example 31-3

A waveform with a 25% duty cycle is high for 12.5ns. Find the frequency of the waveform.

Solution: If the waveform is high 25% of the period, than 12.5ns represents ¼ of the period. The entire

period is then four times longer than the amount of time the signal is high; therefore, the period of the

waveform is 50ns. The frequency is the reciprocal of the period, or 20MHz.

31.3 Practical Flip-Flop Clocking

Most of our FSM discussion thus far dealt with the notion of idealized flip-flops, which allowed us to

focus on the basic functioning of the devices. Now that we’re familiar with the basic function of flip-

flops, we need to take a look at some of the practical aspects of working with flip-flops. Namely, what

we’re interested in here are timing considerations that must be taken into account in order for our

sequential circuits to work properly with increasing clock speeds. Many factors will prevent our circuits

from working properly so our focus will be on two major timing considerations that you’ll more than

likely run into as you continue your journey deep into digital design-land.

Recall that flip-flops generally have control inputs (namely the D, T, and JK inputs) and clock inputs.

Flip-flops are synchronous circuits in that the change in the flip-flop’s output are synchronized to an

active clock edge. As it turns out, there are more factors involved when using actual flip-flops. Several

issues can arise because flip-flops are actual semiconductor devices, which have many insidious factors

Digital McLogic Design Chapter 31

 - 659 -

associated with them that will make the operation of the flip-flop less than ideal. In other words, things

don’t happen immediately with flip-flops; signals need to propagate through flip-flops, the flip-flop

trolls need to be fed, etc.

One of the consequences of practical flip-flop clocking is that you need to be nice to the flip-flop’s

control inputs (temporally speaking) near the active clock edge. More specifically, the control input

generally needs to remain stable for a given amount of time both before and after the active clock edge.

The amount of time the control input needs to remain stable before the active clock edge is referred to

as the setup time and the amount of time the control input needs to remain stable after the active clock

edge is referred to as the hold time. A timing diagram best shows these metrics; Figure 31.5 shows a

timing diagram associated with a flip-flop clocking signal.

Figure 31.5(a) and Figure 31.5(b) show the setup and hold times associated with a rising-edge and

falling-edge triggered flip-flop, respectively. The control input (such as the “D” input of a D flip-flop)

must be stable (it must not change) for the duration of the setup time. The control input of the flip-flop

must also be stable for the duration of the hold time. If the control input were to change during these

time intervals, the output, and thus, the state of the flip-flop would be indeterminate.

Out there in digital-land, it is well known that if you violate a setup or hold time, your flip-flop stands

the chance of becoming metastable
340

. This means that the output of the device will be neither high nor

low; it will be somewhere in-between and it may stay there for an extended length of time. In the

context of a digital circuit, this would be un-good.

(a) (b)

Figure 31.5: Setup and hold time definitions for rising edge (a) and falling edge (b) triggered flip-

flops.

Setup and hold times are associated with many different types of digital circuits. The idea is always the

same: keep a signal stable for a given amount of time before and after some critical clock edge. Since

flip-flops are what we know best, we’ll center our discussion around them. There is not too much more

to say about setup and hold times. What we’ll do now is consider some other practical aspects of a

sequential circuit which use the setup and hold times. But, mark my words… someday you’ll be

working on a circuit that does not seem to want to work properly. You’ll toil over it for awhile and then

it will hit you: you violated a setup and/or hold time. You’ll do a quick redesign on your circuit, it will

magically work, and you’ll have saved the day once again.

31.4 Maximum Clock Frequencies of FSMs

In this modern age, faster is generally associated with better even though this is usually not the case in

real life. In order to provide you with a deeper understanding of digital circuits, and in particular

sequential circuits, we need to take a closer look at some of the timing aspects. Namely, for a given

340

 And yet again, a digital design word makes it out of digital design land. The word metastable is often used to

describe people who are unpredictable; the type you’ll do best to steer clear of.

Digital McLogic Design Chapter 31

 - 660 -

circuit, there is always a question of how fast you can clock the circuit and still have the circuit operate

properly. In other words, what is maximum frequency that the flip-flop clock can run at without

hindering the operation of the circuit by violating nasty things such as setup and hold times.

As a handy reminder, Figure 31.6 shows a model of a Moore-type FSM. Each of the given boxes is

comprised of either sequential or combinatorial logic. As you know, there are propagation delays

associated with all types of logic
341

; as you just found out, there are factors such as setup and hold times

associated with sequential logic. From the diagram of Figure 31.6, you should sense that the circuitry

contained in the various boxes is going to lower the maximum rate at which the FSM can operate. This

includes both the sequential elements and the Next State Decoder. The Output Decoder generally has no

effect on the maximum clock frequency so we’ll not need to consider it here. What does matter is the

propagation delay though the Next State Decoder, the setup times associated with the flip-flops and

some combination of the flip-flops hold time and/or the propagation delay through the flip-flop. These

items require time: as the time accumulates, the shortest period possible for the clock signal becomes

greater, and hence, the maximum clock frequency becomes lower.

Figure 31.6: Model for a Moore-type FSM.

In order to simplify the analysis of FSM circuits, we’ll also make some other assumptions about this

circuit. For a given flip-flop, we know we have both a hold time and a propagation delay time that we

need to deal with. For these problems, we’ll assume that the propagation delay for the flip-flop is

greater than the hold time. This allows the exclusion of the hold time from the calculation. Once again,

the only factors affecting the maximum clock frequency (or minimum period) for the circuit are the

setup time, the propagation delay through the Next State Decoder, and the propagation delay through

the flip-flops. Figure 31.7 provides a visual representation of these attributes.

Figure 31.7: Model for a Moore-type FSM.

Figure 31.7 shows four time slices that we need to consider in the context of maximum clock

frequencies. Despite being shown twice, there is only one tNS_dec. We show this value twice because it is

a continuation from the portion of the waveform ending with the falling edge on the right side of the

341

 Keep in mind that sequential circuits were basically combinatorial circuits that contained feedback paths from

the circuit outputs to the circuit inputs.

Digital McLogic Design Chapter 31

 - 661 -

diagram to the portion of the waveform starting with the falling edge on the left side of the diagram.

Another factor include in this diagram is the tslop value. The idea here is that you never want to design to

the absolute operating boundaries of your circuit; you always want to throw in a safety margin to guard

against circuit conditions that may adversely affect the circuit
342

. In the end, we’ll use these four values

to calculate the minimum period as shown in Figure 31.8. Figure 31.8 shows once again that the

minimum period is the reciprocal of the maximum clock frequency.

ffpdsetupslopdecNS ttttT __min

min
max

1
T

Frequency

Figure 31.8: Official calculations for minimum period and maximum clock frequency.

Example 31-4

What is the maximum system clock frequency at which the following sequential circuit can operate?

For this problem, the flip-flops have a setup time of 10ns and a propagation delay of 13ns. Inverters

have propagation delays of 6ns and logic gates have propagation delays of 8ns. For this problem, add a

safety margin of 12ns. Assume the propagation delay for the flip-flops is greater than the hold time.

Assume the X input is stable and the Z1 and Z2 outputs drive a circuit that is not sensitive to the

maximum clock frequency.

Solution: The first thing to notice about this problem is that we don’t need to worry about the X input

because the problem states that the X input value could be considered stable. The problem also stated

that the Z outputs are yet another item we don’t need to worry about. What we need to do for this

problem is total up the gate delays on the longest path in the excitation logic in order to give us the

tNS_dec value. Since there are two gates (one AND gate and one OR gate), in the longest path through the

Next State Decoder, the tNS_dec value is twice a standard gate delay. The safety margin of 12ns makes of

the tslop value. Figure 31.9 shows the final solution for this example.

342

 These factors would include ambient temperature variations and variations in the device itself.

Digital McLogic Design Chapter 31

 - 662 -

ffpdsetupslopdecNS ttttT __min

nsnsnsnsnsnsT 51)13()10()12()88(min

MHz
nsT

Frequency 6.19
51

11
min

max

Figure 31.9: The calculations: plug and chug.

Digital McLogic Design Chapter 31

 - 663 -

Chapter Summary

 Waveforms in digital design are usually periodic in nature. Periodic signals can be described by a

given waveform that repeats itself after a given amount of time referred to as the period of the

signal. Periodic signals are also described by the frequency which is defined to be the reciprocal of

the period.

 Periodic waveforms are also described by their duty cycles which is defined to be the ratio of the

time in the period that the signal is in a high state to the period of the signal.

 All clocked digital devices have physical attributes that govern their performance. Two of the

attributes typically associated with sequential digital circuits are the setup and hold times. The

setup time is the amount of time that an input signal needs to remain stable before the active clock

edge of a device. The hold time is the amount of time that the input signal needs to remain stable

after the active clock edge.

 On major concern of FSMs is the maximum clocking frequency that the FSM can use while not

compromising the operation of the FSM. Using a simple model, the maximum clock frequency is a

function of the propagation delay of the next state decoder, the propagation delay of the flip-flop,

the setup time of the flip-flop, and usually some margin of safety.

Digital McLogic Design Chapter 31

 - 664 -

Chapter Problems

1) For the system clock signal displayed below with tx=30ns and ty=25ns, find the period, frequency,

and duty cycle of the waveform. (1ns = 1x10
-9

 seconds)

2) A system clock signal with a 70% duty cycle is in a high state for 14ns of its period. What is the

period and frequency of the clock? (1ns = 1x10
-9

 seconds).

3) A system clock if running at 50M Hertz. What amount of time is the signal high if the system clock

has a 40% duty cycle? (1 M Hertz = 1x10
6
 Hertz)

4) The following clock waveform is in a low state for a 80% of the period. Find the duty cycle, period,

and frequency (its OK to only setup the frequency calculation).

tb = 20ns

5) The following clock waveform is in a high state for a 40% of the period. Find the duty cycle,

period, and frequency (its OK to only setup the frequency calculation).

ta = 20ns

6) The following clock waveform is in a high state for a 40% of the period. Find the duty cycle,

period, and frequency (its OK to only setup the frequency calculation).

ta = 20ns

Digital McLogic Design Chapter 31

 - 665 -

7) The following clock waveform is in a low state for a 20% of the period. Find the duty cycle,

period, and frequency (its OK to only setup the frequency calculation). The diagram is not drawn to

scale.

tb = 60ns

8) What is the maximum clock frequency that can be used by the following circuit? For this problem,

add a safety margin that is 10% of the minimum clock period based on the timing values stated

below. Assume the output Z drives a circuit that is not sensitive to the maximum clock frequency.

Use the listed circuit parameters for this problem:

flip-flop propagation delay: 20ns

inverter propagation delay: 4ns

gate propagation delay: 10ns

flip-flop set-up time: 6ns

flip-flop hold time: 7ns

9) For the previous problem, you now need to add a margin of safety to the clocking operation of the

circuit. Redo problem 7 and add a 20ns margin of safety, tslop, to the minimum clock period. What

is the new minimum clock period and new maximum clock frequency?

Digital McLogic Design Chapter 31

 - 666 -

10) The following circuit was designed to operate at 20MHz (20x10
6
Hz). Under these conditions, how

much of a safety margin (if any) has been added to the circuit? Assume the X input is stable and the

output Z drives a circuit that is not sensitive to the maximum clock frequency. Also assume that the

propagation delay of the flip-flops is much greater than the flip-flops set-up time. Use the listed

circuit parameters for this problem:

flip-flop propagation delay: 17ns

inverter propagation delay: 4ns

gate propagation delay: 9ns

flip-flop set-up time: 8ns

flip-flop hold time: 7ns

11) What is the maximum clock frequency that can be used by the following circuit? For this problem,

add a safety margin that is 20% of the minimum clock period based on the timing values stated

below. Assume the output Z drives a circuit that is not sensitive to the maximum clock frequency.

Use the listed circuit parameters for this problem:

flip-flop propagation delay: 20ns

inverter propagation delay: 4ns

gate propagation delay: 8ns

flip-flop set-up time: 5ns

flip-flop hold time: 7ns

 - 667 -

32 Chapter Thirty-Two

(Bryan Mealy 2012 ©)

32.1 Chapter Overview

In a perfect world, we would all know exactly what we’ll need to know for that next interview question.

In addition, if we knew just what we needed to know, we would have no use for stuff we didn’t need to

know (because in a perfect world, no one would be impressed with the trivial crap that we typically

blurt out
343

). It may turn out that you never need to know the information in this chapter and thus this is

all an academic exercise. Then again, it may turn out that you do need to know this material, either for

an interview or for an actual FSM implementation in a place where it really matters (such as on the job).

On a better note, if you need to learn this material, it will no doubt add to your basic knowledge of FSM

implementations as well as reinforcing your basic understanding of the standard types of flip-flops. As

with everything, it all can’t be all that bad. Once again, the only challenging part about designing state

machines is generating the state diagram; but low-level implementation details are equally as fun.

Main Chapter Topics

 “NEW” FSM IMPLEMENTATION TECHNIQUES: These techniques overcome some

of the basic limitations in the “classical” approach we’ve used until now. There are

a few drawbacks of these techniques but there are also a few techniques to

minimize these drawbacks.

Why This Chapter is Important

This chapter is not that important; it’s sort of interesting because provides some

interesting information regarding FSM implementations and associated low level

details.

32.2 FSM Modeling Using New Techniques

Up until now, we have taken two approaches to learning the ins and outs (pun intended) of finite state

machines: analysis and design. The approach we took in these types of problems was well structured

which hopefully helped to offer some insights into the workings of the FSM. As you probably also

noticed, the approach was somewhat tedious. The only redeeming feature for this approach to FSM

problems was the fact that the problems were not overly complex. The key word in the previous

sentence is “complex”. The characteristic that made the approach complex was the fact that all of the

343

 Academic administrators, however, are always impressed with trivial crap, particularly self-generated trivial

crap.

Digital McLogic Design Chapter 32

 - 668 -

inputs to the Next State Decoder (see Figure 32.1) appeared as independent variables in the resulting

PS/NS table.

Figure 32.1 shows a block diagram of a FSM (Moore-type). So long as the inputs to the Next State

Decoder block remained relatively few, the resulting PS/NS table remained relatively small and the

FSM problem remained relatively doable. The problem here is that complex FSMs are simply not

doable using this technique; as you know, even simple FSM implementations using this technique were

somewhat error prone due to the many steps involved in the problem.

Figure 32.1: A block diagram showing a model for a Moore-type FSM.

The approach we’ve used to implement FSMs up until now (not including the VHDL behavioral

modeling approach) is sometimes referred to as the classical approach. Although it is instructive and

interesting (and tedious), we need to come up with other techniques to allow us to work with more

complex problems.

For the New techniques we describe in this chapter, we’ll still be outside the realm of VHDL behavioral

modeling of FSMs. While these new techniques extend the range of problems that we can implement

with direct modeling of FSMs, they are still not as powerful as VHDL behavioral modeling. The bottom

line is that if your project could use VHDL behavioral modeling to implement the FSM, that’s the

technique you would use. On the other hand, if VHDL modeling were not available on a certain project,

you would need to resort to one of the direct FSM implementation techniques.

The “new” FSM techniques allow us to move past the grunt limitations presented by the classical FSM

approach (PS/NS table and K-map-based). We’ll first introduce the motivation behind these techniques

and then present a few examples. As you’ll see, these new techniques have their basis in the standard D,

T, and JK flip-flops (for better or worse).

32.3 Motivation for the New FSM Modeling Techniques

The counter is one of the most basic sequential circuits and should be quite familiar to you. We’ll

therefore use it as a basis to introduce these new FSM implementation techniques. Consider the simple

counter design modeled by the state diagram (including legend) shown in Figure 32.2(a) and the

associated PS/NS table shown in Figure 32.2(b). The state diagram and PS/NS table describe a 2-bit

counter that counts in a normal binary sequence. Literals Y1 and Y2 arbitrarily represent the state

variables. For this example, we’ll only be interested in the Y1 variable; in other words, we’ll only be

interested in the Y1 state transitions, or Y1→Y1
+
.

The reason we’re so interested in the Y1 state transitions is because for this counter, every possible

transition for a single-bit storage element is represented: (0→ 0, 0→1, 1→1, and 1→0). The Y2

variable is included in the following documentation but we don’t use it as part of the motivation for this

Digital McLogic Design Chapter 32

 - 669 -

technique because not all transitions are represented by Y2. For this example, we’ll be generating the

excitation inputs for D, T, and JK flip-flops.

Y1 Y2 Y1
+
 Y2

+

0 0 0 1

0 1 1 0

1 0 1 1

1 1 0 0

(a) (b)

Figure 32.2: State diagram and PS/NS table for simple counter.

32.3.1 New Technique Motivation: D Flip-flops

Figure 32.3 shows the PS/NS table including the excitation data associated with the use of D flip-flops

for the Y1 and Y2 variables. Common sense dictates that you label the D flip-flops D1 and D2 for the

Y1 and Y2 variable, respectively. Note that the D1 and D2 columns match the corresponding next-state

variables, which are necessarily true for D flip-flops
344

. From this point, using the classical FSM

approach, you would then drop the D1 and D2 excitation data into K-maps and generate the associated

excitation equations in reduced form. For this example, we’ll make an important observation regarding

the Y1 transitions which will allow us to bypass the use of K-maps for generating the associated

excitation equations.

Recall that for a K-map, we would be interested in grouping the 1’s and writing an equation for all the

subsequent grouped product terms. Looking at this in a different way, the 1’s in the excitation data are

rows in the truth table that we’re interested in. Looking at the 1’s in the D1 column of Figure 32.3

indicates that the 1’s of the circuit occur under only two specific conditions. Figure 32.3 highlights

these conditions, which we refer to as the “Set” and “Hold-1” transitions. Remember, the Y1→Y1
+

transitions are important because the Y1 variable represents every possible transition.

Figure 32.3: The D FF: the implicants of the D1 function.

At this point, if we simply list the minterms for the Set and Hold-1 conditions (the 1’s) for the D1

column, we’ll have an equation that represents the excitation logic for the variable in question. In other

words, this step involves writing a product term for each row in the table that contains a ‘1’. One

important item to note with this approach is that since we have not utilized a K-map, the resulting

equations generated from this technique will not necessarily be in reduced form. Equation 32-1 shows

344 This is because in the excitation equation for a D flip-flop, Q+ = D, the next-state is not a function of the present-

state.

Digital McLogic Design Chapter 32

 - 670 -

the resulting excitation equations for the D1 and D2 columns. Note that the product terms in the D1 and

D2 equations are standard product terms and since each term contains one of each of the independent

variables. In that the terms in these equations are standard product terms, it should be obvious that these

equations are not in reduced form.

Y2 Y1 Y2Y1 D1 Y2 Y1 Y2Y1 D2

Equation 32-1: The excitation equations for the D1 and D2 variables.

As a final comment, also note that the excitation equations for D1 and D2 could have been written by

inspection. D1 is an exclusive OR function of Y1 and Y2 while D2 is equivalent to the complemented

Y2 state variables. It’s always good to apply a smattering of horse-sense when working with design

problems such as these.

The observation of the Set and Hold-1 characteristics essentially allows us to go directly from the state

diagram to the excitation equation; we used the PS/NS table shown in Figure 32.3 only for motivational

considerations. The only possible drawback here is that the resulting excitation equations are not in

reduced form. From this point, you could reduce the equations by inspection, by basic Boolean algebra

techniques, or find some software that will do the reductions for you.

32.3.2 New Technique Motivation: T Flip-flops

We can also derive a similar technique for T flip-flops using the same approach as we did for the D flip-

flop case. We’ll reuse the counter described in Figure 32.2 for the T flip-flop motivation. The 1’s of the

T1 flip-flop are once again what we’re interested in representing in Boolean equation form. Recall that

the Y1→Y1
+
 transition represents all of the possible transition cases so this is where we’ll put the focus

of this discussion as is indicated in PS/NS table shown in Figure 32.4.

The difference between the T the D flip-flop is that 1’s are present in both the “Set” and “Clear”

conditions as indicated in Figure 32.4. For the D flip-flop, the 1’s were present in the “Set” and “Hold-

1” conditions. Use of classical FSM techniques would place the T1 column into a K-map and reduce it.

We instead once again simply list the standard product terms associated with the “Set” and “Clear”

transitions. Equation 32-2 shows the resulting excitation equations written for the Y1 and Y2 flip-flops.

Figure 32.4: The T FF: the implicants of the T1 function.

Y2 Y1 Y2Y1 T1 1 T2

Equation 32-2: The excitation equations for the T1 and T2 variables.

Digital McLogic Design Chapter 32

 - 671 -

32.3.3 New Technique Motivation: JK Flip-flops

Finally, we can derive a similar approach for the JK flip-flop by applying the same type of arguments as

we applied to the D and T flip-flops. The approach for the JK flip-flop is probably the trickiest of the

three flip-flops. The reason for the tricks is that the JK flip-flops are arguably more versatile than the D

and T flip-flops. Figure 32.5 shows the excitation data for the JK flip-flop for the example counter

problem. In the classical approach, we use K-maps to simplify the resulting excitation data and we

place as many “don’t cares” in the table as possible.

Our approach now is to omit as many 1’s as possible from the table because we must write a product

term for each ‘1’ that appears in the excitation data (the J and K columns of the PS/NS table). For this

reason, we fill in the J and K excitation data in such as way as to make the required transition happen,

but also minimizing the number of 1’s in the corresponding column. For example, for the 0→ 0

transition in the first row of the truth table in Figure 32.5, we could have place a “don’t care” in the K1

column (as is found in the excitation table for a JK flip-flop) because both a JK = “00”or a JK = “01”

would cause a 0→ 0 transition. However, placing a “00” in the columns reduces the number of 1’s in

the circuit, which results in saving us time and effort in this new approach.

The same argument can be made for the other three rows of the truth table keeping in mind that the

excitation table for a JK flip-flop contained a “don’t care” in each of the rows. After applying this

approach to including as few 1’s as possible in the PS/NS table, we’ll see that the only 1’s that appear

are in the “Set” transition for the J excitation input and the “Clear” transition for the K excitation input.

Equation 32-3 lists the resulting equations for the J and K inputs for only one of the two JK flip-flops.

Figure 32.5: The JK FF: the implicants of the J1 and K1 function.

Y2 Y2 Y1 J1 Y2 Y2 Y1 K1

Equation 32-3: The equations for the J1 and K1 inputs.

As you may have noticed in Equation 32-3, the resulting equations applied a special type of reduction

that is unique to the JK flip-flops. It is not obvious, however, why such a reduction is valid.

Understanding why this reduction can be applied is important to understand because if requires that you

intuitively understand the characteristics of the JK flip-flops. The logic behind this special JK reduction

is below.

 Special J Reduction: because we listed the ‘1’ in the excitation data for the J input based solely

on a set transition in the Y1→ Y1
+
 state variable, we know the current state of Y1 is a ‘0’. If

the current state of Y1 is a ‘0’, then the complement of Y1, or Y1 , must be a ‘1’. Because we

know in this case that Y1 must be in the ‘1’ state, the equation Y2 Y1 J1 is written as

Digital McLogic Design Chapter 32

 - 672 -

 Y2 1 J1 which we’ll reduce to J1 = Y2. Keep in mind that the excitation inputs are based on

the present state of the state variables as opposed to the next state values.

 Special K Reduction: because we listed the ‘1’ in the excitation data for the K input based on a

clear transition (1→ 0) on the Y1→ Y1
+
 state variable, we know that the current state of Y1 is

necessarily a ‘1’. If the current state of Y1 is a ‘1’, then the equation Y2 Y1 K1 can be

written as Y2 1 K1 which further reduces to K1 =Y2 by using the Boolean algebra thing.

The punch line to this example is as follows: we’ve shown that we have method to generate the

excitation equations without taking the truth table route as we did in the classical FSM approach. All we

need to do is list the conditions and state that cause a ‘1’ to appear in the excitation logic column for the

D, T, and JK flip-flops. Table 32.1 shows these conditions in closed form. It should be no surprise that

we refer to these three methods as the “Set or Hold-1”, the “Set or Clear”, or the “Set-Clear” methods,

respectively. Although these names are not overly imaginative, they are somewhat instructive.

The motivation example was simple because all of the state transitions in the original state diagram

were unconditional. As you would probably expect, the input conditions will also be included in the

generated equations for a more complex example. Officially speaking, Table 32.1 shows the closed

form equations associated with these new FSM implementation techniques. Note that for our

motivations example, our final excitation equations only included the PS (present state). As the

equations in Table 32.1 indicate, if there were input conditions controlling the state transitions, they

would be ANDed with the PS term and included in the final equation. Note also that the equations of

Table 32.1 use the summation symbol; but since we’re talking about digital logic here, logical addition

is implied (OR function) as opposed to standard mathematical summation.

Equation Type Closed Form Equation

D excitation equation:
 ns) transitioSet"" with associated conditonsinput PS(

 ns) transitio1"-Hold" with associated conditonsinput PS(

T excitation equation:
 ns) transitioSet"" with associated conditonsinput PS(

 ns) transitioClear"" with associated conditonsinput PS(

J excitation equation: ns) transitioSet"" with associated conditonsinput PS(

K excitation equation: ns) transitioClear"" with associated conditonsinput PS(

Table 32.1: Closed form representations of excitation equations for the D, T, J, and K inputs.

32.3.4 The Clark Method for the New FSM Techniques

Now let’s apply everything we’ve learned up until now in an actual example. The task is to use a state

diagram to generate the excitation equations that could implement a FSM using D, T, or JK flip-flops.

First thing to remember here is that this example has nothing to do with any other examples we’ve

worked with up to this point. The previous example only served as a motivation to the approach we’ll

be using in this example. The second thing to note is this structure of the approach used to solve the

given example problem was developed by a Carissa Clark, a former Cal Poly student. The cool thing

Digital McLogic Design Chapter 32

 - 673 -

about this approach is that you’ll be able to do these problems and make a lot fewer mistakes in the

process. This approach is aptly named the Clark Method.

Example 32-1

Using the state diagram shown in below, generate the excitation equations that can be used to

implement the corresponding FSM in hardware using 1) D flip-flops, 2) T flip-flops, and 3) JK

flip-flops. Also, include equations representing the external outputs represented by the state

diagram.

Solution: The solution is comprised of the following series of steps. Once you solve a few of these

problems, you’ll probably not follow these steps again as the approach begins to make intuitive sense.

Step 0) Stare at the problem for a while. From this step, you should be able to glean the following

information from the state diagram:

 There are three states in the state diagram. This means that you’ll need at least two flip-flops to

implement the FSM (which is somewhat implied by the legend provided in the diagram).

 There is one external input to the FSM: X1.

 The FSM contains one external output: Z. Because the Z output resides in the state bubbles, it

must be a Moore-type output.

 The parenthetical letters serve as a documentation aid for this technique.

Step 1) Develop State Variable Transition Table (SVTT): Table 32.2 shows a typical SVTT. The SVTT

should contain one row for each of the state transitions in the state diagram. In other words, each arrow

in the state diagram is indicates a state transition; your table should contain one row for each of the

arrows in the state diagram. For this step, you list the state transitions in the “transitions” column of

your SVTT. Note once again that labels (a, b, and c) were added to enhance your enjoyment of this

method. If the state diagram did not provide these labels, you should provide them yourself.

Digital McLogic Design Chapter 32

 - 674 -

Transitions Conditions Y1 Y2

a a

a b

b c

c c

c a

Table 32.2: The State Variable Transition Table (SVTT) with the listed transitions.

Step 2) List the present state (PS) and the associated conditions that cause the transitions. For each row

of the SVTT, the present state is always the state from which the arrow emanates from as listed in

“transitions” column of the SVTT (or the original state diagram for that matter since they are

necessarily the same). As the equations in Table 32.1 indicate, the complete term associated with these

rows will be the present state conditions (PS) ANDed with the conditions of the external inputs that

allow the particular transition to occur.

Note that transitions from both the (a) state and the (b) state are conditional (they are based on the state

of the X1 variable at the time of transition) while the transition from the (b) state is unconditional. The

unconditional transition implies that the FSM always transitions out of the (b) state on the next system

clock edge. Table 32.3 shows the results of this step; the verbage below details the approach on a single

row.

As an example, the product term associated with the “a→a“ transition has both a PS and a “conditional”

component. The PS component is Y1Y2 = “10” which is listed as Y2Y1 . The conditional portion of the

product term is essential the external variable controlling the “a→a“ transition. From the state diagram

in the problem description, you can see that the “a→a” transition occurs when the X1 input is not

asserted, or X1. The complete product term, as listed in Table 32.3 is thus X1Y2Y1 .

Transitions Conditions Y1 Y2

a a X1 Y2Y1

a b X1 Y2Y1

b c Y2Y1

c c X2 Y2Y1

c a X2 Y2Y1

Table 32.3: The SVTT: listing the conditions.

Step 3) List the pertinent transition characteristics associated with each state variable for each of the

listed transitions. For this step, the important transition characteristics are the “Set” the “Hold-1” and

the “Clear” characteristics (and therefore this approach can ignore all other transitions). To perform this

step, you must look back at the original state diagram. In particular, you must characterize every

transition of the Y1 and Y2 state variables as a “Set”, a “Hold-1”, a “Clear”, or “none of the above”.

Table 32.4 shows the results of this step (the “none of the above” category uses a ‘-‘).

As an example, consider the “a→b“ transition. Examining the state variables listed in the problem

description shows that the Y1 variable clears (1→0) when transitioning from state (a) to state (b); a

Digital McLogic Design Chapter 32

 - 675 -

“clear” is subsequently entered into the Y1 column of the row representing the “a→b” transition. The

Y2 state variable “sets” (0→1) during this same transition, so we enter a “set” into the Y2 column of

the row associated with the “a→b” transition.

Transitions Conditions Y1 Y2

a a X1 Y2Y1 hold-1 -

a b X1 Y2Y1 clear set

b c Y2Y1 set hold-1

c c X2 Y2Y1 hold-1 hold-1

c a X2 Y2Y1 hold-1 clear

Table 32.4: The SVTT: characterizing the transitions in terms of Y1 and Y2.

Step 4) Use the information you’ve listed in Table 32.4 and the equations listed in Table 32.1 to

generate the excitation equations for the D, T, and JK flip-flops. To perform this step, scan down the

columns representing the state variables and collect terms associated with the desired flip-flops. For the

D flip-flop, you collect the product terms (listed in the “conditions” column) associated with the “set”

and “hold-1” characteristics listed in the Y1 and Y2 columns. Keep in mind that since this design

requires two flip-flops, you will need two excitation equations: one for both Y1 and Y2. The T flip-flop

equations will also require two equations while the JK flip-flop requires four excitation equations.

Figure 32.6 shows the results of this step.

For example, we write the D1 excitation equation (the D input to the flip-flop representing the Y1 state

variable) by logically summing the product terms corresponding the “sets” and “hold-1’s” in the Y1

column. Since there are four “sets” and “hold-1’s” there are four product terms in the excitation

equation as listed in Figure 32.6.

Digital McLogic Design Chapter 32

 - 676 -

X2Y2Y1 X2Y2Y1 Y2Y1 X1Y2Y1 D1

(set and hold-1 transitions for Y1)

 X2Y2Y1 Y2Y1 1XY2Y1 D1 (set and hold-1 transitions for Y2)

Y2Y1 X1Y2Y1 T1 (set and clear transitions for Y1)

X2Y2 Y1 X1Y2Y1 T2 (set and clear transitions for Y2)

Y2 Y2Y1 J1 (set transitions for Y1)

X1Y2 X1Y2Y1 K1 (clear transitions for Y1)

X1Y1 X1Y2Y1 J2 (set transitions for Y2)

X1Y1 X2Y2Y1 K2 (clear transitions for Y2)

Figure 32.6: The final excitation equations for D, T, and JK flip-flops.

Step 5) Write an equation for each of the output variables. For this example, this step is not overly

complicated; but then again, it’s not that complicated for any problem. The approach is once again

similar to the approach taken with the excitation equation specification. Recall that in general, a K-map

wrote terms that included all the 1’s in the groupings. Since we still don’t want to deal with K-maps in

this new technique, we instead write the output equation by inspection of the original state diagram. In

other words, you need to list where the output in question is a ‘1’. You find out where the output is a ‘1’

by examining the state diagram only (there is once again no need to do the truth table thing).

In this example, this step is done by noting that only time the Z output is only a ‘1’ in the Y1Y2 = “11”

state. The equation for the Z output is therefore: 21 YYZ . In this example, the output is a Moore-

type output, which makes the equation generation slightly more straightforward than if the state

diagram contained Mealy-type outputs. To drive this point home, note that the output equation for Z

contains no external input variables (it has no X1 terms); the output equations for Mealy-type output

necessarily contain X1 terms, as you’ll see in later examples.

Make sure you completely understand this step. Keep in mind that there are no tricks or shortcuts

available to reduce the equations for the outputs as there were for the JK flip-flop excitation equations.

Historically speaking, generating the equations for the output variables generally causes students

problems for two reasons:

1) Students become so excited about generating the excitation equations for the associated

flip-flops, they forget to generate equations for the output variables. Please don’t forget to

generate the equations for the output variables. You’ll never see a problem that asks for

the excitation equations only: we’ll always ask you to include output equations.

Digital McLogic Design Chapter 32

 - 677 -

2) Though the reason is not clear, some people’s understanding seems to falter when they

need to write equations for the output variables. Although they’ll list the excitation

equations 100% correctly, they’ll completely drop the ball on the output equations; please

don’t be one of these people. The techniques are slightly different; to understand the

problem completely, you need to be able to do both. On top of all of this, writing

equations for the output is more straightforward than generating the excitation equations.

Step 6) Draw the final circuit (let’s skip this step; we’ve done this many times before). This step is

much less exciting than all the other steps.

The final comment: this was not an overly complicated example. The “new” techniques become a little

more complicated when there are both Mealy and Moore outputs that you need to represent in the

output equations. In a later example, we’ll generate outputs for both Mealy and Moore outputs.

Example 32-2

Use the “new” FSM techniques to provide the excitation equations that could implement the

state diagram shown below using D, T, and JK flip-flops. Include equations describing the

FSM’s external outputs.

Solution: There are actually two new things to show you in this example. First, there is yet another

special type of state reduction possible when the state variables are one-hot encoded. Second, this

example contains both a Mealy and a Moore output. Recall that the previous example only included a

Moore-type output. The relationship between the Mealy variables specified in the state diagram and

their associated states is often a source of confusion: enlightenment surely follows.

Since we have already implemented a similar FSM in excruciating detail, we’ll include less verbage in

this example. From here, use the standard approach to writing the excitation equations we used for the

“new” FSM methods detailed in the previous example.

Step 0) Stare at the state diagram. This FSM contains three states with 1-hot encoded state variables.

Y1, Y2, and Y3, chosen arbitrarily, represent the associated state variables. The FSM uses the variable

Digital McLogic Design Chapter 32

 - 678 -

X to represent the external input. The FSM contains two external outputs represented by: Z1 (a Moore-

type output) and Z2 (a Mealy-type output).

Step 1) List all the conditions associated with the state changes in the SVTT; Table 32.5 shows the

Table 32.5 results of this step. Remember, there should be one row in the SVTT for each of the arrows

shown in the state diagram of the problem description.

Transitions Conditions Y1 Y2 Y3

a b

a c

b b

b a

c b

Table 32.5: The State Variable Transition Table (SVTT) with the listed transitions.

Step 2) List the conditions (both input and present state) that cause the associated state transitions.

Figure 32.6 shows this result.

Transitions Conditions Y1 Y2 Y3

a b XYYY 321

a c XYYY 321

b b XYYY 321

b a XYYY 321

c b 321 YYY

Table 32.6: The SVTT: listing the conditions.

Step 2*) Simplify the expressions for the present states. This is an extra step because you are 1-hot

encoding the state variables. This is a special type of simplification can only be applied when you use

one-hot encoding. The reduction is possible for the following reason: if one of the one-hot encoded state

variables is a ‘1’, then by the definition of the one-hot states, all of the other state variables must

necessarily be 0’s. Using this valuable information, the condition listed in the first row, XYYY 321 ,

reduces to XY 1 .

Another way to look at this is that if Y1 is a ‘1’, then 1Y and 2Y must be both ‘0’. This means that 1Y

and 2Y must both be 1’s, so you can reduce the original equation to

XYXYXYYY 1111321 as is listed in the first row of Table 32.7. Once again, this type of

reduction works only with FSMs where the state variables are one-hot encoded. Table 32.7 shows the

final result of this step.

Digital McLogic Design Chapter 32

 - 679 -

Transitions Conditions Y1 Y2 Y3

a b XY 1

a c XY 1

b b XY 2

b a XY 2

c b 3Y

Table 32.7: The SVTT: listing the conditions in the 1-hot reduction form.

Step 3) List the pertinent transition characteristics associated with each state variable for each of the

listed transitions. Remember, the transitions we’re interested in are Sets, Clears, and Hold-1’s. Table

32.8 shows the final results of this step.

Transitions Conditions Y1 Y2 Y3

a b XY 1 clear set -

a c XY 1 clear - set

b b XY 2 - hold-1 -

b a XY 2 set clear -

c b 3Y - set clear

Table 32.8: The SVTT: characterizing the transitions in terms of Y1, Y2, and Y3.

Step 4) Use the information listed in Table 32.8 and the equations listed in Figure 32.7 to generate the

excitation equations for the D, T, and JK flip-flops. Table 32.9 shows these results.

D Flip-flops T Flip-flops JK Flip-flops

XYD

YXYXYD

XYD

13

3212

21

313

3212

2111

YXYT

YXYXYT

XYXYXYT

133

13

22

312

1111

21

YK

XYJ

XXYK

YXYJ

XXXYXYK

XYJ

Table 32.9: The final excitation equations for the D, T, and JK flip-flops.

Digital McLogic Design Chapter 32

 - 680 -

D excitation equation: ns) transitioSet"" with associated conditonsinput PS(

 ns) transitio1"-Hold" with associated conditonsinput PS(

T excitation equation: ns) transitioSet"" with associated conditonsinput PS(

 ns) transitioClear"" with associated conditonsinput PS(

J excitation equation: ns) transitioSet"" with associated conditonsinput PS(

K excitation equation: ns) transitioClear"" with associated conditonsinput PS(

Figure 32.7: Closed form representation of excitation equations for the D, T, J, and K inputs.

Step 5) Write an equation for each of the output variables. This is where things get a little strange. This

step often causes trouble for some people so don’t let this happen to you.

The first thing to remember in this step is that you’re still looking for situations where the output is a ‘1’

(remember back to the K-map motivation of this approach). Note that the original state diagram

contained two types of outputs: one Mealy and one Moore. Writing equations for the Moore outputs is

slightly more obvious (plus we’ve already did it once in the previous example) so let’s do that first.

There are two states where Z1, the Moore output, is a ‘1’. The resulting equation that represents these

two conditions (and hence, the Z1 output) is listed in Equation 32-4. Note that the input variable X is

not included in this final equation because Z1 is a Moore output. In other words, if the equation for your

Moore output were to contain an external input variable, then it by definition can’t be a Moore output.

Note that Equation 32-4 lists the output equation with the special 1-hot type of reduction.

233213211 YYYYYYYYZ

Equation 32-4: The equation describing the Z1 output.

The Mealy output is more interesting and it delves into the functional purpose of FSMs. What we need

to do is to write an equation that describes the Z2 variable. Once again, we want this equation to

describe where in the state diagram that the Z2 variable is in the ‘1’ state. Before we start on this task,

look closely at the state labeled (a) in the original problem statement. On one arrow leaving the

diagram, the Z2 variable is in complemented form and on the other arrow, the Z2 variable is not in

complimented form. There are major points associated with these conditions: 1) the state of the Z2

variable depends on the state of the external X input (because it’s a Mealy output), and 2) the output

listed with the state transitions (which is Z2 in this case) belongs to (is associated with) the state from

where the arrow leaves. To sum up these two big points… the Mealy outputs listed with the state

transitions are associated with the state from which the arrow is leaving.

Well… that’s the big stumbling point. Now that this point stands the chance of being slightly clearer,

let’s write an equation for Z2. The method used to do this is to locate all the instances of

uncomplimented Z2s in the state diagram (the 1’s of the circuit), and write a term that describes them.

These terms are summed together to form the expression shown in Equation 32-5. Note that Equation

32-5 shows the output equation with the special one-hot style of reduction applied.

Digital McLogic Design Chapter 32

 - 681 -

XYYXYZ 2312

Equation 32-5: The boolean expression describing the Z2 output.

Digital McLogic Design Chapter 32

 - 682 -

Chapter Summary

 “New” FSM implementation techniques: The “new” FSM techniques were introduced to overcome

a basic draw back of “classical” FSM implementation techniques. “Classical” FSM techniques

involved the use of K-maps, which essentially limited the number of state variables, and external

inputs (these are the inputs to the next state decoder) to no more than four literals. The “new”

techniques provided an approach to write the associated excitation equations directly from the state

diagram without using K-maps. The only drawback of the “new” approach is that the generated

excitation equations are not necessarily in reduced form. The new techniques consist of the “Set or

Hold-1” (D flip-flops), the “Set or Clear” (T flip-flops), and the “Set-Clear” (Apply to present state

condition for all types of flip-flops and all types of outputs (if the associated FSM is one-hot encoded

only).

 Special JK flip-flop reduction: The excitation equations can be further reduced when using the

“new” techniques with JK flip-flops. This technique cannot be applied to the output equations. The

special JK reduction can be applied independently of the type of state variable encoding used for a

given FSM.

 Special one-hot state reduction: The excitation equations can be reduced when one-hot encoding is

used. This technique is based on the fact that if we know one state variable is a ‘1’, we all the other

state variables are ‘0’ when one-hot encoding us used. This reduction technique can be applied to

independent of the type of flip-flop used and is not constrained to “new” FSM implementation

techniques.

Digital McLogic Design Chapter 32

 - 683 -

Chapter Exercises

1) Using “new” FSM design techniques, write the

excitation equations that would implement the

following state diagram. Do the problem using

D, T, and JK flip-flops in your implementation

and reduce the resulting equations when possible.

Write an equation for the output variable also.

Don’t draw the circuit.

2) Using a “new” FSM design technique,

write the excitation equations that would

implement the following state diagram.

Do the problem using D, T, and JK flip-

flops and binary encoding in your

implementation and reduce the resulting

equations when possible. Write an

equation for the output variable also.

Don’t draw the circuit – just provide

excitation equations.

3) Using a “new” FSM design technique,

write the excitation equations that

would implement the following state

diagram. Write the equations for using

sets of D, T, and JK flip-flops. Use one-

hot encoding in your implementation

and reduce the resulting equations when

possible. Write an equation for the

output variable also. Don’t draw the

circuit.

Digital McLogic Design Chapter 32

 - 684 -

4) Use the Set or Hold 1, the Set or Clear,

and the Set-Clear technique to generate

the excitation input equations that will

implement the following state diagram.

Write an equation for the output variable

also. Minimize the resulting excitation

equations where possible.

5) Using a “new” FSM design technique, write

the excitation equations that would

implement the following state diagram. Do

the problem using D, T, and JK flip-flops

and reduce the resulting equations when

possible. Write an equation for the output

variable also. Don’t draw the circuit – just

provide excitation equations.

6) The following circuit implements a finite

state machine that was specified using the

“new” FSM design technique. Re-

implement the circuit using two T flip-flops

instead of the listed JK flip-flops. Be sure to

draw the final circuit.

7) Using a “new” FSM design technique,

write the excitation equations that could be

used to implement the following state

diagram. Use D flip-flops in your

implementation and reduce the resulting

equations using the special one-hot

techniques (when appropriate). Write an

equation for each of the output variables

also. Don’t draw the final circuit.

Digital McLogic Design Chapter 32

 - 685 -

8) Using a “new” FSM design technique,

write the excitation equations that could

be used to implement the following state

diagram. Use JK flip-flops in your

implementation and reduce the resulting

equations using the special FSM

techniques (when appropriate). Write an

equation for each of the output variables

also. Don’t use classical FSM design

techniques. Don’t draw the final circuit.

9) Using a “new” FSM design technique, write

the excitation equations that could be used

to implement the following state diagram.

Use T flip-flops in your implementation and

reduce the resulting equations using the

special techniques (when appropriate).

Write an equation for the output variable

also. Don’t draw the final circuit.

10) Using a “new” FSM design technique, write the excitation equations that could be used to

implement the following state diagram. Use T flip-flops in your implementation and reduce the

resulting equations using the special techniques we discussed in this chapter (when appropriate).

Write an equation for the output variable also. Don’t draw the final circuit.

Digital McLogic Design Chapter 32

 - 686 -

11) Using a “new” FSM design technique, write

the excitation equations that would

implement the following state diagram. Use

JK flip-flops in your implementation and

reduce the resulting equations when possible.

Write an equation for the output variable

also. Don’t draw the circuit.

12) Using a “new” FSM design technique, write

the excitation equations that would

implement the following state diagram. Use

JK flip-flops in your implementation and

reduce the resulting equations when

possible. Write an equation for the output

variable also. Don’t draw the final circuit.

 - 687 -

33 Chapter Thirty-Three

(Bryan Mealy 2012 ©)

33.1 Chapter Overview

I have no trouble stating that most commonly used circuit in digital design is the “register”. We’ve

already used the term quite often in this text, particularly regarding finite state machines (FSMs). Recall

that a main component of FSM was the storage associated with the state variables. Although I did my

best not to use the word, there were several instances when I used the term “state registers” to refer to

the circuit elements storing the state variables.

The concept of registers is not complicated and you’ve been dealing with the basic register concepts for

many chapters at this point. This chapter describes the notion of registers and their many various flavors

and incarnations. Most of the description appearing in this chapter is at a higher-level as the low-level

details are somewhat cumbersome and not overly useful. All forms of registers are massively useful in

digital design.

Main Chapter Topics

 SIMPLE REGISTERS AND REGISTERS “WITH FEATURES”: This chapter defines and

describes basic including registers with extended features that make them more

useful in digital circuits.

Why This Chapter is Important

This chapter is important because registers and their variations are extremely useful and

thus often found in just about all meaningful digital designs.

33.2 Registers: The Most Common Digital Circuit Ever?

Stated as simply as possible, a register is nothing more than a multi-bit flip-flop. Flip-flops are single bit

storage elements while registers multi-bit storage elements modeled as a given number of flip-flops

connected in parallel. The good news is that only D flip-flops are used to model registers, which

simplifies their understanding and representation. Moreover, VHDL models of registers are similar to

flip-flop models and only differ in the width of the “data” inputs and outputs. In addition, being that

register such as these have such simple descriptions, we’ll refer to this flavor of registers as “simple

registers”. For now and evermore, when we say, “register”, we typically mean “simple register”; this

works well as the more specialized registers have their own names (which we’ll present in a later

chapter).

Digital McLogic Design Chapter 33

 - 688 -

Jumping right into it, Figure 33.1 shows four D flip-flops assembled such that they act as a register. In

particular, Figure 33.1(a) shows the block diagram for a 4-bit register and Figure 33.1(b) shows the

underlying circuit. Here are a few things to note about Figure 33.1:

 The block diagram in Figure 33.1(a) shows a clock signal but also assumes other

characteristics. Since the register is modeled with D flip-flops, there must be an active

clock edge that Figure 33.1(a) does not show. Unless otherwise stated, registers are

generally active on the rising edge of the clock. Figure 33.1(b) shows the rising clock

edge, though you would generally not see a circuit such as this when you’re working

with registers.

 Figure 33.1(b) shows that each flip-flop in the register shares the same clock. The

result is that all the flip-flops latch their data simultaneously. We’ll demonstrate this

later in a timing diagram.

(a) (b)

Figure 33.1: A block diagram for a 4-bit register (a), and the lower-level implementation details of

a 4-bit register (b).

Figure 33.2(a) shows the block diagram for a generic n-bit register; Figure 33.2(b) shows the underlying

details. The main point behind Figure 33.2 is to show the notion that registers are simple to model and it

takes about zero effort to model registers of any width. The only thing about registers that may be

somewhat tricky is the notion that an n-bit register is generally modeled using n signals: the least

significant bit (LSB) has an index of “0” while the most significant bit (MSB) has an index of “n-1”.

