High-Performance Embedded Programming with the Intel® Atom[™] Platform

INSTRUCTOR	Daniel Llamocca		
CONTACT INFO	email: <u>llamocca@oakland.edu</u>		
WEBPAGE	www.secs.oakland.edu/~llamocca/emb_intel.html		
REFERENCES	 Lori M. Matassa, Max Domeika, "Break Away with Intel® Atom[™] Processors: A Guide to Architecture Migration", Intel Press, 2010. Max Domeika, "Software Development for Embedded Multi-Core Systems", Newnes, 2008. 		
MATERIALS	Terasic DE2i-150-FPGA Development Kit. Ubuntu Distribution 12.04.4		

DESCRIPTION

 Real-time embedded programming, analysis, and optimization using the Intel® Atom[™] processor. Multi-threaded systems, multi-core software development, scalability, and industry-tailored applications.

OUTLINE OF TOPICS

	- Haudurana Diatanna, Tanasia DE2: 150 Days 1/2			
	 Hardware Platform: Terasic DE2I-150 Dev. Kit 			
Getting Started with the	• Ubuntu 12.04.4			
Hardware and Software	✓ Installation			
Platform	✓ C++ Compiler and TBB library installation			
	Board Setup and Examples			
C/C++ Programming	C Basics, pointers, functions, structures, dynamic memory allocation Functions: compiling with different files			
Basics	C++ Classes, objects, functors			
	Image Convolution.			
Multithreading	 Matrix multiplication. 			
, i i i i i i i i i i i i i i i i i i i	Mutexes: dot product			
Multicovo coffuera	Threading Building Blocks (TBB): parallel_for			
Multicore software	 Threading Building Blocks (TBB): parallel_reduce 			
development	 Pipelining: Threading Building Blocks (TBB): parallel_pipeline 			
Deal Time Applications	 Interrupts: software, keyboard, real-time clock 			
Real-Time Applications	Direct Memory Access			
Optimizing Real-Time	 Power and Performance Analysis Tools 			
Embedded Applications	Power Optimization			
Applications	Convolutional Neural Network			
Applications	 Beamforming 			

LIST OF SOFTWARE APPLICATION FILES

Getting Started		fibo.c saxpy_ex.c saxpy_fun.h, saxpy_fun.c	Fibonacci sequence SAXPY
C/C++ fundamentals	2D convolution	<pre>conv2.c conv2_fun.c, conv2_fun.h input.txt, sharpen_kernel.txt Makefile</pre>	Matrix convolution. Read/write text files. Makefile
	Image convolution	<pre>imgconv.c imgconv_fun.c, imgconv_fun.h edge_kernel.txt Makefile img op.m, iss.bif, iss.jpg</pre>	Image convolution Read/write binary files. Makefile MATLAB script for verification
	Classes Basics	class_samples.cpp basic_constrs.cpp basic_functors.cpp	Basic examples for classes
		<pre>simple.cpp, simple_fun.cpp, simple_fun, Makefile</pre>	Simple class split into two files (.cpp,.h). Use of Makefile for C++.
	Neuron	neuron_imp.cpp	Neuron implementation
Multithreading	Basic examples	pthreads_example.c dot_prod.c mutex exam.c	Basic thread generation. Basic mutex example Dot product with mutex
	2D convolution	<pre>conv2m.c sharpen_kernel.txt, input.txt conv2m_pthreads.c conv2m_fun.c, conv2m_fun.h kernel_a.txt, kernel_b.txt kernel_c.txt Makefile</pre>	2D convolution (small matrix or image) Makefile MATLAB script for verification
	Matrix multiplication	<pre>img_op_m.m, iss.bif, iss.jpg matrix_mult.c matrix_mult_pthreads.c matrix_mult_pthreads_old.c mat_fun.c, mat_fun.h</pre>	Matrix multiplication (non-threaded and multi- threaded)
	TBB – parallel_for	basic.cpp	Element-wise Vector operation: $a(i)^2$. Using class.
			Element-wise Vector operation: $ a(i)/2 $ Normal
		myceil.cpp	and compact lambda expressions
		simple.cpp	Element-wise Vector operation: $a(i) \times 2$. Normal and compact lambda expressions
		mov_avg.cpp	3-element moving average. Compact lambda expression
Multicore Software		vector_op.cpp	Vector operations: $c(i) \leftarrow a(i) + b(i), d(i) \leftarrow a(i) \times b(i)$ Compact lambda expressions.
		<pre>morpho.cpp, morpho_fun.cpp, morpho_fun.h, Makefile morpho.m, uchip.bif, uchip.jpg</pre>	Grayscale morphology: dilation, erosion.
Development	TBB – parallel_reduce	accum.cpp	Accumulate a vector
		accum_sq.cpp	Accumulate the squared elements of a vector
		mypi.cpp	Compute pi. Seq. vs TBB
		dot_product.cpp,	Dot product between two vectors
		dot_product_fun.cpp,	Sequential vs. TBB (use both reduce and for)
		dot_product_fun.h, Makefile	
		vm.cpp	Get maximum of each row of matrix (use <i>parallel_for</i> and <i>parallel_reduce</i>)
	TBB – run		
		pip_mod.cpp	Element-wise modulus of 2 vectors
	TBB - pipelining	pip_sumsq.cpp	Accumulation of squared elements
		pip_avgvec.cpp	element-wise powering and averaging of two vectors. Item = 2 vectors
D 1 77'		basic sigint.c	Using SIGINT signal
Keal-1ime		basic_sigalrm.c	Using SIGALRM signal
Programming		rtctst.c	Testing the RTC driver