Get used to it.

(a) (b)

Figure 33.2: A general case of an n-bit register; the block diagram (a), and a model for the

underlying circuit (b).

Digital McLogic Design Chapter 33

 - 689 -

Probably the happiest way to describe the operation of a register is with the associated VHDL model.

Figure 33.3 shows a VHDL model for an 8-bit register. From this model, you can see that the register is

in fact active on the rising clock edge. There is not a lot to say about the VHDL model shown in Figure

33.3 as this model should appear familiar, as it resembles a simple model for a D flip-flop. In truth, D

flip-flops are naturally easy to model in VHDL mainly because the main goal in design the language

was to be able to model popular digital circuits such as registers without expending too much effort.

-- VHDL model of 8-bit register

entity reg_8b is

 Port (D : in std_logic_vector(7 downto 0);

 CLK : in std_logic;

 Q : out std_logic_vector(7 downto 0));

end reg_8b;

architecture my_reg_8b of reg_8b is

begin

 process (D,CLK)

 begin

 if (rising_edge(CLK)) then

 Q <= D;

 end if;

 end process;

end my_reg_8b;

Figure 33.3: The VHDL model for a simple 8-bit register.

Example 33-1

Using the block diagram on the right to complete the

timing diagram provided below. Consider the

register to be rising-edge triggered; ignore all

propagation delay issues.

Solution: From the problem description, we know the block diagram represents an 8-bit register that is

active on the rising clock edge. This means that we need to examine only the portions of the timing

diagram aligned to the rising edge of the clock. At these times, the data on the input of the register

Digital McLogic Design Chapter 33

 - 690 -

transfers to the output of the register. Figure 33.4 shows the final result for this example. The final

solution is straightforward but does have a few items worth noting.

 The solution added dotted vertical lines on the rising clock edges. This is something you

should always consider doing when working with timing diagrams. Timing diagrams can

quickly become quite complexicated so drawing dotted lines such as these as a first step in

solving these problems may save your arse.

 The problem did not provide an initial value for the contents of register. Because of this, the

first time-slot on the “Q’ line contains question marks. In other instances, the problem may

either state an initial value or provide some type of signal that places the register into a known

state. We’ll see such a “reset” signal in a later example problem.

Figure 33.4: The solution for Example 4-7.

In real digital circuits, you rarely see registers as simple as the register described in Figure 33.3. These

registers don’t have enough “control” to make them ultimately useful. The issue is that at every active

clock edge, the register latches the input data. Real registers generally contain some sort of control

signals that direct when the register latches data.

Without too much explanation, Figure 33.5 shows a register containing a signal that controls when the

register latches the input data. Control signals for such registers are typically associated with the word

“load”; registers typically “load” the input data into the register. As a result, we use “LD” as a signal

name for the control signal in the register shown in Figure 33.5. This signal allows each of the single-bit

storage elements in the register to latch their associated bits. In particular, Figure 33.5(a) shows a block

diagram for the register with a control signal while Figure 33.5(b) shows the associated VHDL model.

The following example shows the operation of this register.

Digital McLogic Design Chapter 33

 - 691 -

-- VHDL model of 8-bit register with parallel load

entity reg_8b is

 Port (D : in std_logic_vector(7 downto 0);

 CLK,LD : in std_logic;

 Q : out std_logic_vector(7 downto 0));

end reg_8b;

architecture my_reg_8b of reg_8b is

begin

 process (D,CLK)

 begin

 if (rising_edge(CLK)) then

 if (LD = ‘1’) then

 Q <= D;

 end if;

 end if;

 end process;

end my_reg_8b;

(a) (b)

Figure 33.5: An 8-bit register with a parallel load signal (a), and a VHDL model for the

underlying circuit (b).

Example 33-2

Using the block diagram on the right to complete

the timing diagram provided below. Consider the

register to be rising-edge triggered; ignore all

propagation delay issues.

Solution: This problem is similar to the previous problem but now we need to keep track of the “LD”

signal. In the previous problem, we only needed to examine the times when the rising edges occurred.

In this problem, we need to examine the times where the both the rising edge occurs and where the LD

signal is asserted. Note that because the LD signal on the register does not have a bubble, the load

Digital McLogic Design Chapter 33

 - 692 -

signal is active high. Figure 33.6 shows the solution for this example; some interesting things to note

surely follow as well.

 The rising edges are explicitly marked with vertical dotted lines in order to avoid confusing

ourselves.

 The problem statement does not provide an initial value for the register so we must mark it as

unknown. The question marks work well for this dilemma.

 The LD signal is “level sensitive” which essentially means that it is not edge sensitive. This

means that we are only concerned with the register loading when the LD signal is asserted and

not only on the rising edge associated with the signal. Note that in Figure 33.6, at the time

marked with the circled “1”, the LD signal asserts and then de-asserts shortly thereafter. This

small pulse has no effect on the register because there was not rising clock edge present when

the LD signal was asserted.

Figure 33.6: The solution for Example 33-2.

Registers can have other control options also. The notion here is that if you need to use a register in

your circuit, you choose the one with the smallest feature set but still allows you to get your job done.

Extra features in circuits require extra hardware; extra hardware takes up space and requires extra

power to operate. If you’re designing your own registers, such as in a VHDL application, you have the

ability to design just about any feature into the device as required by your circuit. The next example

we’ll look at has one more added feature; after that, we’ll stop talking about registers.

Figure 33.7(a) shows a register that has both a load and a clear input. Because this is a register,

everyone generally assumes that the load signal is synchronous. The clear signal is usually

asynchronous, but not always. The moral of this circuit is that you should make sure you know

everything there is to know about the circuit; making assumptions is usually problematic. What saves us

on Figure 33.7(a) is that Figure 33.7(b) provides the VHDL model for the diagram. If you read the

associated VHDL model, you can see that the LD signal is synchronous while the CLR signal is

asynchronous. Yet another example problem shows how this circuit operates.

Digital McLogic Design Chapter 33

 - 693 -

-- VHDL model of 8-bit register with load and clear

entity reg_8b is

 Port (D : in std_logic_vector(7 downto 0);

 CLK,LD,CLR : in std_logic;

 Q : out std_logic_vector(7 downto 0));

end reg_8b;

architecture my_reg_8b of reg_8b is

begin

 process (D,CLK)

 begin

 if (CLR = ‘0’) then -- asynchronous clear signal

 Q <= (others => ‘0’);

 elsif (rising_edge(CLK)) (then

 if (LD = ‘1’) then

 Q <= D;

 end if;

 end if;

 end process;

end my_reg_8b;

(a) (b)

Figure 33.7: An 8-bit register with a synchronous parallel load input and an asynchronous clear

input (a), and a VHDL model for the underlying circuit (b).

Example 33-3

Using the block diagram on the right to complete

the timing diagram provided below. Consider the

register to be rising-edge triggered and ignore all

propagation delay issues. The LD input is a

synchronous parallel load input while the CLR

signal is an asynchronous active low signal that

clears the register when asserted.

Digital McLogic Design Chapter 33

 - 694 -

Solution: Although this solution is rather straightforward, it provides a few new tidbit of information

regarding the operation of registers.

 Unlike the previous examples, the asserted CLR signal at the beginning of the timing diagram

makes the value stored in register a known value. Because of the asserted CLR, the register

clears all the internal storage elements as indicated by the timing diagram.

 Though you can’t tell from the first instance of the asserted clear signal, the second instance

shows that the CLR signal is actually asynchronous. We know this because the clearing of the

output register occurs shortly after the CLR signals asserts near the end of the timing diagram.

Figure 33.8: A block diagram for a FSM (Moore-machine).

A few final words on registers as a reminder… Registers come in many different flavors; this section

only presented a few of them. As you’ll find out in later chapters, there are a few more types of

common devices out there that are essentially highly specialized registers. When someone mentions a

“register”, they typically are referring to the register described in this section. The other types of

common registers have their own special names (“shift registers” and “counters”); the next chapter

describes these registers.

33.3 Registers: The Final Comments

A register is nothing more than a set of bit storage elements that share a single clock signal. In other

words, registers are a parallel configuration of signal bit storage elements; what makes them parallel is

the fact that the individual storage element operations synchronize themselves to some event (usually a

clock edge). D flip-flop easily model single bit storage elements; if you line up a bunch of D flip-flops

together and synchronized their actions with a clock edge, you have a register.

Once you abstract all of these matters to a higher level, you’ll forever more speak about n-bit registers.

Figure 33.9 shows the progression of this abstraction. One thing to note here is that the black box

diagram of a register shown in Figure 33.9 (c) includes a clock signal. The level of abstraction here

sometimes continues to the point of not including the synchronizing signal (in this case, the clock) in

the block diagram. In these cases, we assume the register to have a clock signal and it is interpreted

accordingly. Additionally, you can safely assume that all registers are edge-triggered unless told

otherwise.

Digital McLogic Design Chapter 33

 - 695 -

(a) (b) (c)

Figure 33.9: The progression from D flip-flop to register block diagram for n-bit register.

Digital McLogic Design Chapter 33

 - 696 -

Chapter Summary

 Registers: A register is a sequential circuit that can be considered nothing more than a parallel

combination of single-bit storage elements. These storage elements are modeled as a given number of

D flip-flops that share a common clock signal and possibly other control signals typically associated

with D flip-flops (such pre-set and clear signals). The register is typically used to “latch” (and thus

remember) an n-bit wide set of data on the active clock edge of the device.

Digital McLogic Design Chapter 33

 - 697 -

Chapter Exercises

1) Why are simple registers typically associated with D flip-flops? Would it be possible to

construct a register using something such as a T or JK flip-flop? Briefly explain.

2) In what cases would there be an advantage to constructing a register (any type) using something

other than a D flip-flops? Briefly explain.

3) Using the block diagram on the right to complete the

timing diagram provided below. Consider the register

to be rising-edge triggered and ignore all propagation

delay issues.

4) Using the block diagram on the right to complete the

timing diagram provided below. The LD input must be

asserted in order for the register to load the input

signal. Consider the register to be rising-edge triggered

and ignore all propagation delay issues.

Digital McLogic Design Chapter 33

 - 698 -

5) Using the block diagram on the right to complete the timing

diagram provided below. The LD input must be asserted in order

for the register to load the input signal. The CLR input is an

asynchronous input that clears the register when asserted and has a

higher precedence than the LD input. Consider the register to be

rising-edge triggered and ignore all propagation delay issues.

6) Provide a VHDL model that supports the black box diagram of

a register on the right. The SET input is asynchronous and sets

all bit storage elements in the register. The LD input loads the

register on the active clock edge (falling edge triggered) and

has a lower priority than the SET input.

7) Using the block diagram on the right, provide a schematic

diagram detailing how you would use this device to create a

32-bit register with all the same features listed on the 8-bit

device.

Digital McLogic Design Chapter 33

 - 699 -

8) Write a VHDL architecture that implements the following circuit. It is not necessary to use VHDL

structural modeling for your architecture; it can be done quite nicely using a combination of

dataflow and behavioral modeling.

entity my_ckt is

 port (CLK, SEL, LDA : in std_logic;

 A,B : in std_logic_vector (7 downto 0);

 F : out std_logic_vector (7 downto 0));

end my_ckt;

architecture ckt1 of my_ckt is -- (you fill in the rest)

 - 701 -

34 Chapter Thirty-Four

(Bryan Mealy 2012 ©)

34.1 Chapter Overview

The previous chapter dealt with the notion of registers. This chapter was relatively short and not too

groundbreaking, as registers are nothing more than a bunch of D flip-flops connected in parallel. The

basic simplicity of registers hides the fact that they are massively useful in all forms of meaningful

digital design. If you have not seen this yet, you’ll for sure see it in this chapter.

Registers come in many forms: this chapter deal with two of the most common forms. As the name

implies, shifter registers are nothing more than registers with special (and useful) functionality.

Counters are yet another major type of specialized registers. This chapter introduces both shift registers

and counters in the context of VHDL modeling. You’ll surely see that even the “registers with features”

are not that much more involved than the simple register of the previous chapter.

Main Chapter Topics

 SHIFT REGISTERS: This chapter describes various flavors of shift registers and

their basic implementations. This chapter also describes one of the main flavors of

shift registers: the extremely useful barrel shifter.

 BASIC COUNTER AND COUNTERS “WITH FEATURES”: This chapter describes

various approaches to high-level VHDL behavioral modeling of counters. Previous

chapters described low-level counter implementations; this chapter omits the low-

level details in favor of a higher-level and thus more efficient approach.

Why This Chapter is Important

This chapter is important because shift registers and counters are extremely useful in

many areas of digital design, particularly in applications requiring fast arithmetic

operations. These devices are basically extended feature simple registers.

34.2 Shift Registers: the Most Useful Digital Circuit?

A shift register is another type of register that is surprisingly similar to simple registers. This section

describes shift registers in the general case at a low level and then proceeds to describe other common

types of shift registers at a higher level of abstraction. As you’ll see, shift registers, and their various

flavors, are massively useful devices because of their ability to perform a small but useful subset of

mathematical operations in a quick and simple manner.

Digital McLogic Design Chapter 34

 - 702 -

34.2.1 Basic Shift Registers

It turns out that one of the more simple circuits out there in digital-land is also one of the most useful:

the friendly shift register. Shift registers, and their variants
345

, are extremely useful in many digital

applications primarily because the things they do can be done relatively fast. Shift registers don’t really

do that much
346

, but they do a few things really well. Basic shift register circuitry is not complicated and

thus helps the noob understand the basic functioning of useful sequential circuits.

Shift register operation is based on a simple concept. In other words, we can decompose a shift register

down to its most basic component, which is referred to as a shift register cell. As you would guess, this

cell is nothing more than a simple storage element and is once again modeled as a D flip-flop. Figure

34.1 shows a schematic diagram of a generic shift register. Your initial inspection of Figure 34.1 should

reveal that there is not that much to the circuit. Upon further inspection, you should discern the

following:

 The shift register is a sequential circuit that is similar to the simple register. First, the n-bit shift

register can be modeled as a set of “n” specially connected D flip-flops. Second, all the D flip-

flops in the shift register share the same clock signal which indicates all the storage elements

are acting in parallel.

 The only different between simple register and shift registers is the notion that the individual

storage elements in the flip-flops connect to each other in a special way. While simple registers

had D flip-flops that had inputs and outputs connected to the outside world only, the shift

register has inputs and outputs that interconnect between individual storage elements. Figure

34.1 shows that the output of one flip-flop becomes the input to the adjacent flip-flop in the

shift register. This special type of connection is what makes it shift register.

 The number of bit storage elements in a shift register generally defines shift registers. The shift

register in Figure 34.1 represents a generic model of a shift register including the magic

ellipsis’ placed in strategic locations. Common descriptions of shift registers include “a 4-bit

shift register” or “an 8-bit shift register”, etc. Thus, Figure 34.1 shows an “n-bit shift register”

in its most generic form.

 Often times the letters “SR” are used to refer to a shift register (not to be confused with a SR

latch).

Figure 34.1: A typical n element shift register.

345

 Such as universal shift registers, barrel shifters, cyclic redundancy checking, bowling ball polishers…
346

 Back in the days before microcontrollers, you often saw shifters used as FSMs that acted as controllers.

Digital McLogic Design Chapter 34

 - 703 -

Figure 34.2 shows a comparison of block diagrams for a simple 4-bit register and a basic 4-bit shift

register
347

. The important thing to notice from these diagrams is that the simple 4-bit register generally

deals with “parallel” data while the basic shift register generally deals with “serial” data. What you’ll

find later in this chapter is that the definition of these devices starts to overlap as more features are

added to the devices.

(a) (b)

Figure 34.2: A block diagram for a 4-bit simple register (a), and a basic 4-bit shift register (b).

The operation of a shift register is simple but can be somewhat tricky when you first encounter it.

Figure 34.3(a) once again shows a schematic diagram of a 4-bit shift register while Figure 34.3(b)

shows a model of the underlying circuitry. There is not really a lot to say about Figure 34.3 as the fun

stuff begins when you examine a timing diagram associated with this circuit. Figure 34.4 shows an

example timing diagram associated with the 4-bit shift register shown in Figure 34.3(b). Figure 34.4

contains some annotations to help with the following description of the shift register.

(a) (b)

Figure 34.3: A block diagram for a 4-bit simple register (a), and a model of the underlying

circuitry of a 4-bit shift register (b).

347

 Keep in mind that the block diagrams show only the very basic devices for comparison purposes, which

hopefully is somewhat instructive.

Digital McLogic Design Chapter 34

 - 704 -

Figure 34.4: An arbitrary timing diagram associated with the shift register of Figure 34.3(b).

The items listed below describe some of the fun things to note about Figure 34.3(b) and Figure 34.4.

 This is a 4-bit shift register, meaning that the shift register circuitry contains four storage

elements. Figure 34.3(a) makes a feeble attempt to indicate this is a 4-bit shift register with the

label attached to the schematic symbol.

 The schematic in Figure 34.3(b) labels each of the internal shift register signals. These labels

primarily serve to help describe the operation of the basic shift register as they relate to Figure

34.4. The notation of “Qx” is typical of any circuit having flip-flops as storage elements.

 The “Qx” notation used in these figures indicates the bit positions of the storage elements in

the shift register. For this example, Q3 is considered the higher order bit while Q0 (or

data_out) is the lowest order bit
348

. In order to simplify this explanation, the signal “data_out”

and “Q0” are the same signal.

 Shift registers are considered to “shift” in either direction; that is, they shift to the left (“shift

left”) or shift to the right (“shift right”). The way the circuit of Figure 34.3(b) is drawn makes

this a right-shifting shift register; this circuit cannot shift left based on the way its internal

connections.

The notion of this circuit actually shifting something can be initially confusing. Please realize that the

notion of “shifting” is primarily a term of convenience and not altogether accurate for the actual

operation of the circuit (but we’ll keep using it). The “thing” being shifted by the shift register of Figure

34.3(b) is the “data”. Another way to look at this is that the circuit is passing in 1’s and 0’s from the left

side of the circuit and passing them through to the right side. Figure 34.4 makes a feeble attempt at

showing this shifting by way of a timing diagram. Here are some fun things to note about the timing

diagram in Figure 34.4.

348

 Keep in mind that SRs are often used for mathematical operations; numbers generally have weights associated

with the bit positions (unless you’re a cave-person).

Digital McLogic Design Chapter 34

 - 705 -

 Since this is a sequential circuit, the storage elements have a state associated with them. For

the timing diagram of Figure 34.4, the initial state of each storage element is ‘0’, which is

completely arbitrary.

 Since the storage elements are D flip-flops, they can only change state on the active clock

edge.

 On the clock edge labeled ‘1’, all of the flip-flops transfer the value on their inputs to their

outputs. In other words, on the active clock edge, the left-most flip-flop latches “data_in”; Q3

latches into the second to the left-most flip-flop, etc. In yet another way of looking at this, on

each active clock edge, each of the four D flip-flops can change state or hold their current state

based on the value of the D input.

 The “data_in” input is changing at various times; the only time the input has an affect is on the

active clock edge.

 Overall, if you stand back a few paces, you can see the so-called shifting action of the shift

register. The individual signals are shifted versions of each other; specifically, Q3 is a shifted

version of “data_in”, Q2 is a shifted version of Q3, etc. Another way to look at this is that the

“data_out” signal is a delayed version of the “data_in” signal. In this case, Q0 is a delayed

version of Q3; the delay is three clock cycles because the pulse appearing on Q0 is the same

pulse that appeared on Q3 three clock cycles earlier.

Yes, shift registers are massively powerful. Keep in mind that the right-shift operation (one shift in the

right direction) is the same thing as a divide-by-two operation with truncation
349

. Also, keep in mind

that the circuit shown in Figure 34.3(b) is overly simple. In most shift register circuits there are other

features such as most of the ones listed below. We’ll discuss these in upcoming sections.

 parallel clearing or parallel setting of storage elements

 parallel loading of values to the storage elements

 Shifting left or shift right operations

 Multiple shifts on one clock edge

 Automatic bowling score feature

A few final comments regarding basic shift registers… shift register are amazingly straightforward to

model in VHDL. Even shift registers that have all the bells and whistles take about zero-time to model

if you understand the basics of how VHDL models sequential circuits. Figure 34.5 shows a simple no-

feature VHDL model of the shift register shown in Figure 34.3(b). As you can see from Figure 34.5, the

VDHL model for this simple shift register is very similar to the VHDL model for a D flip-flop

(although there is one interesting trick in this model). Keep in mind that there are many different ways

349

 Truncation means the lowest order bit is lost; a similar operation is “round-up” where the value of the lowest

order bit is “taken into account” and your weeds are killed at the same time.

Digital McLogic Design Chapter 34

 - 706 -

to model shift registers in VHDL; the model shown in Figure 34.5 is not necessarily the best way
350

.

The VHDL model of the basic shift register has a few interesting features worth noting.

 The single-bit storage elements associated with the basic shift register are not overly apparent.

It turns out that the storage elements are associated with the “s_D” signal declaration, which is

4-bit signal. The VHDL model induces memory for this signal by the fact that the “if”

statement in the process does not contain an associated “else”. You’ve seen this before and

you’ll see it again.

 The VHDL model accesses only three-bits of the “s_D” signal by using the “downto” operator.

This is typical VHDL vernacular and you’ll for sure see this again.

 The “s_D” signal essentially “retains its value” across various executions of the process

statement. Relative to computer science, signals are similar to static variables (variables stored

memory as opposed to being stored on the stack
351

). In a later chapter, we’ll discuss VHDL

constructs that are similar to local variables of computer programming fame (variables stored

on the stack).

--

-- massively generic 4-bit right-shifting shift register

--

entity my_sr is

 port (DATA_IN : in std_logic;

 DATA_OUT : out std_logic;

 CLK : in std_logic);

end my_sr;

architecture my_sr of my_sr is

 signal s_D : std_logic_vector(3 downto 0);

begin

 process (CLK,DATA_IN)

 begin

 if (rising_edge(CLK)) then

 s_D <= DATA_IN & s_D(3 downto 1);

 end if;

 end process;

 DATA_OUT <= s_D(0);

end my_sr;

Figure 34.5: VHDL code for a basic 4-bit shift register.

Another issue that usually surrounds shift registers is the notion of cascadeabilitly. If you’re actually

unfortunate enough to be forced to use shift registers on discrete ICs, you may have to use a bunch of

them to actually obtain the data width that you need. For example, if you need a 64-bit SR, and all you

have to work with are ICs containing 8-bit shift registers, you’ll need to cascade
352

 eight 8-bit shift

registers in order to create a 64-bit SR. Sad as it seems, things really used to be done this way.

350

 But I certainly don’t care because I sleep well at night knowing that the VHDL synthesizer is going to take care

of the details for me.
351

 Don’t worry if this does not make sense; it’s computer science stuff and is designed to be confusing.
352

 In this context “cascade” is a fancy way of saying “connect up the part properly”.

Digital McLogic Design Chapter 34

 - 707 -

Example 34-1

Using the block diagram on the right to complete the

timing diagram provided below. Consider the circuit to

be a 4-bit shift register (shifts from left to right) that is

active on the rising-edge triggered of the clock signal.

Consider the line labeled “Q” to represent the 4-bit

value stored by the shift register. Assume the “data_out”

signal is the LSB of Q. Assume the initial value stored

by the shift register is 0x8. Ignore all propagation delay

issues with this circuit.

Solution: The interesting thing about this example is that the problem statement provides the initial

value stored in the shift register. The other interesting thing is that the problem asks for what is being

stored in the shift register despite the fact that only one-bit of shift registers contents appears as an

output (the “data_out” signal is the output of the LSB).

Figure 34.6 shows the solution to this example. I’m omitting lots of written description as this is a great

problem for you to work through yourself. Keep in mind that this is a right-shifting shift register, which

means the “data_in” signal is the MSB of the shift register while the “data_out” signal is the LSB.

Another happy thing to note about this problem is the fact that the shift register is dividing the current

shift register contents by a factor of two (with truncation) when the “data_in” signal is a ‘0’. Convince

yourself of this because this is a massively important and useful feature of shift registers.

Figure 34.6: The solution to Example 34-2.

Digital McLogic Design Chapter 34

 - 708 -

34.2.2 Universal Shift Registers

Shift registers that only shift in one direction are not that useful out there in digital-land. Most shift

registers do many more operations such as shift left, shift right, parallel load, parallel clear, hold (don’t

change state), pick up the spare, etc. The term in digital-land for shift registers containing features such

as these is “universal shift register”. There is no one definition for universal shift registers; the only

thing the term means is that you’re dealing with some sort of shift register that does more than shift in

one direction. From that point, you need to consult the datasheet or designer as to what exactly the

device does.

In terms of digital design, you have the ability to easily design just about anything using VHDL.

Because VHDL is so powerful, you can thus design devices at just about any level of abstraction. The

following example problem picks a certain level of abstraction in its implementation of a universal shift

register. There may be better ways to implement universal shift register, but the following approach is

relatively efficient and somewhat instructive. Once again, the power of VHDL behavioral modeling is

highlighted by the fact that no matter what features your universal shift register requires, it’s rather

straightforward to model in VHDL. The following quick example hopefully
353

 shows that.

Example 34-2

Provide a VHDL model for an 8-bit universal shift register that supports the following

operational characteristics. For this problem, assume the parallel load signal is synchronous

and that all shift register operations are synchronized to the rising clock edge. The shift

register’s output should be only an 8-bit bundle that indicates the current state of the shift

register.

 Hold

 Shift right

 Shift left

 Parallel load

Solution: The first step in this problem is to understand all of the features requested by the problem.

The following list describes these features, in case you were actually wondering.

 Hold: This operation means that the shift register’s contents do not change state on active

clock edge.

 Shift Right: This is a typical shift right operation; this typically means that there needs to be an

input into the shift register from the left side.

 Shift Left: This is typical shift left operation; this typically means that there needs to be an

input into the shift register from the right side
354

.

 Parallel Load: This implies that there needs to be an 8-bit bundle input that simultaneously

loads all the shift register elements.

353

 We can only hope.
354

 You could also use the same signal for inputting signals for either shift-left or shift-right operations. The

problem did not state how to do this so we have arbitrarily decided to have an input for both “sides”.

Digital McLogic Design Chapter 34

 - 709 -

From the above clarifications, we now know two types of information: the number and widths of the

inputs and outputs required to complete this problem. Specifically, know the following; from this list of

happy stuff, we can generate the block diagram shown in Figure 34.7. By the way, drawing a block

diagram is still a great place to start problems such as they help you understand the problem and help

you generate the VHDL entity. The following lists some other fun stuff.

1. The shift register has four unique operations: hold, shift-right, shift-left, and parallel load. This

means we somehow need to control which operation will actually occur. We do this by adding

a control signal that “selects” the desired operation. This signal is an input to the shift register

and allows the shift register to be controlled by some external circuit. Since the shift register

has four operations, we need a two-bit control signal that selects the desired operation.

2. We know all the inputs and outputs to the shift register. The problem states the outputs; they

comprise of only the state of the shift register storage elements. The inputs include a 2-bit

operation select signal, a 1-bit input for shift-left operations, a 1-bit input for shift-right

operations, an 8-bit bundle for parallel loads, and a lively clock signal.

Figure 34.7: A black box diagram of the universal shift register.

Allow me to blather on about this before we get to the VHDL model. Figure 34.8 repeats Figure 34.1

for your viewing convenience; this diagram once again shows a generic schematic for a simple right-

shifting shift register. The way you should think about the hardware-based solution to this problem is to

imagine that each shift register storage element is now going to have to decide upon what value is going

to be loaded on the next active clock edge.

Figure 34.8: A typical n element shift register.

When you hear the word “decision” in digital design-land, you should think “MUX”. If you think about

it in this manner, it sure seems as if each storage element is now going to have its own MUX to decide

which value is going to be loaded to the storage element. The notion here is each shift register storage

element needs to decide which signal will be used to load the element. Figure 34.9 shows the schematic

for the single shift register storage element that you’re probably imagining.

Digital McLogic Design Chapter 34

 - 710 -

Figure 34.9: A shift register element with an attached MUX for data selection.

Figure 34.9 shows a 4:1 MUX with two control signals. The control signal selects between four

different signals to load into the storage element in order to satisfy the problem. The MUX data signals

shown in Figure 34.9 represent the following; the choice of MUX input index was arbitrary.

 Qm (0): The input to the D flip-flop is chosen to be the current output of the D flip-flop in

question. Qm is an internal signal and ensures that the storage element does not change state

by “reloading” its current value. In other words, the present state of the D flip-flop becomes

the next state.

 P_load (1): The input to the D flip-flop is the appropriate signal from the parallel loading

bundle input.

 Qm-1 (2): The input is part of a shift right operation, which indicates the input to a storage

element is the first storage element to the left of this storage element (this is confusing; check

out Figure 34.8 for the details for the subscripted numbers).

 Qm+1 (3): The input is part of a shift left operation, which indicates the input to a storage

element is the first storage element to the right of this storage element (check out Figure 34.8

for clarification).

Table 34.1 summarizes the information in the previous list. So, all we need to do from here is to put a

bunch of these in a row and call it a universal shift register? We could proceed with at this level, but

let’s instead bump up a level of abstraction in order to complete this problem. We need to use VHDL,

so we may as well use it to make solving this problem as easy as possible.

S1 S0 D Comment

0 0 Qm hold

0 1 P_load parallel load

1 0 Qm-1 shift right

1 1 Qm+1 shift left

Table 34.1: Summary of the SR element functionality.

The design of a universal shift register using VHDL is straightforward and instructive. It’s only slightly

more complicated than just a simple D flip-flop (or simple register). To put it another way, if you

understand how a D flip-flop is generated using VHDL, you’ll easily understand the VHDL

implementation of a universal shift register. Figure 34.10 once again shows the block diagram we’ll use

while Figure 34.11 shows the associated VHDL model.

Digital McLogic Design Chapter 34

 - 711 -

Figure 34.10: A black box diagram of the universal shift register.

--

-- Model for a universal shift register

--

entity univ_sr is

 port (SEL : in std_logic_vector(1 downto 0);

 P_LOAD : in std_logic_vector(7 downto 0);

 D_OUT : out std_logic_vector(7 downto 0);

 CLK : in std_logic;

 DR_IN : in std_logic; -- input for shift left

 DL_IN : in std_logic); -- input for shift right

end univ_sr;

architecture my_sr of univ_sr is

 signal s_D : std_logic_vector(7 downto 0);

begin

 process (CLK,SEL,DR_IN,DL_IN,P_LOAD)

 begin

 if (rising_edge(CLK)) then

 case SEL is

 -- do nothing (don't change state) --------------

 when "00" => s_D <= s_D;

 -- parallel load --------------------------------

 when "01" => s_D <= P_LOAD;

 -- shift right ----------------------------------

 when "10" => s_D <= DL_IN & s_D(7 downto 1);

 -- shift left -----------------------------------

 when "11" => s_D <= s_D(6 downto 0) & DR_IN;

 -- default case ---------------------------------

 when others => s_D <= "00000000";

 end case;

 end if;

 end process;

 D_OUT <= s_D;

end my_sr;

Figure 34.11: VHDL code for the universal shift register.

The VHDL model in Figure 34.11 shows some cool stuff, as the list below happily mentions:

 The approach taken by this model is to “synthesize” the correct eight bits based on the value of

the SEL input; these changes to the shift register storage elements are synchronized with the

rising edge of the clock.

Digital McLogic Design Chapter 34

 - 712 -

 There are a couple of instances of the “&” operator, which is the concatenation operation in

VHDL. The operator concatenates two signals (or parts of two signals) together in order to

synthesize the correct output based on the selected operation.

 The model takes the approach of assigning a temporary signal inside the process; once the

process terminates, an assignment to the “s_D” signal causes this signal to be assigned to

“D_OUT”, which is the parallel output of the shift register.

Example 34-3

The block diagram on the right shows a model of a

universal shift register; use this model to complete the

timing diagram listed below. Consider the following:

 SEL = “00”: hold

 SEL = “01”: parallel load of D_LOAD data

 SEL = “10”: right shift; DL_IN input on left

 SEL = “11”: left shift: DR_IN input on right

 All operations are synchronized to the rising

edge of the CLK signal.

 Propagation delays are negligent.

 Initial D_OUT value is 0x45

Solution: The first step in any problem that contains a sequential circuit is to establish the initial state of

the storage elements. This problem states that the initial value of D_OUT value is 0x45; this value is the

initial state of the shift register.

From there, a good approach to problems such as these is to list what actions the SEL signal is selecting

throughout the timing diagrams. Figure 34.12 shows a partially annotated timing diagram highlighting

the operations selected by the SEL signal. Note that all of these annotations are synchronized with the

rising clock edge.

Digital McLogic Design Chapter 34

 - 713 -

Figure 34.12: A black box diagram of the universal shift register.

Figure 34.13 shows the final timing diagram. As you can see, most of the changes in the DR_IN,

DL_IN, and D_LOAD signals have no affect on the final output. The important thing to do for this

problem is to verify for yourself that each of the values in the D_OUT are in fact correct.

Figure 34.13: A black box diagram of the universal shift register.

34.2.3 Barrel Shifters

Once you get past the notion that shift registers do some actions that appear to be similar to “shifts”,

you’ll find that there are other circuits out there that do similar shifting operations. Once of the common

operations out there is a “barrel shift”. The operation of barrel shifters is straightforward as it’s simply

an extension of simple shifting operations. While simple shift registers only performed one shift per

clock cycle, barrel shifters are capable of performing more than one shift per clock cycle. As you would

imagine, barrel shifters can shift either left or right.

The key to understanding barrel shifters is realizing the main reason they exist. Keep in mind that shift

registers contain “bits” which generally represent binary numbers. The notion of shifting left and right

are associated with multiplying (left shift) or dividing (right shift) by two. Thus, barrel shifters are then

associated with multiplying and dividing by “powers of two” (such as 4, 8, 16, 32, etc.). What these

Digital McLogic Design Chapter 34

 - 714 -

operations provide are super fast (namely, one clock cycle) multiply and divide operations. As you

continue in digital stuff and/or computer programming, you’ll find that multiplying and dividing binary

numbers is extremely time consuming relative to other computer operations. Barrel shifters provide a

cheap and fast, although somewhat limited alternative.

Barrel shifters are commonly used in arithmetic applications where 100% accuracy of results is not

required. For example, there is always a big push to have your circuit perform “integer-based math”

because working with integers is much less “computationally expensive” than working with other

options such as “floating point numbers”. A good example of this is with non-professional cameras

such as the ones included with cell phones. Because cameras on these devices are partially judged by

their speed of operation, they use integer math. Using integer math causes you to lose some precision,

but your eyes will never know the difference. All you know is that your tiny hand-held device is able to

take high definition movies and do so with out delay. Big wup.

Table 34.2 shows two example barrel shifting operations. Both of these examples use an 8-bit value; the

top example is the value before the active clock edge while the bottom value is the value after the active

clock edge. The examples show both a starting and ending point for the barrel shifting operation

described by the particular row in the table. The (a) row shows a 2x right barrel shift that arbitrarily

inputs 0’s on the left side of the register. The (b) row shows a 2x left barrel shift that arbitrarily inputs

1’s from the right side of the register. The operation in the (a) row represents a divide by two; the

operation in the bottom row is one the many open mysteries in this world.

 Description Example

(a)
barrel shift right 2x; stuff in a two 0’s from the

left side.

(b)
barrel shift left 2x; stuff in a two 1’s from the

right side.

Table 34.2: Examples of possible barrel shifting operations.

34.2.4 Other Shift Register-Type Features

But wait… it gets better: there are even more common shifting operations out there in digital land. Two

more of the common shifting operations are rotates and arithmetic shifts. These operations are also

simple in their basic states
355

. Rotate operations can be useful in many applications, though there is not

one slam-dunk great example I can think of. Arithmetic shift operations are similar to simple shift

operations but specifically work with signed binary numbers.

Rotate operations include rotate left or a rotate right with the actual shifting occurring on the active

clock edge. The notion with rotate-type shifts is that no bits from the original register values are lost by

“shifting them out” of the register as was the case with simple shift registers. Specially, for a rotate right

355

 The truth is that is can get really ugly out there. You many need to combine operations with as “barrel rotates”

or “barrel arithmetic shift”, or some type of shift to enhance your bowling skills. We won’t go there in this chapter.

Digital McLogic Design Chapter 34

 - 715 -

operation, the LSB of the register becomes the new MSB while all other bits are shifted one position to

the right. For a rotate left operation, the MSB of the register becomes the new LSB while all other bits

in the register are shifted one position to the left.

 Description Example

(a) rotate right; the LSB is transferred to the MSB;

(b) rotate left; the MSB is transferred to the LSB.

Table 34.3: Examples of rotate-type shifts.

Arithmetic shifts are similar to simple shifts in their ability to perform mathematical operations
356

. The

key different is that arithmetic shifts work with signed binary number and preserved the “signedness” of

the value they operate on. For an arithmetic shift left operation, the value of the sign bit does not change

as a result of the shift. Thus, the left shift operation retains the sign of the number as well as the ability

to perform fast multiplication with the left shift operation. For an arithmetic shift right operation, the

sign bit is both retained as a sign bit and propagated to the right with each shift. This sounds somewhat

strange, but it truly both retains the sign of the value in the register as well as performing a fast division

operation. I suggest working through a few examples on your own.

356

 When you read this paragraph, recall that we represent signed binary numbers using 2’s complement notation,

AKA, “diminished radix complement” notation.

Digital McLogic Design Chapter 34

 - 716 -

 Description Example

(a)

An arithmetic shift right of a positive number in

2’s complement form; the sign bit is copied from

sign-bit position to the next bit on the right with

each shift. This is a divide by two on a signed

number (positive).

(b)

An arithmetic shift right of a negative number in

2’s complement form; the sign bit is copied from

sign-bit position to the next bit on the right with

each shift (the sign bit remains unchanged). This

is a divide by two on a signed number

(negative).

(c)

An arithmetic shift left on a positive value in 2’s

complement form. The left shift does not alter

the sign; all other bits shift left and a ‘0’ is

arbitrarily stuffed into the LSB position. The bit

adjacent to the sign bit shifts left into nowhere

land
357

. This is a multiply by two on a signed

number (positive).

(d)

An arithmetic shift left on a negative value in

2’s complement form. The left shift does not

alter the sign bit; all other bits shift left and a ‘0’

is arbitrarily stuffed into the LSB position. The

bit adjacent to the sign bit shifts left into

nowhere land. This is a multiply by two on a

signed number (positive).

Table 34.4: Examples of many flavors of arithmetic shifts.

357

 A place where all academic administrators were born; a place where we all wish they would go back to as soon

as possible.

Digital McLogic Design Chapter 34

 - 717 -

Example 34-4

Using the following timing diagram, provide a VHDL model of an 8-bit shift register that

performs the operations listed below. Make sure you also complete the timing diagram

and provide a block diagram of the final circuit. Assume that all operations are

synchronized with the rising edge of the clock signal. Assume that propagation delays are

negligent. Be sure to state any other assumptions you need to make in order to get past

yet another poorly worded example problem. Assume the DR_IN signal is the bit that is

an input on the right for shift left operations while shift right operations utilize the sign

bit for an input. Assume D_OUT represents the 8-bit value stored by the shift register.

 SEL = “00”: arithmetic shift right

 SEL = “01”: arithmetic shift left

 SEL = “10”: rotate right

 SEL = “11”: rotate left

Solution: The first step in any problem that does not provide a black box diagram is to generate the

black box diagram. From the problem statement we can see that the circuit’s input are a clock signal

(CLK), a selection signal (SEL), and a bit input signal (DR_IN). The only output of the circuit is the

D_OUT signal, which represents the contents of the shift register. Figure 34.14 shows the final block

diagram for this example problem.

Figure 34.14: A black box diagram of the universal shift register of Example 34-4.

The next step is to annotate the provided timing diagram to explicitly show (in English) the operations

selected by the SEL signal. This step is not necessary, but it ensures the mistakes you make are of the

intelligent type rather than dumbtarted type. Figure 34.15 shows this intermediate helper step.

Digital McLogic Design Chapter 34

 - 718 -

Figure 34.15: A black box diagram of the universal shift register of Example 34-4.

Without too much verbage, Figure 34.16 shows the final timing diagram solution to Example 34-4. One

thing to note about this problem is that the circuit only uses the DR_IN input for arithmetic shift left

operations.

Figure 34.16: A black box diagram of the universal shift register of Example 34-4.

This example problem also states that we need a VHDL model also. This solution uses Figure 34.14 and

the problem description as an aid in generating the VHDL model; Figure 34.17 shows the final VHDL

model. The only worthy comment to make about this model is that the VHDL code models the “next

values” of the shift register using a combination of the previous state of the shift register, the sign bit,

and the DR_IN input. Liberal use of the concatenation operator also helps this model.

Digital McLogic Design Chapter 34

 - 719 -

--

-- Yet another shift register model

--

entity sreg is

 port (SEL : in std_logic_vector(1 downto 0);

 D_OUT : out std_logic_vector(7 downto 0);

 CLK : in std_logic;

 DR_IN : in std_logic); -- input for shift left

end sreg;

architecture my_sr of sreg is

 signal s_D : std_logic_vector(7 downto 0);

begin

 process (CLK,SEL,DR_IN)

 begin

 if (rising_edge(CLK)) then

 case SEL is

 -- arithmetic shift right

 when "00" => s_D <= s_D(7) & s_D(7 downto 1);

 -- arithmetic shift left

 when "01" => s_D <= s_D(7) & s_D(5 downto 0) & DR_IN;

 -- rotate right

 when "10" => s_D <= s_D(0) & s_D(7 downto 1);

 -- rotate left

 when "11" => s_D <= s_D(6 downto 0) & s_D(7);

 when others => s_D <= (others -> ‘0’);

 end case;

 end if;

 end process;

 D_OUT <= s_D;

end my_sr;

Figure 34.17: The final VHDL model for Example 34-4.

34.3 Counters: Yet Another Register Flavor?

Registers… it’s really hard to underscore their popularity in digital design. Another massively common

register is the counter. In its simplest form, a counter is a register that “counts”, but also retains all the

characteristics of a register (such as operations synchronized with a clock signal). While this sounds

straightforward, the reality is that people make many assumptions when they use the term “counter”.

The list below describes these assumptions.

 Unless otherwise stated, a counter is actually a binary counter, meaning that it counts in binary.

This is an important distinction because there is also the notion of a decade counter (we’ll talk

about that later) which does not count using a binary sequence. You can design a counter to

count in any sequence, but a normal binary sequence is generally assumed unless stated

otherwise
358

.

 Related to the last issue is the notion that a counter only counts “up” unless otherwise stated.

There are also counters that count down also (more on this later).

358

 Keep in mind that we previously designed counters using FSMs; many of these counters had wacky and

pointless counting sequences.

Digital McLogic Design Chapter 34

 - 720 -

 Once again related to the last issues is the notion that counters count up by a value of ‘1’ on

each clock cycle, unless stated otherwise. This means that a ‘1’ is added (arithmetic addition)

to the current count value on each clock edge. The notion of counting up by ‘1’ as it relates to

a counter is referred to as an increment. You can easily design counters that count up (or

down) by any value.

When counters are the topic of discussion, you may hear many new and unusual words. The idea of

counters is straightforward, meaning, I can’t think of any new and amazing things to say about them

that was not already been said. In addition, we’ve worked with counter in the context of FSMs many

chapters ago. The approach I’ll take here is to define and describe every word and/or term I’ve ever

heard used in the context of counters and then do a few example problems. In truth, counters used to be

a big deal back when you had to design them yourself using discrete logic. Now, discrete ICs have

many flavors of counters, and more importantly, VHDL makes the modeling of counters almost trivial.

I’ll save all the verbage and remain at a high level of abstraction in regards to counter design.

When you say the word counter, it has a few standard connotations that you can assume are true unless

told otherwise. The following list describes even more assumptions made when dealing with counters.

 Counters always refer to a sequential circuit. There are combinatorial counters out there, but

they are somewhat rare and painful to think about.

 An active clock edge synchronizes a counter’s traversing of the count sequence. Thus, there is

one count value, or code-word from the count sequence at each clock cycle.

 A counter’s output represents a specific and repeatable sequence of a given number of bits.

This means that the sequence the counter “counts” in will not change; the bit-width of the

counter won’t magically change either.

 When a counter completes a traversal through its count sequence (either in the up or down

direction), the counter automatically starts counting over.

Wow, those facts and definitions were so fun that we’ll follow them up with a listing of vernacular and

definitions typically associated with counters (and similar devices):

 Binary Counter: A counter that counts in a binary sequence. This means a 4-bit binary count

sequence goes from 0-15, or 0x0 to 0xF (up direction).

 Decade Counter: A counter that counts in a binary coded decimal (BCD) sequence. This means

a 4-bit decade counter will count from 0-9 (up direction).

 n-bit Counter: A counter that uses n-bits to represent each of the values in its count sequence.

 Up Counter: A counter that counts up (increasing count values in count sequence).

 Down Counter: A counter that counts only down (decreasing count values in count sequence).

 Up/Down Counter: A counter that can counter either up or down according to a selection input

on the device.

 Increment: An operation associated with counters where ‘1’ is added to the current value of

counter.

Digital McLogic Design Chapter 34

 - 721 -

 Decrement: An operation associated with counters where ‘1’ is subtracted from the current

value of counter.

 Counter Overflow: The notion of a counter being incremented beyond its ability to represent

values; unless otherwise stated, overflow is generally characterized as the counter transitioning

from its largest representable value to its smallest value.

 Counter Underflow: The notion of a counter being incremented beyond its ability to represent

values; unless otherwise stated, overflow is generally characterized as the counter transitioning

from its largest representable value to its smallest value.

 Cascadeable: A characteristic of many digital devices such as counters and shift registers that

allow you to effectively increase the overall bit-width of devices providing inputs and outputs

such that you can easily interface the devices. One such output is the “ripple carry out”.

 Count Enable: A signal on counters that enables the counting operation of the counter when

asserted and disables the counting when not asserted.

 Ripple Carry Out (RCO): A signal typically found on counters that indicate when the counter

has reached its maximum count value (for an up counter). This signal often aids in cascading

multiple counter devices. The RCO is often used to indicate when the counter has reached its

minimum count value (for down counters).

 Parallel Load: A characteristic of a counter or shift register indicating that all the storage

elements in the device can simultaneously latch external values.

34.3.1 A Modern Approach to Counter Design

There are many ways to design counters; the most efficient way is to model their behavior using

VHDL. Let’s skip over some of the older methods as they are primarily academic exercises and are not

overly useful in modern digital design. Many old digital design textbooks list these older methods; it

you need to know of them, get a copy of these older texts.

When I need a counter, I go right to the generic VHDL counter model I keep around for that purpose.

Figure 34.18 shows my starting point when my digital designs require counters. This model contains the

basic structure of a counter in addition to many of the features associated with counters. I typically start

with this model because it has everything, and then remove the parts that I don’t need. As you’ll see

from examining Figure 34.18, there are some worthy things to note:

 The counter looks a lot like all the other register models we’ve been discussing.

 The counter overflows when it increments at its maximum value (0xFF 0x00) and

underflows when it decrements at its minimum value (0x00 0xFF). These operations occur

automatically so there is no need to design them into the counter.

 The counter has an asynchronous reset signal. This could easily be changed to a synchronous

reset if my design so desired.

 The parallel load signal is synchronous and takes precedence over the other basic counter

operations listed in the model.

Digital McLogic Design Chapter 34

 - 722 -

 The counter has a signal dedicated to the counter direction. The model indicates that if UP is

asserted (a positive logic signal), the counter counts up. If the UP signal is not asserted, the

counter counts down.

 The counter uses the “+” operator for incrementing and the “-“ operator for subtraction. This is

somewhat of an advanced concept in VHDL modeling that you may or may not have

encountered by now. In short, VHDL can model mathematical operations if the proper library

files are included.

-- Counter: synchronous up/down counter with asynchronous

-- reset and synchronous parallel load.

entity GEN_CNTR is

 port (RESET,CLK,LD,UP : in std_logic;

 DIN : in std_logic_vector (7 downto 0);

 COUNT : out std_logic_vector (7 downto 0));

end GEN_CNTR;

architecture my_count of GEN_CNTR is

 signal s_cnt : std_logic_vector(7 downto 0);

begin

 process (CLK, RESET, LD, UP)

 begin

 if (RESET = '1') then

 s_cnt <= (others => ‘0’); -- asynchronous clear

 elsif (rising_edge(CLK)) then

 if (LD = '1') then

 s_cnt <= DIN; -- load

 else

 if (UP = '1') then

 s_cnt <= s_cnt + 1; -- increment

 else

 s_cnt <= s_cnt - 1; -- decrement

 end if;

 end if;

 end if;

 end process;

 COUNT <= s_cnt;

end my_count;

Figure 34.18: Generic VHDL model of a counter that does everything.

Digital McLogic Design Chapter 34

 - 723 -

Example 34-5

The block diagram on the right shows a model of an

8-bit counter. The VHDL model associated with this

block diagram appears in Figure 34.18. Use the

block diagram and VHDL model to complete the

following timing diagram. Assume propagation

delays are negligent.

Solution: This problem attempts to show you everything interesting and useful with counters. Figure

34.20 shows the final solution to this example; the following verbage describes some of the more

interesting things about the solution. In this case, the interesting things are when the output changes and

what causes those changes.

1) The circuit was initially in a reset condition. On this active clock edge, the counter output is

incremented due to the assertation of the UP signal.

2) The UP signal is still asserted, but due to the way the LD signal is modeled, it takes precedence

over the LD signal. Thus, the output loads the value on the D_IN input into the counter.

3) This is an increment operation due to the assertation of the UP signal.

4) This is another increment operation due to the assertation of the UP signal.

5) This is a decrement operation since the UP signal is no longer asserted.

6) This is another decrement operation since the UP signal remains unasserted.

7) This is a register clear operation due to the assertion of the RESET signal.

Digital McLogic Design Chapter 34

 - 724 -

Figure 34.19: The solution (with annotiations) to Example 34-5.

34.3.2 Up-Down Counters

One popular term out there in digital design-land is the notion of an “up-down counter”. This counter is

nothing more than a counter that has a control signal the enables the counter to count either up or down.

I’ve included a special section for this counter simply because the term is so popular. The generic

counter model in Figure 34.18 contains the code that makes it into an official up/down counter. Let’s do

an example problem for this counter and then move on.

Example 34-6

Provide a block diagram and a VHDL model for a synchronous 8-bit up/down counter. The

output of the counter should the 8-bit count only.

Solution: The first step in this problem is to find out what the problem is looking for and then generate

a black box diagram. This problem wants an up/down counter, but, it does not state that it needs parallel

loading capabilities or any type of asynchronous presets or clears. Figure 34.20 shows the block

diagram we’ll work from.

Figure 34.20: A black box diagram of the universal shift register of Example 34-4.

Digital McLogic Design Chapter 34

 - 725 -

After generating the block diagram, we need to grab our generic counter model and modify it in order to

satisfy the problem description. Figure 34.21 shows the final solution to this example problem.

-- No Frills Synchronous 8-bit Up/Down Counter

entity UD_CNTR is

 port (CLK,UP : in std_logic;

 COUNT : out std_logic_vector (7 downto 0));

end UD_CNTR;

architecture my_count of UD_CNTR is

 signal s_cnt : std_logic_vector(7 downto 0);

begin

 process (CLK, UP)

 begin

 if (rising_edge(CLK)) then

 if (UP = ‘1’) then

 s_cnt <= s_cnt + 1; -- increment

 else

 s_cnt <= s_cnt - 1; -- decrement

 end if;

 end if;

 end process;

 COUNT <= s_cnt;

end my_count;

Figure 34.21: VHDL model for a simple 8-bit up/down counter.

34.3.3 Decade Counters?

Another common counter you occasionally hear about is the decade counter. While counters are

generally considered to be binary counters (unless specified otherwise), non-binary counters count in

some sequence other than binary. A decade counter counts in a decimal sequence much like a binary

coded decimal number. That is, the output of the counter shows a 4-bit binary zero through nine

(“0000” “1001”) rather than a binary zero through fifteen (“0000” “1111”). The counters can be

quite useful as the non-computer portion of the world is still decimal
359

. It sounds like we need to do an

example problem .

Example 34-7

Provide a block diagram and a VHDL model for a synchronous 8-bit decade counter. The

output of the counter should the 8-bit count only.

359

 Excluding the academic administrative portion of the world which is still using stone age binary

Digital McLogic Design Chapter 34

 - 726 -

Solution: The problem describes a two-digital decimal counter; each of the digits is represented in

binary using binary coded decimal numbers. This problem only has a clock input as no other features

were requested. Figure 34.20 shows the block diagram we’ll work from.

Figure 34.22: A black box diagram of the universal shift register of Example 34-4.

Figure 34.23 shows the final VHDL model for this example. This solution is by no means unique; it

was the first thing I thought about when solving this problem. This problem highlights the strength of

behavioral modeling in VHDL. The only problem I see with this solution is the notion that there are

three levels of nesting in the “if” statements. This makes me nervous; so I will flag that in my brain and

make this the first module I look at if my circuit is not working properly.

-- No Frills Synchronous 2-digit Decade Counter

entity DEC_CNTR is

 port (CLK : in std_logic;

 COUNT : out std_logic_vector (7 downto 0));

end DEC_CNTR;

architecture my_count of DEC_CNTR is

 signal s_cnt_tens : std_logic_vector(3 downto 0);

 signal s_cnt_ones : std_logic_vector(3 downto 0);

begin

 s_cnt_tens <=

 process (CLK)

 begin

 if (rising_edge(CLK)) then

 if (s_cnt_ones = “1001”) then

 s_cnt_ones <= “0000”;

 if (s_cnt_tens = “1001”) then

 s_cnt_tens <= “0000”;

 else

 s_cnt_tens <= s_cnt_tens + 1; -- increment tens digit

 end if;

 else

 s_cnt_ones <= s_cnt_ones + 1; -- increment ones digit

 end if;

 end if;

 end process;

 COUNT <= s_cnt_tens & s_cnt_ones;

end my_count;

Figure 34.23: VHDL model for a simple decade counter.

Digital McLogic Design Chapter 34

 - 727 -

34.4 Registers: The Final Comments

A register is nothing more than a set of bit storage elements that share a single clock signal. In other

words, registers are a parallel configuration of signal bit storage elements; what makes them parallel is

the fact that the individual storage element operations are generally synchronized to some event

(usually a clock edge). A single bit storage element is easily modeled as a D flip-flop; if you line up a

bunch of D flip-flops together and synchronized their actions with a clock edge, you have a register.

Once you abstract all of these matters to a higher level, you’ll forever more speak about n-bit registers.

Figure 33.9 shows the progression of this abstraction. One thing to note here is that the black box

diagram of a register shown in Figure 33.9 (c) includes a clock signal. The level of abstraction here

sometimes continues to the point of not including the synchronizing signal (in this case, the clock) in

the block diagram. In these cases, the register is assumed to have a clock signal and is interpreted

accordingly. Additionally, you can safely assume that all registers are edge-triggered unless told

otherwise.

(a) (b) (c)

Figure 34.24: The progression from D flip-flop to register block diagram for n-bit register.

The definition of the register provided in Figure 33.9 is general enough to encapsulate everything you

know about registers up to this point. The registers we’ve previously looked at included several

common sequential circuits such as shift registers and counters. The main difference between the many

types of register is their feature set. In an attempt to show all the possibilities in one spot, Table 34.5

shows a possible breakdown of the register types and their relation to each other. Keep in mind that

many of the features listed in Table 34.5 can be either synchronous or asynchronous.

Register Type Sub-Types Features

simple register not much

better register parallel load, preset, clear, load enable, cascadeability

shift register

Universal Shift Registers,

Barrel Shifters
parallel load, preset, clear, load enable, shift left/right,

arithmetic shift left/right, hold, rotate left/right,

cascadeability

counters
Up/Down Counters,

Decade Counters

parallel load, preset, clear, load enable, increment,

decrement, cascadeability

Table 34.5: The feature progression of the device referred to as a register.

Digital McLogic Design Chapter 34

 - 728 -

Chapter Summary

 Shift Registers: Shift registers are in many ways similar to simple register; their primary different is

with the inputs to the individual shift register storage elements. Shift registers are designed such that

the data output from one shift register element becomes the data input to a contiguous element. IN

this way, data is said to be “shifted through” the shift register. In general, there is one “shift” per

clock cycle. Shift register operations are often used to implement fast but limited mathematical

operations with single left shift being a divide-by-two and a single right shift being a multiply by two.

 Universal Shift Register: A type of shift register that performs more operations than a simple shift

register. These operations can typically include both a shift left and a shift right, a parallel load, a

preset and/or clear. Somewhere in here could also be arithmetic shift operations and various forms of

rotate operations.

 Barrel Shifters: A type of shift register that performs multiple shifts on a single clock edge. In

reality, barrel shifters are wired such that they can shift multiple bit locations in one clock cycle, and

probably do not perform multiple shifts. Barrel shifters are useful for mathematical operations

including multiplication and division by powers of two.

 Counters: A generic term for a device that traverses a set sequence on a given clock edge. There are

many ways to design counters, the most efficient and modern approach is to use VHDL modeling.

There are many types of counters out there including binary counters, up/down counters, decade

counters, ring counters, Johnson counter, bowling counters, etc.

Digital McLogic Design Chapter 34

 - 729 -

Chapter Exercises

1) Use the block diagram on the right to complete the timing diagram

below. Consider the circuit to be a 4-bit shift register (shifts from

right-to-left) that is active on the rising-edge triggered of the clock

signal. Consider the line labeled “Q” to represent the 4-bit value

stored by the shift register and the “data_out” output to represent

the value of the highest order bit stored by the shift register.

Assume the initial value stored by the shift register is 0xC. Ignore

all propagation delay issues with this circuit

2) The block diagram on the right shows a model of a universal

shift register; use this model to complete the timing diagram

listed below. Consider the following:

 SEL = “00”: hold

 SEL = “01”: parallel load of D_LOAD data

 SEL = “10”: right shift; DL_IN input on left

 SEL = “11”: left shift: DR_IN input on right

 The rising edge of the CLK signal synchronizes all shift

register operations

 Propagation delays are negligent.

 Initial D_OUT value is 0xAB

Digital McLogic Design Chapter 34

 - 730 -

3) Using the following timing diagram, provide a VHDL model of an 8-bit shift register that

performs the operations listed below. Make sure you also complete the timing diagram and

provide a block diagram of the final circuit. Assume that all operations are synchronized

with the rising edge of the clock signal. Assume that propagation delays are negligent. Be

sure to state any other assumptions you need to make in order to complete this problem.

Assume the 0x39 is the initial value stored by the shift register. Assume “D_OUT” is an 8-

bit output representing the value stored by the shift register.

 SEL = “00”: rotate right

 SEL = “01”: rotate left

 SEL = “10”: divide by 8 (bit stuff 0’s)

 SEL = “11”: multiply by 8 (bit stuff 0’s)

Digital McLogic Design Chapter 34

 - 731 -

4) The block diagram on the right shows a model of an 8-bit

counter. Use the following assumptions in order to complete the

following timing diagram. Assume propagation delays are

negligent.

 The LD input enables the loading of the DIN input to the

counter

 The RESET input is an asynchronous and active low used

to reset the counter

 The COUNT output shows the current value stored by the

counter

 The counter counts up when the UP input is asserted (active

high) or down otherwise. All count operations are

synchronous.

5) Provide a VHDL model that supports the black box diagram of

the register on the right. Make the following assumptions for

this problem.

 LD synchronously loads the value of D_LOAD into the

register.

 D_VAL is the 8-bit value stored in the register.

 CLR is an asynchronous input that resets the register when

asserted. This input takes precedence over the LD input.

Digital McLogic Design Chapter 34

 - 732 -

6) Provide a VHDL model that supports the black box diagram of

the counter on the right. Make the following assumptions for

this problem.

 LVAL is loaded to the counter synchronously when LD is

asserted

 COUNT is the value stored in the counter.

 CLR synchronously resets the counter and takes

precedence over all other inputs.

 CNT is the input of lowest precedence and instructs the

counter to count up by ‘1’ if asserted and ‘2’ otherwise

7) Provide a VHDL model that supports the black box diagram of

the shift register. Make the following assumptions for this

problem.

 The S_IN input is used for all single-bit shift left and shift

right operations where the input value is not stated.

 D_IN is the 8-bit input value used for parallel load

operations.

 The SEL input synchronously chooses the following

operations

o SEL = “000”: shift left (stuff ‘0’ on right)

o SEL = “001”: shift left

o SEL = “010”: shift right (stuff ‘1’ on left)

o SEL = “011”: shift right

o SEL = “100”: rotate left

o SEL = “101”: divide by 4

o SEL = “110”: divide by 16

o SEL = “111”: multiply 8

8) A FSM can be used to generate a shift register. For this problem, provide a state diagram that

could be used to model a 2-bit shift register. Consider the Q output to be a 2-bit bus that

indicates the result of the synchronous shifting action. Consider the DIN input as the bit being

shifted into the shift register (shifts left to right). Consider the RESET input to be an

asynchronous input that takes precedence over all other inputs. When the HOLD input is

asserted, the Q output does not change.

Digital McLogic Design Chapter 34

 - 733 -

9) A FSM can be used to generate a shift register. For this problem, provide a state diagram that

could be used to model a 3-bit shift register. Consider the Q output to be a 3-bit bus that indicates

the result of the synchronous shifting action. Consider the DIN input as the bit being shifted into

the shift register (shifts left to right). Consider the RESET input to be an asynchronous input that

takes precedence over all other inputs.

10) The following diagram shows a circuit that is used to perform a serial-to-parallel conversion on

the OP_A and OP_B input and then perform a mathematical operation. In other words, two four-

bit numbers will be provided serially (LSB first) on the OP_A and OP_B inputs. The two tables

below describe the MUXes and the Universal Shift Register (USR).

 Provide a state diagram that could be used to control the circuit such that it performs A - B

and registers the result in REG_ACC (A & B are the parallelized versions of the OP_A &

OP_B serial data). The serial to parallel conversion will initiate when the signal GO (not

shown) is asserted. Minimize the number of states in your design. State any other

assumptions you deem necessary.

MUX description

if (sx = 0) then

 out <= in;

else

 out <= not in;

end if;

Assumptions:

 LSB is first to arrive in serial bit stream

 DR_IN = right side input to shift

register

 DL_IN = left side input to shift register

 CLK signals are connected

 All setup and hold times are met

 All Shift register operations are

synchronous

Shift Register

Controls

SEL Operation

0 0 hold

0 1
parallel

load

1 0 shift right

1 1 shift left

Digital McLogic Design Chapter 34

 - 734 -

11) The following diagram shows a circuit that can perform a mathematical operation. The two tables

below describe the MUXes and the Universal Shift Register (USR). The registers have a

synchronous load input (LD). Provide a state diagram that could be used to control the circuit such

that it performs the operation listed below. Minimize the number of states you use in your solution.

 If a GO signal is received (GO is not shown in diagram), the following operation is generated

and the result appears on the output: OP_OUT = (OP_B - OP_A) ÷ 16

MUX description

if (sx = 0) then

 out <= in;

else

 out <= not in;

end if;

Assumptions:

 DR_IN = right side input to shift

register

 DL_IN = left side input to shift

register

 CLK signals are connected

 All setup and hold times are met

 All Shift register operations are

synchronous

 Registers (non-USR) have

synchronous load inputs (LD)

Shift Register

Controls

SEL Operation

0 0 hold

0 1
parallel

load

1 0 shift right

1 1 shift left

 - 735 -

35 Chapter Thirty-Five

(Bryan Mealy 2012 ©)

35.1 Chapter Overview

No matter how you look at it, computers represent a major portion of the digital design experience.

First, modern digital design uses personal computers as a major design tool. Secondly, we can argue

that an underlying objective of learning digital design is to understand the notion of “computers” at

many different levels. You are quickly gathering digital design skills; you’re really not that far away

from designing a circuit that is officially a “computer”. This does not mean that you’ll soon be

designing a “PC”, but a PC is not the only form of computer out there in digital-land.

This chapter presents a brief and high-level view of computers and then moves on to the describing one

aspect of a computer: the Arithmetic Logic Unit, or ALU. This is another one of those subjects that

people write books about and get PhDs for, so we’ll not attempt to present the end-all of computer

and/or ALU descriptions. What we will present is an overview of ALUs constructed first with low-level

hardware, and then modeled at a high level using VHDL.

Main Chapter Topics

 COMPUTER ARCHITECTURE OVERVIEW: This chapter presents a brief high-level

view of computer architecture as a motivation to introduce ALUs.

 LOW-LEVEL ALU DESIGN: This chapter describes a low-level yet limited approach

to ALU design. This approach is primarily a review of modules we’ve already

worked with. .

 HIGH-LEVEL ALU DESIGN: This chapter describes ALU design using some of the

high-level modeling techniques available in VHDL.

Why This Chapter is Important

This chapter is important because it describes several approaches to designing ALUs.

This description includes an introduction to the use of variables in VHDL.

35.2 Computer Architecture Overview

Because this chapter is primarily concerned with ALU design, we’ll first develop the proper context for

ALUs. The ALU is a major component in computer design, so our approach in this section is to

describe computers at a high-level. This will hopefully order provide an understanding of the purposes

and possibilities for ALUs.

Digital McLogic Design Chapter 35

 - 736 -

The term architecture appears often in digital-land, so often that you’ll find it to have many different

meanings depending on the context it is used in. The best definition for “architecture” in a hardware

context is that the architecture of circuit describes the individual modules of a circuit and the connection

between the modules. Based on this definition, we can substitute the word “architecture” any time

we’ve used the term “block diagram”
1
.

The notion of an “arithmetic logic unit” has no solid definition. Though it sounds like a circuit that

contains both arithmetic and logic units, you’ll find that is not always true. The modern use of the term

ALU is attachable to any digital circuit since you can certainly argue that any digital circuit necessarily

performs logic operations. Probably the most useful definition of an ALU is a circuit that has inputs for

one or more operands, inputs for one or more controls, and output for the results. The ALU tweaks the

operands as directed by the control signals in order to generate a required result. Thus, the ALU is a box

that tweaks data and generates a result; by no means is this said tweaking limited to arithmetic and logic

operations.

35.2.1 Computer Architecture in a Few Paragraphs

A computer is a digital system, which means that it is comprised of a bunch of gates and things that are

connected in some intelligent manners. From a higher level, a computer can be viewed as nothing more

than a special connection of all the standard digital circuits you’ve learned about up until now, plus

others that you’ll learn soon
2
. A computer is no different than any of the other digital systems you’ve

worked with except that it is generally more complex. But then again, the complexity comes from the

sheer amount of simple elements in the circuit and not the elements themselves
3
.

What is a computer? The definition we’ll work with in this discussion: A computer is any electronic

device that reads instructions from memory and carries out those instructions on data. Somewhere in

this definition, we need to include the notion that the computer is able to interface with the outside

world, so our computer must be able to handle various input and output needs. The instructions

essentially tell the computer what operations need to take place on the associated data
4
.

Figure 35.1 shows the basic model of a computer that we attempted to describe in the previous

paragraph. As you can see, a computer is comprised of three main components: the central processing

unit (CPU), memory, and input/output (I/O). The memory block stores the “instructions” that the

computer executes while the I/O block allows the outside world to interface with the computer. The

item we’re slowly working our way to is the block labeled “CPU”.

The CPU is an acronym that stands for “central processing unit” Once again, there is a lot we can say

about the CPU, but we’ll keep it to a comfortable minimum in this discussion. As you can see from

Figure 35.1, the CPU is comprised of two main blocks: the “datapath” and the “control unit”. The

control unit interfaces with the computer instructions read from memory and tells the datapath what to

do with data.

The notion of the “central” processing unit came from days where hardware was massively expensive,

both on the discrete level and on the silicon level. Things are slightly different these days though. As

the underlying IC fabrication techniques become better and allow for smaller digital circuitry, the

required processing in computers can less typically be described as central. Having more processing

1
 And often times that is what people do.

2
 You can survive this discussion without knowing these items.

3 Once again, the key to understanding complex issues such as computers is to divide the associated digital circuitry

into more manageable blocks. This form of abstraction is absolutely required because even the simplest computer is

arguably complex. Lucky for us that VHDL structural modeling fully support this flavor of abstraction.
4
 Instructions do other things that we’re not mentioning here in order to keep things simple.

Digital McLogic Design Chapter 35

 - 737 -

units increases the overall throughput of the computer, which allows more advanced features on the

devices in which these ICs appear. Where would the world be now without a device that allows you to

call your buddy and watch a stream of video data all on the same device and at the same time? Now

that’s progress!

Figure 35.1: A block diagram for a basic computer architecture.

Figure 35.2 shows a more detailed diagram of the CPU. From this diagram, you can see that data is

passed into the datapath and then passes out of the datapath. During this datapath traversal, the data is

tweaked according to the instructions that were read from memory. Note that the control unit controls

the datapath; this control includes receiving status from the datapath.

The datapath is the bit-crunching heart of the central processing unit (CPU). As was mentioned earlier,

the datapath is a giant circuit that is filled with such a great number of simple devices that it becomes

somewhat complex to study if your examination is at too low of a level. These simple devices include

many types of digital circuitry, which is interconnected in some intelligent and organized fashion that

produces the desired result.

Figure 35.2: A block diagram for a basic computer architecture.

The point we’re trying to arrive at with this discussion that the ALU forms the bulk of the datapath

block and is therefore considered to be one of the basic building blocks of the CPU. Datapaths contain a

lot of useful and interesting circuitry; they only thing we’ll consider here is the ALU portion of the

CPU. In summary, the ALU is part of the datapath which is part of the CPU, which is one of the three

major functional blocks of a computer.

Figure 35.3 shows a lower-level diagram of a simple ALU. This is roughly the model we’ll be working

with in this chapter, but once again, this is by no means the only approach to ALUs out in digital-land.

Digital McLogic Design Chapter 35

 - 738 -

There are really no guidelines on how to model an ALU, which becomes more true once we start using

VHDL to model ALUs.

In accordance to the acronym “ALU”, Figure 35.3 shows that this particular model of an ALU contains

two sub-blocks including the “arithmetic unit” and the “logic unit”. In theory, all the arithmetic

functions go into the arithmetic block while all of the logic functions go into the logic block. This

particular ALU contains two operands: A and B
5
. The width of the operands is arbitrary as indicated by

the “n” width of the operands. The S1 signal is a bundle that instructs the arithmetic unit and logic unit

as to what operation to perform
6
. The width of the S1 signal depends upon what level of control is

required by the two units; the more operations performed by these units, the higher value for the

number “m”. This model indicates that the arithmetic and logic units share the control signal; as a

result, arithmetic and logic operations from these two blocks occur simultaneously. The S2 signal is

another control signal that chooses between either the arithmetic or logic result to exit the ALU.

Figure 35.3: A block diagram for a basic ALU.

35.3 Low-Level ALU Design

You can choose one of many different ways to design ALUs. The approach we take in this section is a

low-level approach that represents a review of our arithmetic-type standard digital design modules. As

you will see, this low-level approach is somewhat limited, particularly when you compare it to using

VHDL to model ALUs on a behavioral level. Behavioral modeling of ALUs is the topic of an upcoming

section, and I bet you can hardly wait.

35.3.1 The Arithmetic Unit

The half adder (HA) was the first circuit we designed. The HA was simple, useful, and also represented

the first arithmetic circuit we designed; it gave us a view of the vast usefulness and endless possibilities

5
 ALUs can have as many operands as you feel like designing into them, though they usually have one to three

operands.
6
 The associated computer instruction is decides what operation needs to be executed.

Digital McLogic Design Chapter 35

 - 739 -

of digital design. The humble HA added two 1-bit numbers; the results included a sum and carry output.

Figure 35.4 shows the block diagram and the associated truth table defining the operation of the HA.

A B Sum Co

0 0 0 0

0 1 1 0

1 0 1 0

1 1 0 1

(a) (b)

Figure 35.4: The block diagram (a) and truth table (b) for the half adder.

The HA circuit was an effective learning tool but it was not overly applicable in a real circuit. The

problem with the HA was that its simplicity limited its usefulness; we could not use the circuit in a

modular manner to obtain a circuit that was capable of adding more than one bit at a time. The

particular limitation with the HA was the fact that it could not handle the needed input from other

devices. In order to make this device useful in a modular manner, it needs to have an input that accepts

and processes a carry out (Co) from another similar device. The solution to this problem leads to the

notion of a full adder (FA). The FA circuit contains both a carry in (Cin) as well as a carry out (Co).

Figure 35.5 shows the black box diagram and associated truth table describing the FA.

A B Cin Sum Co

0 0 0 0 0

0 0 1 1 0

0 1 0 1 0

0 1 1 0 1

1 0 0 1 0

1 0 1 0 1

1 1 0 0 1

1 1 1 1 1

(a) (b)

Figure 35.5: The full adder block diagram (a) and the associated truth table (b).

Although the FA is only capable of adding one bit at a time, it has the capability of being configured to

add n-bits. Making the move from a one-bit adder to an n-bit adder is done by applying the iterative

modular design (IMD) approach. The next step towards developing an arithmetic unit is to configure a

set of n adders in such as way as to form an n-bit adder. This configuration requires the parallel

placement of n FAs with the Co output of each adder driving the Cin input of the adder. In this way, the

Co output of the lesser significant FA is used to drive the Cin input of the next more significant FA in

the parallel configuration.

Figure 35.6 shows schematics and diagrams of a 4-bit ripple carry adder (RCA). This name comes form

the notion that the carry from the less significant bits may need to transition towards the more

Digital McLogic Design Chapter 35

 - 740 -

significant bits before the output becomes valid. This feature delays the final sum output until the carry

ripples through the individual FA elements in the RCA. Delayed results are undesirable in any digital

circuit. However, what the RCA lacks in speed, it makes up for in simplicity.

(a) (b)

Figure 35.6: A diagram of a 4-bit adder (a) and the related n-bit ripple carry adder black box (b).

The next step in our design of an arithmetic unit is to include a few circuit additions that will be useful

to us later in our discussion. Figure 35.7 shows the circuit we want to design. Note there are two extra

outputs included in this circuit that were not included in the RCA circuit: V and Z. In reference to

Figure 35.3, the V output indicates that an overflow condition
7
 exists as a result of the arithmetic

operation. The Z output indicates when the result of the arithmetic operation is zero. Specifically, if all

the bits in the sum are zero, the Z output is set to ‘1’; otherwise the Z output is ‘0’. Figure 35.7(b)

shows the approach we’ll take to design the logic for the V and Z outputs; the “flag logic” will massage

the augend, addend, and Sum in order to generate the V output; the Z output is a function of the S

output only.

(a) (b)

Figure 35.7: The full arithmetic unit we'll design (a) and the circuit we'll use to design it (b).

Figure 35.8 shows the circuit diagrams we’ll use to generate our arithmetic unit module. The approach

we’ll take is to massage the logic to the B input of the “adder”. Note that we’re referring to the box as

an “adder” as it no longer modeled as a RCA because of the V and Z outputs. As you’ll see, if we can

tweak some of the input values, we can generate several useful mathematical operations beyond the

basic adding operations advertised by the RCA module.

Keeping with our digital design theme, we’ll be designing the circuit shown in Figure 35.8(a) using a

modular approach. Figure 35.8(b) shows the main element in this approach: the friendly FA module.

7
 In this context, an overflow condition is where the sign of the two numbers being added is the same, the sign bit

of the sum is different.

Digital McLogic Design Chapter 35

 - 741 -

Note that the FA shown in Figure 35.8(b) is drawn at the bit-level (using the subscripted i notation).

We’ll be designing the logic in the “B Logic” box of Figure 35.8(b). Note that there are two inputs to

this box, which implies there are four different outputs for any given B input.

(a) (b)

Figure 35.8: A block diagram of the arithmetic unit (a) and the bit-level internal element (b).

Figure 35.9(a) shows the B Logic block on the bit level. Note that this block contains three inputs (one

data input and two control inputs) and one output. Yi is the arbitrary name given to the output. The two

control inputs to this block “select” between one of four possible tweaks to the B input. Since the B

input is only a one-bit value, the four possible tweaks to this value are 1) set the value, 2) toggle the

value, 3) do nothing to the value, and 4) clear the value. Figure 35.9(b) shows the resultant MUX

circuit. Placing the circuit of Figure 35.9(b) into the block diagram of Figure 35.8(b) results in Figure

35.9(c).

(a) (b) (c)

Figure 35.9: The B Logic block (a), the internal circuitry (b), and the final circuit (c).

The circuit shown in Figure 35.9(c) is a one-bit element of our final arithmetic unit. If we place “n” of

these units in parallel, we would have an n-bit arithmetic circuit, which is what we’ve set out to do. The

trick here is that by tweaking the B input, we’ll be able to do more operations than the addition that is

the main function of the FA element. The next task is then to see what operations our unit is capable of

by listing all the possibilities in truth table format. Table 35.1 shows these possibilities.

The values in the final two columns of Table 35.1 are generated by keeping in mind that the interior of

the arithmetic unit is an RCA and performs the operation shown in Equation 35.1, The output of the

RCA (Sum or S) is the Sum of the inputs (A & B) added to the carry in (Cin). The mathematical

operation shown in Equation 35.1 generates the information shown in the two right-most columns of

Digital McLogic Design Chapter 35

 - 742 -

Table 35.1. The thing to remember here is that the augend and addend can be considered signed binary

numbers; Table 35.1 uses is 2’s compliment notation.

Sum = S = A + B + Cin

Equation 35.1: Equation for of the output of the arithmetic unit.

S1 S0 Y Cin = 0 Cin = 1

0 0 all 0’s
S = A + 0 + 0 = A

(transfer)

S = A + 0 + 1 = A + 1

(increment)

0 1 B
S = A + B + 0 = A + B

(addition)

S = A + B + 1

(??)

1 0 B
(??)B 0B A S A

(??)

)B -A (1B A S

(subtraction)

1 1 all 1’s
S = A - 1 + 0 = A - 1

(decrement)

S = A - 1 + 1 = A

(transfer)

Table 35.1: The table showing possible arithmetic operations under S1 and S0 control.

The moral so far in this arithmetic design effort is that by including a chunk of logic that massages one

of the operands to the RCA, the arithmetic unit went from a single operation (adding), to five valid and

useful operations: addition, subtraction, increment, decrement, and a transfer
8
. Wow! You gotta love

digital logic design.

As in interesting point, we could reduce the circuitry required by the B Logic and retain the same

functionality. In other words, it’s possible to implement the B Logic with less circuitry than the MUX

as is shown in Figure 35.9(c). The approach to this is to once again go back to your digital roots and

start with a truth table as is shown in Figure 35.10(a). The Y variable represents the output of the B

Logic circuit and is placed into the compressed Karnaugh-map shown in Figure 35.10(b). Note that this

K-map lists B as a mapped entered variable (MEV). Equation 35.2 shows the resulting Y logic; Figure

35.10(c) shows the final bit-level circuitry.

iii BS0 BS1 Y

Equation 35.2: Yi output equation.

8
 You won’t see it anytime soon, but the transfer action is quite useful.

Digital McLogic Design Chapter 35

 - 743 -

S1 S0 B Y

0 0 0 0

0 0 1 0

0 1 0 0

0 1 1 1

1 0 0 1

1 0 1 0

1 1 0 1

1 1 1 1

(a) (b) (c)

Figure 35.10: The truth table (a), compressed K-map with MEV (b), and resulting B Logic

circuitry (c).

This concludes what we need to do for the arithmetic portion of this circuit. We now need to provide

some logic that generates the V (overflow) and Z (zero) outputs. The best approach is to use the fact

that the V output will be set when the sign of the augend and addend are equal to each other but

different from the sign of the result. Figure 35.11(a) shows that you can model this statement in truth

table form. Note that in this truth table, the (n-1) bit position is the left-most bit (zero referenced) and

hence, the sign bit for an n-bit signed binary number. Figure 35.11(b) shows the resulting equation.

A(n-1) B(n-1) S(n-1) V

0 0 0 0

0 0 1 1

0 1 0 0

0 1 1 0

1 0 0 0

1 0 1 0

1 1 0 1

1 1 1 0

1)-(n1)-(n1)-(n1)-(n1)-(n1)-(n SB A SB A V

(a) (b)

Figure 35.11: The truth table (a) and resulting equation for V (b).

The logic for the Z signal is more straightforward than the development of the overflow indication

signal. The Z output is a ‘1’ whenever the result of the logic operation is zero. In other words, if all the

bits in the Sum are 0’s, the Z output will be set; otherwise, it will be zero. This is results in a NOR

operation; Figure 35.12 shows this amazing circuit.

Digital McLogic Design Chapter 35

 - 744 -

Figure 35.12: The logic for the Z output.

35.3.2 The Logic Unit

Designing the logic unit is so straightforward that we’ll not need to spend much time here. What logic

you choose for your ALU is up to you. For this discussion, we’ll arbitrarily give our logic unit the

ability to invert, XOR, OR, or AND. Specifically, the logic unit can apply these operations as follows:

1) compliment a single operand, 2) XOR two operands, 3) OR two operands, or 4) AND two operands.

The logic unit will choose one of these operations based on the logic’s units two control inputs. We’ve

chosen four operations because we are reusing the control inputs that we used in the arithmetic unit (the

ones that controlled the B Logic block). In our original diagram of Figure 35.3, recall that both the

arithmetic and logic units share the same control inputs.

As with the arithmetic unit, we’ll first show that we can model the logic unit at the bit-level. Figure

35.13(a) shows a 4:1 MUX; we consider each bit associated with the A & B operands to be input to one

of these MUXes as part of the logic unit. The module of Figure 35.13(b) results from assembly “n” of

the circuits shown in Figure 35.13(a); we refer to this as an “n-bit logic unit”.

(a) (b)

Figure 35.13: The circuitry (a) and black box diagram (b) for our logic unit.

Consider for a moment that we now want to show a logic diagram for an 8-bit logic unit. We could

draw eight of the circuits shown in Figure 35.13(a), but that would be a massive waste of time. A better

approach would simply be model the logic unit using VHDL. Figure 35.14 shows a VHDL model for

our logic unit. VHDL sure makes things much simpler.

Digital McLogic Design Chapter 35

 - 745 -

entity logic_unit is

 Port (A,B : in std_logic_vector(7 downto 0);

 S1 : in std_logic;

 F : out std_logic_vector(7 downto 0));

end logic_unit;

architecture lu of logic_unit is

begin

 with S1 select

 F <= (not A) when “11”,

 (A XOR B) when “10”,

 (A OR B) when “01”,

 (A AND B) when “00”,

 X”00” when others; -- hex notation

end lu;

Figure 35.14: The VHDL model for the logic unit.

To complete this approach to ALU design, Figure 35.15 shows the final ALU block diagram. Note that

this diagram includes three status outputs form the arithmetic unit. Any number of status inputs could

have also been included from the logic unit, but we opted not to include any. One standard approach to

including status outputs from both the arithmetic and logic units is to input a given status signal from

each unit into a MUX. In this way, the signals selecting the individual operations on the units would

also select which status output exits the ALU module.

Figure 35.15: The entire ALU (8-bit form) for this section.

In the end, we now have an ALU that does quite a few operations. Table 35.2 provides a summary of

the operations our ALU design can do. Here are a few things worth noting:

S1 is a 2-bit bundle, which means there are four control inputs to this ALU design. Note that we

consider Cin to be a control input because it allows the ALU to generate several operations in the

arithmetic unit.

 With four control inputs, we could maximally choose between 16 different operations with this

ALU. Because the logic unit does not use the Cin input, the logic unit loses only has two

control signals and thus only performs four operations (a loss of four operations for the ALU).

Digital McLogic Design Chapter 35

 - 746 -

Additionally, two control input options provide us nothing in the arithmetic side. The ALU

thus performs ten operations. In truth, we have listed the “transfer A” option twice, so our

ALU only performs nine unique operations.

S2 S1 Cin Operation

0 00 - Compliment A

0 01 - A XOR B

0 10 - A OR B

0 11 - A AND B

1 00 0 Transfer A

1 00 1 A + 1 (increment A)

1 01 0 A + B (addition)

1 01 1 -

1 10 0 -

1 10 1 A – B (subtraction)

1 11 0 A – 1 (decrement A)

1 11 1 Transfer A

Table 35.2: A summary of out ALU operations.

35.4 VHDL Modeling: Signals vs. Variables

After reading through the previous section, you may find yourself hoping for a better way to design

ALUs. As you may guess from the logic unit design, modeling ALUs using VHDL is straightforward.

What makes this modeling straightforward is the use of a new type of VHDL object: the variable.

You’ve been extensively using signals up to this point and hopefully found that those were no big deal.

However, as you start designing more complex circuits, you’ll find that using strictly signals in your

designs can be very limiting. The use of variables frees you from those constraints; they also simplify

the modeling of ALUs using VHDL.

Variables usage in VHDL is similar to signal usage; there are only two minor differences. We’ll soon

describe the two major differences as well. The minor differences lie in the notion of variable

declaration and assignment. We’ll describe both variable definition and assignment in the context their

similarities to signals.

35.4.1 Signal vs. Variables: The Similarities

Figure 35.16 shows the similarities and differences between signal and variable declaration. Note that

signals are declared as “signal” types and variables are declared as “variable” types; aside from that, the

declarations are similar. Note that the initialization of signals and variables is the same; we can initialize

them if we need to, but initialization is optional. Also, note that variables can be of subtype “std_logic”

as we’re used to using in the context of signals.

Digital McLogic Design Chapter 35

 - 747 -

signal s_sig1 : std_logic;

signal s_sig2 : std_logic := ‘1’;

signal s_vec1 : std_logic_vector(0 to 3);

variable v_sig1 : std_logic;

variable v_sig2 : std_logic := ‘1’;

variable v_vec1 : std_logic_vector(0 to 3);

(a) (b)

Figure 35.16: The circuitry (a) and black box diagram (b) for our logic unit.

Figure 35.17 shows the differences between signal and variable assignment. The major difference here

is that assignment to signals use the signal assignment operator (“<=”) while assignment to variables

use the variable assignment operator (“:=”). Also note that variables can be assigned literal values as

we’ve done extensively with signals. Finally, not that signals can be assigned to variables and variables

can be assigned to signals. The notion here is that the VHDL language allows the overloading of these

two assignment operators
9
.

s_sig1 <= s_sig2; ;

s_sig2 <= ‘1’;

s_vec1 <= X”E”;

s_sig1 <= v_sig1;

v_sig1 := v_sig2;

v_sig2 := ‘1’;

v_vec1 := X”E”;

v_sig1 := s_sig1;

(a) (b)

Figure 35.17: The circuitry (a) and black box diagram (b) for our logic unit.

35.4.2 Signal vs. Variables: The Differences

There are three major differences between signal and variable usage. The first major difference is that

variables can only be defined in the declarative region of process while signals can only be declared in

the declarative region of architectures
10

. Conversely, variables can’t be declared in the declarative

regions of architectures while signals can’t be declared in the declarative regions of processes.

Now that we’ve made these statements, there are a few more issues to consider. An unmentioned

similarity between signals and variables is the fact that after they are assigned, they retain their values.

This is an easy statement to make, but to make this more memorable, we’ll soon use it in an example.

There second major difference between signals and variables is their visibility in the VHDL model.

Since signals are declared in the declarative region of the architecture, a signal can be referenced

anywhere in that architecture. However, since a variable declaration is part of a process statement,

9
 Many VHDL operators are overloaded; check the VHDL specification for full details. I actually don’t know what

they are and I have to check them myself when the issues arises.
10

 There is actually more to the story than this. This text does not currently cover the notion of “functions” and

“procedures” in VHDL. These two VHDL constructs have yet more rules for signals and variables that we’ll not

mention here.

Digital McLogic Design Chapter 35

 - 748 -

variables are only visible and thus usable in the process in which they are declared. This is similar to the

notion of “scope” in higher-level computer programming languages
11

.

The final main difference between signals and variables relates to how the VHDL synthesizer interprets

them. The best way to show and described this difference is with an example. For the following

example, we’ll model the well-known ripple carry adder (RCA) using variables. Recall that up until

now that we have only modeled RCAs using VHDL structural models. Our explanation of the

differences between signals and variables should be obvious after this example.

Example 35-1

Model an 8-bit ripple carry adder (RCA) using VHDL variables.

Solution: Figure 35.18 shows a solution to this example. The main point of this example is that it

highlights the difference between variables and signals. Honestly, if this problem could be done without

the use of variables, than I admit I don’t know how. The issue here is that problems such as these are

easily modeled with variables; it therefore makes no sense to find a better way to solve the problem.

The final main difference between signals and variable is that in process, the results of an assignment to

a variable is available to immediately use in the process while assignments made to signals are

“scheduled” to occur once the process suspends
12

. There fact has two main ramifications. First, you can

use the result of a variable assignment within the process. Second, you can assign signals in processes

are many time as you need to in the process; the only assignment that actually occurs is the last one

seen in the process. Similarly, one way to think about signals and variables is that they store

intermediate results of calculations. With variables, you can use this result immediately; with signals,

the true results are not available until the process suspends.

Here are a few more worthy items to note regarding the solution shown in Figure 35.18. The number in

the list below corresponds to the comments in the code.

(1) This is the variable declaration; the variable is of a std_logic_vector type of nine bits. The

reason for declaring a 9-bit type with an 8-bit adder will soon become evident.

(2) This is the main addition operation. Because the variable is nine bits, we need to append an

extra bit to the A & B operands; this is done with an ampersand, the operator VHDL uses for

concatenation. The Cin input is also added to the “v_res” variable. Note that this statement

advertises the notion that the addition operator (+) in VHDL is overloaded
13

. This is because

we’re adding a std_logic type to a std_logic_vector types and assigning the result to a variable.

Because this is a variable assignment (note the “:=” operator), the new value is assigned to

v_res immediately.

11

 Once again, the notion of VHDL functions and procedures have their own rules of visibility for signals and

variables. Check a VHDL reference for details.
12

 There are two ways a process can suspends. The only way you may know now is that execution suspends once

the end of the process is reached. The other way, which is covered in the chapter on testbenches, is when a VHDL

“wait” statement is encounter. See the chapter on testbenches for more details.
13

 Be aware that this overloading and the liberal use of the “+” operator is based on the notion that we have

included the proper libraries with our VHDL model. We always omit the library uses clauses in this text in an effort

to save paper and space.

Digital McLogic Design Chapter 35

 - 749 -

(3) At this point in the execution of the process, the v_res variable now contains the result. The

SUM signal is an 8-bit signal while the v_res variable is a 9-bit signal, so we are only

interested in the lower eight bits of v_res. This is signal assignment operation, so the actual

assignment to the SUM signal does not occur until the process suspends. In VHDL terms, this

assignment “is scheduled” to occur.

(4) As it turns out, the most significant bit of the v_res variable is the carry-out we’re looking for.

The MSB of the v_res result is assigned to the Co signal. Because this is signal assignment, the

assignment is scheduled; the actual assignment occurs when then process suspends.

entity RCA_8bit is

 port (A,B : in std_logic_vector(7 downto 0);

 Cin : in std_logic;

 Co : out std_logic;

 SUM : out std_logic_vector(7 downto 0));

end RCA_8bit;

architecture RCA_8bit of RCA_8bit is

begin

 process(A,B,Cin)

 ---(1)

 variable v_res : std_logic_vector(8 downto 0);

 begin

 ---(2)

 v_res := ('0' & A) + ('0' & B) + Cin;

 ---(3)

 SUM <= v_res(7 downto 0);

 ---(4)

 Co <= v_res(8);

 end process;

end RCA_8bit;

Figure 35.18: The solution to Example 35-1.

There is one final item to note about the solution to Example 35-1. VHDL is versatile and powerful, but

it lacks intelligence. As a result, you the designer need to account for many issues, particularly when

arithmetic operations are involved. In the solution to this problem, the VHDL designer needs to

understand that the addition of two eight-bit operands generates a nine-bit result. This is why we

declared the v_res variable as nine bits. If we had not done this, we would not be able to know the value

of the carry-out generated from the operation. This is true with other operations, namely multiplication.

Digital McLogic Design Chapter 35

 - 750 -

Example 35-2

Model the following 8-bit adder unit using VHDL. Consider the S output to be a sum, the Co

output to be a carryout, the Z output indicates when the S values is zero, and the V output

indicates overflow from the addition of signed numbers. Consider the Cin input as a carry-in.

Solution: The first thing notice about this problem is that is it is similar to Example 35-1, which means

we can use most of that solution for this problem. The main difference with this problem is that we now

need to deal with an overflow (V) and zero (Z) indicator signals. The power of VHDL makes this

somewhat trivial. Trivial things are good.

Here are a few more worthy items to note regarding the solution shown in Figure 35.18. The number in

the list below corresponds to the comments in the code.

(1) This portion of code handles the case of the zero indicator. When the result is zero, we need

the Z to be ‘1’; otherwise it is a ‘0’ (can you say “positive logic”). In digital terms, we use a

comparator and compare the bits forming the SUM to 0x00. As you may recall, this is easily

modeled using VHDL; note that this section of code includes both an if and an else statement,

which is good for reasons we’ll get into in a later chapter.

(2) This piece of code handles the case of the overflow indicator. The notion here is that there is

an overflow is defined to be when the sign of the two operands are equivalent, but different

from the sign of the result. This piece of code implements what the idea stated in the previous

sentence. There are two items of interest here
14

. First, the V output is initially assigned to ‘0’

before this piece of code is encountered. The thought here is that the code may then re-assign

the signal as part of the if statement. While this may seem strange, you always want to make

sure all of the signals you’re using are assigned somewhere
15

 at least once. The other thing to

note here is that we use the VHDL “not equals” operator: “/=”, not to be confused with a

similar operator in the C programming language.

14

 Please realize that there are many approaches to each section of this code; I made the subjective call that this is

the clearest approach.
15

 This is for a reason that we’ll discuss in a later chapter. In case you want to know now, the reason is that we’re

making sure something is always assigned to V in a valiant effort to avoid generating a latch.

Digital McLogic Design Chapter 35

 - 751 -

entity adder_unit is

 port (CIN : in std_logic;

 A,B : in std_logic_vector(7 downto 0);

 CO,V,Z : out std_logic;

 S : out std_logic_vector(7 downto 0));

end adder_unit;

architecture my_adder of adder_unit is

begin

 process (A,B,Cin)

 variable v_sum : std_logic_vector(8 downto 0);

 begin

 v_sum := ('0' & A) + ('0' & B) + CIN;

 CO <= v_sum(8);

 SUM <= v_sum(7 downto 0);

 --(1)

 if (v_sum(7 downto 0) = X"00") then

 Z <= '1';

 else

 Z <= '0';

 end if;

 --(2)

 V <= '0';

 if (A(7) = B(7)) then

 if (v_sum(7) /= A(7)) then

 V <= '1';

 end if;

 else

 end if;

 end process;

end my_adder;

Figure 35.19: The entire ALU (8-bit form) for this section.

35.5 ALU Design using VHDL Modeling

After dragging you through this chapter, we ready to crank out some ALU examples. The approach

we’ll take utilizes the full power of VHDL; we’ll thus be designing ALUs on the highest level possible.

While we could design both arithmetic and logic units, we’ll opt to focus our designs at as high of a

level of abstraction as possible.

Digital McLogic Design Chapter 35

 - 752 -

Example 35-3

Provide a VHDL model for an ALU that performs the following operations. Use the SEL

input to select operations; use the C input as a carry in. The S output contains the result of the

selected operation. The Co is a carry-out, and the Z is a zero indicator and is active for all

operations. A dash in a table cell represents the case where the Co is not active and is set to

‘0’.

SEL S Co Comment

“000” A + B valid Addition

“001” A-B valid Subtraction

“010” A + B + C valid Addition with C

“011” B + B valid 2X multiplication

“100” A + A valid 2X multiplication

“101” A XNOR B - Logic: XNOR

“110” A NAND B - Logic: NAND

“111” A AND B - Logic: AND

Solution: There is not much more to say about this solution that has not already been said. As you’ll see

from looking at the solution in Figure 35.20, we’ve previously described most of the VHDL usage in

this model. There are a few things to note, and here they are:

(1) the Z and Co outputs are treated as signals. We give these values and overwrite the values later

in the process when necessary.

(2) This is subtraction in VHDL. For this operation, we do not include the C input which would

have been interpreted used for extended the operation greater than 8-bits. The Co in this case is

considered a “borrow” and has all the attributes associated with a subtraction operation.

(3) This is an addition with the C, which is considered a carry-in from another calculation. This

style of coding is typically used to extend the addition to something greater than 8-bits.

(4) This is the assignment of the Z indicator. Note that is was previously assigned earlier in the

process; if the 8-bit result of the ALU operation is zero, this code reassigns the Z signal.

(5) This assigns the lowest eight significant bits of the intermediate result of the v_res variable to

the output.

Digital McLogic Design Chapter 35

 - 753 -

entity alu1 is

 port (A,B : in std_logic_vector(7 downto 0);

 C : in std_logic;

 SEL : in std_logic_vector(2 downto 0);

 Z,Co : out std_logic;

 S : out std_logic_vector(7 downto 0));

end alu1;

architecture my_alu1 of alu1 is

begin

 process(A,B,C,SEL)

 variable v_res : std_logic_vector(8 downto 0);

 begin

 --(1)

 Z <= '0'; Co <= '0';

 case sel is

 when "000" =>

 v_res := ('0' & A) + ('0' & B);

 Co <= v_res(8);

 when "001" =>

 --(2)

 v_res := ('0' & A) - ('0' & B);

 Co <= v_res(8);

 when "010" =>

 --(3)

 v_res := ('0' & A) + ('0' & B) + C;

 Co <= v_res(8);

 when "011" =>

 v_res := ('0' & A) + ('0' & A);

 Co <= v_res(8);

 when "100" =>

 v_res := ('0' & B) + ('0' & B);

 Co <= v_res(8);

 when "101" =>

 v_res := A XNOR B;

 when "110" =>

 v_res := A NAND B;

 when "111" =>

 v_res := A AND B;

 when others => v_res := (others => '1');

 end case;

 ---(4)

 if (v_res(7 downto 0) = X"00") then

 Z <= '1';

 end if;

 ---(5)

 S <= v_res(7 downto 0);

 end process;

end my_alu1;

Figure 35.20: The VHDL model solving Example 35-3.

Digital McLogic Design Chapter 35

 - 754 -

Chapter Summary

 A computer is a device that reads instructions from memory and executes those instructions on

associated data. The three main components of a computer are the memory, input/output, the central

processing unit (CPU). The CPU is comprised of a control unit and a datapath; the main component

of the datapath is the arithmetic logic unit (ALU).

 The term ALU can mean just about anything; ALUs are not constrained to performing only arithmetic

and logic operations. ALUs can be designed on many different levels of abstraction.

 VHDL support the use of both “signals” and “variables”. Signals are declared only in the declarative

regions of architectures while variables are declared only in the declarative regions of processes.

Signals can be seen in all processes of an architecture while variables are only visible in the process

in which they are declared. Results from signal assignment in processes are not available until the

process suspends while the results from variable assignments are available immediately.

 VHDL has many overloaded operators. High-level ALU design typically utilizes the overloading of

mathematical operators and the extensive use of variables in modeling of ALUs.

Digital McLogic Design Chapter 35

 - 755 -

Chapter Exercises

1) The circuit below is a block diagram of an arithmetic circuit. For this problem do the following:

 Fill in the empty entries in the table below (fill in both equations and names of operations).

 Draw circuits that can be used to implement the “A Logic” and “B Logic” blocks. This circuitry

should allow the arithmetic unit to implement the functionality described in the table listed

below.

S1 S2

Cin = 0 Cin = 1

equation equation

operation operation

0 0
2A 2A + 1

 (??)

0 1
B + B

 clear (all 0’s)

1 0

complement A negate A

1 1
B

 negate B

Digital McLogic Design Chapter 35

 - 756 -

2) The circuit below is a partially completed block diagram of an arithmetic circuit. The table below

lists the operations required by the circuit. For this problem do the following:

 Using only MUXes, design a bit-level implementation of the A Logic and B Logic that will

implement the mathematical operations listed below. Your entire design should use no more

than four control signals in addition to the Cin signal. Be sure to completely label your MUX

control signals.

 Complete the table listed below by providing the control signals that your design uses to

provide the listed operations.

Operation: Required Control Signal Values

A - B

A + B

C - D

C + D

increment A

decrement B

3) The figure on the left represents a block diagram of an arithmetic circuit. The diagrams on the right

show the single bit versions of the “A logic” and “B logic” blocks from the diagram on the left. List

all possible operations that this circuit can perform. Provide names to the arithmetic operations that

make sense (such as addition, subtraction, set, clear, increment, etc.).

Digital McLogic Design Chapter 35

 - 757 -

4) The circuit below is a partially completed block diagram of an arithmetic circuit. The table below

lists the operations required by the circuit. For this problem do the following:

 Using only MUXes, design a bit-level implementation of the A Logic and B Logic that will

implement the mathematical operations listed below. Your entire design should use no more

than four control signals in addition to the Cin signal. Be sure to completely label your MUX

control signals.

 Complete the table listed below by providing the control signals that your design uses to

provide the listed operations.

Operation: Required Control Signal Values

A - B

A + B

C - D

C + D

increment A

decrement B

transfer A

5) The figure on the left represents a block diagram of an arithmetic circuit. The table on the right lists

the operations that can be implemented using the arithmetic circuit. Show the logic equations or

circuit implementations for a single bit for the “X Logic” and “Y Logic” blocks that implements

the functionality described by the table on the right.

S1 S0 Cin = 0 Cin = 1

0 0 B B 0

0 1 A B B -A

1 0 A B 1 A B

1 1 1 - B B

Digital McLogic Design Chapter 35

 - 758 -

6) The circuit below is a block diagram of an arithmetic circuit. For this problem do the following:

 Fill in the empty entries in the table below (fill in both equations and names of operations). HINT:

complete this bullet first; also, the two right-most columns differ by only the Cin value.

 Draw circuits that can be used to implement the “A Logic” and “B Logic” blocks. This circuitry should

allow the arithmetic unit to implement the functionality described in the table listed below.

S2 S1 S0

Cin = 0 Cin = 1

equation equation

operation operation

0 0 0
A + B

(??)

0 0 1
A + 0

0 1 0

(decrement A)

0 1 1
 A + A + 1

 (??)

1 0 0
B + B

1 0 1

 (increment B)

1 1 0
B - 1

1 1 1
 B + A + 1

 (??)

Digital McLogic Design Chapter 35

 - 759 -

7) Provide a VHDL description (the architecture) of the Shift/Logic unit described below. For this

problem, ignore the CLK signal. Don’t use mathematical operators in your VHDL model.

Shift/Logic Unit Specification

SEL(1) SEL(0) Out Comment

0 0 A compliment A

0 1
A NOR

B
bitwise NOR operation

1 0 A brl 5x
A barrel rotate left (5

bits)

1 1 B ÷ 16 B divided by 16

Digital McLogic Design Chapter 35

 - 760 -

8) The circuit below is a block diagram of an arithmetic circuit. For this problem do the following:

 Fill in the empty entries in the table below (fill in both equations and names of operations).

 Draw circuits that can be used to implement the “A Logic” and “BC Logic” blocks. This circuitry

should allow the arithmetic unit to implement the functionality described in the table listed below.

S1 S0

Cin = 0 Cin = 1

equation equation

operation operation

0 0

0 1

(decrement B)

1 0
 A + C + 1

1 1

(decrement C)

Digital McLogic Design Chapter 35

 - 761 -

9) Provide a VHDL description of the Shift/Logic unit described below.

Shift/Logic Unit Specification

S1 S0 Out Comment

0 0 A AND B bitwise AND

0 1 A XOR B bitwise exclusive OR

1 0 A asl (r-0)
A input arithmetic shift left (0 in

right)

1 1
B bsr3x (l-

0)

B input barrel shift right 3x (0

in left)

10) Provide a VHDL model for an ALU that performs the following operations. Use the SEL input to

select operations; use the C input as a carry in. The S output contains the result of the selected

operation. The Co is a carry-out, the V is an overflow indicator, and the Z is a zero indicator and is

active for all operations. A dash in a table cell represents the case where the Co is not active and is

set to ‘0’.

SEL S Co V Comment

“000” A + B + C valid valid Add with C

“001” A-B-C valid valid Subtract with C

“010” B + B valid valid 2x B

“011” A+ 1 valid - Increment A

“100” B + 1 valid - Increment B

“101” Zero - - All zeros

“110” -1 1 1 2’s comp -1

“111” A NAND B - - Logic: NAND

Digital McLogic Design Chapter 35

 - 762 -

11) Provide a VHDL model for an ALU that performs the following operations. Use the SEL input to

select operations; use the C input as a carry in. The S output contains the result of the selected

operation. The Co is a carry-out and the Z is a zero indicator and is active for all operations. A dash

in a table cell represents the case where the Co is not active and is set to ‘0’.

SEL S Co Comment

“00” |A| + 1 valid Increment the absolute value

of A

“01” |B| -1 valid Decrement the absolute value

of B

“10” |A + B| valid Absolute value of (A + B)

“11” A AND B - Logic: A AND B

12) Provide a VHDL model for an ALU that performs the following operations. Use the SEL input to

select operations; use the C input as necessary. The S output contains the result of the selected

operation. The Z is a zero indicator and is active for all operations.

SEL S Comment

“000” -A Negate A

“001” -B Negate B

“010” |A| Absolute value of (A)

“011” |B| Absolute value of (B)

“100” 0 zero

“101” “CCCCCCCCCC” Propagate C input

“110” A/2 Half A (truncate)

“111” A OR B Logic: AND

 - 763 -

99 Chapter Ninety-Nine

(Bryan Mealy 2012 ©)

99.1 Chapter Overview

If we were all perfect, there would be no need for this chapter. However, since we all generally make

mistakes, we definitely need a mechanism to find and correct those mistakes. Out there in digital

design-land, the approach we take to creating digital circuits is 1) design them, 2) simulate them, and 3)

implement them. The ordering of these steps is massively important despite the fact that most people do

step 3) before doing step 2)
1
, if they even do step 2) at all.

You should simulate every circuit you design in order to increase your confidence level that the circuit

is working properly. Life is easy with simple circuits; you can probably survive without testing them.

More complex digital circuits inherently contain nuances so that you simply can’t assume they will

work without somehow properly verifying that fact. The main goal of this chapter is to get you started

simulating your own circuits. This chapter presents the basic tools and theory of writing “testbenches”,

which is the term VHDL uses to describe a VHDL-based simulation mechanism for your circuit. This

chapter is not an exhaustive approach to writing testbenches; it only aims to get you started. Once you

get started, your circuit simulation techniques will quickly go far beyond the drivel in this chapter.

We opted to use a high chapter number for this chapter because there seemed to be no optimal location

to present this material. If you don’t want or need to test your VHDL models, you’ll have no need for

this chapter. But, any good digital designer knows that testing is an important part of designing digital

circuits
2
. Additionally, you don’t need to read this entire chapter; use what you need when you need it.

Main Chapter Topics

 VHDL TESTBENCHES: VHDL uses the notion of testbenches to verify circuit

operation. This chapter presents an overview and introduction to VHDL

testbenches.

 TESTBENCH TEST VECTORS: This chapter describes the options VHDL

testbenches can use to generate and/or access data used by testbenches.

 VHDL ASSERT STATEMENT: This chapter describes how testbenches use assert

statements to help verify proper circuit operation..

 VHDL PROCESS STATEMENTS: This chapter describes another form of the VHDL

process statements; this new form is useful in testbench models.

 VHDL WAIT STATEMENTS: This chapter describes the four types of VHDL wait

statements and provides examples of their usage in actual testbench models.

1
 We’re all busy. Us, we’re truly busy and have the results to prove it. Academic administrators: they do their best

to look busy and violently wave their hands in lieu of actual results.
2
 If the circuits you design don’t work, you may as well become an academic administrator instead. For such

positions, no experience, expertise, not intelligence of any type is required.

Digital McLogic Design Chapter 99

 - 764 -

Why This Chapter is Important

This chapter is important because it provides an overview and introduction to writing

testbenches in VHDL. The VHDL language uses testbenches as a mechanism for

verifying the proper operation of VHDL models using none other than other VHDL

models.

99.2 Testbench Overview: VHDL’s Approach to Circuit Simulation

Most of your VHDL career up to this point was focused on designing circuits that were intended to be

synthesized, which is one of the powerful points of VHDL. However, keep in mind that one of the other

powerful characteristics of VHDL is the ability to design models that can test other VHDL models. In

other words, VHDL is such a versatile modeling tool that it can also act as a simulation mechanism.

Unfortunately, in many instances, the main focus of digital design using VHDL is the design and

generation of circuits; the testing/verification portion of circuit design is attenuated due primarily to

time constraints.

Because testbenches are an important part of VHDL modeling, they are also an important part of the

modern digital design process. In the initial stages of learning digital design, you’re designs were most

like simple enough so that you could verify their correct operation by examining the circuit models or

testing the final circuit implemented on some type of real hardware. In all likelihood, you may not have

even simulated your circuit. This is all fine, but the non-testing approach quickly breaks as your digital

circuit become more complex.

As your digital designs become more complex, you’re going to need to simulate them as part of the

design process. In this context, simulation serves two purposes. First, simulation is going to be a great

design tool. If you haven’t realized it already, digital circuits can become complex. The complexity

increases further when you are designing with non-ideal devices and you’re forced to deal with the

propagation delays associated with physical devices
3
. Secondly, simulation is a great debugging tool. If

your circuit is not working and it’s not obvious why, you’ll know it’s time to simulate. If you’re truly

doing the digital design thing correctly (and your designs are not trivial), you should be finding yourself

spending as much time writing simulation models as you spend writing the hardware models

themselves.

VHDL uses the term “testbench” to describe the mechanism VHDL uses to verify the functional

correctness of your VHDL models. This chapter provides a vehicle to get you started writing

testbenches, and thus allows you to verify the correct operation of your hardware models.

Finally, in the real world, the up-front verification of circuit operation is critical to the success of any

project. As you know, the earlier you catch errors, the easier they are to fix and they’ll have less

tendency to generate more errors and induce bad design decisions along the way. This is massively

important in the case of custom ASIC design when obtaining an actual design on silicon is going cost

you about a million bucks
4
. In the end, if you play your cards right, you’ll be using simulation as your

3
 The underlying thought here is that many digital circuits need to operate as fast as possible. In this case, many

factors rear their ugly heads and conspire to undermine the proper operation of your circuit. All digital circuits stop

functioning properly at some speed. Often times the goal in digital design is to push your circuit to operate as fast

as possible. In many cases, making your circuit operate faster is a primary design constraint and will necessarily

force you to redesign your circuit in order to meet required time constraints.
4
 Which is why prototyping with PLDs is a powerful alternative to paying for a custom ASIC.

Digital McLogic Design Chapter 99

 - 765 -

primary design tool. Keep in mind that the original use of VHDL was as a tool to allow you to model

and simulate digital designs.

99.3 Testbenches: VHDL’s Approach to Circuit Simulation

A testbench can mean many different things. For this chapter, we’ll consider a testbench to be a VHDL

model that is separate from your VHDL circuit model. The testbench works in conjunction with the

VHDL model with the purpose of verify proper operation of the VHDL model. The major difference

between the testbench and the circuit you’re testing is the fact that you probably intend to synthesize

your circuit model while your testbench model is probably non-synthesizable. As you’ll soon find out,

the testbench models typically use VHDL constructs that don’t synthesize. This is because the primary

purpose of the testbench is to provide a set of “stimulus” to the model you’re testing.

The testbenches we’ll examine are written in VHDL. While this is not a requirement, there are many

advantages to writing testbenches in the same language used to model the circuit. The main advantages

are that you won’t need to learn a new tool or a new language
5
, and the entity used to test your circuit

can be included with and tested using the same tools you used to model your circuit.

Testbenches are a deep subject; there are many approaches to testbench design as result of flexibility of

the VHDL language. This chapter will get you started on using testbenches to verify your design. As

you continue your digital design journey, necessity will force you to learn many more circuit

verification techniques not presented in this chapter.

99.4 The Basic Testbench Models

VHDL test benches can span the gamut from quite simple to massively complex depending on the

intended purpose of the design. Often times, the testbench model can become more complicated than

the actual circuit you’re testing. The result is that there are many different “models” associated with

testing a circuit with a testbench. This section provides a quick overview of some of the more popular

models, which are the ones we’ll crank though later in this chapter. This is the quick overview part,

provided to give you a quick feel for testbenches. The low-level details arrive later.

Figure 99.1 shows the most basic testbench model. This model comprises of two main components: the

“stimulus driver” and the “design under test” (DUT)
6
. These two boxes are typically referred to by

many different names but the functions are still the same (so don’t become too hung up on the names).

The DUT is the VHDL model you’re intending to test; the stimulus driver is a VHDL model that

communicates with the DUT by providing it with inputs to exercise the DUT. Here are a few important

things to note regarding Figure 99.1.

 There is no magic in Figure 99.1. The truth is that the model depends on some human

generating all the details of the “stimulus driver” box. You the human and you the designer of

the circuit will need to decide what to test and determine if every important part of your circuit

has been exercised by the stimulus driver enough for you to say, “yes, this circuit works”
7
.

5
 This is not completely true; you’ll soon find out that we’ll be using several features in VHDL that we have not

previously used.
6
 The DUT is sometimes referred to as a “UUT” which stands for “unit under test”. Other times it is referred to as

the “MUT”, or model under test. Sometimes it is referred to as a “BBUT”, or bowling ball under test. The stimulus

driver is sometimes referred to as the waveform generator.
7
 Where as an academic administrator would say, “yes, this is a circuit” as these people are deathly afraid of

committing to anything (unless of course they can blame their failures on innocent people).

Digital McLogic Design Chapter 99

 - 766 -

 The dotted box labeled “testbench” represents the testbench model in terms of the VHDL

language. Note that the dotted box has no inputs or output; thus, the VHDL entity will have no

inputs or outputs either. This is strange, but you’ll quickly get used to it.

 The testbench is really testing something. The model listed in Figure 99.1 will generally be

used to generate a timing diagram. Using this model, the timing diagram will then need a

visual inspection from some human in order to verify the circuit is working properly.

Figure 99.1: A block diagram for a basic VHDL testbench.

Figure 99.2 shows a slightly modified model of Figure 99.1. In many testbenches, the DUT sends

feedback and/or intermediate results back to the stimulus driver. The stimulus driver can use this

feedback as part of the testing (such as verifying the correctness of intermediate results) or sequencing

of the testbench (waiting for a status signal indicating that some portion of the DUT is ready to be

tested). The models of Figure 99.1 and Figure 99.2 are quite simple are relatively common.

Figure 99.2: A block diagram for a more complicated VHDL testbench.

Figure 99.3 shows an extension of Figure 99.2. This figure shows that you can design your testbenches

an extremely useful feature. As was present in Figure 99.2, the stimulus driver can contain pre-

determined values that the model can use to verify the correctness of intermediate, or “expected”

results. In this case, this set of predetermined results can determine whether the DUT passed the “test”

or not. The notion here is that if all the results comparisons are happy, then the DUT passes the test.

There are many methods you can use to implement the “results comparison” box of Figure 99.3.

Digital McLogic Design Chapter 99

 - 767 -

Figure 99.3: A block diagram for yet another VHDL testbench.

Figure 99.4 shows one final model we’ll work with in this chapter. This model shows that the testbench

can use external files for either storing the test vectors or writing the results of the test. Simple circuits

don’t require fancy testbenches, but as circuits become more complicated, other more clever approaches

can be used to verify correct circuit operation.

One interesting thing to keep in mind here is that the external files for test vectors can be generated by

some other test device such as the output of some other simulator you’re using to test your design.

Many times designs are first done on paper or modeled with computer programs; these devices can

output test vectors more easily and completely than a human can do. VHDL has many facilities for

accessing data from external files to use as test vectors
8
.

As you know from previous models, the testbench can determine whether the DUT has passed the

testing procedures or not. While a pass/fail indication is nice, it does not provided much information.

When your circuit is large and complex, you’ll surely want the testbench to give you information along

the way, particularly if you design does not pass the testing procedures. Once again, VHDL has many

options for outputting information to files. These files can then be compared directly to files generated

by other test mechanisms to determine whether the DUT is working properly.

Figure 99.4: A block diagram for a VHDL testbench that reads test vectors from external files

and writes the results to other external files.

8
 This chapter only describes a few of them.

Digital McLogic Design Chapter 99

 - 768 -

VHDL has many facilities you can use to test your design. This chapter presents some of the basics

regarding the use of testbenches for circuit verification. There is much more to the story, so if you find

yourself being required to write amazing test benches, then you’ll need to learn more or all of the details

this chapter has opted to omit. VHDL is powerful, particularly in the context of circuit verification:

learn what you need to as the need arises.

99.5 The Stimulus Driver

The heart of the testbench is the stimulus driver. This black box represents a majority of the code you’ll

be writing for your testbench. Being as important as it is, this section provides a short overview of

possible structures for the stimulus driver. The basic structure of a testbench is simple but the issues are

in the implementation details, which can seem daunting for anyone new to writing testbenches. Some of

the details in this section were “hinted at” in the previous section in the provided black box testbench

diagrams. This section paves the way for the examples we present later in this chapter.

99.5.1 The Stimulus Driver Overview

You have two possibilities regarding the verification of a circuit. The stimulus driver of course

generates the testing waveforms, but whose job is it to actually verify your circuit is working?

Verification of the proper operation of a circuit can be either manual or automatic. The two main ideas

here is whether you want a human to examine the resulting output waveforms from a testbench in order

to verify proper operation (manual) or whether you want the testbench to automatically state whether

the circuit is working properly. Here is an overview of what is good and bad about each approach.

Manual Verification: This is the simplest approach and is thus the approach taken by most

beginning testbench writers. The testbench models shown in Figure 99.1 and Figure 99.2 are

examples of manual circuit verification. The models in these figures only generate the test

vectors for the DUT, which inherently produce some output signals. The notion here is that the

human reader will need to examine the resulting waveforms in order to state whether the circuit

is operating properly. This is a great option for beginners, but less great of an option if you have

a complex circuit you need to test the crap out of
9
.

Automatic Verification: As your digital designs become more complex, you’ll want to avoid

manual verification. In truth, VHDL has many constructs that assist in the creation of testbenches

that use automatic verification; this chapter presents only a few of them
10

. The testbench models

in Figure 99.3 and Figure 99.4 show examples of automatic verification with the inclusion of the

black box labeled “results comparison”. There are many ways use VHDL code to structure the

“results comparison” box; the examples in this chapter describe a few.

99.5.2 Vector Generation Possibilities

VHDL provides several approaches for your stimulus driver to supply test vectors to your DUT. More

specifically, the list below describes the three main approaches to generating test vectors. Note that in

any given testbench, you can you any combination of these three approaches.

9
 Keep in mind that as digital circuits become more complex, you’re going to need to write more complex

testbenches in order to be 100% certain that they are working properly.
10

 If you continue on in VHDL, you’ll gather many more testbench writing skills. This chapter only aims to give

you a quick taste of the possibilities.

Digital McLogic Design Chapter 99

 - 769 -

Test Vectors generated “On The Fly”: These vectors include any vectors that are not stored in

internal VHDL structures (such as arrays) or stored in external files. This form of test vector

generation works best for simple circuits or circuits that do not require extensive testing or

complicated test vectors. In terms of simple stimulus drivers, you include whatever you need to

in your VHDL code, but this approach quickly becomes unwieldy for large testbenches.

Test Vectors read from VHDL arrays: The VHDL language contains “arrays” which can be

used to store constants. One approach to writing stimulus drivers is to store the test vectors as

constants inside of arrays and access those constants using VHDL. The good part about this

approach is that the test vectors will always be included with the testbench model (as opposed

to reading test vectors from a file).

Test Vectors read from files: As with other computer languages, VHDL as the ability to read

from and write to files. One of the main uses of this mechanism is storing testing information

in external file. These external files include files where the test vectors will be read from and

external files where the results will be written. The good part about this approach is that the

test vectors can easily be generated from other computer programs such as a spreadsheet, some

other type of simulator, or a higher-level language program you may be using to verify your

circuit models.

99.5.3 Results Comparisons: The “assert” Statement.

The “assert” statement is both common and useful in the circuit verification using VHDL testbenches.

The nice thing about assert statements is that they are simple to use and understand. There are many

ways to verify the proper outputs from an DUT; using assert statements is one of those ways. An assert

statement simply checks the Boolean value returned from the evaluation of the expression associated

with the assert statement. If the expression evaluates as true, nothing happens. If the expression

evaluates as false, the testbench provides information regarding of what went wrong.

Figure 99.5 shows an example of an assert statement. We’ll see statements used in actual testbenches in

a later section; this statement is shows the basic syntax of the statement. Here are a few important things

to note about the assert statement shown in Figure 99.5.

 The expression in the parenthesis returns a Boolean value. If this expression is true,

nothing happens. If this expression evaluates as false, the items associated with the

“report” and “severity” statements occur. The things that happen are the printing of the

text associated with the “report” and “severity” lines to somewhere or something, which is

typically the console window associated with the simulator exercising the testbench
11

.

 The “report” and “severity” lines are associated with an assert statement. You can include

one of both of these options in your testbench. The “severity” line output one of four piece

of text: “Note”, “Warning”, “Error”, or “Failure”. The human writing the testbench

chooses the appropriate text for the “severity” line. The “report” line prints out a user-

specified message.

11

 Depending on your particular simulator, other information is also include as part of assert statement failures.

Digital McLogic Design Chapter 99

 - 770 -

assert (s_signal = ‘1’)

 report “s_signal does != 1; do something!

 severity Warning

Figure 99.5: A quick overview of the four main types of “wait” statements.

There is more to say about assert statements but we’ll only mention one final notion. Although there is

only one form of the assert statement, they are slightly different based on where in the testbench code

they can appear. Assert statements can appear as concurrent statements or as sequential statements. If

the assert statement appears as part of a process statement, it is a sequential statement; otherwise, it is a

concurrent statement. The difference here is that assert statements as part of process execute when they

are encountered as execution travels through the other sequential statements in the process. Concurrent

assert statements execute anytime there is a change in the any of the signals present in the expression of

the assert statement. In this way, the concurrent assert statement acts like a sensitivity list for a process

statement. Though these difference seem subtle, they are actually quite significant.

99.6 The Process Statement: A Re-Visitation

Process statements: you’ve seen them before, but in only one form. Here’s what you know about a

process statement: when a signal in the sensitivity list of the process changes, the process “executes”
12

.

When a process statement executes, it commences stepping through the sequential statement contained

in the statement. When all of the statements in the process have completed execution, the process

terminates. Another way of looking at this is that activity on a signal in the sensitivity list wakes up the

process; the process then executes its statements until it reaches the ends of the process, then the

process goes back to sleep (and waits for more action on a signal in the sensitivity list)
13

.

You’ve probably written about a bajillion process statements by this time in your digital design career.

That truth is that all of the examples in this text used only one of two major forms of process

statements. The form we’ve been using contains a sensitivity list to indicate which signals are important

to the process. When the value of one of the signals on the sensitivity list changed, the process executes.

This is the most common form of a process statement and is the form that you should use when you

intend on synthesizing your circuit. The other form of a process statement does not contain a sensitivity

list. As you may guess, this form is less useful than the other form for modeling circuits. This other

process form, however, is quite useful when your VHDL code is modeling a testbench, so we’ll

describe it here in detail.

As a quick example, Figure 99.6 shows a D flip-flop modeled both with and without a sensitivity list.

The process in Figure 99.6(a) activates and executes when there is a change on either the CLK or D

signal. The process complete execution, deactivates, and waits for more changes on CLK or D. The

process in Figure 99.6(b) does not start execution until the wait statement is satisfied; when the rising

edge of the clock occurs, the process activates, executes, suspends executions, and waits for the next

rising clock edge. As you can see, it’s not that big of a deal.

12

 I really don’t like the word executes because it sounds way too much like you’re describing the operation of a

piece of computer code. VHDL, on the other hand, describes the operation of a piece of hardware.
13

 This is knowingly a tough concept. I grapple with it constantly. I never quite understand it; I simply accept it.

The notion of having sequential statements within a process statement and the fact that a process statement is a

concurrent statement always thumps my brain. And in the end, the model can be used to generate hardware? This is

sometime too much for my little brain.

Digital McLogic Design Chapter 99

 - 771 -

-- D flip-flop using a sensitivity list

--

entity DFF is

 port (CLK,D : in std_logic;

 Q : out std_logic);

end DFF;

architecture DFF_nowait of DFF is

begin

 process (CLK,D)

 begin

 if (rising_edge(CLK)) then

 Q <= D;

 end if;

 end process;

end DFF_nowait;

-- D flip-flop using a sensitivity list

--

entity DFF is

 port (CLK,D : in std_logic;

 Q : out std_logic);

end DFF;

architecture DFF_wait of DFF is

begin

 process

 begin

 wait until (rising_edge(CLK));

 Q <= D;

 end process;

end DFF_wait;

(a) (b)

Figure 99.6: An example of a D flip-flop described without (a) and with (b) a wait statement.

The two forms of process statements are quite distinct. If your process statement does not include a

sensitivity list, then it must include at least one wait statement
14

. If your process statement does include

a sensitivity list, then the body of your process cannot include a wait statement. The sensitivity list of a

process controls when the process will activate. In particular, when one of the signals on the sensitivity

list changes, the process activates and the entire process executes from beginning to end. The notion of

“from beginning to end” means that there is nothing to stop the process along the way. This is great for

modeling circuits, but not so great for testing VHDL models.

On the other hand, process statements without sensitivity lists rely on “wait statements” to control the

activation and deactivation of a process. Process statements using wait statements start and stop under

control of the wait statements. The effect of this is that the process is either not executing (because it

has been deactivated because of a wait statement”) or the process is executing (because a wait statement

condition was met and the process is “not waiting”).

99.7 Attack of the Killer Wait Statements

This section covers the four forms of wait statements. Testbenches certainly don’t always use all of

these forms, but we include them here for both completeness and just in case you feel you need to use

one of these forms. The following subsections provide a basic description and example of wait

statements. Keep in mind that the basic function of a wait statement is to give you the ability to suspend

execution of a process at any point in the process. This differs from statements using sensitivity lists in

that once they start executing, they cannot be suspended until the end of the process is reached.

The four forms of a wait statement are straightforward in that the process is always “waiting” for

something. Figure 99.7 shows the four things that can be “waited for”; the following sections expand on

these basic wait statement types.

14

 There are several forms of wait statements; we’ll get to those soon.

Digital McLogic Design Chapter 99

 - 772 -

1. a change in a signal (WAIT ON)

2. a expression is true (WAIT UNTIL)

3. a specific amount of time (WAIT FOR)

4. an eternity (WAIT)

Figure 99.7: A quick overview of the four main types of “wait” statements.

99.7.1 The “wait on” Statement

The “wait on” statement is the most similar wait statement to a process sensitivity list. The “wait on”

statement is waiting for a change in the list of signal in the wait on statement. When one of the signals

in the wait statement list changes, the process resumes executing with the statement following the “wait

on” statement.

Figure 99.8 shows an example of D flip-flop model using a “wait on” statement. One thing to keep in

mind is that process execution is circular in nature, meaning that when the process reaches the end, it

automatically continues execution at the beginning of the process. The model in Figure 99.8 “waits” for

changes in either the CLK or the D signal; when such a change occurs, the process restarts execution at

the if statement.

Figure 99.8 is for example purposes only. It is not even close to being a good way to model a D flip-

flop. We’ll see better uses for “wait on” statements when we start back looking at testbenches.

-- D flip-flop using a “wait on” statement

entity DFF is

 port (CLK,D : in std_logic;

 Q : out std_logic);

end DFF;

architecture DFF_wait_on of DFF is

begin

 process

 begin

 if (rising_edge(CLK)) then

 Q <= D;

 end if;

 wait on CLK,D;

 end process;

end DFF_wait_on;

Figure 99.8: An example of a D flip-flop modeled using a “wait on” statement.

Digital McLogic Design Chapter 99

 - 773 -

99.7.2 The “wait until” Statement

The “wait until” form of a wait statement instructs a process to suspend execution until the evaluation

of the expression associated with the “wait until” statement returns a value of true. The catch here is

that the “wait until” statement requires that the associated expression return a boolean value in order for

the statement to be valid.

Figure 99.9 shows an example of D flip-flop model using a “wait until” statement. This process chooses

to expand the “rising_edge” function to show that the “wait until” statement really does evaluate an

expression. The line in the process body of shown in Figure 99.9 that is commented out is also a valid

statement as the “rising_edge” function returns a boolean value. The model in Figure 99.9 “waits” for

two conditions to simultaneously occur: a change the clock signal (the CLK’EVENT
15

) and the current

value of the CLK signal to be a ‘1’.

Once again, the D flip-flop model in Figure 99.9 is for example purposes only as it is not a good way to

model a D flip-flop. We’ll see better uses for “wait until” statements later in this chapter.

-- D flip-flop using a “wait until” statement

entity DFF is

 port (CLK,D : in std_logic;

 Q : out std_logic);

end DFF;

architecture DFF_wait_until of DFF is

begin

 process

 begin

 --wait until (rising_edge(CLK));

 wait until (CLK = '1' and CLK'EVENT);

 Q <= D;

 end process;

end DFF_wait_until;

Figure 99.9: An example of a D flip-flop modeled using a “wait until” statement.

99.7.3 The “wait for” Statement

The notion of a “wait for” statement means the associated process is forced to suspend execution and

“wait” for the amount of time given in the “wait statement” argument. Once the stated amount of time

has passed, the process resumes execution. Figure 99.10 shows the syntax for a “wait for” statement as

well as a few examples.

15

 This is referred to as a “tick event”; this text did not cover this aspect of VHDL.

Digital McLogic Design Chapter 99

 - 774 -

wait for time_expression

Examples:

 -- using a value

 wait for 25ns;

 -- using a constant

 wait for (CLOCK_PERIOD);

 -- using an expression

 wait for (CLOCK_PERIOD * 60);

Figure 99.10: The syntax and examples of a “wait for” statement.

The problem is that I don’t have a great example for it. In lieu of a great example, we’ll use a crappy

example instead. Figure 99.11 shows the crappy example I speak of. The problem with this example is

that the model will not synthesize as you expect most models to. The reason I included this example is

to highlight the differences between models intended for synthesis and models intended for simulation

(testbenches). The model in Figure 99.11 is trying to be a D flip-flop but will not synthesize due to the

“wait for” statement.

-- D flip-flop using a “wait for” statement

-- WARNING: this model does not synthesize

entity DFF is

 port (CLK,D : in std_logic;

 Q : out std_logic);

end DFF;

architecture DFF_wait_for of DFF is

begin

 process

 begin

 -- this does not work!

 wait for 10ns;

 if (rising_edge(CLK)) then

 Q <= D;

 end if;

 end process;

end DFF_wait_for;

Figure 99.11: An example of a D flip-flop model attempting to use a “wait for” statement.

99.7.4 The “wait” Statement

The “wait” statement is the simplest of the wait-flavored VHDL statements. Testbenches use this

statement in order to end a process. Consequently the “wait” statement (with no arguments) is used to

Digital McLogic Design Chapter 99

 - 775 -

end the simulation process. Once again, we’ll see examples of this when we start introducing some

actual testbenches. Figure 99.12 shows the syntax of a “wait” statement; we include no examples.

wait;

Figure 99.12: The syntax for a “wait” statement.

99.8 Finally, Getting Your Feet Wet: Some Example Testbenches

This section details some of the finer aspects of writing testbenches. This section by no means provides

every possible testbench, but there should be enough information to get you started.

Example 99-1: The First Testbench

Write a testbench that models the circuit shown in the top portion of Figure 99.13(b). Figure

99.13(a) provides the VHDL model for this circuit.

Digital McLogic Design Chapter 99

 - 776 -

entity tff_ckt is

 port (CLK1,CLK2 : in std_logic;

 RESET,T1,T2 : in std_logic;

 Q1,Q2 : out std_logic);

end tff_ckt;

architecture my_ckt of tff_ckt is

 signal s_tff_Q1, s_tff_Q2 : std_logic; --:='0';

begin

 tff1 : process (RESET,CLK1,T1)

 begin

 if (RESET = '0') then

 s_tff_Q1 <= '0';

 else

 if (rising_edge(CLK1)) then

 s_tff_Q1 <= T1 XOR s_tff_Q1;

 end if;

 end if;

 end process;

 tff2 : process (RESET,CLK2,T2)

 begin

 if (RESET = '0') then

 s_tff_Q2 <= '0';

 else

 if (rising_edge(CLK2)) then

 s_tff_Q2 <= T2 XOR s_tff_Q2;

 end if;

 end if;

 end process;

 Q1 <= s_tff_Q1;

 Q2 <= s_tff_Q2;

end my_ckt;

(a) (b)

Figure 99.13: A pointless example circuit using T flip-flops; model (a) and block diagram (b).

Solution: Figure 99.14 shows the solution to Example 99-2. Have fun.

Digital McLogic Design Chapter 99

 - 777 -

--(1)

entity testbench1 is

end testbench1;

architecture stimulus of testbench1 is

 -- Misc declarations-----------------------------------(2)

 constant CLK1_PERIOD: time := 40 ns;

 constant CLK2_PERIOD: time := 60 ns;

 -- declare DUT --(3)

 component tff_ckt

 port (CLK1,CLK2 : in std_logic;

 RESET,T1,T2 : in std_logic;

 Q1,Q2 : out std_logic);

 end component;

 -- instantiate the device under test (DUT) ------------(4)

 signal s_t1, s_t2, s_q1, s_q2 : std_logic := '0';

 signal s_clk1, s_clk2 : std_logic := '0';

 signal s_reset : std_logic := '0';

begin

 -- instantiate the device under test (DUT) ------------(5)

 DUT: tff_ckt

 port map (CLK1 => s_clk1,

 CLK2 => s_clk2,

 RESET => s_reset,

 T1 => s_t1,

 T2 => s_t2,

 Q1 => s_q1,

 Q2 => s_q2);

 -- synthesize reset signal ----------------------------(6)

 s_reset <= '1', '0' after 20ns, '1' after 40 ns;

 -- set signal values ----------------------------------(7)

 s_t1 <= '1'; s_t2 <= '1';

 -- clk1 synthesis -------------------------------------(8)

 s_clk1 <= not s_clk1 after CLK1_PERIOD/2;

 -- clk2 synthesis -------------------------------------(9)

 clk2 : process

 begin

 wait for (CLK2_PERIOD * 0.75);

 s_clk2 <= '1';

 wait for (CLK2_PERIOD * 0.25);

 s_clk2 <= '0';

 end process;

end stimulus;

Figure 99.14: A block diagram for a basic VHDL testbench.

This is an instructive testbench model so we’ve included some fairly instructive comments. The

following numbered items correspond to the numbers associated with the comment in Figure 99.14.

Later testbench models will surely include less commentary (but probably not).

(1) This is the entity declaration; as advertised, there is no associated port clause as the

testbench has no inputs and no outputs.

(2) This testbench uses some constants. As with programming using higher-level languages, the

liberal use of constructs such as constant make your code more useful. This is particularly

true when working with testbenches. If something changes, you don’t want to search through

a large VHDL model to make all the required modifications.

Digital McLogic Design Chapter 99

 - 778 -

(3) This is the component declaration for the circuit that you intend on testing. Refer to the

block diagrams in Figure 99.13(b) and realize that you’ve done this many times; it is no

different when you’re working with testbenches.

(4) This is a list of intermediate values used by the testbench. Note that these signals represent

all of the signals shown in Figure 99.13(b). The important thing to notice here is that we

assign initial values to all of the signals. This practice is almost a requirement, as you’ll find

out when you simulate circuits. If you do not assign these values, the simulator will not be

smart enough to assign the values for you and you’ll end up with unknown waveforms in

your simulation results. If you assign these initial values later in your testbench model, these

initialization values are overwritten.

(5) This is the instantiation of the device you’re testing. Once again, this is nothing new and

relation to the block diagrams in Figure 99.13(b).

(6) This is a concurrent statement used for a reset signal. This is a one-time statement so this

implementation is probably the easiest approach. Note the statement is a list with commas (a

VHDL feature we have not discussed). This statement uses the VHDL keyword “after” to

provide the timing of this negative logic reset pulse. Note that the pulse is 20ns wide. This

line executes three times during simulation: once to set the value, once to clear the value,

and one more time to set the value again, which remains set throughout the simulation.

(7) This line contains two statements (in order to save space). These lines are concurrent

statements that put the two outputs from the stimulus driver at known values. This line

executes one time during the simulation.

(8) This is one approach to synthesizing a clock signal. This concurrent statement synthesizes a

periodic clock signal (50% duty cycle) by toggling the signal every half CLK1 period. This

concurrent statement is evaluated every half-CLK1 period throughout the simulation.

(9) This is another approach to synthesizing clock signals. This approach uses a process

statement (without a sensitivity list) to generate the clock signal. This particular clock signal

uses some special notation in order to provide CLK2 with a 25% duty cycle.

For a final comment, the output of this testbench is the Q1 and Q2 signals. Because of the associated T

flip-flops are always asserted, they act to halve the frequency of the two clock signals. For a given

simulation, you’ll probably include all the available signals in your waveform output.

Example 99-2: The Second Testbench

Write the VHDL code that implements the testbench model shown in the black box diagram

of Figure 99.15(b). For this circuit, consider the DUT to be a 4-bit up/down counter with a

synchronous parallel load (as modeled by Figure 99.15(a)).

Digital McLogic Design Chapter 99

 - 779 -

entity COUNT_4B is

 port (RESET,CLK : in std_logic;

 LD,UP : in std_logic;

 DIN : in std_logic_vector (3 downto 0);

 COUNT : out std_logic_vector (3 downto 0));

end COUNT_4B;

architecture my_count of COUNT_4B is

 signal s_cnt : std_logic_vector(3 downto 0);

begin

 process (CLK, RESET)

 begin

 if (RESET = '1') then

 s_cnt <= (others => '0');

 elsif (rising_edge(CLK)) then

 if (LD = '1') then s_cnt <= DIN;

 else

 if (UP = '1') then s_cnt <= s_cnt + 1;

 else s_cnt <= s_cnt - 1;

 end if;

 end if;

 end if;

 end process;

 COUNT <= s_cnt;

end my_count;

(a) (b)

Figure 99.15: An example using a 4-bit counter; the VHDL model (a) and a diagram showing the

testbench circuit. (b).

Solution: This example problem really did not ask much. We are using this problem as a stepping-stone

for presenting meaningful testbench modeling concepts. Figure 99.16 shows an example testbench for

this problem. Here are a few meaningful comments corresponding to the numbered comments of Figure

99.16.

(1) Although the intermediate signals were initialized when they were declared, this statement

immediately changes them. The word “immediate” is important. In this context, it means the

values change at time “zero” in the simulation. This is because the statements described by

this comment are concurrent statements.

(2) You saw this statement used previously as a reset signal. The important thing to notice here

is that the width of the resulting pulse is 20ns (40ns – 20ns), and not 40ns as this line of code

may lead you to think. This represents a use of “absolute time” in the testbench. Testbenches

are typically easier to write and understand when they use “relative time”, which is why this

chapter uses relative time so extensively.

(3) This code synthesizes a load pulse for the counter. Once again, the code uses absolute time,

so the width of this load pulse is 30ns.

Digital McLogic Design Chapter 99

 - 780 -

entity testbench2 is

end testbench2;

architecture stimulus of testbench2 is

 constant CLK_PERIOD: time := 50 ns;

 component COUNT_4B

 port (RESET,CLK,LD,UP : in std_logic;

 DIN : in std_logic_vector (3 downto 0);

 COUNT : out std_logic_vector (3 downto 0));

 end component;

 signal s_up, s_ld : std_logic := '0';

 signal s_clk : std_logic := '0';

 signal s_reset : std_logic := '0';

 signal s_ld_val : std_logic_vector(3 downto 0) := X"0";

 signal s_count : std_logic_vector(3 downto 0) := X"0";

begin

 -- instantiate the counter

 DUT: COUNT_4B

 port map (CLK => s_clk,

 DIN => s_ld_val,

 RESET => s_reset,

 LD => s_ld,

 UP => s_up,

 COUNT => s_count);

 -- clock synthesis

 s_clk <= not s_clk after CLK_PERIOD/2;

 --(1)

 -- set initial signal values

 s_up <= '1'; s_ld_val <= X"E";

 --(2)

 -- synthesize reset signal

 s_reset <= '0', '1' after 20 ns, '0' after 40 ns;

 --(3)

 -- synthesize ld signal at 50ns

 s_ld <= '0', '1' after 50 ns, '0' after 70 ns;

end stimulus;

Figure 99.16: A block diagram for a basic VHDL testbench.

Example 99-3: The Second Testbench All Over Again

Write the VHDL code that implements the testbench model shown in the black box diagram

of Figure 99.15(b). For this circuit, consider the DUT to be a 4-bit up/down counter with a

synchronous parallel load (as modeled by Figure 99.15(a)).

Solution: There is an issue with the approach of the solution to Example 99-2. The issue is that beyond

the setting initial values of signal and synthesizing one-time signals (such as resets) was that the

testbench started becoming somewhat unintuitive. The primary reason for this issue was that we were

not able to use “wait” statements in the solution because the solution did not use process statements.

Digital McLogic Design Chapter 99

 - 781 -

When we use process statements, basic testbench writing becomes more intuitive and thus easier to

write
16

.

Figure 99.17 shows another testbench that exercises the 4-bit up/down counter. This solution uses both

behavioral and dataflow statements in the testbench model. The fact that opted to put a majority of the

“test” portion of the testbench in a process statement allows us to use wait statements. This testbench

uses a process statement to perform most of the work. Note that there are two concurrent statements in

this testbench: one generates the clock and the other does the testing work. This advertises the notion

that concurrency in VHDL modeling also extends to testbenches. Once you model the clock synthesis,

you’re free to do the other test; the clock remains running. There are some other items worth noting in

this testbench; the numbers below match the comments in the testbench model.

(1) The testbench uses a process statement. Because we want to use wait statements in this

solution, the process statement does not include a sensitivity list.

(2) The first real work we do in the process statement is to reset the counter by sending it an active

high pulse. Keep in mind that the reset signal is initialized to its non-asserted state. The

statements associated with this comment say that the reset signal toggles at the beginning of

the simulation and then toggles again 20ns later, resulting in a 20ns pulse.

(3) This code synthesizes a signal for a parallel load pulse. The important thing to note here is that

the model is now working with relative time due to the nature of the “wait” statements.

According to the given code, the load pulse is a 25ns wide positive pulse that occurs starting at

70ns. The 70ns time comes from the fact that this set of code waits 50ns after the 20ns delays

associated with the reset pulse.

(4) This is a “wait until” statement; the process will pause at this statement until the condition

associated with the “wait until” statement occurs. In this case, the counter is counting up and

the wait statement “waits” until the counter reaches 10. At that time, the UP signal toggles,

which forces the counter to count down (starting at the next clock cycle). This is important in

terms of testbenches because what the model is doing is “waiting” for something to occur;

when it occurs, the testbench assigns a value to some other signal associated with the

testbench.

(5) This is an example of an assert statement (though not a great example). If execution of the

process arrives at the assert statement, then we know the counter has passed the previous “wait

until” statement. In this case, we know the counter to be at 10. The assert statement is saying,

“if the counter is not 11 at this point, then print out this rude message”. Assert statements are

massively useful; this example will not be winning any awards. Figure 99.18 shows the

resultant error message. Note that the simulator that generated this output included extra

information in addition to the error message and severity level.

(6) The process ends with a final “wait” statement. This statement assures that no more statements

in this process will evaluate by forcing the process to “wait” forever at this statement.

16

 This is less true with giant and complicated testbenches; we’ll not go there now.

Digital McLogic Design Chapter 99

 - 782 -

entity testbench3 is

end testbench3;

architecture stimulus of testbench3 is

 constant CLK_PERIOD: time := 40 ns;

 component COUNT_4B

 port (RESET,CLK,LD,UP : in std_logic;

 DIN : in std_logic_vector (3 downto 0);

 COUNT : out std_logic_vector (3 downto 0));

 end component;

 signal s_up, s_ld : std_logic := '0';

 signal s_clk : std_logic := '0';

 signal s_reset : std_logic := '0';

 signal s_ld_val : std_logic_vector(3 downto 0) := X"0";

 signal s_count : std_logic_vector(3 downto 0) := X"2";

begin

 DUT: COUNT_4B -- instantiate counter

 port map (CLK => s_clk,

 DIN => s_ld_val,

 RESET => s_reset,

 LD => s_ld,

 UP => s_up,

 COUNT => s_count);

 -- clk synthesis

 s_clk <= not s_clk after CLK_PERIOD/2;

 --(1)

 process

 begin

 s_up <= '1'; s_ld_val <= X"2";

 ---(2)

 -- synthesize reset signal

 s_reset <= '1';

 wait for 20 ns;

 s_reset <= '0';

 ---(3)

 -- synthesize loading signal

 wait for 50 ns;

 s_ld <= '1';

 wait for 25 ns;

 s_ld <= '0';

 ---(4)

 wait until s_count = X"A";

 ---(5)

 assert (s_count = X"B")

 report "This is a stupid test"

 severity Error;

 s_up <= '0';

 ---(6)

 wait;

 end process;

end stimulus;

Figure 99.17: A block diagram for a basic VHDL testbench.

Lastly for this example, Figure 99.18 shows a sample result of an example where the “assert”

statements did not evaluate as being true. In this case, the testbench code shown in Figure 99.17

“waited” until the count output was a certain value and then tested to see if it was a different value. This

Digital McLogic Design Chapter 99

 - 783 -

assert statement fails and the error message shown in Figure 99.18 is printed to the console
17

. Note that

my particular simulator includes the exact time in the simulation where the error occurs.

 # ** Error: This is a stupid test

 # Time: 420 ns Iteration: 2 Instance: /testbench3

Figure 99.18: A block diagram for a basic VHDL testbench.

Example 99-4: Another Counter Testbench

Write the VHDL code that implements a testbench model that verifies the up and down RCO

output on the 4-bit counter model shown below.

entity COUNT_4B_RCO is

 port (RESET,CLK,UP : in std_logic;

 RCO : out std_logic;

 COUNT : out std_logic_vector (3 downto 0));

end COUNT_4B_RCO;

architecture my_count of COUNT_4B_RCO is

 signal t_cnt : std_logic_vector(3 downto 0);

begin

 process (CLK, RESET)

 begin

 --RCO <= '0';

 if (RESET = '1') then

 t_cnt <= (others => '0');

 elsif (rising_edge(CLK)) then

 RCO <= '0';

 if (UP = '1') then

 t_cnt <= t_cnt + 1;

 if (t_cnt = X"E") then

 RCO <= '1';

 end if;

 else

 t_cnt <= t_cnt - 1;

 if (t_cnt = x"1") then

 RCO <= '1';

 end if;

 end if;

 end if;

 end process;

 COUNT <= t_cnt;

end my_count;

Solution: Figure 99.19 shows one possible solution this example. This solution is similar to the

previous solution so we’ll only comment on the new and significant items.

(1) The testbench initial resets the counter and starts the counter counting in the “up” direction. At

that point, the testbench waits for the RCO signal to assert. Since the counter is counting in the

17

 This message is a result from the simulator I’m using. Your results may be different depending on the simulator

that you’re using.

Digital McLogic Design Chapter 99

 - 784 -

up direction, the RCO signal should reset when the counter reaches 0xF. The test bench uses

the “wait until” statement to monitor the RCO statement. When the RCO signal asserts, the

first thing we need to do is wait a small amount of time; which is done with the following

“wait for” statement. xxxWe need to do this because the simulator interprets the activity

happening on the RCO and COUNT output signal to occur simultaneously. After the small

delay, the testbench then verifies that the count does indeed match the max count value of 0xF.

(2) What we want here is have the counter continue counting in the up direction for about half of

the count cycle. After that point we’ll change the direction of the count (COUNT = ‘0’) and

verify the RCO is working in the down counting direction. This piece of code is another

approach to inserting a delay in the testbench. Though we could have used a “wait for”

statement here, we opted to use a loop construct. As of this writing, this text has not mentioned

loops in VHDL, but they exist. This is an example of a simple look construct; you should find

these straightforward. They are handy when you’re creating complicated testbenches.

(3) This piece of code changes the direction of the counter to count down after counting in the up

direction for a few clock cycles.

(4) This code is similar to the code described in (1) above. This time, however, we are verifying

that the counter displays a 0x0 when the RCO is asserted when the counter is counting in the

down direction.

Digital McLogic Design Chapter 99

 - 785 -

entity testbench4 is

end testbench4;

architecture stimulus of testbench4 is

 constant CLK_PERIOD: time := 40 ns;

 component COUNT_4B_RCO

 port (RESET,CLK,UP : in std_logic;

 RCO : out std_logic;

 COUNT : out std_logic_vector (3 downto 0));

 end component;

 signal s_up : std_logic := '1';

 signal s_clk : std_logic := '0';

 signal s_reset : std_logic := '0';

 signal s_rco : std_logic := '0';

 signal s_count : std_logic_vector(3 downto 0) := X"0";

begin

 DUT: COUNT_4B_RCO -- instantiate counter

 port map (CLK => s_clk,

 UP => s_up,

 RESET => s_reset,

 RCO => s_rco,

 COUNT => s_count);

 s_clk <= not s_clk after CLK_PERIOD/2;

 process

 begin

 -- synthesize reset signal

 s_reset <= '1';

 wait for 20 ns;

 s_reset <= '0';

 ---(1)

 wait until s_rco = '1';

 wait for 1 ns;

 assert (s_count = X"F")

 report "RCO counting up is incorrect" severity Error;

 ---(2)

 for M in 1 to 10 loop

 wait until rising_edge(s_clk);

 end loop;

 ---(3)

 s_up <= '0';

 ---(4)

 wait until s_rco = '1';

 wait for 1 ns;

 assert (s_count = X"0")

 report "RCO counting down is incorrect" severity Error;

 wait;

 end process;

end stimulus;

Figure 99.19: A block diagram for a basic VHDL testbench.

The following comments deal with a slightly advanced issue in VHDL. Some people may not have read

about or dealt with the issue of “signals” vs. “variables”. If that is the case then you can skip the next

few items and simply move onto the next examples. The notion of “signals” vs. “variables” is not

overly complicated, so another option for you is to go read about the difference between signals and

variables. The following discussion briefly mentions these differences.

In truth, the counter model shown in Example 99-4 has some issues that we needed to deal with in the

testbench model. The problem with the counter model is that the original model was somewhat

Digital McLogic Design Chapter 99

 - 786 -

confusing because it was implemented using signals. Figure 99.20 shows a clearer version of the

counter. This difference between this model and the model provided as part of Example 99-4 is that the

model uses a variable for the temporary count value. Because the results from operations done on

variables are ready immediately, the model can look for the true RCO values for both the up and down

counts. Note that in the model of Example 99-4, we had to generate the RCO signal one count in

advance; in particular, “0xE” or “0x1” for the up and down counting directions, respectively. The two

models are functionally equivalent, but the counter model shown in Figure 99.20 provides much less

confusion.

entity COUNT_4B_RCO_VAR is

 port (RESET,CLK,UP : in std_logic;

 RCO : out std_logic;

 COUNT : out std_logic_vector (3 downto 0));

end COUNT_4B_RCO_VAR;

architecture my_count of COUNT_4B_RCO_VAR is

 signal t_cnt : std_logic_vector(3 downto 0);

begin

 process (CLK, RESET)

 variable v_cnt : std_logic_vector(3 downto 0);

 begin

 if (RESET = '1') then

 v_cnt := (others => '0');

 elsif (rising_edge(CLK)) then

 RCO <= '0';

 if (UP = '1') then

 v_cnt := v_cnt + 1;

 if (v_cnt = X"F") then

 RCO <= '1';

 end if;

 else

 v_cnt := v_cnt - 1;

 if (v_cnt = x"0") then

 RCO <= '1';

 end if;

 end if;

 end if;

 t_cnt <= v_cnt;

 end process;

 COUNT <= t_cnt;

end my_count;

Figure 99.20: A more clear version of the RCO counter of the previous example.

Figure 99.21 shows a model for an 8-bit ripple carry adder. We’ll use this model for the next few

example testbenches. One thing worth noting in this example is that the RCA contains an overflow

output in addition the carry-out output. For this RCA model, we’ve defined a carry out to be the

condition where the sign bit of the two operands are equivalent but differs from the sign-bit of the

result.

The next few testbenches test the RCA using the same set of test vectors. As you’ll see, the main

differences between the upcoming examples is where they obtain the test vectors from. There are

several other differences between the upcoming examples; the example solutions briefly describe these

differences.

Digital McLogic Design Chapter 99

 - 787 -

entity RCA_8bit is

 port (A,B : in std_logic_vector(7 downto 0);

 Cin : in std_logic;

 Ov : out std_logic;

 Co : out std_logic;

 SUM : out std_logic_vector(7 downto 0));

end RCA_8bit;

architecture RCA_8bit of RCA_8bit is

begin

 process(A,B,Cin)

 variable v_res : std_logic_vector(8 downto 0);

 begin

 v_res := ('0' & A) + ('0' & B) + Cin;

 Ov <= '0';

 if (A(7) = B(7)) then

 if (A(7) /= v_res(7)) then

 Ov <= '1';

 end if;

 end if;

 SUM <= v_res(7 downto 0);

 Co <= v_res(8);

 end process;

end RCA_8bit;

(a) (b)

Figure 99.21: The RCA model used as the DUT for the next three examples.

Example 99-5: Test Vectors Generated On the Fly

Write the VHDL code that implements a testbench that can verify operation of the 8-bit RCA

modeled Figure 99.21. The testbench should use “on the fly” test vectors; use three sets of

test vectors to test the RCA.

Solution: The approach taken by this problem is to generate the test vectors “on the fly”. This is

definitely the most straightforward approach, but it is not well suited for all testbenches. In particular,

generating test vectors “on the fly” is only feasible for testbenches that are relatively short and don’t

have the need to exercise a large set of test vectors.

Figure 99.21 shows the final testbench for this example problem. There are a few relatively interesting

things to note about this solution:

(1) The approach here is to provide the values directly to the augend and addend. These values are

essentially “hardcoded” into the VHDL model. These hardcoded values create the notion of the

test vectors are “on the fly”. After the assignment of the operand values, the testbench “waits”

using a wait statement. After the expiration of the wait statement, the testbench verifies that the

sum, the overflow, and the carry-out values are correct. The verification of these values is also

hardcoded and thus modeled as “on the fly”.

(2) This represents the testing of the second set of test vectors. This is similar to the previous

comments above, so not much to say here.

Digital McLogic Design Chapter 99

 - 788 -

(3) This represents the testing of the third and final set of test vectors. Again, not much to say

here.

entity testbench6 is

end testbench6;

architecture stimulus of testbench6 is

 component RCA_8bit

 port (A,B : in std_logic_vector(7 downto 0);

 Cin : in std_logic;

 Ov : out std_logic;

 Co : out std_logic;

 SUM : out std_logic_vector(7 downto 0));

 end component;

 signal s_A, s_B : std_logic_vector(7 downto 0) := (others => '0');

 signal s_cin : std_logic := '0';

 signal s_ov, s_co : std_logic := '0';

 signal s_sum : std_logic_vector(7 downto 0) := (others => '0');

begin

 DUT: RCA_8bit -- instantiate the RCA

 port map (A => s_A,

 B => s_B,

 Cin => s_cin,

 Ov => s_Ov,

 Co => s_Co,

 SUM => s_sum);

 process

 begin

 s_cin <= '0';

 wait for 20 ns;

 --(1)

 s_A <= X"C3"; s_B <= X"54";

 wait for 50 ns;

 assert (s_sum = X"17")

 report "SUM is not correct" severity Error;

 assert (s_ov = '0')

 report "overflow is not correct" severity Error;

 assert (s_co = '1')

 report "carry-out is not correct" severity Error;

 --(2)

 s_A <= X"82"; s_B <= X"84";

 wait for 50 ns;

 assert (s_sum = X"06")

 report "SUM is not correct" severity Error;

 assert (s_ov = '1')

 report "overflow is not correct" severity Error;

 assert (s_co = '1')

 report "carry-out is not correct" severity Error;

 --(3)

 s_A <= X"85"; s_B <= X"24";

 wait for 50 ns;

 assert (s_sum = X"A9")

 report "SUM is not correct" severity Error;

 assert (s_ov = '0')

 report "overflow is not correct" severity Error;

 assert (s_co = '0')

 report "carry-out is not correct" severity Error;

 wait;

 end process;

end stimulus;

Figure 99.22: A solution for Example 99-5.

Digital McLogic Design Chapter 99

 - 789 -

The testbench model shown in Figure 99.22is an implementation of the testbench model shown in

Figure 99.3 and repeated in Figure 99.23 for your viewing convenience. The solution to Example 99-5

effectively uses assert statements in order to implement the “results comparison” shown in Figure

99.23. In the context of Figure 99.23, the solution to Example 99-5 does not actually have an official

“pass/fail indication”. What will occur is that the assert statements will print a message to the console if

there is an error.

Figure 99.23: A block diagram for a basic VHDL testbench.

Example 99-6: Test Vectors Stored in Arrays

Write the VHDL code that implements a testbench that can verify operation of the 8-bit RCA

modeled Figure 99.21. The testbench should use test vectors that are stored in an array object;

use three sets of test vectors to test the RCA. The testbench should verify that the value of the

SUM output of the RCA is correct and base the success of the testing on only the SUM value.

Solution: This example problem once again verifies the proper operation of the RCA. This example

uses test vectors stored in arrays included in the testbench model as opposed to the “on the fly” test

vector storage of the previous example. You should note that though these test vectors are stored in

arrays, they’re still “hardcoded” into arrays. The main advantage this approach has over the true “on the

fly” approach is that all the test data is in one location instead of spread out through your code as it was

in the “on the fly” approach. Figure 99.25 shows a solution to this example; here are a few more items

to note in this solution.

(1) VHDL allows the use of arrays, but it considers arrays to be a “type” of their own. This means

that you need to explicitly describe arrays before you use them. This line of code defines

arrays of size “three” in both vector and scalar forms; the vector arrays hold sum and operand

inputs while the scalar arrays hold values for the carry-out and overflow. The use of the

constant for the array size represents generic programming practices and is therefore happy.

(2) This set of code defines constants of the array types defined in the previous step. Note that

we’ve used hex notation for the 8-bit vectors to help the code appear neater. Also, note that

these five array declarations use the two array definitions defined in the previous step.

(3) This testbench uses a signal to state whether the DUT is working properly or not. Somewhat

peculiar is the fact that this testbench only tests the results of the addition operation but does

not check the carry-out and overflow results. Thus, the final verification is based on whether

Digital McLogic Design Chapter 99

 - 790 -

the SUM is correct but not the carry-out and overflow
18

. Note that we initialized the s_fail

signal to ‘0’.

(4) In order to simplify this testbench, we placed a bulk of the testing inside of a VHDL iterative

construct. This testbench uses a VHDL looping construct, which is good approach based on the

notion that we need to perform the same testing but on different sets of vectors. Note that

looping construct iterates from ‘0’ to ‘2’, which highlights the notion that arrays in VHDL are

zero-based.

(5) This code tests whether the results of the addition operation are correct or not. If the SUM is

not correct in any set of test vectors, the s_fail signal is asserted (s_fail = ‘1’). One way a user

will be able to discern whether the test passed or failed is to monitor the value of the s_fail

signal; the other way is to monitor the results of the assert statements.

(6) This set of code is similar to the previous examples in that the testbench uses assert statements

to indicate if there is an error in some RCA operation. If there is an error, the assert statements

print a message out to a console window in the test environment.

Finally, the solution to this example once again uses the model shown yet again in Figure 99.24. The

only comment here is that the official “pass/fail” indication will be a signal on a waveform display in

the simulator you’re using for your testing. Nothing too fancy here.

Figure 99.24: A block diagram for a basic VHDL testbench with “result comparison” capabilities.

18

 This was an arbitrary choice, and not a good one at that.

Digital McLogic Design Chapter 99

 - 791 -

entity testbench7 is

end testbench7;

architecture stimulus of testbench7 is

 constant VEC_NUM : integer := 3;

 --(1)

 type vec_arr is array (0 to (VEC_NUM-1)) of std_logic_vector(7 downto 0);

 type bit_arr is array (0 to (VEC_NUM-1)) of std_logic;

 --(2)

 constant A_arr: vec_arr := (X"C3", X"82", X"85");

 constant B_arr: vec_arr := (X"54", X"84", X"24");

 constant Sum_arr: vec_arr := (X"17", X"06", X"A9");

 constant co_arr: bit_arr := ('1', '1', '0');

 constant ov_arr: bit_arr := ('0', '1', '0');

 component RCA_8bit

 port (A,B : in std_logic_vector(7 downto 0);

 Cin : in std_logic;

 Ov : out std_logic;

 Co : out std_logic;

 SUM : out std_logic_vector(7 downto 0));

 end component;

 signal s_A, s_B : std_logic_vector(7 downto 0) := (others => '0');

 signal s_cin, s_ov, s_co : std_logic := '0';

 signal s_sum : std_logic_vector(7 downto 0) := (others => '0');

 ---(3)

 signal s_fail : std_logic := '0';

begin

 DUT: RCA_8bit -- instantiate the RCA

 port map (A => s_A,

 B => s_B,

 Cin => s_cin,

 Ov => s_Ov,

 Co => s_Co,

 SUM => s_sum);

 process

 begin

 s_cin <= '0';

 wait for 20 ns;

 --(4)

 for N in 0 to (VEC_NUM-1) loop

 s_A <= A_arr(N); s_B <= B_arr(N);

 wait for 50 ns;

 ---(5)

 if (s_sum /= Sum_arr(N)) then

 s_fail <= '1';

 end if;

 ---(6)

 assert (s_sum = Sum_arr(N))

 report "SUM is not correct" severity Error;

 assert (s_ov = ov_arr(N))

 report "overflow is not correct" severity Error;

 assert (s_co = co_arr(N))

 report "carry-out is not correct" severity Error;

 end loop;

 wait;

 end process;

end stimulus;

Figure 99.25: The solution to Example 99-6.

Digital McLogic Design Chapter 99

 - 792 -

Example 99-7: Vectors Stored in External Files

Write the VHDL code that implements a testbench that can verify operation of the 8-bit RCA

modeled Figure 99.21. The testbench should use test vectors that are stored in an external

file; use three sets of test vectors to test the RCA. The testbench should verify that the value

of the SUM output of the RCA is correct and base the success of the testing on only the SUM

value.

Solution: This example is similar to the previous example but the test vectors are stored in a file rather

than “on the fly” or in arrays. Figure 99.26 shows a printout of the test vector file accessed by this

examples. There are a few things to note about this file:

 The file uses a ‘$’ delimiter to indicate that the given line is a comment and thus should be

ignored by the testbench. As you’ll see from the testbench model, this choice of comment

symbols is arbitrary.

 Each non-comment line in the test file contains five data fields: three 8-bit values and two 1-bit

values. We arbitrarily chose to delineate the individual data fields using a single space. We

could have opted to more space between data fields or none at all; the testbench code can

handle either case based on the mechanism the testbench model uses to access the test vector

file.

$---

$ tb8.txt: Sample test vector file

$

$ file format (name(width):

$

$ A(8), B(8), Sum(8), Co(1), Ov(1)

$

$---

11000011 01010100 00010111 1 0

10000010 10000100 00000110 1 1

10000101 00100100 10101001 0 0

Figure 99.26: A file of test vectors for use by Example 99-7.

There are many new and happy things to note about the solution Example 99-7 shown in Figure 99.28.

Here are a few of those things as referenced in the testbench code.

(1) This testbench reads the input vectors from a file, so we first must open the associated file.

This statement declared a “file” object as a text type, associated the type with the file named

“tb8.txt”, and opens that file in a “read” mode. The label “f_test_vects” is essentially a file

handle that the testbench uses to retrieve information from the file.

(2) In most cases regarding testbenches, variables are more intuitive to work with. The issue is that

we need the associated values immediately; we don’t want to insert wait statements in order to

force an update of values represented by signals. You’ll assuredly be working more with

variables in your testbenches as opposed to signals. Get used to it.

Digital McLogic Design Chapter 99

 - 793 -

(3) The testbench reads data from the file one line at a time. The testbench code reads a line from

the test vector file and places it into a variable of a “line” type, which is named “v_vec_line”.

Note the use of the file handle in this line.

(4) It’s always good practice to comment things, even files containing test vectors. VHDL has no

concept of how a test vector file will indicate a comment line. What this line does is essentially

treat every line in the test vector file as a comment line if the first character in the line is a ‘$’.

The choice of ‘$’ is completely arbitrary. Note the VHDL keyword “next” executes if the

testbench finds a comment character.

(5) This set of lines reads the test vectors from the “line” that was previously read from the test

vector file. This data is read directly into the associated variables, which essentially has the

affect of assigning the values to those variables. The associated hardware then acts on this new

information and generates results.

Figure 99.28 shows the final result to Example 99-7. The solution uses a small font size and does not

use comments in an effort to keep the solution less than one page. Figure 99.27 shows the high-level

block diagram model of the testbench (we originally presented this diagram earlier in this chapter). As

with the previous example, the official “pass/fail” indication will be a signal on a waveform display in

the simulator you’re using for your testing.

Figure 99.27: A block diagram for testbench solution of Example 99-7.

Digital McLogic Design Chapter 99

 - 794 -

entity testbench8 is

end testbench8;

architecture stimulus of testbench8 is

 ---(1)

 file f_test_vecs: text open read_mode is "tb8.txt";

 component RCA_8bit

 port (A,B : in std_logic_vector(7 downto 0);

 Cin : in std_logic;

 Ov : out std_logic;

 Co : out std_logic;

 SUM : out std_logic_vector(7 downto 0));

 end component;

 signal s_A, s_B : std_logic_vector(7 downto 0) := (others => '0');

 signal s_cin, s_ov, s_co : std_logic := '0';

 signal s_sum : std_logic_vector(7 downto 0) := (others => '0');

 signal s_fail : std_logic := '0';

begin

 DUT: RCA_8bit -- instantiate the RCA

 port map (A => s_A,

 B => s_B,

 Cin => s_cin,

 Ov => s_ov,

 Co => s_co,

 SUM => s_sum);

 process

 --(2)

 variable v_vec_line: line;

 variable v_A, v_B : std_logic_vector(7 downto 0);

 variable v_sum_test : std_logic_vector(7 downto 0);

 variable v_ov_test, v_co_test : std_logic;

 begin

 s_cin <= '0'; wait for 20 ns;

 while not endfile(f_test_vecs) loop

 ---(3)

 readline(f_test_vecs, v_vec_line);

 ---(4)

 if v_vec_line(1) = '$' then

 next;

 end if;

 ---(5)

 read(v_vec_line,v_A); read(v_vec_line,v_B);

 read(v_vec_line,v_sum_test);

 read(v_vec_line,v_co_test);

 read(v_vec_line,v_ov_test);

 s_A <= v_A; s_B <= v_B;

 wait for 50 ns;

 if (s_sum /= v_sum_test) then

 s_fail <= '1';

 end if;

 assert (s_sum = v_sum_test)

 report "SUM is not correct" severity Error;

 assert (s_ov = v_ov_test)

 report "overflow is not correct" severity Error;

 assert (s_co = v_co_test)

 report "carry-out is not correct" severity Error;

 end loop;

 wait;

 end process;

end stimulus;

Figure 99.28: The solution to Example 99-7.

Digital McLogic Design Chapter 99

 - 795 -

Example 99-8: Vectors Stored in External Files

Write the VHDL code that implements a testbench that can verify operation of the 8-bit RCA

modeled Figure 99.21. Model your testbench solution using the following testbench model.

Use the file shown in Figure 99.26 for the test vectors. Make sure verification of the DUT

will fail if any of the DUT’s outputs are not correct.

Solution: This example is similar to the previous example but there are a few extra items. First, from

examining the testbench diagram shown in the problem description, you can see that this testbench will

be different from the testbench of the previous example because the pass/fail indication must be written

to a file. The problem statement also states that we need to verify every operation associated with the

RCA; recall from the previous example that we only verified the results of the addition operation.

Figure 99.29 shows a solution to Example 99-8. As always, there are many items worth noting about

the solution shown in Figure 99.28. Here are a few of those things as referenced using the parenthetical

comments in the testbench code.

(1) This testbench reads the input vectors from a file and writes the results to another file. The

testbench opens both of these files as text files, the test vector file in read mode, and the result

file in write mode.

(2) This set of code replaces the assert statements that essentially performed the same function in

the solution to the previous example. This testbench writes error messages to the previously

opened results file; recall that the assert statements write messages to the console. This set of

code include the time with the use of the VHDL “now” keyword. Note that the sum, carry-out,

and overflow results as verified with this set of code. Also, note that if any of these results are

not correct, the entire test fails as noted by the assignment of the “v_fail” signal in each of the

“if” cases in this set of code. The last thing to note regarding this set of code is that the solution

writes to a previously declared “line” type, and then write that entire line to the output file.

Note that successive writes to a “line” type are appended to previous writes to that line. The

“writeline” statement writes the line to the output file, which additionally has the affect of

clearing the “line” type buffer. In the way, the next “write” statement writes to an empty “line”

buffer.

(3) This set of code verifies checks the “v_fail” variable to discern whether the testbench was able

to verify proper operation of the DUT. Note that anytime there was an error detected, the

“v_fail” signal was set to true.

Digital McLogic Design Chapter 99

 - 796 -

entity testbench9 is

end testbench9;

architecture stimulus of testbench9 is

 -- ----------------(1)

 file f_test_vecs: text open read_mode is "tb8.txt";

 file f_test_results: text open write_mode is "tb9_results.txt";

 component RCA_8bit

 port (A,B : in std_logic_vector(7 downto 0);

 Cin : in std_logic;

 Ov,Co : out std_logic;

 SUM : out std_logic_vector(7 downto 0));

 end component;

 signal s_A, s_B : std_logic_vector(7 downto 0) := (others => '0');

 signal s_cin, s_ov, s_co : std_logic := '0';

 signal s_sum : std_logic_vector(7 downto 0) := (others => '0');

begin

 DUT: RCA_8bit -- instantiate the RCA

 port map (s_A, s_B, s_cin, s_ov, s_co, s_sum);

 process

 variable v_fail : std_logic:='0';

 variable v_vec_line: line;

 variable v_results_line: line;

 variable v_A, v_B : std_logic_vector(7 downto 0);

 variable v_sum_test : std_logic_vector(7 downto 0);

 variable v_ov_test, v_co_test : std_logic;

 begin

 s_cin <= '0';

 wait for 20 ns;

 while not endfile(f_test_vecs) loop

 readline(f_test_vecs, v_vec_line);

 if v_vec_line(1) = '$' then

 next;

 end if;

 read(v_vec_line,v_A); read(v_vec_line,v_B);

 read(v_vec_line,v_sum_test);

 read(v_vec_line,v_co_test);

 read(v_vec_line,v_ov_test);

 s_A <= v_A; s_B <= v_B;

 wait for 50 ns;

 ----------------------------------- ---- ------------- -----(2)

 if (s_sum /= v_sum_test) then

 write(v_results_line,String'("SUM is not correct at "));

 write(v_results_line,now);

 writeline(f_test_results,v_results_line);

 v_fail := '1';

 end if;

 if (s_ov /= v_ov_test) then

 write(v_results_line,String'("Overflow is not correct "));

 write(v_results_line,now);

 writeline(f_test_results,v_results_line);

 v_fail := '1';

 end if;

 if (s_co /= v_co_test) then

 write(v_results_line,String'("Carry_out is not correct"));

 write(v_results_line,now);

 writeline(f_test_results,v_results_line);

 v_fail := '1';

 end if;

 end loop;

 --- -- - ------------(3)

 if (v_fail = '1') then

 write(v_results_line,String'("The DUT failed testing."));

 writeline(f_test_results,v_results_line);

 else

 write(v_results_line,String'("The DUT tested properly."));

 writeline(f_test_results,v_results_line);

 end if;

 wait;

 end process;

end stimulus;

Figure 99.29: A solution to Example 99-8.

Digital McLogic Design Chapter 99

 - 797 -

Chapter Summary

 A “testbench” is the term VHDL uses to name a VHDL model whose job it is to verify the proper

operation of a given digital circuits. The term “device under test”, or DUT, is used to refer to the

circuit being tested by a given testbench. The form of a testbench is such that the DUT is instantiated

and thus becomes part of the testbench. VHDL testbenches are comprised of VHDL code but unlike

the DUT, the testbench is not synthesizable. The two main components of a testbench are the DUT

and the stimulus driver.

 VHDL testbenches verify proper DUT operation by either manual or automatic testing. The person

writing the testbench decides on an appropriate type of testing. Manual testing requires a human to

examine the waveforms generated by the testbench to verify proper circuit operation. Automatic

testing uses the versatility of VHDL to have the testbench model state directly whether the DUT

model operates as expected.

 Test vectors for VHDL testbenches come from one of three sources: 1) “on the fly”, 2) from

composite VHDL structures (such as arrays), or 3) from external files. Each of these sources are

considered to emanate from the stimulus driver box of the testbench.

 VHDL can use “assert” statement to verify proper circuit operation. The assert statement consists of

“report” lines and/or “severity” lines. If the expression associated with the assert statement does not

evaluate as true, the VDL code executes the “report” and “severity” lines.

 VHDL process statements have two forms: either they use a sensitivity list or they use wait

statements, but they cannot use both.

 There are four different types of wait statements: 1) wait for a change in a signal (WAIT ON), 2) wait

until an expression evaluates are true (WAIT UNTIL), 3) wait for a specific amount of time (WAIT

FOR), and 4) wait forever (WAIT).

Digital McLogic Design Chapter 99

 - 798 -

Chapter Exercises

1) What are the two main purposes for simulating your digital circuits?

2) When will you know it’s time to break down and simulate your digital circuit?

3) Briefly describe the two main approaches your testbench can use in order to verify a circuit is

operating as expected.

4) Briefly describe the three main approaches to generating test vectors in a VHDL testbench.

5) Briefly describe the primary difference between an “assert” statement and an “if” statement?

6) List all the types of VHDL provided error messages that are associated with “severity” lines in

VHDL “assert” statements.

7) Briefly describe whether is it possible to use neither a “report” line nor a “severity” line when using

“assert” statements.

8) Are VHDL “assert” statements considered sequential statements or concurrent statements? Briefly

describe the skinny on this notion.

9) Briefly describe the main differences between the two forms of wait statements.

10) Can a process statement include both a sensitivity list and a wait statement? Briefly describe why

or why not.

11) How many types of wait statements are included in VHDL and what are they?

12) Consider a process statement that uses a “wait” statement. Briefly describe what happens when

execution of the sequential statements in the process reaches the end?

Digital McLogic Design Chapter 99

 - 799 -

13) Write a testbench that would completely test the following VHDL model. Use “on the fly” test

vectors and use manual verification in your solution.

-- RET D Flip-flop model with active-low synchronous set input.

entity d_ff_ns is

 port (D,S,CLK : in std_logic;

 Q : out std_logic);

end d_ff_ns;

architecture my_d_ff_ns of d_ff_ns is

begin

 dff: process (D,S,CLK)

 begin

 if (rising_edge(CLK)) then

 if (S = ‘0’) then

 Q <= ‘1’;

 else

 Q <= D;

 end if;

 end if;

 end process dff;

end my_d_ff_ns;

14) Write a testbench that would completely test the following VHDL model. Use test vectors from

arrays and use manual verification in your solution.

--

-- RET T Flip-flop model with active-low asynchronous set input.

--

entity t_ff_s is

 port (T,S,CLK : in std_logic;

 Q : out std_logic);

end t_ff_s;

architecture my_t_ff_s of t_ff_s is

 signal s_tmp : std_logic; -- intermediate signal declaration

begin

 tff: process (T,S,CLK)

 begin

 if (S = ‘0’) then

 Q <= ‘1’;

 elsif (rising_edge(CLK)) then

 s_tmp <= T XOR s_tmp; -- temp output assignment

 end if;

 end process tff;

 Q <= s_tmp; -- final output assignment

end my_t_ff_s;

Digital McLogic Design Chapter 99

 - 800 -

15) Write a testbench that would completely test the following VHDL model. Use test vectors from

arrays and use automatic verification in your solution.

--

-- Model for a universal shift register

--

entity univ_sr is

 port (SEL : in std_logic_vector(1 downto 0);

 P_LOAD : in std_logic_vector(7 downto 0);

 D_OUT : out std_logic_vector(7 downto 0);

 CLK : in std_logic;

 DR_IN : in std_logic; -- input for shift left

 DL_IN : in std_logic); -- input for shift right

end univ_sr;

architecture my_sr of univ_sr is

 signal s_D : std_logic_vector(7 downto 0);

begin

 process (CLK,SEL,DR_IN,DL_IN,P_LOAD)

 begin

 if (rising_edge(CLK)) then

 case SEL is

 -- do nothing (don't change state) --------------

 when "00" => s_D <= s_D;

 -- parallel load --------------------------------

 when "01" => s_D <= P_LOAD;

 -- shift right ----------------------------------

 when "10" => s_D <= DL_IN & s_D(7 downto 1);

 -- shift left -----------------------------------

 when "11" => s_D <= s_D(6 downto 0) & DR_IN;

 -- default case ---------------------------------

 when others => s_D <= "00000000";

 end case;

 end if;

 end process;

 D_OUT <= s_D;

end my_sr;

Digital McLogic Design Chapter 99

 - 801 -

16) Write a testbench that would completely test the following VHDL model. Use test vectors from

external files and use automatic verification in your solution.

entity my_fsm2 is

 port (TOG_EN : in std_logic;

 CLK,CLR : in std_logic;

 Y,Z1 : out std_logic);

end my_fsm2;

architecture fsm2 of my_fsm2 is

 type state_type is (ST0,ST1);

 signal PS,NS : state_type;

begin

 sync_proc: process(CLK,NS,CLR)

 begin

 if (CLR = ‘1’) then

 PS <= ST0;

 elsif (rising_edge(CLK)) then

 PS <= NS;

 end if;

 end process sync_proc;

 comb_proc: process(PS,TOG_EN)

 begin

 case PS is

 Z1 <= ‘0’;

 when ST0 => -- items regarding state ST0

 Z1 <= ‘0’; -- Moore output

 if (TOG_EN = ‘1’) then NS <= ST1;

 else NS <= ST0;

 end if;

 when ST1 => -- items regarding state ST1

 Z1 <= ‘1’; -- Moore output

 if (TOG_EN = ‘1’) then NS <= ST0;

 else NS <= ST1;

 end if;

 when others => -- the catch-all condition

 Z1 <= ‘0’; -- arbitrary; it should never

 NS <= ST0; -- make it to these two statement

 end case;

 end process comb_proc;

 -- assign values representing the state variables

 with PS select

 Y <= ‘0’ when ST0,

 ‘1’ when ST1,

 ‘0’ when others;

end fsm2;

Digital McLogic Design Chapter 99

 - 802 -

17) Write a testbench that would completely test the following VHDL model. Use test vectors from

external files and use automatic verification in your solution.

entity clk_div is

 Port (clk : in std_logic;

 div_en : in std_logic;

 sclk : out std_logic);

end clk_div;

architecture my_clk_div of clk_div is

 type my_count is range 0 to 100; -- user-defined type

 constant max_count : my_count := 63; -- user-defined constant

 signal tmp_sclk : std_logic; -- intermediate signal for clock

begin

 my_div: process (clk, div_en)

 variable div_count : my_count := 0;

 begin

 if (rising_edge(clk)) then -- look for clock edge

 if (div_en = ‘1’) then -- divider enabled

 if (div_count = max_count) then

 tmp_sclk <= not tmp_sclk; -- toggle output

 div_count := 0; -- reset count

 else

 div_count := div_count + 1;

 end if;

 else -- divider disabled

 div_count := 0; -- reset count

 tmp_sclk <= ‘0’; -- turn off output

 end if;

 end if;

 end process my_div;

 s_clk <= tmp_sclk; -- assign to output

end my_clk_div;

 803

11 Glossover

(Bryan Mealy 2012 ©)

-A-

ABEL: An early hardware description language

(HDL); it’s still used today but it’s tough to find

someone who would admit to using it.

Absolute Time: A term used to describe one of two

methods used to represent time in VHDL

simulations. Absolute time refers to the notion that

all references to time are based on an “absolute”

number, such as the beginning of the simulation.

VHDL can also use the notion of “relative time”

(see “relative time”).

Academic Administrators: A term referring to

alien d-bags representing the largest obstacle to

actual learning in an academic environment. .

Academic Exercise: Any amount of work that

looks good and keeps you busy but actually has no

meaningful purpose in the real world.

Academic Purposes: Any process or endeavor that

requires time but has no lasting meaning or effect.

Academic-Types: That special type of person who

is intent on being successful in academia at any cost.

The hallmark of an academic-type student are that

they generally gets good grades but typically don’t

know squat. The hallmark of an academic-type

teacher is the one who generally places little or no

effort into teaching; any effort they put into

anything is primarily focused on advancing their

careers (which in modern academia has nothing to

do with providing quality teaching). The hallmark of

an academic administrator are the ones who do

nothing while placing amazing amounts of efforts

into justifying their extremely overpaid academic

existence.

Action State: The voltage level of a signal

associated with notion that some action should take

place when the signal is at this level; same as

“active state”.

Active Edge: A term that refers to either a “01”

transition (rising edge) or a 10” transition (falling

edge) of a signal that is used to synchronize changes

in the state of the circuit.

Active State: The voltage level of a signal

associated with notion that some action should take

place when the signal is at this level; same as

“action state”.

ADC: An acronym representing “analog-to-digital

conversion”; (see “Analog-to-Digital Conversion”).

Addend: A number added to another number to

form a sum.

Adder: A device that adds numbers. In digital

design, there are many forms of adders, each with

their own particular set of characteristics.

Adjacency Theorem: One of the basic theorems

associated with Boolean algebra. This theorem

facilitates the use of Karnaugh Maps to reduce

Boolean functions. This theorem is sometimes

referred to as the “Combining Theorem”.

Administrator: A person who purposely creates

problems and/or purposely prevents others from

solving existing problems. And if you manage to

known problems despite the efforts of

administrators, they’ll sure attempt to claim credit

for your efforts.

Algebra: A mathematical system used to generalize

arithmetic operations by using letter or symbols to

stand for numbers based on rules derived from a

minimal set of basic assumptions.

Algorithm: A step-by-step procedure for solving

problems including the notion that the problem can

be solved in finite number of steps.

ALU: An acronym referring to the “arithmetic logic

unit”; (see “arithmetic logic unit”).

Analog vs. Digital: The term digital refers to items

that are discrete in nature while the term analog

refers to items that are continuous in nature. While

the world we live in is primarily analog, computers

are primarily digital. One important function of

digital design is to allow the successful interaction

between computers the rest of the analog world.

Digital McLogic Design Glossover

 804

Analog vs. Digital: The term digital refers to items

that are discrete in nature while the term analog

refers to items that are continuous in nature. While

the world we live in is primarily analog, computers

are primarily digital. One important function of

digital design is to allow the successful interaction

between computers the rest of the analog world.

Analog: A description of something that (such as a

signal or data) that is expressed by a continuous

range of values. The continuousness of analog

implies that there are an infinite number of possible

values in the given range.

Analog: A description of something that (such as a

signal or data) that is expressed by a continuous

range of values. The continuousness of analog

implies that there are an infinite number of possible

values in the given range.

Analog-to-Digital Conversion: A term that

describes the translation of a signal represented by a

voltage level (analog) to a signal represented by a

given number of bits (digital). The term “ADC” is a

shorthand representation of analog-to-digital

conversion.

AND Plane: A structured array of logic that allows

for the combination of Boolean variables and/or

function outputs in such a way as to form product

terms used to implement Boolean functions.

AND/NOR Form: One of the basic eight logic

forms based but not commonly used in digital

design. This form is derived from OR/AND form

(POS form) by excessive use of DeMorgan’s

theorem.

AND/OR Form: One of the basic eight logic forms

and one of the most popular four ways to describe a

circuit using either Boolean equation or the circuit

model of the associated Boolean equation. This

form is often referred to as “sum of product” form

or SOP form.

Annotations: This word is related to “notes”. Any

time you’re attempting to describe something to

someone, you should include as many “notes” or

annotations as possible. Annotations should always

be included with timing diagrams, block diagrams,

state diagrams, and circuit schematics.

Architecture (VHDL): The part of a VHDL model

that describes the operational characteristics of a

circuit. The architecture is associated with a VHDL

entity.

Architecture: A term that refers to the structure of

a device; in particular, the modules contained in that

device and how those modules are connected.

Architecture: In the context of digital hardware, the

architecture of circuit describes the individual

modules of a circuit and the connection between the

modules.

Arithmetic Logic Unit: A circuit that has inputs for

one or more operands, inputs for one or more

controls, and output for the results. Arithmetic logic

units generally contain status outputs describing

various characteristics of the operations performed

by the unit. The acronym “ALU” is often used to

refer to this circuit.

Arithmetic Shift: A shift register operation on

signed binary numbers that protects both the value

and sign of the shifted number. Arithmetic shifts

include both left and right shifts.

Arithmetic Unit: A term describing one of the main

sub-modules of an arithmetic logic unit (ALU). The

arithmetic unit generally handles operations that can

be classified as “arithmetic” in nature such as

addition, subtraction, multiplication, etc.

Assertation Levels: A term that references the

notion that signal can be either negative or positive

logic.

Asserted High: A term that refers to the notion that

a given signal is a positive logic.

Asserted Low: A term that refers to the notion that

a given signal is a negative logic.

Asserted: The notion that the current state of a

signal (or voltage level) is associated with the action

state. Whether a signal is asserted or not is

independent of the logic level (negative or positive)

associated with that signal.

Assignment Operator: A symbol that represents

the transfer of information from one expression to

another. The characters “<=” represent the

assignment operation in VHDL while “=” is used as

the assignment operator in C.

Asynchronous Input: An input to a sequential

circuit that affect the circuit any time the signal is

asserted (as opposed to being synchronized to some

other signal in the circuit).

Digital McLogic Design Glossover

 805

Augend: A number that is going to be used to

increase (or added to) the value of another number.

Automatic Verification: A term that refers to the

notion of a VHDL testbench’s ability to discern

whether a particular VHDL model is working as

expected. The testbench designer can construct the

testbench such that the testbench will directly state

whether the model is working or not; this is opposed

to “manual verification” which is the other main

approach to VHDL model verification; (see “manual

verification”).

Axiom: A statement that is universally accepted as

true.

-B-

Barrel Shift: A shift operation that is characterized

by shifting more than one bit location in one clock

cycle. Arithmetic shifts can include both left and

right shifts.

Base: relative to a given number systems, the base

is the same value as the radix.

Base: relative to a given number systems, the base

is the same value as the radix.

BCD: An acronym used for binary coded decimal;

(see “binary coded decimal”).

Behavioral Style: A term that refers to using

behavioral models in VHDL.

BFD: An acronym that referring to “brute force

design”; this is essentially a pejorative synonym for

the “iterative design”.

Binary Coded Decimal: A number system that uses

four bits (binary digits) to represent each digit in a

decimal number. Four bits can provide up to 16

different values, which include digits (0-9) and

sometimes alpha characters (A-F).

Binary Counter: A counter that counts in a binary

sequence.

Binary Encoding: A term that refers to on of many

different methods used to encode the state variables

associated with the various states in a finite state

machine (FSM). In particular, binary encodings the

fewest number of single-bit storage elements

possible to differentiate the various states in the

FSM.

Binary Relationship: A relationship between two

entities where at least one of the entities utilizes a

binary exponential relationship (or a “powers of

two” relationship).

Binary: A number system that uses two symbols to

represent quantities. These symbols are typically ‘0’

and ‘1’ for digital design and computer applications.

Bit Stuffing: A phrase used to describe the notion

of adding 0’s to a number such that the addition of

the 0’s do not affect the overall value of the number.

Bits: A shorthand name for binary digits.

Bit-Stream: A term that refers to a contiguous set

of bits on a single signal over a given time period.

We oftern refer to bit-streams as “serial lines”; (see

“serial lines”).

Block-Style Comments: A commenting style

where multiple lines of code can be commented by

using a comment start delimiter and a comment end

delimited (similar to “/*” and “*/” in the C

programming language. VHDL does not support

block commenting.

Bloviation: A technique used to enhance one’s

particular image of self-importance by wasting the

time of others who are polite enough not to say

anything. This is approach is used often by

academic administrators who know people under

them are generally to scared to do anything other

than feign interest in the speaker.

Board-level Digital Design: Digital designs

comprised primarily of discrete ICs interfaced in

such a way as to achieve a meaningful result.

Boole, George: A 19th century mathematician who

developed a two-valued algebra in order to

mathematically model logical reasoning. The result

of his work is Boolean Algebra and forms the basis

of modern digital design.

Boolean Algebra: An algebra originally developed

by George Boole in order to mathematically model

logical reasoning. Boolean algebra forms the basis

of modern digital design.

Boolean Equation: An equation that is contains

Boolean algebra; these are sometimes referred to as

Boolean expressions.

Digital McLogic Design Glossover

 806

Boolean Expression: Another term referring to a

Boolean equation.

Boolean Variable: A symbolic value that can

represent one of two values; in digital design, these

values are typically ‘1’ or ‘0’, but sometimes, “true”

or “false”, “on” and “off”, etc.

Boring: A great description of anything you’re not

seeing the point of.

Borrow: A term referring to the notion that if a

larger number is subtracted from a smaller number,

the operation needs to access the next highest bit

outside of the bit range associated with the

subtraction. The borrow analogous to the “carry-

out” bit associated with an addition operation. Often

times, arithmetic modules use a signal bit to

represent both the carry and borrow with the actual

meaning of the bit being dependent on the operation

that generated it.

Bottom-Up Design: A hierarchical design approach

that starts at the lowest level of abstraction and

works upwards. In this approach, the designer

basically initially develops low-level modules that

will be used by higher levels of the design.

Buffer: A device that accepts a signal as an input

and outputs the exact same signal without a change

in logic levels. Buffers typically used to increase

drive output drive characteristics of a given signal.

Bummer: A brief description of the feeling you get

when you find out that your precious circuit is not

behaving as you expected it to.

Bundle Access Operator: A set of symbols, “()”,

used in VHDL to access individual signals within an

bundled signal.

Bundle Notation: The act of showing or describing

bundles in circuit models such as schematic

diagrams and timing diagrams.

Bundle: A set of signals that have been arbitrarily

associated with each other (or group together)

because they share a common purpose in a design.

Bus Notation: A synonym for the term “bundle

notation”; the term bundle notation is preferable.

Bus: A term often used in place of the term

“bundle”. A bus is often used as a synonym for a

bundle but is more appropriately a synonym for the

term “protocol”.

By Inspection: A term that refers to the notion that

some problems can be solved in your brain, thus

removing the need for expending extra time

explicitly writing down solutions.

-C-

CAD: An acronym for “computer aided design”;

(see “computer aided design”).

Carry-Out: A bit indicating whether a “carry” has

been generated by a digital device. Carry-out bits

are generally associated with digital devices

implementing arithmetic operations; carry-out bits

are typically used to indicate the validity of

mathematical operations and to allow the “daisy-

chaining” or “cascading” of individual digital

devices.

Cascade: A term referring a configuration of

multiple digital devices; devices in a cascade

configuration are placed in a series-type

configuration. This term is often referred to as a

“daisy chain”.

Cascadeable: A characteristic of register,

particularly counters and shift registers, that allows

the effective bit-width of the device to be

effortlessly extended by adding more modules to the

design.

Case Sensitive: A term that refers to the notion that

the syntax of a specific programming language or

hardware description language differentiates

between upper and lower case of alpha characters.

The C programming language is case sensitive

while VHDL is not case sensitive (about 99.9% of

the time).

Case Statement: A statement that supports

selection construct associated with multiple

conditional statements. The case statement in

VHDL is one of three main sequential statements

that can appear in the body of process statements.

Cave: A dark place where I spent my time writing

this text.

Digital McLogic Design Glossover

 807

Central Processing Unit: A term used to describe a

module that handles the processing of data in a

computer. The notion of central refers to the notion

that computers typically used only one processing

unit in a central location (this is less true in modern

digital design). The central processing unit, or CPU,

is typically modeled as having two sub-modules: a

control unit and an arithmetic logic unit.

Characteristic Table: A set of data presented in a

tabular format that describes the operation of a

digital circuit. The term characteristic table is most

often associated with the description of sequential

circuits since they include the notion of “state”; (see

“state”).

Chip Enable: A signal used in digital design to

“turn on” or “turn off” a circuit. When a device is

not enabled, the device has a predetermined output,

which must be stated. When the device is enabled,

the device works as a normal device.

Chip Select: A term used to describe whether a

specific input is “turned on” or “turned off”. See

“chip enable” for a more complete description.

Circuit Forms: A term that refers to the notion that

digital circuits can be represented in many different

ways associated both Boolean equation-type

descriptions and subsequent circuit-type

descriptions. The notion of “circuit forms” is based

on the notion of functional equivalence.

Clark Method: A method used to mitigate the

amount of grunt-work required when applying the

“New FSM Techniques” to implementing finite

state machines (FSMs); (see “New FSM

Techniques”).

Classical FSM Approach: An approach to

implementing finite state machines (FSMs) that uses

maximum reduction techniques with every aspect of

an FSM implementation. The classical FSM

approach can be tedious and is constrained by the

basic limitations of Karnaugh maps. The “New FSM

Techniques” can be applied to mitigate some of the

constraints of this approach at the cost of “less

reduced” Boolean expressions; (see “New FSM

Techniques”).

Clear Condition: A state of a storage element

where the current value is ‘0’. This is also referred

to as a “reset condition”; (see “reset condition”).

Clear State: The state of a storage element or a

signal where the current value is ‘0’. This is also

referred to as a “reset state”; (see “reset state”).

Clear: When used as a verb, this term refers to

making the value of a signal or storage element a

‘0’. This term is synonymous with “reset”; (see

“reset”).

Cleared: A term referring to the notion that a signal

or storage element has been set to ‘0’. This term is

synonymous with “reset”; (see “reset”).

Clock Edge: A term that generally refers to an

“active” edge (either the rising or falling edge) of a

synchronous circuit. Changes in many circuit

outputs are typically synchronized to an edge of a

clock signal.

Clock Input: A signal that is generally used to

synchronize digital circuits. Clock signals are

typically periodic.

Clocking Waveform: A term used to describe an

attribute of a waveform in that clocking waveforms

are generally understood to be periodic in nature;

(see “clocking waveforms”).

CMOS: An acronym standing for: Complimentary

Metal Oxide Semiconductor. Most modern digital

integrated circuits are created from transistors made

with CMOS technology.

Code Word: A phrase used to refer to a single set

of digits that are designated as belonging to a given

set of other sets of digits that form a given code.

Code-Word: A term sometimes used to describe

the obtainable count values in a counter.

Coding Style: A term that refers to the notion that

the syntax rules of a language allow you to write

viable code that can have about any form. There are

accepted forms of coding style for every language;

following these coding styles will make your code

more readable and understandable to human readers

of your code not unlike yourself.

Combinatorial Logic: Digital logic that does not

have memory, or the ability to store the values of

bits.

Digital McLogic Design Glossover

 808

Combinatorial Process: One half of a two-process

approach to modeling finite state machines (FSMs)

using VHDL; the other half of the FSM model is the

“synchronous process”; (see “synchronous

process”). The combinatorial process is responsible

for modeling both the “next state decoder” and the

“output decoder” in the standard FSM model; both

of these decoders are generally implemented using

combinatorial circuits.

Combining Theorem: One of the basic theorems

associated with Boolean algebra. This theorem

facilitates the use of Karnaugh Maps to reduce

Boolean functions. This theorem is sometimes

referred to as the “Adjacency Theorem”.

Comments: A term that refers to text appearing in

code that is ignored by the compiler or synthesizer.

Comments in VHDL are designated by two

consecutive dashes; all text after these dashes is

ignored by the entity interpreting your code.

Comments are generally used to explain portions of

code that are not patently obvious to provide

history-type information regarding the particular

file.

Compact Maxterm Form: A form that describes a

Boolean function by listing the truth table entries

that have outputs of ‘0’ in terms of the decimal

index into the associated with that particular row of

the truth table. This form uses the capital PI

summation signal.

Compact Minterm Form: A form that describes a

Boolean function by listing the truth table entries

that have outputs of ‘1’ in terms of the decimal

index into the associated with that particular row of

the truth table. This form uses the capital Greek

summation signal.

Comparator: A digital device that compares two

signals and determines whether they are equal or

not; the two signals can be either single signals or

bundles. Comparators are typically referred to as “n-

bit comparators which indicates the width of the

input signals; outputs of comparators typically

include information about the two inputs such as

equality, less-than, and/or greater-than. Comparators

are one the standard digital circuits used in digital

design.

Complementary Outputs: A term used to describe

two outputs of a circuit that always represented

inverted versions of each other. The various flavors

of flip-flops typically have complementary outputs.

Complex Programmable Logic Device: An

integrated circuit that can be configured to

implement various logic functions or relatively

small digital systems. Generally referred to as a

CPLD, complex programmable logic devices are

generally less complex and less flexible than

FPGAs.

Complexicated: A term applied to items that are

both complex and complicated.

Component Declaration (VHDL): The notion of

making a it known to the VHDL synthesizer that an

external design unit, or component, will be used in a

particular design.

Component Instantiation (VHDL): The notion of

including a previously declared design unit into the

current level of design by properly referencing and

mapping the design unit.

Component Mapping (VHDL): A term referring to

the notion of connecting the signals associated with

an instantiated design unit from a different level of a

design to the signals in the current level of the

design.

Computationally Expensive: A term that describes

the notion of there being a “cost” associated with

computer operations. All operations performed by

digital circuits require a given amount of time to

complete, but not all operations are equivalent. For

example, it is more computationally expensive to

generate the square root of a number than it is to

decrement a number; this is due to the fact that the

square root operation will require more steps to

complete than a decrement based on the application

of an underlying algorithm used to implement the

two operations.

Computer Aided Design (CAD): The act of using

a computer to automate or simplify the design

process. Or, a design that is in some part completed

by use of a computer and associated software.

Computer: Any electronic device that reads

instructions from memory and carries out those

instructions on data. A given circuit can officially be

labeled a compute if it has the three main

components of a computer: memory, CPU, and I/O.

Digital McLogic Design Glossover

 809

Concurrency: The notion of two or more things

occurring at the same time. Concurrency is one of

the underlying factors in VHDL in that many of the

statements in VHDL are interpreted as being

concurrent in that they can describe multiple

hardware entities that work in parallel, and thus

supporting the concept of parallelism.

Concurrent Signal Assignment: A term that refers

to four types of statements in VHDL that in

interpreted as occurring at the same time. The four

types of concurrent signal assignments, or CSA, are

signal assignment, selective signal assignment,

conditional signal assignment, and process

statements.

Configurability: The ability of a device to select

one of several pre-set options as to internal and/or

external operations of the device.

Conspicuous Consumption: A term coined by

Thorstien Veblem that describes the pecuniary

motivations of modern society.

Control Signals: These are signals represented as

outputs from a controlling device and as inputs to a

device being controlled. Finite state machines

(FSMs) are typically used as controllers and contain

both control outputs and status inputs.

Control Tasks: A set of functionality that performs

a specific set of duties and can be described

independently of other sets of functionality; these

sets of functionality are designed to perform the

duties of controlling specific entities. In terms of

digital design, control tasks are typically

imeplemetned with microcontrollers or finite state

machines (FSMs).

Control Unit: A term describing one of the sub-

modules of a central processing unit (CPU). The

control unit is generally responsible for controlling

the sequencing of processing associated with the

datapath in order to obtain the desired result.

Controller: A circuit that is used to control another

circuit. Controller circuits generally have both status

inputs (status signals) that allow the controller to

know the state of the circuit it controls and control

outputs (control signals) which are used to directly

control some external circuitry. Finite state

machines (FSMs) are typically used as controller

circuits.

Count Enable: A signal used to allow a counter to

count when asserted or disable counting when not

asserted.

Counter Design: The notion of designing a

sequential circuit that represents a counter. Finite

state machines (FSMs) are often used to design

simple counters; more complex counters can

typically be easily modeled in VHDL.

Counter Overflow: The notion of a counter being

incremented beyond its ability to represent values;

unless otherwise stated, overflow is generally

characterized as the counter transitioning from its

largest representable value to its smallest value..

Counter Underflow: The notion of a counter being

decrement beyond its ability to represent values;

unless otherwise stated, underflow is generally

characterized as the counter transitioning from its

smallest representable value to its largest

representable value.

Counter: A sequential circuit that progresses

through a repeatable sequence of code words.

Changes in code words are typically synchronized

to a system clock signal. Counter types are generally

characterized by the code words in their sequence;

typical counter types include binary counters,

decade counters, Johnson counters, etc.

Counter: A sequential digital device that has

outputs that represent numbers in an arbitrary

sequence. Counters are not necessarily associated

with a given sequence of numbers such as a binary

counter. Counters often have auxiliary inputs to

support extra features on the counter such as pre-

sets, clears, and parallel loads. Counters are

typically described in terms of “width” which refers

to the number of single-bit storage elements used to

represent the given numbers in the associated count.

Covered: A term that refers to certain aspects of

Karnaugh mapping. For generic K-maping, the term

refers to the notion of including all “1’s” or all “0’s”

into grouping. In the context of static logic hazard

removal, the term “covered” refers to the notion that

all groupings that are a unit-distance apart share a

grouping in order to provide a grouped path between

those groupings.

CPLD: An acronym for “complex programmable

logic device”; (see “complex programmable logic

device”).

Digital McLogic Design Glossover

 810

CPU: An acronym referring to the “central

processing unit”; (see “central processing unit”).

CSA: An acronym referring to “concurrent signal

assignment; (see “concurrent signal assignment”).

Cut and Paste Engineer: An engineer that

understands using previous work via the “cut and

paste” feature of a computer is an efficient way of

working. Cut and paste engineers are also known as

“CPEs”.

Cycles per Second: A term used to describe the

number of times a signal changes state in a time

span of one second. Cycles per second is

synonymous with the term “Hertz”; (see “Hertz”).

-D-

D Flip-flop: A shorthand notation for a “data flip-

flop”; (see “data flip-flop”).

Daisy Chain: A term referring a configuration of

multiple digital devices; devices in a daisy chain

configuration are placed in a series-type

configuration. This term is often referred to as a

“cascading”.

Data Flip-flop: A flip-flop that changes the output

state when the “data” input to the flip-flop is at a

different value than the output of the flip-flop and

an active edge occurs on the clocking input the

circuit. The “next state” of a D flip-flop is a function

of the D input only.

Data Inputs: These are the signals on a MUX that

can appear on the MUX’s outputs. The MUX will

choose between one of the data inputs to be the

output of the MUX.

Data Selection Inputs: The signal on a MUX that

are used to determine which of the MUX’s data

inputs will appear on the MUX output.

Dataflow Model: A type of VHDL model that

refers to the notion that the synthesized logic

associated with the model is somewhat evident from

the VHDL statements used in the model. If a given

VHDL model contains no process statements, the

model is considered a dataflow model.

Dataflow Style: A term that refers to the use of

dataflow modeling in VHDL.

Datapath: A term describing one of the main

submodules of a central processing unit (CPU). The

datapath handles the crunching of numbers

including mathematical and logic-type operations.

The main component in the datapath is the

arithmetic logic unit (ALU).

Debugger: A tool used to remove errors from

hardware of firmware designs. Debuggers are

generally associated with software and firmware

development, but they are appropriately can be used

to debug circuit designs as they often need help also.

Debugging: The act of removing errors from

designs including hardware, firmware, and software.

Decade Counter: A counter that counts in a binary

coded decimal (BCD) sequence.

Decimal: A number system that uses ten symbols to

represent quantities. These symbols are typically

‘0’, ‘1’, ‘2’, ‘3’, ‘4’, ‘5’, ‘6’, ‘7’, ‘8’, and ‘9’.

Declarative Region(VHDL): The region of a

VHDL architecture where intermediate signals and

other items required by the given architecture are

listed.

Declarative Region: A part of a VHDL architecture

statement that lists items such as component

declarations and intermediate signal.

Decoder: A combinatorial (or non-sequential)

digital device that establishes a functional

relationship between the device input(s) and

output(s). There are two general types of decoders:

generic decoders and standard decoder. Standard

decoders are a subset of generic decoders.

Decrement: An operation typically associated with

counters where ‘1’ is subtracted from the current

value being stored by the counter.

DeMorgan’s Theorem: One of the basic theorems

in digital design; this theorem is used to simplify

circuits, generate other function forms, and design

advanced bowling balls.

DeMorganize: A verb that refers to the act of

applying DeMorgan’s theorem.

Digital McLogic Design Glossover

 811

Dependent PS/NS Style: One of many approaches

to modeling finite state machines (FSMs) using

VHDL. The hallmark of this approach is to have one

process that generally handles the combinatorial

features of the FSM (see “combinatorial process”)

while the other process handles issues involved in

modeling the state registers (see “synchronous

process”).

Dependent Variable: A variable is influenced by

other variables (namely the independent variables)

and is subject to change based on changed in other

variables. In digital design, the dependent variable is

typically the output while the independent variable

is typically the input; thus, dependent variables are a

function of independent variables.

Design Automation: A term used to refer to a

design approach that reduces the grunt work

associated with a given design process.

Design Under Test: A term referring to the VHDL

model that is being verified by a VHDL testbench.

The “device under test” is a model of a digital

circuit that is instantiated as part of the testbench

model. The term “device under test” is sometimes

referred to as the “unit under test” or the “model

under test”.

Device Verification: The act of verifying that a

device is working as expected. Often times

verification means one type of device

implementation is used to verify the associated

device model is working as expected.

Digit: A symbol used in a number system.

Digital Design: The creation of digital circuits to

solve problems. And a somewhat longer version:

The creation of a digital circuit that establishes a

structured relationship between the circuit’s inputs

and outputs in such a way as to solve a given

problem.

Digital Logic Circuit : A digital logic circuit is an

electronic circuit that provides you with some

desired result and is implemented using digital logic

devices.

Digital Self-Flagellation: A medical term

describing the condition associated with performing

excessive amounts of digital design.

Digital: A description of a something (such as a

signal or data) that is expressed by a finite number

of discrete values (or states). These discrete values

include the entire “range” of possibilities, but does

not include any of the “in-between” values.

Diminished Radix Compliment: A term that refers

to a standard but not common method of represented

signed binary numbers where the left-most bit in the

set of number is considered the sign bit and the

other bits are considered the magnitude bits. This

term is often listed as DRC.

Dinosaurs: A aptly descriptive term for old

(literally or figuratively)

Diode: A two-terminal semiconductor device

formed from placing an n-type material on a p-type

material, thus forming a “PN junction” which has

many delightful characteristics.

Direct Mapping (VHDL): A technique used by

VHDL structural models that explicitly links the

inputs and outputs of instantiated modules directly

to the corresponding inputs and outputs of the next

highest level in the hierarchy. The alternative

approach to direct mapping is indirect mapping; (see

“indirect mapping”).

Direct Mapping Operator: An operator, “=>”,

used in VHDL module instantiation to map internal

inputs of modules to external connections.

Direct Polarity Indicators: The use of

parenthetical values (H) or (L) to indicated the logic

level associated with a given signal.

Distance: A term used to characterize the difference

between two binary numbers; the distance between

two binary numbers is defined as the minimum

number of bits of one number that must be toggled

in order to equal the second number.

DMUX: A special type of decoder; this term is

sometimes used in digital design-land but does not

have a solid definition. DMUXes, whatever they

are, can be considered a special type of decoder.

Don’t Care Transition: A term that refers to a

state-to-state transition in a finite state machine

(FSM) that occurs independently of any conditions

in a given FSM. These transitions are often referred

to as unconditional transitions.

Digital McLogic Design Glossover

 812

Don’t Cares: A slang but common term used to

describe input combinations associated with

Boolean functions as not having specified outputs.

This term is derived from the fact that the given

input variable combination will never occur so the

output does not matter (thus, you “don’t care”).

Down Counter: A counter that counts only in the

“down” direction (count value becomes less)

DPI: An acronym used for “direct polarity

indicator”; (see direct polarity indicator).

DRC: An acronym referring to diminished radix

compliment; (see “diminished radix compliment”).

Dumbtarted: A term applied to technical people

who go through life with blinders on; these people

typically go into management (or administration in a

academic setting) due to their complete lack of

technical competence and ongoing inability to learn

new things.

DUT: An acronym referring to “device under test”;

(see “device under test”).

Duty Cycle: A term used to describe the percentage

of a period that a given signal is in a “high” state.

This term always refers to a periodic signal.

Dynamic hazard: A type of hazard associated with

the condition where the output is expected to change

value (non-static).

Dynamic logic hazard: A type of hazard based on

the changing of one input variable (the “logic” part)

where the output is expected to change value (the

“dynamic” part).

-E-

Enable Signal: A signal that controls the general

operation of a circuit in a manner such the circuit

outputs are active when the enable signal is asserted

and inactive when the enable signal is not asserted.

Engineer: A person who solves problems and

strongly shuns worthless administrative tasks.

Engineering Notation: An approach to

representing numbers that uses both numerical and

exponential parts. The numerical part of the number

typically contains both an integral and fractional

part. The exponential part of the number is

represented as ten raised to powers that are even

divisible by three. Often times the exponential

portion of the notation is replaced with suffixes that

indicate the particular value of three.

Entity (VHDL): The part of a VHDL model that

describes the interface of the circuit. The entity is

associated with a VHDL architecture.

Enumeration Type: A feature in higher-level

computer and hardware description languages and

allow users to define their own types in the models

they generate. Enumeration types generally allow

you to specify how the types are represented

internally, but you must explicitly state this desired

representation or one will be assigned for you.

Equivalence Gate: Another name for an XNOR

gate; see “XNOR gate” for a full definition.

Equivalence Operator: A symbol, “=”, used in

VHDL to establish a relation between two

expressions. This operator is an binary operator that

returns a Boolean value which states the two

expressions are either equal or not equal.

Equivalent Circuit Forms: A term that refers to

the notion that digital circuits can be represented in

many different ways but all these ways are

functionally equivalent.

Error condition: A condition in a cirucit that is not

correct. This may be an ongoing condition such as a

bug or a temporary condition such as a glitch. The

condition may also be permanent or intermittant.

Error Correction: A reference to the ability to

correct one or more errors. Digital circuits can be

designed to detect errors, and, if errors are detected,

they can correct errors. Error correction circuits

generally include “extra” bits along with the

“standard” bits (and associated circuitry) in order to

detect errors and subsequently correct errors.

Digital McLogic Design Glossover

 813

Error Detection: A reference to the ability to detect

one or more errors. Digital circuits can be designed

to detect errors; “parity generators” and “parity

checkers” are two common digital circuits used to

detect error(s) in a set of bits. Error detection

circuits generally include “extra” bits along with the

“standard” bits (and associated circuitry) in order to

detect errors.

Essential prime implicants: A grouping in a

Karnaugh map that is a prime implicant (see “prime

implicant”) and can be covered in one way only.

Even Parity: A condition that describes a

characteristics regarding a set of bits; in particular,

whether a set of bits has an even number (or zero)

number of bits of value ‘1’.

Excitation Table: A set of data in a tabular format

that describes the operational characteristics of a

digital storage element. In particular, excitation

tables describe the input conditions required to

attain a given state change.

EXNOR Gate: A less common name for an XNOR

gate; see “XNOR gate” for a full definition.

EXOR Gate: A less common name for an XOR

gate; see “XOR gate: for the full definition.

Expression: A set of items such as variables and

constants that are combined via operators according

to a known set of rules and used to generate another

value by the process of evaluation of the expression.

-F-

Factory Programmed: A term referring to a device

that contains connections that are made (or not

made) on the silicon level; mask programmability is

often referred to as “factory programmed” as it is

generally done at the associated fab (IC fabrication

facility). An

Falling Edge: A “10” transition of a given signal

that is typically used to synchronize some other

action in a circuit. ..

Falling-Edge Triggered: A term used to describe

the notion that changes in a circuit are synchronized

to a “falling edge” of some signal in the circuit. This

term is often abbreviated as “FET”.

Fast Division: A term describing a circuit that

performs a division operation in a relatively fast

manner. Shift registers are widely known for the

ability to perform fast division (right shifting) at the

cost of including a truncation in the operations.

Fast Multiplication: A term describing a circuit

that performs a relatively fast multiplication

operation. Shift registers can typically perform fast

multiplication operations (left shifting) at the cost of

a loss of precision on the lower order bits due to the

fact that 0’s are stuff in the lower order bits. Fast

multiplication in shift registers are limited to

multiplying by powers of two.

FET: An acronym referring to “falling-edge

triggered”; (see “falling-edge triggered”).

Field Programmable Gate Array: A logic device

that can be programmed to implement many aspects

of a digital circuit. Usually referred to as FPGAs,

these devices can be quite large and complex on a

low level. Modern FPGAs have complex

architectures and include standard internal devices

such as memory, CPUs, specialized arithmetic

circuits, etc.

Flat Design: A term used to describe VHDL models

that do not use a structural modeling approach. Flat

designs are inherently non-hierarchical in nature. .

Forbidden State: A condition in a sequential circuit

that is generally not allowed to happen to ensure an

arbitrary characteristic of that circuit.

FPGA: An acronym for “field programmable gate

array”; (see field programmable gate array).

Fractional Portion: A phrase referring to the digits

on right side of the radix point.

Frequency: The number of times a signal changes

state in a given time period. If that time period is

one second

FSM Analysis: The act of using a given sequential

circuit to generate an associated state diagram.

FSM Design: The act of generating a sequential

circuit that can be used to solve a given problem.

FSMs can be designed from a word descriptions,

timing diagrams, or state diagrams.

Fun Stuff: A synonym widely used for anything

having to do with digital design.

Digital McLogic Design Glossover

 814

Function Forms: A common term used to describe

the notion that Boolean expressions or functions can

appear completely different but provide equivalent

outputs for a given set of inputs.

Function Forms: A reference to the fact that a

given Boolean function can be represented in many

different ways; each of these ways are considered

functionally equivalent. There are many standard

function forms out there, two of which are SOP and

POS forms. .

Function hazard: A hazard that is present due to

the simultaneous changing of two or more input

variables for a given circuit.

Function Realization: The notion of “realization”

in digital design essentially means that you did

something. A function realization would typically

be a Boolean equation-based solution to a given

problem.

Function: In digital design, a function is an

equation that describes an input/output relationship

of a module in terms of digital logic.

Functionally Complete: The act

Functionally Equivalent: The condition that exists

when various function representations describe the

same input/output relationship. This can be thought

of as different ways of saying the same thing.

Functionally Equivalent: Two Boolean equation

forms that provide the same output for a given set of

inputs despite the fact that the equations are

different.

Fuse Blowing: A term that refers to the act of

removing the connection between two signals. The

term “blowing a fuse” means that a previously made

connection has been purposely removed. The notion

of having fuses is one of the mechanisms that give a

hardware device the characteristic of

programmability.

Fuse: A term used to describe a temporary

connection made between two signals. Fuses can be

“blown” or left alone (connection broken or left

untouched).

-G-

G: An abbreviation used for the metric prefix

“Giga”; this prefix is used in engineering notation.

Gate Array: A generic term used to refer to devices

that can be customized for a particular application.

This term is generally synonymously used with the

term complex programmable logic device.

Generic Decoder: One of two types of decoders;

generic decoders are generally used to replace the

notion of “Boolean functions” by implementing

Look-up Tables (LUTs). The term “decoder” is

often used in place of the term “generic decoder”.

Giga: A standard metric prefix meaning 10-9; the

prefix is abbreviated as “G”.

Glitch: An temporary unwanted error condition in a

circuit. Glitches are typically characterized as low

glithces (1-0-1) or high glitches (0-1-0).

Glue Logic: Relatively simple logic present in

modular designs that is used connect major sub-

modules to other modules.

Gray Code: A type of binary code that is a subset

of unit distance codes.

Ground: A term refer to the reference voltage in

electronics. In digital electronics, this signal is

generally considered a logical ‘0’.

Ground: A term used to indicate the logic ‘0’ in a

digital circuit. In a real circuit, ground is one of the

two voltages used to power a circuit. This term is

often referred to as “GND” and indicated with a

down-pointing arrow in a circuit diagram.

Group of Fours: A phrase used in conjunction with

translating binary numbers to a hexadecimal or

BCD representation; typically four bits at a time are

converted, thus group of “four”.

Group of Threes: A phrase used in conjunction

with translating binary numbers to an octal

representation; typically three bits at a time are

converted, thus group of “three”.

Grunt Work: Work that you know needs to be

done due to its overall importance to your project

but is work that is generally boring and requires

little intelligence to complete which makes it similar

to tasks required of academic administrators.

Guessing: An approach used by simulators to

extrapolate an output(s) based on a given input(s)

for a particular design.

Digital McLogic Design Glossover

 815

-H-

Half Adder (HA): A one-bit adder that has outputs

for sum and carry-out; the input only include the

two bits being added.

Hang States: A state in a state diagram that, once

entered, can never be exited. Hang states are

generally undesirable conditions associated with

finite state machine (FSM) design. Hang states are

often associated with self-loops from the given hang

state.

Hard-Core Microcontroller: Any

“microcontroller” (see “microcontroller”) that is not

a “soft-core microcontroller” (see “soft-core

microcontroller”). Hard-core microcontrollers exist

on pre-fabricated integrated circuits as opposed to

being synthesizable on programmable logic devices

as is the case with soft-core microcontrollers.

Hardware: A term referring to technical entities

that are not software or firmware. In the context of

digital design, hardware generally refers to digital

circuitry in the form of devices synthesized on

programmable logic devices (PLDs) or discrete

integrated circuits (ICs) on a printed circuit board

(PCB).

Hazard: A condition present in a circuit that may

under some conditions cause an unwanted

condition, or error condition, in that circuit.

Hertz: A measure of frequency defined to be the

number of time a signal changes state in a time span

of one second. This term is abbreviated as “Hz”.

Hex: A shorthand notation for hexadecimal; also a

synonym for numbers with a radix of 16.

Hexadecimal: A term used to describe numbers

with a radix of 16.

Hierarchical Design: An approach to digital design

that utilizes various levels of abstraction in order to

promote efficient design and understandable

designs.

Hierarchical Design: Designs that are described at

multiple levels. The notion of VHDL structural

modeling is a mechanism that supports hierarchical

design.

High-Impedance: A term that indicates the value of

a signal is not being “driven” by some entity in the

circuit. When a signal is not being “driven”, there is

not current flowing in the physical implementation

of that signal. No current flowing indicates a

“broken circuit”. If a device is in a high-impedance

state, the device is figuratively not in the circuit.

Hold Condition: A condition in a sequential circuit

where the output does not change state when given

the proper opportunity; same as “hold state”.

Hold State: A condition in a sequential circuit

where the output does not change state when given

the proper opportunity; same as “hold condition”.

Hold-1 Transition: A feature of a state-change in

the context of a single bit where the present state is

a ‘1’ and the next state is also a ‘1’.

Hold Time: An attribute of physical sequential

circuits defined as the amount of time circuit’s

control signals must remain stable after the active

clock edge of the circuit.

Horse-Sense: A problem solving approach

emanating from the notion that you never stop

applying intuition to your solutions even though

many solutions can be done by rote. Horse-sense

can be figuratively described as taking a few steps

back and examining your approach before you

declare your righteousness.

Hybrid FSM: A finite state machine (FSM) that

contains both Mealy and Moore-type outputs.

Hz: An abbreviation typically used for “Hertz”; (see

“Hertz”).

-I-

Identifier: A set of symbols used by a language to

form a name that is assigned to differentiate

between items such as variables, functions, entities,

architectures, and bowling balls.

If Statement: A type of sequential statement in

VHDL, also known as a conditional statement. “if”

statements can appear in the body process

statements are and typically used in behavioral

descriptions of digital circuits.

Digital McLogic Design Glossover

 816

Illegal State Recovery: The notion associated with

finite state machine (FSM) design in that if the FSM

finds itself in a state that it is not intended to be in,

the FSM has a built-in method to exit that state and

return the FSM to an expected state. Illegal state

recovery design generally requires more hardware

but will avert the death of an FSM by avoiding hang

states.

IMD: An acronym referring to “iterative modular

design”; (see “iterative modular design”).

Inactive State: A term used to indicate that the

current voltage level of a signal, or state, is not

associated with the active state of that signal.

Inclusive OR Gate: The actual name for a simple

OR gate. This name is related to the fact that there is

another gates referred to as an “exclusive OR” gate

(XOR).

Incompletely Specified Functions: Boolean

functions that do not have an output specified for

every possible input combination. The main aspect

of this type of function is that there are “don’t cares”

associated with the outputs of those particular input

combinations.

Increment: An operation typically associated with

counters where ‘1’ is added to the current value of

counter.

Indentation: A set of white spaced used to

differentiate related sub-areas of computer

programming or hardware design code. Proper use

of indentation increases the readability and

understandability of text-based code; general rules

for indentation are found in style-files associated

with the language.

Independent PS/NS Style: One of many

approaches to modeling finite state machines

(FSMs) using VHDL.

Independent Variable: A variable representing a

value that can change and thus affect the dependent

variable. In digital design, the independent variable

is typically the input while the dependent variable is

typically the output.

Indirect Mapping (VHDL): A technique used by

VHDL structural models that links the inputs and

outputs of instantiated modules to the corresponding

inputs and outputs of the next highest level in the

hierarchy via a list of signal names. The connections

are implicit and based upon the order the signal

appear in the associated entities. The alternative

approach to direct mapping is indirect mapping; (see

“indirect mapping”).

Indirect Subtraction by Addition: An algorithm

that performs subtraction by first changing the sign

of the augend and adding it to the addend. The

advantage of this approach is that changing the sign

of a binary number is not complicated and the

hardware associated with the addition operation (an

adder) can also be used to perform subtraction.

Initial State: Problems dealing with sequential

circuits must be provided with the values being

stored by the memory elements in the circuits; the

initial values are referred to as the “initial state” of

the circuit.

Instance (VHDL): A term that refers to an

instantiated design unit appearing in the statement

region of a VHDL architecture.

Integer-Based Math: A form of mathematics

performed on digital devices that is considered

faster than alternatives such as using floating point

math. The speed of integer math comes at the cost

of lower precision in the results, which is acceptable

for many applications.

Integral Portion: A phrase referring to the digits on

the left side of the radix point.

Integrated Circuit (IC): A piece of semiconductor

that include a complete circuit that generally is able

to complete some given task. Most ICs are generally

packed full of items such as transistor, resistor,

capacitors, and inductors.

Interface (specification): A term used to describe

VHDL entities because they list the inputs and

outputs of a given digital circuit.

Intermediate Signals (VHDL): A term given to

signals that are required by a design but do not

appear on the list of signals included in the VHDL

entity. Intermediate signals are also referred to as

“internal signals”.

Digital McLogic Design Glossover

 817

Internal Signals (VHDL): A term given to signals

that are required by a design but do not appear on

the list of signals included in the VHDL entity.

Internal signals are also referred to as “intermediate

signals”.

Iterative Design: A digital design approach that is

based on exhaustively listing all possible inputs and

listing a unique output for each of the input

combinations. Iterative design is typically based on

the use of a truth table.

Iterative Modular Design (IMD): One of the three

approaches to performing digital design. The IMD

approach uses multiple instances (the iterative part)

of pre-defined circuits (the modular part) in digital

designs, thus creating hierarchical design. The IMD

approach can be used to design some digital circuits

and is considered a more powerful approach than

“brute force design” in that truth tables and K-maps

are typically not part of the IMD process.

-J-

JK Flip-flop: A flip-flop that may change the

output state according to when the “JK” inputs to

the flip-flop. The JK flip-flop has the ability to hold

state, toggle, set, and clear on the active edge of the

flip-flop’s clock input. The “next state” of a JK flip-

flop is a function of both the JK inputs and the

present state of the flip-flop.

Juxtapositional Notation: Placing numbers side by

side and giving the numbers different weights ;

using this notation allows for the representation of

more numbers than are present in the set of numbers

representing the number system.

-K-

k: An abbreviation used for the metric prefix

“Kilo”; this prefix is used in engineering notation.

Karnaugh Map Compression: The act of making

Karnaugh maps smaller by translating one or more

of the independent variables into map entered

variables (MEVs).

Karnaugh Map: A tool that allows for visual

application of the adjacency theory to reduced

Boolean functions. Karnaugh Maps employ a

special number system onto a grid of cells; each cell

represents a row in the truth table associated with

the given function.

Kilo: A standard metric prefix meaning 10-3; the

prefix is abbreviated as “K”.

Kludgy: (pronounced “clue-gee)”A term used to

describe something that works but is far from being

an optimal approach. Electronic circuitry and

computer programs often include this term for

things that officially to officially work but no one

really knows why based on the overall low quality

of the design.

K-Map: The shorthand name for “Karnaugh Maps”

(see “Karnaugh Map”).

-L-

Large Scale Integration: A type of integrated

circuit that contains a more transistors than a

medium scale integrated (MSI) IC. This term often

described with the acronym “LSI”.

Latch Generation: A term that refers to the notion

of storage being automatically generated by the

VHDL synthesizer. The generation of latches is

generally not an intended operation as latches are

not overly useful and require extra hardware

resources to implement. One of the general rules in

using a hardware description language such as

VHDL is to avoid the unintended generation of

latches.

Latch: A term used to describe a sequential circuit

that has the ability to store one bit of data. Latches

are considered “level sensitive” devices in that they

generally always react immediately to circuit inputs.

Leading Zeros: Zeros (‘0’s) placed in front of

(taking up the left-most positions) a given number.

Because of the location of these 0’s, the do not

affect the magnitude of the number being

represented.

Learning by Rote: A learning approach typically

used by students in order for them to deal with the

lack of teaching skills of instructors.

Least Significant Digit: A phrase referring to the

digit position with the lowest weighting in a

juxtapositional notarized number system.

Legend: A special type of annotation associated

with type of visual representation of something. In

particular, all timing diagrams, circuit diagrams, and

particularly state diagrams should contain legends in

order to increase the readability of the diagrams.

Digital McLogic Design Glossover

 818

Legends In Their Own Minds: A characteristic

typically associated with all academic

administrators.

Level of Abstraction: The act of considering

something as a general quality or characteristic,

apart from concrete realities, specific objects, or

actual instances. Particular to digital design is the

notion of using black boxes that perform some

function but it is not generally known the details of

how those functions are implemented at a lower

level.

Level Sensitive: A term that refers to the notion that

a digital device react to input signals anytime they

may change. On the contrary, some circuits are

considered edge-sensitive.

Libraries: A storage area for previously designed

modules and/or syntactical term definitions required

for use in the typical design practice.

Lingo: Special vernacular used in the description of

something that only people who typically spend

considerable time working with that something

actually understand. Lingo is often strongly

associated with technical slang.

Local Variables: A type of variable typically found

in computer programming languages; local variables

are located on the stack and do not have permanent

storage.

Lock-Step Process: A set of entities that wait on

signal from each other in order to properly sequence

their overall operations.

Logic Analyzer: A device that tests a given digital

circuit implementation by displaying the state of the

digital inputs and outputs at various time interval.

Logic analyzers generally have one of two types of

displays: timing diagrams and state listing. The

timing diagrams are happy timing diagrams; the

state listing shows the circuits inputs and outputs at

given time intervals or when changes in signals

occur.

Logic Gate (or just “Gate”): A physical hardware

entity that implements a logic function.

Logic hazard: A hazard that is present due to the

changing of a single input variable for a given

circuit.

Logic Unit: A term describing one of the main sub-

modules of an arithmetic logic unit (ALU). The

logic unit generally handles operations that can be

considered “logic” such as ANDing and ORing, etc.

Logic units are typically assigned to handle shifting

and rotation operations also.

Look-Up Table: Also known as LUTs, a structure

commonly used in engineering and software

applications. In algorithmic programming

languages, this term is used to describe the approach

of pre-calculating and storing values and referencing

the results as needed. In VHDL, LUTs are used to

implement many of the standard digital modules.

LSD: An acronym used for least significant digit;

(see least significant digit).

LSI: An acronym for “large scale integration”; (see

“large scale integration”).

-M-

M: An abbreviation used for the metric prefix

“Mega”; this prefix is used in engineering notation.

m: An abbreviation used for the metric prefix

“mili”; this prefix is used in engineering notation.

Macrocells: A sub-block of a PLD that can be both

programmable and/or configurable. This term is

basically used to describe the architecture of PLDs.

Magnitude Bits: The portion of a set of bits that

refers to the magnitude portion of the number being

represented by the set of bits. Signed binary number

representation always have both magnitude bits and

a sign bit

Manual Verification: A term that refers to the

notion of a VHDL testbench’s that does not

“automatically” verify the proper operation of a

VHDL model. Manual verification requires that the

user examine the simulation results in order to

determine whether the circuit is working or not.

Map Entered Variable: A variable that appears in

a Karnaugh map or truth table where typically only

1’s and 0’s are entered.

Digital McLogic Design Glossover

 819

Mask Programmable: A term referring to a device

that contains connections that are made (or not

made) on the silicon level; mask programmability is

often referred to as “factory programmed” as it is

generally done at the associated fab (IC fabrication

facility).

Maximum Clock Frequency: A term that refers to

the highest clock frequency a sequential circuit can

be clocked and still operate properly. The maximum

clock frequency of a circuit is based on physical

attributes of the devices in the circuit such as setup

and hold times

Maxterm Expansion: Another term referring to

Standard POS form (see “Standard POS form”).

Maxterm: A sum term associated with a given

function that includes one instance of every

independent variable in the function. Maxterms are

associated with conditions that produce a logic ‘0’

on the function’s output. A minterm is synonymous

with a Standard Sum Term.

MCU: An acronym referring to a “microcontroller”;

(see “microcontroller”).

Mealy’s Fifth Law of Digital Design: Always first

consider modeling a digital circuit using some type

of a look-up table (LUT); keep in mind that LUTs

are implemented in digital design using generic

decoders.

Mealy’s First Law of Digital Design: if in doubt,

draw some black box diagrams.

Mealy’s Second Law of Digital Design: if your

digital design is running into weird obstacles that

require kludgy solutions, toss out the design and

start over from square one.

Mealy’s Third Law of Digital Design: Don’t rely

on the VHDL synthesizer; create your VHDL

models by having a remote vision of what

underlying hardware should look like in terms of

standard digital modules.

Mealy’s Fourth Law of Digital Design: Model

circuits using many smaller sub-modules as opposed

to fewer larger sub-modules. In this case, sub-

modules should be true “modules” but can also be

process statements.

Mealy-Type FSM: A class of finite state machine

(FSM) that is characterized by having outputs that

are a function of both the present state of the FSM

and the external inputs to the FSM. Mealy-type

FSMs are typically modeled as having a “next state

decoder”, “state variable storage”, and an “output

decoder”.

Mealy-type Outputs: An external output to a finite

state machine (FSM) that exhibits Mealy-type

qualities; Mealy-type qualities refer to the notion

that the external output is a function of both the

current state of the FSM and the values of the

external inputs to the FSM.

Medium Scale Integration: A term that roughly

refers to the number of transistors on an integrated

circuit. The exact number of transistors associated

with medium scale integration is not really

quantifiable; medium scale integration is generally

know as the next step beyond small scale

integration; usually referred to as MSI.

Mega: A standard metric prefix meaning 10-6; the

prefix is abbreviated as “M”.

Memory Element: A digital device that is capable

of storing an arbitrary number of bits. Memory

elements are typically associated with state variable

storage in finite state machines (FSMs). Memory

elements are often referred to as “storage elements”.

Memory Inducing: A term used in the context of

using VHDL to model memory elements in digital

circuits.

Metastable: A term referring to an unwanted

condition in a sequential circuit resulting from not

meeting the setup and/or hold times of that circuit.

This term is sometimes referenced as

“metastability”.

MEVs: An acronym used to refer to map entered

variables; see “map entered variables”.

micro: A standard metric prefix meaning 106; the

prefix is abbreviated as “μ”.

Digital McLogic Design Glossover

 820

Microcontroller: A digital device that is a complete

computer on a signle integrated circuit. Being

complete computers (by definition of a computer),

microcontollers contain an arithmetic logic unit

(ALU), a finite amount of memory (for both data

and instructions) and input/output capabilities (in

order to interface with the outside world).

Microcontrollers are programmable at various levels

including higher-level languages and assembly

languages. Microcontrollers typically control other

digital and/or analog devices.

mili: A standard metric prefix meaning 103; the

prefix is abbreviated as “m”.

Minimum period: A term that refers to the smallest

period of a clock signal associated with a sequential

circuit can be clocked and still operate properly. The

minimum period of a circuit is based on physical

attributes of the devices in the circuit such as setup

times

Minterm Expansion: Another term referring to

Standard SOP form (see “Standard SOP Form”).

Minterm: A product term associated with a given

function that includes one instance of every

independent variable in the function. Minterms are

associated with conditions that produce a logic ‘1’

on the function’s output. A minterm is synonymous

with a Standard Product Term.

Minuend: A number from which another number is

subtracted.

Mixed Logic Design: A digital design that contains

signals in both negative and positive logic

representations.

Mixed Logic: A term referring to the notion that a

given circuit or system uses both positive and

negative logic.

Models in Digital Design: a model is a

representation or a description of something using a

certain level of detail. The main purpose of the

model in digital design is to transfer information to

the entity using the model. There are four main

types of models used in digital design: black box

model, timing diagrams, written descriptions of

digital circuits, and VHDL models.

Modern Digital Design: Modern digital design is

truly design oriented as opposed to historical

approaches which were not designed oriented due to

the unavailability of implementation tools. Modern

digital design is driven by Hardware Description

Languages such as VHDL and Verilog. The

availability of HDLs and the relative low cost of

PLD-based hardware allow digital designs to be

implemented and tested significantly more quickly

than historical design techniques.

Modular Design: A design technique that primarily

utilizes pre-defined black boxes (or modules) as the

basis of the design. This design approach in one of

the three approaches to digital design and is

considered the most powerful and efficient

approach. Modular designs are generally

hierarchical in nature.

Moore-Type FSM: A class of finite state machine

(FSM) that is characterized by having outputs that

are a function of the present state of the FSM only.

Moore-type FSMs are typically modeled as having a

“next state decoder”, “state variable storage”, and an

“output decoder”.

Moore-type Outputs: An external output to a finite

state machine (FSM) that exhibits Moore-type

qualities; Moore-type qualities refer to the notion

that the external output is exclusively a function of

the current state of the FSM.

Most Significant Digit: A phrase referring to the

digit position with the highest weighting in a

juxtapositional notarized number system.

MSD: An acronym used for most significant digit;

(see “most significant digit”).

MSI: An acronym for “medium scale integration”;

(see “medium scale integration”).

Multiplexor: A standard digital device used to

select between a set of two or more signals.

Multiplexors generally have data input, data

selection inputs, and data outputs. Most often

multiplexor’s have a binary-type relationship

between data selection inputs and data inputs; the

characteristic is sometimes used to provide a

standard name to the multiplexor such as “2:1”, or

“4:1”, or “8:1” MUX, etc.

MUX: A shorthand term that refers to a

“multiplexor”; (see “multiplexor”).

-N-

Digital McLogic Design Glossover

 821

n: An abbreviation used for the metric prefix

“nano”; this prefix is used in engineering notation.

NAND Gate: One of the standard logic gates; a

NAND gate performs an AND function with a

complimented output. A different way to model a

NAND gate is an AND gate with an active low

output. NAND gates can have two or more inputs.

NAND Latch: A sequential circuit comprised on

two NAND gates connected such that they have the

ability to store one bit (the circuit contains

feedback). NAND latches are considered the

negative logic version of NOR latches.

NAND/AND Form: One of the basic eight logic

forms but not commonly used in digital design. This

form is derived from OR/AND form (POS form) by

excessive use of DeMorgan’s theorem.

NAND/NAND Form: One of the basic eight logic

forms and one of the most popular four ways to

describe a circuit using either Boolean equation or

the circuit model of the associated Boolean

equation. This form is directly related to the

AND/OR form but is comprised of exclusively

NAND functions (for the Boolean equation) or

NAND gates (for the circuit representation).

nano: A standard metric prefix meaning 109; the

prefix is abbreviated as “n”.

Native VHDL Type: A “type” that is provided by

the particular distribution of VHDL. VHDL has

many native types but also allows you to create you

own types by also including the notion of

“enumeration types”; (see “enumeration types”).

N-bit Adder: A term used to describe the number

of bits in the operands and/or result of a circuit that

performs addition.

N-bit Counter: A counter that uses “n” bits (n is an

integer) to represent each value in its sequence of

values.

N-bit Register: A register that can store “n” bits (n

is an integer).

Negative Logic: A term used to indicate that a

given circuit considers the notion of ‘0’ to be the

active level for the signals in that circuit.

Negative Logic: A term used to indicate that the ‘0’

state of a signal represented the active state of that

signal.

New FSM Techniques: A set of techniques applied

to finite state machine (FSM) implementation the

removes the need for using Karnaugh map and thus

allows for the implementation of more complex

FSMs. One important characteristic of new FSM

techniques is that the resulting equations are not

necessarily in reduced form as they are with

“classical FSM techniques”; (see “classical FSM

techniques”).

Next State Decoder: A combinatorial digital circuit

that is typically used in the modeling of finite state

machines (FSMs). The primary function of the next

state decoder is to provide excitation logic to the

storage elements (generally flip-flops) associated

with the FSM.

Next State Forming Logic: This is less common

term that refers to the “next state decoder” typically

associated with a finite state machine (FSM); (see

“next state decoder”).

Next State Logic: A term referring to the

combinatorial circuitry that makes up the “next state

decoder”; (see “next state decoder”).

Next State: The notion that a given sequential

circuit has the ability to change the value of the bits

it is currently storing at a later time. This term is

generally combined with “present state” to describe

the operation of sequential circuits.

Noise: A term referring to an undesired transition

(either “01” or “10”) in the value of a signal. In

digital design, a standard form of noise is a “glitch”;

(see “glitch”).

Nonessential prime implicants: A type of prime

implicant that is not necessary to include when

generating the minimum covering in a Karnaugh

map function reduction.

Non-Resetting Sequence Detector: A “sequence

detector” (see “sequence detector”) that can use

parts of previously detected sequences in its current

search for the next sequence.

Noob: A slang description of a very special person.

Digital McLogic Design Glossover

 822

NOR Gate: One of the standard logic gates; a NOR

gate performs an OR function with a complimented

output. A different way to model a NOR gate is an

OR gate with an active low output. NOR gates can

have two or more inputs.

NOR Latch: A sequential circuit comprised on two

NOR gates connected such that they have the ability

to store one bit (the circuit contains feedback). NOR

latches are considered the positive logic version of

NAND latches.

NOR/NOR Form: One of the basic eight logic

forms and one of the most popular four ways to

describe a circuit using either Boolean equation or

the circuit model of the associated Boolean

equation. This form is directly related to the

OR/AND form but is comprised of exclusively

NOR functions (for the Boolean equation) or NOR

gates (for the circuit representation).

NOR/OR Form: One of the basic eight logic forms

but not commonly used in digital design. This form

is derived from AND/OR form (SOP form) by

excessive use of DeMorgan’s theorem.

Not Asserted: The notion that the current state of a

signal (or voltage level) is associated with the non-

action state. Whether a signal is asserted or not is

independent of the logic level (negative or positive)

associated with that signal.

N-type: A semiconductor that has been doped with

material containing extra electrons.

Number System: a language system consisting of

an ordered set of symbols (called digits) with rules

defined for various mathematical operations.

Number: a collection of digits; a number can

contain both a fractional and integral part.

-O-

Object Oriented: A design approach that partitions

system entities into objects. For digital design, these

objects are considered black boxes or modules.

Object-Level Design: Designs that utilized

previously designed objects. In digital design, these

objects are generally previously designed black

boxes.

Octal: A term used to describe numbers with a

radix of 8.

Odd Parity: A condition that describes a

characteristics regarding a set of bits; in particular,

whether a set of bits has an odd number of bits at a

value of ‘1’.

Old Dude: A person that is characterized by being

impatient, arrogant, and condescending to those who

may know less they do (but usually don’t); many

dinosaurs in academia fall into this category. This

term has nothing to do with age as anyone can adopt

this set of counter-productive attitudes.

One’s Compliment: An operation that can be

performed on a binary number; taking a 1’s

compliment of a binary number entails toggling the

value of each bit in the number.

One-Cold Encoding: A term that refers to on of

many different methods used to encode the state

variables associated with the various states in a

finite state machine (FSM). In particular, one-cold

encoding uses one storage element for each state in

the associated FSM. The codes applied to states

have ensures that only one storage element is a ‘0’

in any given state; while all other storage elements

are ‘1’.

One-Hot Encoded: One of many methods typically

used to encode the state variables associated with a

finite state machine (FSM). The one-hot encoding

method uses one 1-bit storage element for each state

in the given FSM; at any one time (thus in any given

state), only one of the state variables are at a ‘1’

values while all the other state variables are at a ‘0’

values.

One-Hot Encoding: A term that refers to on of

many different methods used to encode the state

variables associated with the various states in a

finite state machine (FSM). In particular, one-hot

encoding uses one storage element for each state in

the associated FSM. The codes applied to states

have ensures that only one storage element is a ‘1’

in any given state; while all other storage elements

are ‘0’.

On-The-Fly: A term that refers to one method of

accessing test vectors in a VHDL testbench. This

term basically refers to the notion that the test

vectors for a given testbench are hard-coded as part

of that test bench. Other testbench options for

accessing test vectors are reading from hard-coded

arrays or reading from external files.

Open-Circuit: A circuit condition that describes a

lack of connection between two signals.

Digital McLogic Design Glossover

 823

Operator Precedence: A set of pre-defined rules

that establish the execution order of operators

associated with program or model code.

OR Plane: A structured array of logic that allows

for the combination of Boolean variables and/or

function outputs in such a way as to form sum terms

used to implement other Boolean functions.

OR/AND Form: One of the basic eight logic forms

and one of the most popular four ways to describe a

circuit using either Boolean equation or the circuit

model of the associated Boolean equation. This

form is often referred to as “product of sum” form

or POS form.

OR/NAND Form: One of the basic eight logic

forms but not commonly used in digital design. This

form is derived from AND/OR form (SOP form) by

excessive use of DeMorgan’s theorem.

Output Decoder: A combinatorial digital circuit

that is typically used in the modeling of finite state

machines (FSMs). The primary function of the

output decoder is to

Overflow: A condition that indicates the result of a

mathematical operation has exceeded the top end of

the range of numbers associated with the bit-width

of the operands. Overflow is often considered to

include underflow; (see “underflow”).

-P-

PAL: An acronym for “programmable array logic”;

(see programmable array logic).

Paper Design: A design that is done only on paper

with no intention of every actually implementing the

design. Such designs are proven to work with only

violent hand-waving arguments. Such designers

generally end up as administrators as their hand

waving arguments are backed up by their innate

intimidation tactics.

Parallel Inputs: A term referring to an input that

simultaneously acts on a set of entities. In particular,

a parallel input to the state variables of a finite state

machine (FSM) act on all the individual storage

elements in a simultaneous manner.

Parallel Load: A characteristic of a register

indicating that all the storage elements in the device

can simultaneously latch external values.

Parallel: A condition that describes a set of multiple

items considered all at the same time.

Parallelism: The notion of doing two or more

things at the simultaneously, particularly in the state

of engineering, computer science, and bowling. .

Parenthetical Bundle Indexing: Because bundles

contain more than one signal, the name of the

bundle needs to be modified in order to reference

the individual signals in the bundle. There many

ways to do this but this notation is the most

common. This notation assumes that indexes from

zero to one less that the number of signals in the

bundle will be used with the index with the highest

number being the most significant bit in the signal.

Parity Bit: A bit included and/or associated with a

set of bits that indicates whether those bits exhibit

the condition of “even parity” or “odd parity”. The

parity bit can also be viewed as being able to give a

set of bits either even or odd parity by including the

parity bit with the set of bits being considered.

Parity Checker: A digital circuit that is used to

verify that a circuit has either “odd” or “even”

parity. The parity checker is one the standard digital

circuits used in digital design.

Parity Generator: A digital circuit that generates a

bit that is associated with a set of bits that describes

the parity of those bits (either “odd” or “even”

parity). The parity generator is one the standard

digital circuits used in digital design.

Parity: A word used to describe a condition

associated with a set of bits. The given set of bits

can be in a parallel configuration (parity considered

at one point in time over more than one signal) or a

serial configuration (parity considered over a span

of time for one signal). The notion of parity

provides information regarding the number of bits at

a value of ‘1’ in a given set of bits.

Period: The amount of time a given signal requires

before it repeats itself.

Periodic: A term used to describe an attribute of a

signal. A periodic signal is defined as having a set

period that repeats itself ad

Periodic Waveform: A term used to describe an

attribute of a waveform. Periodic waveforms are

generally used as clocking signals for sequential

circuits and often referenced as “clocking

waveforms”; (see “clocking waveforms”).

Digital McLogic Design Glossover

 824

Pin Count: A term referreing the number of

external pins on the integrated circuit. This term

usually refers to the number of pins used for

input/output requirements of the device. The main

issues here are that the cost of a specific device

increases as the pin count increases.

PLA: An acronym for “programmable logic array”;

(see programmable logic array).

PLC: An acronym representing the “positive logic

convention”; (see positive logic convention).

PLD: An acronym for “programmable logic

device”; (see programmable logic device).

Positive Logic Convention: An approach to

representing mixed logic that uses overbars on

signals to indicate negative logic and no overbars to

represent positive logic.

Positive Logic: A term used to indicate that the ‘1’

state of a signal represents the active state of that

signal.

Present State: The notion that a given sequential

circuit is currently storing a given value but that

value can change to a new value. This term is

generally combined with “next state” to describe the

operation of sequential circuits.

Prime implicants: A grouping in a Karnough map

that cannot be completely convered by any other

single grouping.

Process Body: A part of a VHDL process statement

that include the declarative region of and the

statement region of a process statement.

Process Statement: A type of concurrent statement

in VHDL used in behavioral modeling.

Product of Sums (POS) Form: A function form

that is characterized by sum terms that are logically

multiplied together. .

Product Term: A set of Boolean variables that are

ANDed or logically multiplied together.

Product Term: An expression in a Boolean

equation that can be characterized as a logical

multiplication of variables.

Programmable Array Logic: A type of

programmable logic device characterized by having

a programmable AND plane and a non-

programmable OR plane.

Programmable Logic Array: A type

programmable logic device characterized by having

both programmable AND plane as well as a

programmable OR plane.

Programmable Logic Device: An integrated circuit

that can be configured to implement various logic

functions and/or digital systems. Generally referred

to as a PLD, a programmable logic device covers

the entire class of programmable logic devices

including FPGAs, PLAs, PALs, and CPLDs.

Prop delays: A shorthand version of “propagation

delay”; see “propagation delay”.

Propagation delay: The time delay associated with

the propagation of a signal through an electronic

circuit. Propagation delays are generally associated

with phyical aspects of the ciruit and are inherent in

all electronic devices to one degree or another.

Proto-Board: A device used for prototyping

electronic circuits; the proto-board is comprised of

many tiny holes in which the stripped end of a wire

was pushed into in order to make an electrical

connection. The integrity of proto-boards diminishes

over time as the actual connections as based on the

elastic properties of some very tiny pieces of metal.

Protocol: A pre-defined set of rules that describe a

mechanism that digital entities can use to

communicate with each other. Any entity that

complies with the protocol can communicate with

any other entity also in compliance with the

protocol.

PS/NS Table: A set of data in tabular format that

describes the operational characteristics of a

sequential circuit. The acronyms PS & NS are short-

hand notation for “present state” and “next state”,

respectively. The information in PS/NS tables can

be visually represented using “state diagrams”; (see

“state diagrams”).

P-type: A semiconductor that has been doped with

material containing extra holes (or lack of

electrons).

-Q-

Digital McLogic Design Glossover

 825

Q: The letter typically used to refer to the “state” of

a single bit storage element. In terms of finite state

machines (FSMs), this term refers to the present

state.

Q+: The term typically used to refer to the “next

state” of a single bit storage element used in a finite

state machine (FSM)

-R-

Radix Compliment: A term referring to a standard

and most common method of representing signed

binary numbers. The left-most bit in a number in

radix complement form is considered the sign bit.

This form

Radix Point: a symbol used to delineate the

fractional and integral portions of a number.

Radix: the number of digits in the ordered set of

symbols used in a number system.

Rapid Prototyping: The ability to quickly generate

a working model of a device that exhibits the

functionality of the expected final device.

RC: An acronym referring to radix compliment;

(see “radix compliment”).

RCA: An acronym referring to a ripple carry adder;

see “ripple carry adder” for details.

RCO: An acronym referring to “ripple carry out”;

(see “ripple carry out”).

Redundant State: A state in a finite state machine

(FSM) that is not essential to the overall operation

of the FSM. While technically correct, we typically

omit redundant states in FSMs because they

represent basic inefficiencies in FSM specification.

Register: A register is can store two or more bits of

data. There are many types of registers including

shift registers and counters; when the term

“register” is used, it typically refers to “simple

registers” and not counters and shift registers.

Registers typically store data on the active edge of

an input signal, which is typically a clock edge.

Register: A term referring to a digital circuit

comprised of an arbitrary number of single-bit

storage elements connected in a manner is that can

be modeled as “parallel”. Registers are typically

described by their “width”, or number of associated

single-bit storage elements.

Relational Operators: A set of operators used in

VHDL conditional statement to determine the

relation between two expressions.

Relative Time: A term referring to the notion that

any reference to time in a VHDL testbench is based

on a previous time reference, as opposed to always

the same reference as is one in “absolute time”.

Relative time references have the characteristic that

they “accumulate” through a testbench.

Repeated Radix Division: An algorithm used to

convert the integral portion of a number from

decimal to any other radix.

Repeated Radix Multiplication: An algorithm

used to convert the fractional portion of a number

from decimal to any other radix.

Reset Condition: A state of a storage element

where the current value is ‘0’. This is also referred

to as a “clear condition”; (see “clear condition”).

Reset Pulse: A signal that is used to reset a

sequential circuit. This signal is typically short in

duration (thus the term “pulse”) and can either be a

‘1’ pulse or a ‘0’ pulse.

Reset State: The state of a storage element or a

signal where the current value is ‘0’. This is also

referred to as a “clear state”; (see “clear state”).

Reset: When used as a verb, this term refers to

making the value of a signal or storage element a

‘0’. This term is synonymous with “clear”; (see

“clear”).

Resetting Sequence Detector: A “sequence

detector” (see “sequence detector”) that can‘t use

parts of previously detected sequences in its current

search for the next sequence. In other words, when

the sequence detector finds the correct sequence, the

sequence detector must start looking for the first bit

in the desired sequence.

RET: An acronym referring to “rising-edge

triggered”; (see “rising-edge triggered”).

Digital McLogic Design Glossover

 826

Ripple Carry Adder (RCA): A digital device that

is used to add two digital values. The RCA is

comprised of a series of one-bit adder elements that

are connected in a series configuration such that the

carry from lower-order bits propagates, or “ripples”

in the direction of higher-order bits.

Ripple Carry Out: A signal typically found on

counters that indicates when the counter has reached

its maximum count value. This value is often used

in some devices to indicate underflow. This signal

often aids in cascading multiple counter devices. .

Rising Edge: A “01” transition of a given signal

that is typically used to synchronize some other

action in a circuit. .

Rising-Edge Triggered: A term used to describe

the notion that changes in a circuit are synchronized

to a “rising edge” of some signal in the circuit. This

term is often abbreviated as “RET”.

Rotates: A specialized shift-type operation often

associated with shift registers characterized by

shifting all bits in the register in one direction

(either left or right) and replacing the MSB by the

LSB (rotate right) or the LSB by the MSB (rotate

left).

Routing: The act of physically connecting two

entities. This term is often used in the context of

printed circuit board development and PLD

architectural/implementation issues.

RRD: An acronym used for repeated radix

multiplication; (see “repeated radix division”).

RRM: An acronym used for repeated radix

multiplication; (see repeated radix multiplication).

Rubylith: Some red plastic stuff that was used to

fabricate integrated circuits in the early days of IC

design and manufacturing.

-S-

Scalar: A term used to signify that a given item

cannot be sub-divided into sub-items.

Secret Sauce: A term that describes the notion that

there is something not being told to you or provided

for you. In free software distributions, often times

the vendor removes the secret sauce from the free

version of the software and only provides it for

those who have the wherewithal to shell out the big

bucks.

Selective Signal assignment: A type of concurrent

statement used in VHDL; selective signal

assignment statements are analogous to the case

statement in VHDL behavioral modeling.

Self-commenting: A phrase referring to the notion

of using the names of items (such as signals and

black-boxes, variables, etc.) to indicate what the

probable purpose of those items.

Self-Commenting: The use of identifiers (see

“identifier”) that given the human reader an idea as

to the purpose or functionality of a particular items

such signals, entities, architectures, variables, etc.

Self-Correcting: A term that refers to the notion

that a finite state machine (FSM) has the ability to

return to a desired state in the event that it finds

itself in an undesired or unused state. The notion of

self-correction must be intentionally designed into

the FSM by the associated digital designer.

Self-Loop: A condition in a finite state machine

(FSM) indicating a state transition from a particular

state returns to that state in one state transition. This

condition can also be viewed with the notion that

the FSM never actually exited that given state.

Self-Loop: A condition in a state diagram where the

state of the sequential circuit does not change when

given the opportunity.

Semiconductor: A substance that has an electrical

conductivity based on external factors. This term is

also used to described specific devices made from

semiconductors such as transistors, diodes, etc.

Sensitivity List: A part of a VHDL process

statement that shows which signals will case the

process statement to be evaluated.

Sequence Detectors: A device that can determine

when a specifed binary sequence appears on a given

digital signal. Sequence detectors are often

implemented using finite state machines (FSMs);

such FSM can either be “resetting” or “non-

resetting” in nature.

Digital McLogic Design Glossover

 827

Sequential Logic: Digital logic that has memory, or

the ability to store the values of bits. It is generally

understood that the ability to store bits comes from

the notion of the circuit or an element in the circuit

having feedback from an output of the circuit to an

input.

Sequential Statement: A type of statement that can

appear in a VHDL process statement. Sequential

statements are evaluated in the order they appear in

the process statement though the process statement

itself is a concurrent statement.

Serial Lines: A term that refers to a signal signal

that sends or receives a contiguous set of bits over a

given time period. We typically refere to “bit-

streams” that are received over serial lines; (see

“bit-streams”).

Serial: A condition that describes a set of multiple

items considered one at a time.

Set Condition: A state of storage element where the

current value is ‘1’.

Set or Clear Method: One of the “new FSM

techniques” associated with JK flip-flops where

expression are written for each state transition that

“sets” (01) for the J excitation inputs and or

“clears” (01) for the K excitation inputs (see “new

FSM techniques”, “special J reduction” and “special

K reduction”).

Set or Hold-1 Method: A part of the “new FSM

techniques” associated with D flip-flops where

expression are written for each state transition that

“sets” (01) or “holds-1” (11); (see “new FSM

techniques”).

Set Pulse: A signal that is used to set a sequential

circuit. This signal is typically short in duration

(thus the term “pulse”) and can either be a ‘1’ pulse

or a ‘0’ pulse.

Set State: The state of a storage element or a signal

where the current value is ‘1’.

Set Transition: A feature of a state-change in the

context of a single bit where the present state is a ‘0’

and the next state is also a ‘1’.

Set: When used as a verb, this term refers to making

the value of a signal or a storage element a ‘0’.

Set-Clear Method: A part of the “new FSM

techniques” associated with T flip-flops where

expression are written for each state transition that

“sets” (01) or “clears” (01); (see “new FSM

techniques”).

Setup Time: An attribute of physical sequential

circuits defined as the amount of time a circuit’s

control signals must remain stable before the active

clock edge of the circuit.

Shift Register Cell: A single bit-storage element

that forms the building block of a shift register.

Shift Register: A sequential circuit that is

comprised of individual bit storage elements

connected in such as way as to facilitate a “shift”

operation between elements. The shift operation

generally indicates that each storage element in the

register simultaneously transfers its value to a

contiguous storage element. Shift operations are

generally synchronized to a system clock.

Short: A short-hand notion referring to a short

circuit; (see short circuit).

Short-Circuit: A circuit condition that describes a

connection between tow points.

Sign Bit: A bit in a set of bits representing a binary

number that is used to signify a sign bit. The sign bit

location of the binary number it traditionally the

left-most bit in the set of bits.

Sign Magnitude: A term that refers to a standard

but not common method of representing signed

binary numbers where the left-most bit in the set of

numbers is considered the sign bit and the other bits

are considered the magnitude bits. This term is often

referred to as “SM”.

Signals (VHDL): A term that refers to a declaration

of internal connections of a VHDL architecture.

Signed Binary Numbers: a set of bits (1’s and 0’s)

that are used to represent a numbers that are either

negative, zero, or positive.

Signedness: A term that refers to the notion that a

set of bits is a representation of a signed number.

Silicon: The main semiconductor material used in

the creation integrated circuits; silicon is the 14th

element in the table of elements and is quite

plentiful on planet earth.

Digital McLogic Design Glossover

 828

Simple Register: A device that can store two or

more bits of data. A “simple” register is a register

that is not a counter or shift register (or various

versions of these). Additional features of a simple

register include parallel loading and other parallel

actions such as clearing and setting.

Simulation: The act of verifying your circuit is

working without actually implementing the circuit.

Simulator: A device that tests a given circuit by

providing a mechanism to list and/or change circuit

inputs and views the resulting changes in circuit

outputs. A simulator is a common design and

debugging tool.

Slanted T Symbol: A circuit symbol referring to a

connection to the value of a ‘1’ in a circuit. Most

often, the value of ‘1’ is the voltage value used to

provide power to the circuit.

Slash Notation: A graphical representation used in

schematics to indicate the number of individual

signals contained in a bundle.

SM: An acronym referring to signed magnitude;

(see “signed magnitude”).

Small Scale Integration: A type of integrated

circuit that comprises of up to approximately a

hundred transistors; usually referred to as SSI.

Soft-Core Microcontroller: A “microcontroller”

(see “microcontroller”) is modeled using a hardware

description language (HDL) and is synthesizeable

on a programmable logic controller (PLD).

Sorting: A typical hardware and/or software

operation that arranges a set of values based on

some pre-determined criteria such as magnitude.

Special J Reduction: A technique associated with

“new FSM techniques” and JK flip-flops where

expression associated with the J excitation input can

be reduced by inspection. In particular, for the case

where the complement of the associated state

variable is appears in the expression for that

variable, it can be removed from the J excitation

input based on known characteristics of JK flip-

flops and the “set of clear method; (see “set or clear

method”). The technique is associated with “01”

transitions only.

Special K Reduction: A technique associated with

“new FSM techniques” and JK flip-flops where

expression associated with the K excitation input

can be reduced by inspection. In particular, for the

case where the associated state variable is appears in

the expression for that variable, it can be removed

from the K excitation input based on known

characteristics of JK flip-flops and the “set of clear

method; (see “set or clear method”). The technique

is associated with “10” transitions only.

Speed-Wrap: An antiquated approach to

prototyping electronic circuits. In particular, a wire

with a plastic coating was pushed between two posts

that had sharp edges. The sharp edges would cut

through the plastic and make a connection with the

wire.

Spiritually Enriching: A term that refers to the act

of performing any of the various aspects of digital

design. .

SR Latch: A one-bit storage element with that has a

S (set) and a R (reset) input that are used to either

set of clear the output of the latch, respectively.

SR: An acronym representing “shift register”; (see

“shift register”).

SSI: An acronym for “small scale integration”; (see

small scale integration).

Standard Decoder: A special type of decoder that

contains a n:2n relationship between the number of

inputs and outputs. The standard decoder is a subset

of decoders in general.

Standard Product of Sums Form (Standard POS

Form): A description of a Boolean function that

includes an explicit listing of the standard product

terms that imply a non-active state (0’s) on the

function’s output. Standard POS form is also

referred to as a maxterm expansion.

Standard Product Term: A product term that

includes one instance of each independent variable;

also known as a minterm.

Standard Sum of Products Form (Standard SOP

Form): A description of a Boolean function that

includes an explicit listing of the standard product

terms that imply an active state (1’s) on the

function’s output. Standard SOP is also referred to

as a minterm expansion.

Digital McLogic Design Glossover

 829

Standard Sum Term: A sum term that includes

one instance of each independent variable; also

known as a “maxterm”; (see “maxterm”).

Standard: A set of rules or guidelines that everyone

agrees to follow or be faced with the notion of

choosing a slow death or becoming an academic

administrator.

State Bubble: A visual representation of the values

that can be stored by a sequential circuit. State

bubbles can represent either the stored bits or some

symbolic reference to the stored bits.

State Diagram Symbology: A term referring to the

various standard set of symbols used to represent

various aspects of state diagrams and the finite state

machine (FSM) they represent. Representing state

diagrams is not a science; it’s more of an art form.

State Diagram: A visual representation of a PS/NS

table used to describe the given values that a

sequential circuit can store (or the “state”) and the

conditions required to for the circuit to transition

from one state to another state.

State Registers: A sequential circuit used in the

modeling and implementation of finite state

machines (FSMs). The state registers are typically

comprised of single-bit storage elements that are

used to store the values associated with the “present

state” of a given FSM. .

State Transition Inputs: A term that describes the

inputs to the “synchronous process”; (see

“synchronous process”) that control the functioning

of the state variables associated with a given FSM

model. These inputs typically include parallel load,

clears, and pre-sets.

State Transition: The characteristic associated with

a sequential circuit where the values stored by that

circuit change.

State Variable Transition Table: A set of

information in tabular format that lists every state-

to-state transition associated with a state diagram.

For each transition, the conditions that govern that

transition and the state changes for the associated

state variables are also listed. This table is used in

conjunction with the “new FSM techniques”; (see

“new FSM techniques”).

Statement Region (VHDL): The region of a

VHDL architecture that support the various forms of

VHDL statements including concurrent signal

assignment statements and component

instantiations.

Static logic hazards: A hazard that is present due to

the changing of a single input variable for a given

circuit where the given output is not expect to

change (thus remain “static”).

Status Signals: These are signals represented as

outputs from a device being control and provide

status information to a controller device. Finite state

machines (FSMs) are typically used as controllers

and contain both control outputs and status inputs.

Stimulus Driver: A term referring to one major

portion of a VHDL testbench; the other portion of

the testbench is the “device under test”. The

stimulus driver’s main function is to provide inputs

to the device under test. The stimulus driver can use

the state of the DUT’s output to generate conditional

stimulus to the DUT. The stimulus driver can be

modeled for either manual or automatic verification

of the DUT.

Stimulus: A term referring to the application of test

vectors to a device under test. The stimulus is

generally in the form of exercising the digital inputs

to the device under test.

Stone-Age Unary: A number system that uses one

physical entity for each thing being counted.

Storage Element: A digital device that is capable of

storing an arbitrary number of bits. Storage elements

are typically associated with state variable

representation in finite state machines (FSMs).

Storage elements are often referred to as “memory

elements”.

Structural Style: A term referring to the use of

structural modeling in VHDL.

Structured Digital Design: The notion that modern

digital design is similar to typical computer program

design. Specifically, any well-designed digital

circuits can be decomposed into one of only a few

standard and relatively simple digital circuits. This

concept closely relates to object-level digital design.

Digital McLogic Design Glossover

 830

Structured Programming: A term that refers to the

notion that any properly written program can be

decomposed into a set of four or five simple

programming constructs. The notion here is that

poorly written code cannot be composed into these

constructs (aka spaghetti code).

Sub-Minterms: A subset of a standard minterm.

Sub-minterms are generally used in the derivation

and description of mapped entered variables

(MEVs).

Subtractor: A device that subtracts one number

from another number. In digital design, there are

many forms of subtractors, each with their own

particular set of characteristics.

Subtrahend: A number that is subtracted from

another number.

Sum of Products (SOP) Form: A function form

that is characterized by product terms that logically

summed together. .

Sum Term: A set of Boolean variables that are

ORed or logically summed together.

Sum Term: An expression in a Boolean equation

that is characterized as a logical summation of

variables.

SVTT: An abbreviation for “state variable transition

table”; (see “state variable transition table”).

Switching time: A term that is used to quantify the

amount of time required for a signal to switch from

high-to-low or low-to-high.

Symbology: A set of visual symbols used to

describe the overall functioning of a device. Often

times there is a specific set of “symbology”

associated with a given classification of the thing

being desribed; at other times, special symbols can

be created by the user and described via a “legend”

(see “legend”) associated with the description.

Synchronous Circuit: A circuit that has some

functionality that is synchronized to some event in

the circuit, typically an active edge of a clock signal.

Synchronous Input: An input to a sequential circuit

that only has an effect on the circuit based on an

active edge of some other signal in the circuit.

Synchronous Process: One-half of a two-process

approach to modeling finite state machines (FSMs)

using VHDL; the other half of the FSM model is the

“combinatorial process”; (see “combinatorial

process”). The synchronous process is responsible

for modeling the state registers and any logic that

control the state registers such as parallel load,

clears, and presents. The synchronous process

implements the “state register” block associated

with the standard FSM model.

Synthesize: A term typically used in digital design

indicating the notion of using a model of something

in one form and converting that model to another

form. The two most common usages of this term on

in hardware design languages where the act of

synthesizing a VHDL model creates a new type of

model that can eventually be converted into actual

hardware. The other common usage of this term is

to use some entity (such as a microcontroller for

FSM) to recreate signals shown on a timing

diagram.

System Clock: A clock signal for a given circuit

that is typically used for all parts of the circuit.

System clock signals are typically used to

synchronize the various parts of a circuit by using a

single signal in which all parts of the circuit can act

upon.

-T-

T Flip-flop: A shorthand notation for a “toggle flip-

flop”; (see “toggle flip-flop”).

Tab Character: A type of white-space that includes

any number of single spaces. Tab characters should

never appear in the text of any type of code.

Tedious Grunt Work: A special form of “grunt

work” that has a higher grunt factor than most of

other “grunt work”; (see “grunt work”).

Tedium: A frustrating state of affairs resulting from

“doing” but not “learning”.

Terms of Convenience: A phrase referring to an

irreverent set of words that are typically not used

together in the same context. This text has way too

many “terms of convenience”.

Test Vectors: A term referring to the set of data that

is applied to a device under test. For a given VHDL

testbench, test vectors can be stored in using one of

three approaches: 1) “on the fly”, 2) in hard-coded

arrays, and/or 3) stored in external files.

Digital McLogic Design Glossover

 831

Testbench: The term given to VHDL models whose

primary purpose is to verify the correct operation of

other VHDL models. The two main parts of a

testbench are the “stimulus driver” and the “device

under test’ (DUT). Generally speaking, the stimulus

driver provides input to the DUT.

Theorem: A proposition that can be proved true

from a given set of axioms.

Throughput: A term that describes the amount of

useful information that is processed by a circuit.

Typical throughput metics include intructions per

second (IPS), floating point operations per second

(FPS), etc.

Tied High: A term used to indicate an input to a

gate is connected to a logical ‘1’. In a real circuit,

this term generally refers to connecting an input to

the high voltage used to power your digital circuit.

Tied Low: A term used to indicate an input to a

gate is connected to a logical ‘0’. In a real circuit,

this term generally refers to connecting an input to

the low or ground voltage used to power your digital

circuit.

Tied-To: A commonly used, but slang notation

indicating an electrical connection for a given

device. Two of the more common uses of this term

include “tied to ground” (a signal is connected to

ground, or ‘0’) and “tied to power” (a signal

connected to power, or ‘1’).

Time Slots: A term that refers to finite periods of

time. Time slots are often used to describe the

amount of time associated with a given state in a

finite state machine (FSM).

Timelessness: The feeling you get when you read

this text. No matter how hard you try, you simply

can’t make that feeling go away.

Timing Analysis: The act of analyzing a given

timing diagram in order to do fun things like gather

information of verify whether the circuit is actually

operating correctly.

Timing diagram annotation: A special notation

used to indicate or highlight certain properties or

conditions in a given timing diagram. The

underlying purpose of timing diagram notation is to

convey certain information to the reader; the quality

of the timing diagram notation is judged by how

efficiently that information can be conveyed.

Timing Diagrams: A graphical representation of

the operational characteristics of a circuit based on

the notion of observing circuit operation over a

given span of time. The horizontal axis is typically

used to represent time in timing diagrams while the

vertical access is used to list signals and show the

state of those signals. Timing diagrams have two

primary uses: they serve as design aids and they

serve to verify the proper operational of circuits.

Tiny Electronic Things: A term referring to entities

that enhance the “conspicuous consumption”

tendencies of normally intelligent people by

increasing a person’s personal need to “keep up with

the Jones’s”.

Toggle Flip-flop: A flip-flop that changes the

output state when the “toggle” input to the flip-flop

is asserted and an active edge occurs on the clocking

input the circuit. The “next state” of a T flip-flop is

a function of both the T input and the present state

of the T flip-flop.

Toggle: A term that refers to changing the value of

a bit; the act of toggling a bit changes the bit value

from either ‘1’ to ‘0’ or ‘0’ to ‘1’ depending on the

initial value of the bit.

Top-Down Design: A hierarchical design approach

that starts at the highest level of abstraction and

works downwards. In this approach, the designer

fills in the lower levels of abstraction as the design

progresses.

Truncation: A term used to describe the removal of

one or more digits from a value. The digits removed

are contiguous and are generally either the most

significant or least significant digits in the given

number.

Truth Table: A matrix that shows all possible input

combinations and the associated output values.

Two’s Compliment: As a noun this term refers to

an alternate and more popular method of describing

radix compliment (RC) form; (see “radix

compliment”). As a verb, this term refers to the

notion of changing the sign of a signed binary

number in RC form.

Two-Valued Algebra: An algebra based on only

two variables. This term commonly refers to

Boolean algebra.

-U-

Digital McLogic Design Glossover

 832

UDC: An acronym used for unit distance code; (see

“unit distance code”).

Unasserted: A term used to indicate that the current

voltage level of a signal is not associated with the

active state of that signal.

Unconditional transition: A term that refers to a

state-to-state transition in a finite state machine

(FSM) that occurs independently of any conditions

in a given circuit. These transitions are often

referred to as “don’t care transitions”.

Un-Dead: A term used to describe a circuit element

that is enabled (or not disabled). Similarly, a dead

circuit has an output that is pre-determined and does

not change so long as the circuit remains dead.

Underflow: A condition that indicates the result of

a mathematical operation has exceeded the bottom

end of the rang of numbers associated with the bit-

width of the operands. Underflow is often

characterized as a special case of overflow; (see

“overflow”).

Unit Distance Code: A binary code where the

differences between to binary numbers in the

sequence differ by a unit distance (a distance of

one).

Universal Shift Register: A shift register that can

perform more operations than simple shifting. These

other operations can include rotation, barrel shifting,

parallel loading, resetting, etc.

Unsigned Binary Number: a set of bits (1’s and

0’s) that are used to represent a numbers greater or

equal to zero. Unsigned binary numbers can be used

to represent zero and positive numbers.

Unused State: A condition generally associated

with finite state machine (FSM) design. This

condition is present because of the binary

relationship associated with some methods used to

encode state variables which leave some

combinations of the associated storage elements

intentionally unused. The FSM could thus

unintentionally find itself in these unused states and

potentially cause undesired operation of the FSM. .

Up Counter: A counter that counts only in the “up”

direction (count value becomes greater).

Up/Down Counter: A counter that can counter

either up (count value increases) or down (count

value decreases) according to a selection input on

the device.

User-Level: A term used to describe the number of

bits in the operands and/or result of a circuit that

performs addition.

USR: An acronym representing “universal shift

register”; (see “universal shift register”).

-V-

Variable Assignment Operator: The VHDL

operator used to assigned values to variables: “:=”.

Variable: A VHDL type used to store intermediate

results. Variables can only be declared in the

declarative regions of process and are only visible in

those processes in which they are declared. The

results of variable assignments are ready for

immediate use in the process and are not

“scheduled” for assignment once the process

completes as is the case the with signals. .

Vcc: A term referring to the power connection in

electronics. In digital eletronics, this signal is

generally considered a logical ‘1’. Sometimes the

term “Vdd” is used in place of “Vcc”, but not often.

Vdd: A term referring to the power connection in

electronics. In digital eletronics, this signal is

generally considered a logical ‘1’. Usually the term

“Vcc” is used in place of “Vdd”.

Vector: A term used to signify that a given item that

can be decomposed into two or more sub-items.

Verilog: A modern hardware description language

(HDL) that is used quite widely in North America

but less so in other areas of the world. Verilog

syntax has a strong resemblance to C programming

syntax.

Very Large Scale Integration: A type of integrated

circuit that contains a buttload of transistors

(certainly more transistors then large scale

integration (LSI) ICs). This term often described

with the acronym “VLSI”.

VLSI: An acronym for “very large scale

integration”; (see “very large scale integration”).

-W-

Digital McLogic Design Glossover

 833

Wait Statement: A “wait” statement is a VHDL

sequential statement that is used to suspend

execution of process statements. Only process

statements that do not include process sensitivity

lists can use wait statements. There are four forms

of wait statements in VHDL; most of these forms

are particularly useful in modeling VHDL

testbenches.

Wanker: Any person who pretends to be something

they’re not; this includes talking big while knowing

small. All academic personnel seem to have a

hopeless case of wankerism as well as a healthy

case of apathy towards their condition.

Wankerism: A term describing the collective

mindset of wankers. Academic administrators

always strive to take wankeristic tendencies to new

heights.

Waveform: A term referring to a visual

representation of a signal over a given amount of

time.

Weights: This refers to the values assigned to

various digit locations when juxtapositional notation

is used. The weights are typically powers of the

radix for a given number system but can be just

about anything as weight assignments are arbitrary.

White Space: A term describing the areas of text

that have no printed characters in them; white space

generally includes space characters, tab characters,

and blank lines.

Width: A term that describes the number of signal

in a bundle or the number of bits associated with

digital devices that operate in parallel such as

“comparators” and “ripple carry adders”. f

Wire-Wrap: A method used for prototyping

electronic circuits that entail stripping the plastic

coating off of a wire and wrapping it around a metal

post that was electrically connected to an electronic

device.

Wrapper: A term used to describe an addition to an

item that abstracts, simplifies, and/or extends the

usage of that item. Wrappers in VHDL generally

includes an interface that is used to customize the

usage of an established model.

-X-

XNOR Gate: A shorthand name for an exclusive

NOR gate, one of the standard logic gates; an

XNOR gate performs an XOR function with a

complimented output. XNOR gates can also be

considered to perform an XOR function with an

active low output. XNOR gates are also known as

“equivalence gates” as the gate output indicates

when the gate’s two inputs are equivalent. XNOR

gates by definition always have two inputs.

XOR Gate: A shorthand name for an exclusive OR

gate, one of the standard logic gates; an XOR gate

performs an XOR function which is typically

defined using a truth table or a Boolean equation.

XOR gates indicate when the gate’s two inputs are

not equivalent. XOR gates by definition always

have two inputs.

-Y-

Y: The letter often used as a label in finite state

machine lingo to refer to external inputs.

-Z-

Z: The letter often used as a label in finite state

machine lingo to refer to external outputs.

μ: An abbreviation used for the metric prefix

“micro”; this prefix is used in engineering notation.

Digital McLogic Design Index of Stuff

 - 834 -

Index of Stuff

i

- See don't care

&

& See concatenation operator

(

() See bundle access operator

<

<= See signal assignment operator

=

= See equivalence operator

=> See direct mapping operator

1

1’s complement ... - 248 -

1980’s ... - 445 -

A

ABEL .. - 288 -

absolute time ... - 795 -

Absorption ... - 80 -

abstract .. - 38 -

academic administrators - 615 -

academic exercise - 246 -, - 683 -

academic exercises .. - 737 -

academic purposes .. - 342 -

academic-types .. 570

action state .. - 446 -

active low .. - 508 -

active state .. - 446 -

active-edge .. - 500 -

ADC .. See analog-to-digital

addend .. - 253 -

Adjacency theorem 154, - 238 -

algorithm .. - 76 -

algorithmic programming language - 337 -

algorithmic programming languages - 352 -

ALU .. - 751 -

analog ... - 31 -

analog-to-digital ... - 650 -

AND array ... 213

AND operator ... - 81 -

AND plane ... 214

AND planes ... 214

AND/NOR ... - 178 -

AND/OR Form .. - 178 -

annotations ... - 112 -

architecture 214, - 297 -, - 752 -

architecture body .. - 301 -

architecture declaration................................... - 319 -

arithmetic logic unit .. - 752 -

arithmetic shift .. - 731 -

arithmetic shifts .. - 730 -

arithmetic unit ... - 754 -

arrow .. - 619 -

arrows ... - 488 -, - 538 -

arse ... - 194 -

Assertation levels.. - 447 -

Asserted high .. - 447 -

Asserted low ... - 447 -

Asserted signal ... - 447 -

assignment operator - 339 -, - 358 -

Associative ... - 80 -

asynchronous .. - 508 -, 573

augend .. - 253 -

Automatic Verification - 784 -

axioms .. - 80 -

B

bajillion... - 181 -

barrel shift .. - 729 -

base ... - 65 -

BCD See binary coded decimal

behavior models ... - 505 -

behavioral style .. - 358 -

BFD - 187 -, See brute force design

binary .. - 65 -, - 227 -

binary coded decimal - 236 -

binary codes .. - 236 -

Binary Counter ... - 736 -

binary encoding .. - 602 -

binary number ... - 65 -

binary patterns .. - 236 -

Digital McLogic Design Index of Stuff

 - 835 -

Bipolar Junction Transistor - 51 -

bits .. - 66 -

bit-stream .. - 633 -

bit-stuffing .. - 234 -

black box ... - 297 -

black box diagrams ... - 266 -

black box model.................................... - 36 -, - 37 -

black box models .. - 266 -

block-style comments - 293 -

bloviation .. - 268 -

blowing ... 213

Boole ... - 80 -

Boolean algebra .. - 80 -

Boolean algebra Axioms - 80 -

Boolean equation .. - 82 -

Boolean expression ... - 82 -

Boolean value ... - 353 -

boring .. - 302 -

borrow ... - 768 -

bottom-up .. - 53 -

bowling ... - 228 -

brute force design ... - 79 -

Brute Force Design ... - 187 -

bubbles .. - 179 -

buffer... - 140 -

buffer circuit element - 554 -

buffering action ... - 140 -

Bummer .. - 556 -

bundle ... - 115 -

bundle access operator - 407 -

bundle elements ... - 300 -

bundle expansion - 119 -, - 205 -

bundled signal ... - 595 -

bundles .. - 300 -

bus ... - 115 -

by inspection ... - 686 -

C

C - 288 -, - 289 -, - 296 -, - 315 -, - 339 -

C programming ... - 327 -

calculus ... - 63 -

career... 160

carry bit ... - 249 -

cascade ... - 191 -, - 722 -

cascadeabilitly ... - 722 -

Cascadeable .. - 737 -

case sensitive ... - 292 -

case statement - 352 -, - 354 -

catch-all ... - 347 -

catch-all condition ... - 507 -

catch-all statement .. - 391 -

cave ... - 28 -

caveman .. - 62 -

ceiling function ... - 602 -

central processing unit - 752 -

CF See compact fluorescent

characteristic tables .. - 489 -

chip enable .. - 411 -

chip select ... - 411 -

circled cross ... - 138 -

circled dot ... - 138 -

circuit delays... - 430 -

circuit forms ... - 175 -

Clark Method .. - 689 -

classical FSM approach - 684 -

classical FSM design - 627 -

clear .. - 484 -

clear condition .. - 486 -

clear state .. - 484 -

cleared .. - 486 -

clearing ... - 484 -

clock edge ... - 500 -

clock frequency .. - 659 -

clock input .. - 500 -

CMOS .. - 51 -

code-word ... - 736 -

codewords .. - 603 -

coding style .. - 296 -

combinatorial ... - 479 -

combinatorial logic ... - 588 -

combinatorial process - 592 -

Combinatorial Process - 588 -

Combining ... - 80 -

Combining theorem ... 154

comments ... - 293 -

Commutative ... - 80 -

compact fluorescent .. - 31 -

compact maxterm form .. 152

compact minterm form .. 152

complementary outputs................................... - 532 -

complementation .. - 81 -

complex programmable logic devic 216

complex programmable logic device 216

complexicated ... - 50 -

Complimentary Metal Oxide Semiconductor- 51 -

component declaration - 315 -

component instantiation - 315 -

component mapping - 320 -

compression .. - 469 -

computationally expensive - 730 -

computer aided design ... 212

computer design ... - 751 -

computer engineering - 252 -

computer science .. - 252 -

concatenation operator - 380 -

concurrency .. - 337 -

concurrent signal assignment - 338 -, - 340 -

concurrent statement - 338 -

concurrently.. - 337 -

conditional signal assignment - 345 -, - 352 -

conditional signal assignments - 340 -

configurable ... 216

continuous .. - 32 -

continuous domain.. - 33 -

continuousness .. - 33 -, 820

control... - 528 -

control signals... - 622 -

control tasks .. - 617 -

Digital McLogic Design Index of Stuff

 - 836 -

control unit .. - 752 -

controller ... - 528 -

conversion ... - 651 -

Count Enable ... - 737 -

counter .. - 735 -

counter design ... - 543 -

Counter Overflow ... - 737 -

Counter Underflow ... - 737 -

counters ... - 602 -

covered .. - 437 -

CPLD .. 216, See CPLD

CPLDs... - 616 -

CPU .. - 752 -

crapload ... - 84 -

croquet .. - 252 -

cross .. - 80 -

cross coupled NOR cell - 487 -

CSA See concurrent signal assignment

current state ... - 588 -

custom ASIC ... - 780 -

cycles per second .. - 673 -

D

D flip-flop ... - 500 -

data flip-flop See D flip-flop

data inputs ... - 405 -

data selection inputs .. - 405 -

data_type ... - 298 -

dataflow model ... - 358 -

dataflow style .. - 358 -

datapath ... - 752 -

debug... - 316 -

debuggers .. - 110 -

Decade Counter ... - 736 -

decimal ... - 63 -, - 65 -

decimal number ... - 63 -

declarative region - 302 -, - 319 -, - 344 -

decoder - 377 -, - 397 -, 826

decomposition ... - 53 -

Decrement ... - 737 -

delay .. - 430 -

DeMorgan’s theorem 156, - 176 -

DeMorganize - 96 -, - 178 -

dependent PS/NS style - 589 -

dependent variable .. - 79 -

describing hardware .. - 289 -

design automation tools 212

design under test ... - 781 -

Device Verification ... 218

diagonal groupings ... 162

diagonals ... - 200 -

difference .. - 253 -

Digalog ... - 32 -

digestible ... - 229 -

Digit .. - 63 -

digit position ... - 65 -

digital ... - 31 -, - 51 -

digital lingo ... - 111 -

digital logic ... - 33 -

digital self-flagellation - 124 -

digitalness ... - 33 -

diminished radix complement - 246 -

dimmers .. - 31 -

dinosaurs ... - 473 -

diode .. - 51 -

direct mapping .. - 321 -

direct mapping operator - 321 -

Direct Polarity Indicators - 447 -

discontinuity ... - 115 -

discrete ... - 32 -

discrete domain .. - 33 -

discreteness .. - 32 -

distance ... - 238 -

Distributive.. - 80 -

DMUX .. - 394 -

don’t care ... 160, - 625 -

don’t care transition .. 576

don’t cares 160, - 356 -, - 687 -

do-nothing .. - 484 -

dope .. - 51 -

dot ... - 80 -

dot operator... - 81 -

Double Complement - 80 -

Down Counter .. - 736 -

down-pointed arrow .. - 139 -

downto keyword .. - 300 -

DPI See direct polarity indicator

DRC See diminished radix complement

drugs ... - 131 -

dumb mistakes .. - 294 -

dumbtarted.. - 50 -

DUT .. - 781 -

duty cycle - 660 -, - 674 -, - 794 -

dynamic logic hazard - 437 -

E

EDA See Electronic Design Automation, See

Electronic Design Automation

edge-sensitive ... - 499 -

edge-triggered ... - 500 -

eight standard forms - 176 -

Electronic Design Automation - 55 -, 213

enable signal ... - 393 -

engineer .. - 76 -

engineering notation - 59 -, - 60 -

entity ... - 297 -

entity declaration - 297 -, - 318 -

ENUM_ENCODING - 604 -

enumeration type .. - 594 -

enumeration types - 591 -, - 604 -

equivalence gate - 138 -, - 196 -

equivalence operator - 407 -

equivalent forms ... - 449 -

equivalent gates .. - 181 -

error condition .. - 434 -

error detection ... - 199 -

Digital McLogic Design Index of Stuff

 - 837 -

escalator .. - 32 -

even parity... - 199 -

evil demon... - 292 -

excitation equations .. - 588 -

excitation inputs - 530 -, - 531 -

excitation logic - 535 -, - 546 -

excitation table .. - 489 -

excitement ... - 136 -

exclusive NOR gate ... - 137 -

exclusive OR ... - 137 -

Exponential notation ... - 60 -

expressions .. - 302 -

external conditions .. 573

external inputs ... - 588 -

F

FA .. See full adder

fabbed ... 218

falling edge ... - 500 -

falling-edge-triggered - 500 -

fast multiplication ... - 731 -

feature set .. - 743 -

FET ... - 500 -

field programmable logic device 216

finite .. - 528 -

Finite State Machine - 527 -

finite state machines .. - 671 -

flat design ... - 50 -, - 317 -

flat designs .. - 316 -

flip-flops .. - 495 -

floating point numbers - 730 -

follow rules ... - 631 -

forbidden state .. - 484 -

forward slash ... - 624 -

FPGA 216, See field programmable logic device

FPGAs.. - 602 -, - 616 -

fractional ... - 64 -

fractional portion ... - 230 -

frequency .. - 672 -, - 673 -

frets ... - 32 -

FSM analysis - 531 -, - 533 -

FSM design ... - 542 -

full adder ... - 143 -

full encoding ... - 602 -

function .. - 79 -, - 315 -

function body .. - 315 -

function declaration .. - 315 -

function forms ... - 93 -

function hazards .. - 436 -

function names .. - 294 -

function proto-type .. - 315 -

function realization ... - 82 -

function reduction ... 153

functional relationship....................................... - 79 -

functionally complete - 136 -

functionally equivalent - 91 -, 152, - 176 -

functions ... - 55 -

fuse .. 213

G

gate killing .. - 404 -

gate-level circuits .. - 51 -

gate-level designs .. - 51 -

generic decoder ... - 377 -

glitch ... - 434 -

Glitching ... - 437 -

glue logic .. - 314 -

GND ... - 139 -

goddesses .. - 325 -

GOOD-BAD ... - 33 -

gory details ... - 197 -

gray codes ... - 602 -

Gray Codes ... - 239 -

ground... - 139 -, - 271 -

group of fours ... - 233 -

group of threes .. - 235 -

grunt work .. - 618 -

guessing .. - 434 -

H

HA .. See half adder

HAL .. - 616 -

Half Adder .. - 84 -

hang states .. - 555 -

hard-coding .. - 367 -

hardware ... - 252 -

Hardware Description Language - 289 -

hardware modeling ... - 289 -

hazard ... - 435 -

HDL .. - 288 -

Hertz ... - 673 -

hex .. See hexadecimal

hexadecimal .. - 227 -

hierarchical ... - 40 -

hierarchical design - 42 -, - 50 -, - 266 -, - 269 -

hierarchy ... - 38 -

high intelligence ... - 293 -

higher education ... - 63 -

higher-level language - 591 -

high-impedance .. - 651 -

high-level model ... - 38 -

HIGH-LOW.. - 33 -

hold ... - 484 -

hold condition - 484 -, - 486 -

hold time ... - 675 -

Hold-1 transition ... - 685 -

horse-sense ... - 196 -, - 686 -

human brain .. - 62 -

humans ... - 61 -, - 229 -

hung .. - 556 -

hybrid FSM .. - 597 -

Hz ... - 673 -

Digital McLogic Design Index of Stuff

 - 838 -

I

ICs ... - 616 -

Idempotent ... - 80 -

identifier .. - 294 -

Identity ... - 80 -

idiots ... - 50 -

if statement .. - 352 -

illegal state recovery - 554 -

IMD ... - 187 -, - 755 -

implied mapping.. - 321 -

inactive state ... - 446 -

inclusive OR .. - 138 -

incompletely specified functions 160

increment .. - 736 -

Increment .. - 736 -

indentation .. - 292 -

independent PS/NS style - 589 -

independent variables .. - 79 -

indirect subtraction by addition - 253 -, - 277 -

induce memory - 362 -, - 507 -

initial state ... - 501 -

input .. - 38 -

inputs... - 37 -

instances .. - 320 -

instantiation ... - 320 -

integer-based math .. - 730 -

integral .. - 64 -

integral portion .. - 230 -

Integrated circuits.. - 616 -

intelligent people ... - 623 -

interface specification - 298 -

intermediate results ... - 343 -

intermediate signal .. - 355 -

intermediate signal declaration - 320 -

intermediate signals - 320 -, - 344 -

intermittent errors.. - 617 -

internal signals .. - 317 -

inversion ... - 81 -

iteration ... - 188 -

iterative ... - 188 -

iterative design .. - 79 -

iterative modular design - 187 -

J

Java .. - 288 -, - 289 -, - 296 -

JK flip-flop .. - 503 -

jog ..154, 158

Johnson counts .. - 602 -

juxtapositional notation - 63 -, - 228 -

K

Karnaugh map .. 154

Karnaugh Maps ... 154

Kleenex substitute .. - 306 -

kludgy ... - 42 -, - 45 -, 835

K-map 154, See Karnaugh Map

K-map cell ... 154

K-map compression .. - 469 -

K-map tricks .. 156

K-maps ... - 238 -

L

LA .. See Logic Analyzer

labels .. - 320 -

latch .. - 487 -

latch generation .. - 592 -

leading zeros ... - 67 -

least significant bit - 77 -, - 190 -

least significant digit - 64 -, - 231 -

legend - 537 -, - 544 -, - 551 -, - 623 -

level of abstraction ... - 50 -

levels of abstraction .. - 290 -

level-sensitive - 493 -, - 499 -

library clause .. - 327 -

lingo .. - 617 -

local variables ... - 320 -

lock-step ... - 592 -

logic analyzer ... - 110 -

logic analyzers .. - 430 -

logic block ... 216

logic gate .. - 82 -

logic gates ... - 82 -

logic hazards .. - 436 -

Logic levels .. - 447 -

logic unit ... - 754 -

logical addition ... - 81 -

logical multiplication .. - 81 -

logical reasoning ... - 80 -

loincloths .. - 62 -

look-up table ... - 384 -

look-up tables ... - 336 -

low-level model .. - 38 -

LSB See least significant bit

LSD - 231 -, See least significant digit, See least

significant digit

LUT ... See look-up table

LUTs .. - 336 -, - 378 -

M

macrocell ... 217

Macrocell .. 217

magnitude bits .. - 246 -

magnitude portion ... - 60 -

makefile .. - 327 -

Manual Verification .. - 784 -

map ... - 320 -

map entered variables - 467 -

mapping .. - 315 -

Digital McLogic Design Index of Stuff

 - 839 -

mask-level ... 213

maximum clock frequency - 676 -

maxterm .. 151

maxterm expansion ... 151

maxterm representations 150

MCUs ... - 616 -, - 617 -

Mealy machine - 604 -, - 622 -

Mealy outputs ... 571

Mealy-type FSM - 528 -, 570, - 622 -

medium scale integration 212

memory elements .. - 530 -

metastable ... - 675 -

methods ... - 55 -

MEV .. - 467 -

MEVs See map entered variable

microcontroller .. - 652 -

Microcontrollers .. - 616 -

million bucks ... 218

minimizing .. - 603 -

minimum cost ... - 181 -

minimum cost solution - 181 -

minimum period .. - 676 -

minterm ... 150

minterm expansion .. 150

minterm representations 150

minterms ... 150

minuend ... - 253 -

mixed logic .. - 137 -, - 180 -

Mixed logic ... - 447 -

mixed logic design .. - 446 -

mode .. - 298 -

mode specifier ... - 320 -

model... - 290 -

models ... - 430 -

modular design .. - 266 -

Modular Design .. - 265 -

modular digital design - 313 -

modularity ... - 313 -

modulo-2 addition ... - 199 -

Moore machine ... - 622 -

Moore-type FSM - 528 -, 570, - 622 -

Morse code .. - 71 -

most significant bit - 77 -, - 190 -

Most Significant Bit .. - 231 -

most significant digit ... - 64 -

MSB See most significant bit, See most significant

bit

MSD See most significant digit

MSI 212, See medium scale integration

multiplexor .. - 404 -

MUX ... See multiplexor

N

NAND ... - 135 -

NAND gate ... - 135 -

NAND latch .. - 491 -

NAND/AND ... - 178 -

NAND/NAND .. - 178 -

native VHDL type .. - 591 -

n-bit adder .. - 189 -

n-bit Counter... - 736 -

n-bit register ... - 704 -

n-bit registers - 710 -, - 743 -

negative logic ... - 487 -

Negative logic ... - 446 -

new FSM techniques - 684 -

next state ... - 483 -, - 530 -

Next State .. - 589 -, - 620 -

next state decoder ... - 530 -

Next State Decoder - 528 -, - 535 -, - 588 -

next state forming logic - 530 -

next state logic .. - 530 -

no-brainer ... - 326 -

no-brainer approach .. - 179 -

noise ... - 555 -

non-action ... - 446 -

nonessential prime implicants - 437 -

non-resetting ... - 627 -

non-standard decoder - 387 -

noob .. - 718 -

NOR ... - 135 -

NOR gate .. - 135 -

NOR latch ... - 487 -

NOR/NOR ... - 178 -

NOR/OR .. - 178 -

NOT operator - 81 -, - 325 -

Not-asserted signal ... - 447 -

n-type ... - 51 -

Null element .. - 80 -

Number .. - 63 -

Number System ... - 63 -

number systems .. - 61 -

numbers .. - 61 -

O

object oriented .. - 54 -

object-level circuits ... - 52 -

object-level digital .. - 54 -

object-oriented .. - 52 -

octal .. - 228 -

odd parity .. - 199 -

old dude .. - 336 -

On The Fly ... - 785 -

one-hot encoded 572, - 693 -

one-hot encoding .. - 602 -

one-hot state ... - 603 -

ON-OFF ... - 33 -

oogly ... - 322 -

open-circuit .. 213

operators ... - 80 -, - 302 -

OR array .. 213

OR operator .. - 81 -

OR plane. ... 214

OR planes .. 214

OR/AND .. - 178 -

OR/NAND ... - 178 -

Digital McLogic Design Index of Stuff

 - 840 -

output .. - 38 -

Output decoder .. - 528 -

Output Decoder ... - 588 -

output transitions ... - 504 -

outputs... - 37 -

overbar .. - 80 -

overflow ... - 254 -, - 766 -

P

PALs ... 213

paper designs .. - 26 -, - 53 -

parallel ... - 198 -, - 337 -

Parallel Inputs .. - 589 -

Parallel Load ... - 737 -

Parallelism .. - 337 -

parity bit .. - 200 -

parity checkers .. - 198 -

parity generators.. - 198 -

PCB See printed circuit board

period .. - 672 -

periodic ... - 672 -

periodic waveform .. - 672 -

pin count ... - 617 -

pins .. - 617 -

PLAs ... 213

PLC See positive logic convention

PLD ... - 34 -, 213

PLDs212, 213, See Programmable Logic Device

PMOS ... - 51 -

port .. - 298 -

port clause... - 297 -

POS ... See product of sums

positive logic ... - 487 -

Positive logic ... - 446 -

Positive Logic Convention - 447 -

power .. - 139 -

pre-assigned .. - 592 -

precedence .. - 509 -

precedence rules .. - 293 -

prefix .. - 60 -, - 324 -

prefix notation ... - 324 -

present state .. - 483 -

Present State - 589 -, - 620 -

present state/next state - 489 -

primitive culture .. - 62 -

printed circuit board .. 212

process body ... - 352 -

process statement - 349 -, - 506 -

process statements .. - 340 -

product of sums ... - 93 -

product terms .. - 93 -

program ... - 289 -

programmable array logic 213

programmable logic arrays 213

programmable logic devices 212, - 472 -

Programmable Logic Devices - 616 -

prop delays ... - 432 -, - 435 -

propagation delay .. - 676 -

propagation delays ... - 432 -

protoboards .. 212

PS/NS See present state/next state

PS/NS table - 489 -, - 534 -, - 545 -, - 549 -

p-type ... - 51 -

R

Radix .. - 63 -

radix complement ... - 246 -

Radix Point .. - 63 -

Rapid Prototyping .. 218

RC - 246 -, See radix complement

RCA .. - 188 -

realize ... - 82 -

reciprocal relationship - 673 -

reduced form... - 685 -

Reducing functions .. 153

redundant state .. - 622 -

register ... - 530 -

register size ... - 252 -

registers .. - 252 -

registers with features - 717 -

relational operators .. - 347 -

relative time .. - 795 -

repeated radix division - 231 -

repeated radix multiplication - 232 -

reserved words ... - 295 -

reset condition .. - 490 -

reset pulse ... - 510 -

reset state .. - 484 -

resolution .. - 650 -

RET .. - 500 -

ripple carry adder - 188 -, - 190 -

Ripple Carry Out .. - 737 -

rising edge .. - 500 -

rising_edge() .. - 506 -

rising-edge-triggered - 500 -

ROMs ... - 602 -

rotates ... - 730 -

rote.. - 28 -

row jog... 158

RRD See repeated radix division

RRM See repeated radix multiplication

rubylith ... - 55 -

rule-based ... - 336 -

S

scalar types ... - 306 -

second nature .. - 326 -

secret sauce ... - 291 -

selected signal assignments - 340 -

selection variables .. - 405 -

selective signal assignment - 347 -

self-commenting - 38 -, - 269 -, - 295 -, - 302 -, - 320

-, - 350 -

Digital McLogic Design Index of Stuff

 - 841 -

self-correcting ... - 557 -

self-loop ... - 539 -, - 619 -

self-looping hang state - 556 -

self-loops ... - 488 -

sensitivity list ... - 350 -

sequence detectors .. - 627 -

sequential ... - 479 -, - 480 -

sequential codes .. - 602 -

sequential nature ... - 509 -

sequential statement - 351 -, - 352 -

sequential statements - 349 -

serial ... - 198 -

set- 484 -, - 486 -

Set and Hold-1 .. - 686 -

set condition - 486 -, - 490 -

Set or Clear method .. - 688 -

Set or Hold-1 method - 688 -

set state.. - 484 -

Set transition ... - 685 -

Set-Clear method .. - 688 -

setting .. - 484 -

setup time .. - 675 -

shift register .. - 717 -

shift register cell .. - 718 -

shift registers ... - 602 -

shorthand notation ... - 532 -

sign bit ... - 246 -, - 251 -

sign magnitude .. - 246 -

Sign Magnitude ... - 246 -

signal assignment operator .- 304 -, - 338 -, - 339 -, -

763 -

signal declaration .. - 320 -

signed binary numbers - 68 -

signedness ... - 731 -

sillycone .. - 51 -

simulation ... - 434 -

simulator ... - 110 -

simulators ... - 290 -, - 430 -

Single variable theorems - 80 -

slanted lines... - 111 -

slanted T symbol ... - 404 -

slash notation .. - 116 -

slash/number notation - 300 -

SM - 246 -, See sign magnitude

small scale integration ... 212

social network ... - 292 -

soft-core MCU .. - 616 -

software design ... - 54 -

software tools - 55 -, - 290 -

SOP ... See sum of products

SOP form .. - 93 -

sorting ... - 414 -

Special J Reduction ... - 687 -

Special K Reduction - 688 -

speed-wrapped .. 212

spiritually enriching .. - 627 -

squat .. 219

SR ... - 718 -

SR latch ... - 491 -

SSI 212, See small scale integration

standard .. - 60 -

standard circuit forms - 176 -

standard decoder - 377 -, - 387 -

standard product of sums 151

standard product terms .. 150

standard SOP form .. 150

state .. - 482 -, - 527 -

state bubble - 488 -, - 537 -, 573, - 618 -, - 624 -

state changes ... - 483 -

state diagram.................. - 487 -, - 528 -, 578, - 631 -

state diagram symbology - 617 -

state diagrams .. 571

state registers - 530 -, - 588 -

State Registers .. - 528 -

state transition .. - 619 -

state transition arrow - 539 -, - 619 -, - 620 -

State Transition Inputs - 589 -

state transitions- 488 -, 573, 576

state variable ... - 618 -

State Variable Transition Table - 689 -

state variables........................ - 530 -, - 532 -, - 543 -

statement region - 302 -, - 320 -

static logic hazards ... - 434 -

status signals ... - 530 -

std_logic type ... - 298 -

stimulus .. - 781 -

stimulus driver - 781 -, - 784 -

striped groupings ... 162

structural modeling - 314 -, - 316 -

structural style .. - 358 -

structured programming - 53 -, - 291 -

style file .. - 292 -

style-file .. - 297 -

sub-minterms .. - 468 -

subroutines ... - 55 -

subtractor .. - 276 -

subtrahend .. - 253 -

sum ... - 253 -

sum of products .. - 93 -

sum-of-products form .. 150

superstar .. 156

SVTT See state variable transition table

sweat ... - 137 -

symbolic name .. - 618 -

symbology 213, - 617 -, - 626 -

synchronous circuit ... - 508 -

synchronous circuits - 671 -

synchronous process - 592 -

Synchronous Process - 588 -

syntactical ... - 336 -

synthesis ... - 290 -

synthesize ... - 651 -

system clock ... - 619 -

system software .. - 617 -

T

T flip-flop ... - 502 -

tab characters .. - 292 -

Digital McLogic Design Index of Stuff

 - 842 -

tabs .. - 292 -

target symbol .. - 433 -

tedious grunt work .. - 618 -

tedium ... - 345 -

term of convenience .. - 720 -

test vectors .. - 783 -

testbench ... - 780 -

three-bit adder ... - 143 -

throughput ... - 430 -

tied high .. - 139 -

tied low ... - 139 -

tied to ground .. - 192 -

time axis .. - 111 -

time slots ... - 619 -

timelessness .. - 110 -

timing diagram - 36 -, - 542 -, - 631 -

timing diagram annotation - 433 -

timing diagrams .. - 110 -

tiny electronic things - 616 -

TMI syndrome .. - 288 -

to keyword ... - 300 -

to the PLA but the connections in the OR plane are

programmed in the factory, or masked 214

toggle .. - 247 -

toggle condition .. - 504 -

toggle flip-flop .. - 502 -

toggled .. - 238 -

toggles .. - 111 -, - 112 -

top-down ... - 53 -

tphl .. - 432 -

tplh .. - 432 -

transition ... - 619 -

TRUE-FALSE .. - 33 -

truth table ... - 78 -, - 534 -

truth tables... - 336 -

twisted-ring counts .. - 602 -

two dashes ... - 292 -

two’s complement.. - 249 -

two-bit adder ... - 143 -

two-valued algebra .. - 80 -

tying the input low .. - 139 -

U

UDC See unit distance code

ugliness ... 214

unconditional .. - 543 -

un-dead ... - 405 -

underflow .. - 254 -

unit distance code .. - 238 -

unit distance codes .. - 602 -

unit-distance code ... 154

units .. - 60 -

units of action ... - 297 -

universal shift register - 724 -

unsigned binary numbers - 68 -

unsignedness ... - 253 -

unused states ... - 554 -

Up Counter ... - 736 -

Up/Down Counter .. - 736 -

user-level .. - 211 -

V

variable ... - 762 -

variable assignment operator - 763 -

variable names .. - 294 -

Vcc ... - 271 -, - 473 -

Vdd ... - 271 -

vector .. - 300 -

vector types... - 306 -

verbage ... - 268 -

Verilog .. - 55 -, - 288 -

VHDL ... - 55 -, - 287 -

VHDL behavioral modeling - 684 -

VHDL gods .. - 291 -

VHDL keywords .. - 298 -

VHDL model ... - 36 -

VHSIC .. - 289 -

violin .. - 32 -

voltage .. - 51 -

W

wait statements ... - 787 -

wanker .. - 322 -

wankerism ... 849

wankers... - 332 -

warnings ... - 508 -

waveform .. - 673 -

weapons grade boredom - 554 -

weight ... - 65 -

when others ... - 355 -

white space ... - 292 -

width ... - 191 -

wire-wrap .. 212

wrapper ... - 297 -

X

XNOR ... - 137 -

XOR ... - 137 -

 - 843 -

i

- See don't care

&

& See concatenation operator

(

() See bundle access operator

<

<= See signal assignment operator

=

= See equivalence operator

=> See direct mapping operator

1

1’s complement ... - 248 -

1980’s ... - 445 -

A

ABEL .. - 288 -

absolute time ... - 795 -

Absorption ... - 80 -

abstract .. - 38 -

academic administrators - 615 -

academic exercise - 246 -, - 683 -

academic exercises .. - 737 -

academic purposes .. - 342 -

academic-types .. 570

action state .. - 446 -

active low .. - 508 -

active state .. - 446 -

active-edge .. - 500 -

ADC .. See analog-to-digital

addend... - 253 -

Adjacency theorem 154, - 238 -

algorithm ... - 76 -

algorithmic programming language - 337 -

algorithmic programming languages - 352 -

ALU .. - 751 -

analog .. - 31 -

analog-to-digital ... - 650 -

AND array ... 213

AND operator ... - 81 -

AND plane ... 214

AND planes ... 214

AND/NOR ... - 178 -

AND/OR Form .. - 178 -

annotations ... - 112 -

architecture 214, - 297 -, - 752 -

architecture body .. - 301 -

architecture declaration................................... - 319 -

arithmetic logic unit .. - 752 -

arithmetic shift .. - 731 -

arithmetic shifts .. - 730 -

arithmetic unit ... - 754 -

arrow .. - 619 -

arrows ... - 488 -, - 538 -

arse ... - 194 -

Assertation levels.. - 447 -

Asserted high .. - 447 -

Asserted low ... - 447 -

Asserted signal ... - 447 -

assignment operator - 339 -, - 358 -

Associative ... - 80 -

asynchronous .. - 508 -, 573

augend .. - 253 -

Automatic Verification - 784 -

axioms .. - 80 -

B

bajillion... - 181 -

barrel shift .. - 729 -

base ... - 65 -

BCD See binary coded decimal

behavior models ... - 505 -

behavioral style .. - 358 -

BFD - 187 -, See brute force design

binary .. - 65 -, - 227 -

binary coded decimal - 236 -

binary codes .. - 236 -

Binary Counter ... - 736 -

binary encoding .. - 602 -

binary number ... - 65 -

binary patterns .. - 236 -

Bipolar Junction Transistor........................... - 51 -

bits .. - 66 -

bit-stream .. - 633 -

bit-stuffing .. - 234 -

black box .. - 297 -

black box diagrams ... - 266 -

black box model - 36 -, - 37 -

black box models .. - 266 -

block-style comments - 293 -

bloviation .. - 268 -

blowing .. 213

Boole .. - 80 -

Boolean algebra .. - 80 -

Boolean algebra Axioms - 80 -

Digital McLogic Design Index of Stuff

 - 844 -

Boolean equation .. - 82 -

Boolean expression ... - 82 -

Boolean value ... - 353 -

boring .. - 302 -

borrow ... - 768 -

bottom-up .. - 53 -

bowling ... - 228 -

brute force design ... - 79 -

Brute Force Design ... - 187 -

bubbles .. - 179 -

buffer... - 140 -

buffer circuit element - 554 -

buffering action ... - 140 -

Bummer .. - 556 -

bundle ... - 115 -

bundle access operator - 407 -

bundle elements ... - 300 -

bundle expansion - 119 -, - 205 -

bundled signal ... - 595 -

bundles .. - 300 -

bus ... - 115 -

by inspection ... - 686 -

C

C - 288 -, - 289 -, - 296 -, - 315 -, - 339 -

C programming ... - 327 -

calculus ... - 63 -

career... 160

carry bit ... - 249 -

cascade ... - 191 -, - 722 -

cascadeabilitly ... - 722 -

Cascadeable .. - 737 -

case sensitive ... - 292 -

case statement - 352 -, - 354 -

catch-all ... - 347 -

catch-all condition ... - 507 -

catch-all statement .. - 391 -

cave ... - 28 -

caveman .. - 62 -

ceiling function ... - 602 -

central processing unit - 752 -

CF See compact fluorescent

characteristic tables .. - 489 -

chip enable .. - 411 -

chip select ... - 411 -

circled cross .. - 138 -

circled dot ... - 138 -

circuit delays ... - 430 -

circuit forms .. - 175 -

Clark Method .. - 689 -

classical FSM approach - 684 -

classical FSM design - 627 -

clear .. - 484 -

clear condition ... - 486 -

clear state .. - 484 -

cleared ... - 486 -

clearing ... - 484 -

clock edge ... - 500 -

clock frequency .. - 659 -

clock input .. - 500 -

CMOS .. - 51 -

code-word ... - 736 -

codewords .. - 603 -

coding style .. - 296 -

combinatorial ... - 479 -

combinatorial logic ... - 588 -

combinatorial process - 592 -

Combinatorial Process - 588 -

Combining ... - 80 -

Combining theorem ... 154

comments ... - 293 -

Commutative ... - 80 -

compact fluorescent .. - 31 -

compact maxterm form .. 152

compact minterm form .. 152

complementary outputs................................... - 532 -

complementation .. - 81 -

complex programmable logic devic 216

complex programmable logic device 216

complexicated ... - 50 -

Complimentary Metal Oxide Semiconductor- 51 -

component declaration - 315 -

component instantiation - 315 -

component mapping - 320 -

compression .. - 469 -

computationally expensive - 730 -

computer aided design ... 212

computer design ... - 751 -

computer engineering - 252 -

computer science .. - 252 -

concatenation operator - 380 -

concurrency .. - 337 -

concurrent signal assignment - 338 -, - 340 -

concurrent statement - 338 -

concurrently.. - 337 -

conditional signal assignment - 345 -, - 352 -

conditional signal assignments - 340 -

configurable ... 216

continuous .. - 32 -

continuous domain.. - 33 -

continuousness .. - 33 -, 820

control... - 528 -

control signals... - 622 -

control tasks .. - 617 -

control unit ... - 752 -

controller .. - 528 -

conversion .. - 651 -

Count Enable .. - 737 -

counter .. - 735 -

counter design ... - 543 -

Counter Overflow ... - 737 -

Counter Underflow ... - 737 -

counters .. - 602 -

covered ... - 437 -

CPLD .. 216, See CPLD

CPLDs .. - 616 -

CPU .. - 752 -

crapload .. - 84 -

Digital McLogic Design Index of Stuff

 - 845 -

croquet .. - 252 -

cross .. - 80 -

cross coupled NOR cell - 487 -

CSA See concurrent signal assignment

current state ... - 588 -

custom ASIC ... - 780 -

cycles per second .. - 673 -

D

D flip-flop ... - 500 -

data flip-flop See D flip-flop

data inputs ... - 405 -

data selection inputs .. - 405 -

data_type ... - 298 -

dataflow model ... - 358 -

dataflow style .. - 358 -

datapath ... - 752 -

debug... - 316 -

debuggers .. - 110 -

Decade Counter ... - 736 -

decimal ... - 63 -, - 65 -

decimal number ... - 63 -

declarative region - 302 -, - 319 -, - 344 -

decoder - 377 -, - 397 -, 826

decomposition ... - 53 -

Decrement ... - 737 -

delay .. - 430 -

DeMorgan’s theorem 156, - 176 -

DeMorganize - 96 -, - 178 -

dependent PS/NS style - 589 -

dependent variable .. - 79 -

describing hardware .. - 289 -

design automation tools 212

design under test ... - 781 -

Device Verification ... 218

diagonal groupings ... 162

diagonals ... - 200 -

difference .. - 253 -

Digalog ... - 32 -

digestible ... - 229 -

Digit .. - 63 -

digit position ... - 65 -

digital ... - 31 -, - 51 -

digital lingo ... - 111 -

digital logic ... - 33 -

digital self-flagellation - 124 -

digitalness ... - 33 -

diminished radix complement - 246 -

dimmers .. - 31 -

dinosaurs ... - 473 -

diode ... - 51 -

direct mapping .. - 321 -

direct mapping operator - 321 -

Direct Polarity Indicators - 447 -

discontinuity.. - 115 -

discrete .. - 32 -

discrete domain ... - 33 -

discreteness ... - 32 -

distance ... - 238 -

Distributive.. - 80 -

DMUX .. - 394 -

don’t care ... 160, - 625 -

don’t care transition .. 576

don’t cares 160, - 356 -, - 687 -

do-nothing .. - 484 -

dope .. - 51 -

dot ... - 80 -

dot operator... - 81 -

Double Complement - 80 -

Down Counter .. - 736 -

down-pointed arrow .. - 139 -

downto keyword .. - 300 -

DPI See direct polarity indicator

DRC See diminished radix complement

drugs ... - 131 -

dumb mistakes .. - 294 -

dumbtarted.. - 50 -

DUT .. - 781 -

duty cycle - 660 -, - 674 -, - 794 -

dynamic logic hazard - 437 -

E

EDA See Electronic Design Automation, See

Electronic Design Automation

edge-sensitive ... - 499 -

edge-triggered ... - 500 -

eight standard forms - 176 -

Electronic Design Automation - 55 -, 213

enable signal ... - 393 -

engineer .. - 76 -

engineering notation - 59 -, - 60 -

entity ... - 297 -

entity declaration - 297 -, - 318 -

ENUM_ENCODING - 604 -

enumeration type .. - 594 -

enumeration types - 591 -, - 604 -

equivalence gate - 138 -, - 196 -

equivalence operator - 407 -

equivalent forms ... - 449 -

equivalent gates .. - 181 -

error condition .. - 434 -

error detection ... - 199 -

escalator .. - 32 -

even parity .. - 199 -

evil demon .. - 292 -

excitation equations .. - 588 -

excitation inputs - 530 -, - 531 -

excitation logic - 535 -, - 546 -

excitation table ... - 489 -

excitement .. - 136 -

exclusive NOR gate ... - 137 -

exclusive OR ... - 137 -

Exponential notation ... - 60 -

expressions ... - 302 -

external conditions... 573

external inputs .. - 588 -

Digital McLogic Design Index of Stuff

 - 846 -

F

FA .. See full adder

fabbed ... 218

falling edge ... - 500 -

falling-edge-triggered - 500 -

fast multiplication ... - 731 -

feature set .. - 743 -

FET ... - 500 -

field programmable logic device 216

finite .. - 528 -

Finite State Machine - 527 -

finite state machines .. - 671 -

flat design ... - 50 -, - 317 -

flat designs .. - 316 -

flip-flops .. - 495 -

floating point numbers - 730 -

follow rules ... - 631 -

forbidden state .. - 484 -

forward slash ... - 624 -

FPGA 216, See field programmable logic device

FPGAs.. - 602 -, - 616 -

fractional ... - 64 -

fractional portion ... - 230 -

frequency .. - 672 -, - 673 -

frets ... - 32 -

FSM analysis - 531 -, - 533 -

FSM design ... - 542 -

full adder ... - 143 -

full encoding ... - 602 -

function .. - 79 -, - 315 -

function body .. - 315 -

function declaration .. - 315 -

function forms ... - 93 -

function hazards .. - 436 -

function names .. - 294 -

function proto-type .. - 315 -

function realization ... - 82 -

function reduction ... 153

functional relationship....................................... - 79 -

functionally complete - 136 -

functionally equivalent - 91 -, 152, - 176 -

functions ... - 55 -

fuse .. 213

G

gate killing .. - 404 -

gate-level circuits ... - 51 -

gate-level designs ... - 51 -

generic decoder ... - 377 -

glitch ... - 434 -

Glitching ... - 437 -

glue logic .. - 314 -

GND .. - 139 -

goddesses .. - 325 -

GOOD-BAD ... - 33 -

gory details .. - 197 -

gray codes ... - 602 -

Gray Codes ... - 239 -

ground... - 139 -, - 271 -

group of fours ... - 233 -

group of threes .. - 235 -

grunt work .. - 618 -

guessing .. - 434 -

H

HA .. See half adder

HAL .. - 616 -

Half Adder .. - 84 -

hang states .. - 555 -

hard-coding .. - 367 -

hardware ... - 252 -

Hardware Description Language - 289 -

hardware modeling ... - 289 -

hazard ... - 435 -

HDL .. - 288 -

Hertz ... - 673 -

hex .. See hexadecimal

hexadecimal .. - 227 -

hierarchical ... - 40 -

hierarchical design - 42 -, - 50 -, - 266 -, - 269 -

hierarchy ... - 38 -

high intelligence ... - 293 -

higher education ... - 63 -

higher-level language - 591 -

high-impedance .. - 651 -

high-level model ... - 38 -

HIGH-LOW.. - 33 -

hold ... - 484 -

hold condition - 484 -, - 486 -

hold time ... - 675 -

Hold-1 transition ... - 685 -

horse-sense ... - 196 -, - 686 -

human brain .. - 62 -

humans ... - 61 -, - 229 -

hung .. - 556 -

hybrid FSM .. - 597 -

Hz ... - 673 -

I

ICs .. - 616 -

Idempotent .. - 80 -

identifier ... - 294 -

Identity .. - 80 -

idiots ... - 50 -

if statement ... - 352 -

illegal state recovery - 554 -

IMD .. - 187 -, - 755 -

implied mapping ... - 321 -

inactive state ... - 446 -

inclusive OR ... - 138 -

incompletely specified functions 160

Digital McLogic Design Index of Stuff

 - 847 -

increment .. - 736 -

Increment .. - 736 -

indentation .. - 292 -

independent PS/NS style - 589 -

independent variables .. - 79 -

indirect subtraction by addition - 253 -, - 277 -

induce memory - 362 -, - 507 -

initial state ... - 501 -

input .. - 38 -

inputs... - 37 -

instances .. - 320 -

instantiation ... - 320 -

integer-based math .. - 730 -

integral .. - 64 -

integral portion .. - 230 -

Integrated circuits.. - 616 -

intelligent people ... - 623 -

interface specification - 298 -

intermediate results ... - 343 -

intermediate signal .. - 355 -

intermediate signal declaration - 320 -

intermediate signals - 320 -, - 344 -

intermittent errors.. - 617 -

internal signals .. - 317 -

inversion ... - 81 -

iteration ... - 188 -

iterative ... - 188 -

iterative design .. - 79 -

iterative modular design - 187 -

J

Java .. - 288 -, - 289 -, - 296 -

JK flip-flop .. - 503 -

jog ..154, 158

Johnson counts .. - 602 -

juxtapositional notation - 63 -, - 228 -

K

Karnaugh map .. 154

Karnaugh Maps ... 154

Kleenex substitute ... - 306 -

kludgy .. - 42 -, - 45 -, 835

K-map 154, See Karnaugh Map

K-map cell... 154

K-map compression .. - 469 -

K-map tricks ... 156

K-maps .. - 238 -

L

LA .. See Logic Analyzer

labels ... - 320 -

latch .. - 487 -

latch generation ... - 592 -

leading zeros ... - 67 -

least significant bit - 77 -, - 190 -

least significant digit - 64 -, - 231 -

legend - 537 -, - 544 -, - 551 -, - 623 -

level of abstraction ... - 50 -

levels of abstraction .. - 290 -

level-sensitive - 493 -, - 499 -

library clause .. - 327 -

lingo .. - 617 -

local variables ... - 320 -

lock-step ... - 592 -

logic analyzer ... - 110 -

logic analyzers .. - 430 -

logic block ... 216

logic gate .. - 82 -

logic gates ... - 82 -

logic hazards .. - 436 -

Logic levels .. - 447 -

logic unit ... - 754 -

logical addition ... - 81 -

logical multiplication .. - 81 -

logical reasoning ... - 80 -

loincloths .. - 62 -

look-up table ... - 384 -

look-up tables ... - 336 -

low-level model .. - 38 -

LSB See least significant bit

LSD - 231 -, See least significant digit, See least

significant digit

LUT ... See look-up table

LUTs .. - 336 -, - 378 -

M

macrocell ... 217

Macrocell .. 217

magnitude bits .. - 246 -

magnitude portion ... - 60 -

makefile .. - 327 -

Manual Verification .. - 784 -

map ... - 320 -

map entered variables - 467 -

mapping .. - 315 -

mask-level ... 213

maximum clock frequency - 676 -

maxterm ... 151

maxterm expansion .. 151

maxterm representations 150

MCUs ... - 616 -, - 617 -

Mealy machine - 604 -, - 622 -

Mealy outputs .. 571

Mealy-type FSM - 528 -, 570, - 622 -

medium scale integration 212

memory elements.. - 530 -

metastable ... - 675 -

methods .. - 55 -

MEV .. - 467 -

MEVs See map entered variable

microcontroller ... - 652 -

Digital McLogic Design Index of Stuff

 - 848 -

Microcontrollers .. - 616 -

million bucks ... 218

minimizing .. - 603 -

minimum cost ... - 181 -

minimum cost solution - 181 -

minimum period .. - 676 -

minterm ... 150

minterm expansion .. 150

minterm representations 150

minterms ... 150

minuend ... - 253 -

mixed logic .. - 137 -, - 180 -

Mixed logic ... - 447 -

mixed logic design .. - 446 -

mode .. - 298 -

mode specifier ... - 320 -

model... - 290 -

models ... - 430 -

modular design .. - 266 -

Modular Design .. - 265 -

modular digital design - 313 -

modularity ... - 313 -

modulo-2 addition ... - 199 -

Moore machine ... - 622 -

Moore-type FSM - 528 -, 570, - 622 -

Morse code .. - 71 -

most significant bit - 77 -, - 190 -

Most Significant Bit .. - 231 -

most significant digit ... - 64 -

MSB See most significant bit, See most significant

bit

MSD See most significant digit

MSI 212, See medium scale integration

multiplexor .. - 404 -

MUX ... See multiplexor

N

NAND ... - 135 -

NAND gate ... - 135 -

NAND latch .. - 491 -

NAND/AND ... - 178 -

NAND/NAND .. - 178 -

native VHDL type ... - 591 -

n-bit adder ... - 189 -

n-bit Counter ... - 736 -

n-bit register .. - 704 -

n-bit registers - 710 -, - 743 -

negative logic .. - 487 -

Negative logic ... - 446 -

new FSM techniques - 684 -

next state .. - 483 -, - 530 -

Next State ... - 589 -, - 620 -

next state decoder .. - 530 -

Next State Decoder - 528 -, - 535 -, - 588 -

next state forming logic - 530 -

next state logic .. - 530 -

no-brainer .. - 326 -

no-brainer approach .. - 179 -

noise ... - 555 -

non-action ... - 446 -

nonessential prime implicants - 437 -

non-resetting ... - 627 -

non-standard decoder - 387 -

noob .. - 718 -

NOR ... - 135 -

NOR gate .. - 135 -

NOR latch ... - 487 -

NOR/NOR ... - 178 -

NOR/OR .. - 178 -

NOT operator - 81 -, - 325 -

Not-asserted signal ... - 447 -

n-type ... - 51 -

Null element .. - 80 -

Number .. - 63 -

Number System ... - 63 -

number systems .. - 61 -

numbers .. - 61 -

O

object oriented .. - 54 -

object-level circuits ... - 52 -

object-level digital .. - 54 -

object-oriented .. - 52 -

octal .. - 228 -

odd parity .. - 199 -

old dude .. - 336 -

On The Fly ... - 785 -

one-hot encoded 572, - 693 -

one-hot encoding .. - 602 -

one-hot state ... - 603 -

ON-OFF ... - 33 -

oogly ... - 322 -

open-circuit .. 213

operators ... - 80 -, - 302 -

OR array .. 213

OR operator .. - 81 -

OR plane. ... 214

OR planes .. 214

OR/AND .. - 178 -

OR/NAND ... - 178 -

output .. - 38 -

Output decoder ... - 528 -

Output Decoder .. - 588 -

output transitions .. - 504 -

outputs .. - 37 -

overbar .. - 80 -

overflow ... - 254 -, - 766 -

P

PALs .. 213

paper designs .. - 26 -, - 53 -

parallel ... - 198 -, - 337 -

Parallel Inputs .. - 589 -

Digital McLogic Design Index of Stuff

 - 849 -

Parallel Load ... - 737 -

Parallelism .. - 337 -

parity bit .. - 200 -

parity checkers .. - 198 -

parity generators.. - 198 -

PCB See printed circuit board

period .. - 672 -

periodic ... - 672 -

periodic waveform .. - 672 -

pin count ... - 617 -

pins .. - 617 -

PLAs ... 213

PLC See positive logic convention

PLD ... - 34 -, 213

PLDs212, 213, See Programmable Logic Device

PMOS ... - 51 -

port .. - 298 -

port clause... - 297 -

POS ... See product of sums

positive logic ... - 487 -

Positive logic ... - 446 -

Positive Logic Convention - 447 -

power .. - 139 -

pre-assigned .. - 592 -

precedence .. - 509 -

precedence rules .. - 293 -

prefix .. - 60 -, - 324 -

prefix notation ... - 324 -

present state .. - 483 -

Present State - 589 -, - 620 -

present state/next state - 489 -

primitive culture .. - 62 -

printed circuit board .. 212

process body ... - 352 -

process statement - 349 -, - 506 -

process statements .. - 340 -

product of sums ... - 93 -

product terms .. - 93 -

program ... - 289 -

programmable array logic 213

programmable logic arrays 213

programmable logic devices 212, - 472 -

Programmable Logic Devices - 616 -

prop delays ... - 432 -, - 435 -

propagation delay .. - 676 -

propagation delays .. - 432 -

protoboards ... 212

PS/NS See present state/next state

PS/NS table - 489 -, - 534 -, - 545 -, - 549 -

p-type ... - 51 -

R

Radix .. - 63 -

radix complement .. - 246 -

Radix Point .. - 63 -

Rapid Prototyping ... 218

RC - 246 -, See radix complement

RCA .. - 188 -

realize ... - 82 -

reciprocal relationship - 673 -

reduced form... - 685 -

Reducing functions .. 153

redundant state .. - 622 -

register ... - 530 -

register size ... - 252 -

registers .. - 252 -

registers with features - 717 -

relational operators .. - 347 -

relative time .. - 795 -

repeated radix division - 231 -

repeated radix multiplication - 232 -

reserved words ... - 295 -

reset condition .. - 490 -

reset pulse ... - 510 -

reset state .. - 484 -

resolution .. - 650 -

RET .. - 500 -

ripple carry adder - 188 -, - 190 -

Ripple Carry Out .. - 737 -

rising edge .. - 500 -

rising_edge() .. - 506 -

rising-edge-triggered - 500 -

ROMs ... - 602 -

rotates ... - 730 -

rote.. - 28 -

row jog... 158

RRD See repeated radix division

RRM See repeated radix multiplication

rubylith ... - 55 -

rule-based ... - 336 -

S

scalar types ... - 306 -

second nature .. - 326 -

secret sauce ... - 291 -

selected signal assignments - 340 -

selection variables .. - 405 -

selective signal assignment - 347 -

self-commenting - 38 -, - 269 -, - 295 -, - 302 -, - 320

-, - 350 -

self-correcting .. - 557 -

self-loop .. - 539 -, - 619 -

self-looping hang state - 556 -

self-loops .. - 488 -

sensitivity list .. - 350 -

sequence detectors .. - 627 -

sequential ... - 479 -, - 480 -

sequential codes .. - 602 -

sequential nature ... - 509 -

sequential statement - 351 -, - 352 -

sequential statements - 349 -

serial ... - 198 -

set- 484 -, - 486 -

Set and Hold-1 .. - 686 -

set condition - 486 -, - 490 -

Set or Clear method .. - 688 -

Digital McLogic Design Index of Stuff

 - 850 -

Set or Hold-1 method - 688 -

set state.. - 484 -

Set transition ... - 685 -

Set-Clear method .. - 688 -

setting .. - 484 -

setup time .. - 675 -

shift register .. - 717 -

shift register cell .. - 718 -

shift registers ... - 602 -

shorthand notation ... - 532 -

sign bit ... - 246 -, - 251 -

sign magnitude .. - 246 -

Sign Magnitude ... - 246 -

signal assignment operator .- 304 -, - 338 -, - 339 -, -

763 -

signal declaration .. - 320 -

signed binary numbers - 68 -

signedness ... - 731 -

sillycone .. - 51 -

simulation ... - 434 -

simulator ... - 110 -

simulators ... - 290 -, - 430 -

Single variable theorems - 80 -

slanted lines... - 111 -

slanted T symbol ... - 404 -

slash notation .. - 116 -

slash/number notation - 300 -

SM - 246 -, See sign magnitude

small scale integration ... 212

social network ... - 292 -

soft-core MCU .. - 616 -

software design ... - 54 -

software tools - 55 -, - 290 -

SOP ... See sum of products

SOP form .. - 93 -

sorting ... - 414 -

Special J Reduction ... - 687 -

Special K Reduction - 688 -

speed-wrapped .. 212

spiritually enriching .. - 627 -

squat .. 219

SR ... - 718 -

SR latch ... - 491 -

SSI 212, See small scale integration

standard ... - 60 -

standard circuit forms...................................... - 176 -

standard decoder - 377 -, - 387 -

standard product of sums 151

standard product terms 150

standard SOP form .. 150

state .. - 482 -, - 527 -

state bubble - 488 -, - 537 -, 573, - 618 -, - 624 -

state changes ... - 483 -

state diagram - 487 -, - 528 -, 578, - 631 -

state diagram symbology - 617 -

state diagrams ... 571

state registers - 530 -, - 588 -

State Registers ... - 528 -

state transition .. - 619 -

state transition arrow - 539 -, - 619 -, - 620 -

State Transition Inputs - 589 -

state transitions- 488 -, 573, 576

state variable ... - 618 -

State Variable Transition Table - 689 -

state variables........................ - 530 -, - 532 -, - 543 -

statement region - 302 -, - 320 -

static logic hazards ... - 434 -

status signals ... - 530 -

std_logic type ... - 298 -

stimulus .. - 781 -

stimulus driver - 781 -, - 784 -

striped groupings ... 162

structural modeling - 314 -, - 316 -

structural style .. - 358 -

structured programming - 53 -, - 291 -

style file .. - 292 -

style-file .. - 297 -

sub-minterms .. - 468 -

subroutines ... - 55 -

subtractor .. - 276 -

subtrahend .. - 253 -

sum ... - 253 -

sum of products .. - 93 -

sum-of-products form .. 150

superstar .. 156

SVTT See state variable transition table

sweat ... - 137 -

symbolic name .. - 618 -

symbology 213, - 617 -, - 626 -

synchronous circuit ... - 508 -

synchronous circuits - 671 -

synchronous process - 592 -

Synchronous Process - 588 -

syntactical ... - 336 -

synthesis ... - 290 -

synthesize ... - 651 -

system clock ... - 619 -

system software .. - 617 -

T

T flip-flop ... - 502 -

tab characters .. - 292 -

tabs ... - 292 -

target symbol .. - 433 -

tedious grunt work .. - 618 -

tedium ... - 345 -

term of convenience - 720 -

test vectors .. - 783 -

testbench ... - 780 -

three-bit adder ... - 143 -

throughput .. - 430 -

tied high .. - 139 -

tied low ... - 139 -

tied to ground.. - 192 -

time axis ... - 111 -

time slots .. - 619 -

timelessness .. - 110 -

timing diagram - 36 -, - 542 -, - 631 -

Digital McLogic Design Index of Stuff

 - 851 -

timing diagram annotation - 433 -

timing diagrams .. - 110 -

tiny electronic things - 616 -

TMI syndrome .. - 288 -

to keyword ... - 300 -

to the PLA but the connections in the OR plane are

programmed in the factory, or masked 214

toggle .. - 247 -

toggle condition .. - 504 -

toggle flip-flop .. - 502 -

toggled .. - 238 -

toggles .. - 111 -, - 112 -

top-down ... - 53 -

tphl .. - 432 -

tplh .. - 432 -

transition ... - 619 -

TRUE-FALSE .. - 33 -

truth table ... - 78 -, - 534 -

truth tables... - 336 -

twisted-ring counts .. - 602 -

two dashes ... - 292 -

two’s complement.. - 249 -

two-bit adder ... - 143 -

two-valued algebra .. - 80 -

tying the input low .. - 139 -

U

UDC See unit distance code

ugliness ... 214

unconditional .. - 543 -

un-dead ... - 405 -

underflow .. - 254 -

unit distance code .. - 238 -

unit distance codes .. - 602 -

unit-distance code ... 154

units .. - 60 -

units of action .. - 297 -

universal shift register - 724 -

unsigned binary numbers - 68 -

unsignedness ... - 253 -

unused states ... - 554 -

Up Counter .. - 736 -

Up/Down Counter ... - 736 -

user-level ... - 211 -

V

variable ... - 762 -

variable assignment operator - 763 -

variable names .. - 294 -

Vcc ... - 271 -, - 473 -

Vdd ... - 271 -

vector .. - 300 -

vector types... - 306 -

verbage ... - 268 -

Verilog .. - 55 -, - 288 -

VHDL ... - 55 -, - 287 -

VHDL behavioral modeling - 684 -

VHDL gods .. - 291 -

VHDL keywords .. - 298 -

VHDL model ... - 36 -

VHSIC .. - 289 -

violin .. - 32 -

voltage .. - 51 -

W

wait statements ... - 787 -

wanker .. - 322 -

wankerism ... 849

wankers... - 332 -

warnings ... - 508 -

waveform .. - 673 -

weapons grade boredom - 554 -

weight ... - 65 -

when others ... - 355 -

white space ... - 292 -

width ... - 191 -

wire-wrap .. 212

wrapper ... - 297 -

X

XNOR ... - 137 -

XOR ... - 137 -

