
ELECTRICAL AND COMPUTER ENGINEERING DEPARTMENT, OAKLAND UNIVERSITY
Tutorial: High-Performance Embedded Programming with the Intel® AtomTM Platform RECRLAB@OU

* This material is based upon work supported by Intel® Corporation. 1 Daniel Llamocca

High-Performance Embedded Programming with

the Intel® AtomTM Platform

INSTRUCTOR Daniel Llamocca

CONTACT INFO email: llamocca@oakland.edu

WEBPAGE www.secs.oakland.edu/~llamocca/emb_intel.html

REFERENCES
▪ Lori M. Matassa, Max Domeika, “Break Away with Intel® AtomTM Processors: A Guide to Architecture

Migration”, Intel Press, 2010.
▪ Max Domeika, “Software Development for Embedded Multi-Core Systems”, Newnes, 2008.

MATERIALS
Terasic DE2i-150-FPGA Development Kit.
Ubuntu Distribution 12.04.4

DESCRIPTION
▪ Real-time embedded programming, analysis, and optimization using the Intel® AtomTM processor. Multi-threaded systems,

multi-core software development, scalability, and industry-tailored applications.

OUTLINE OF TOPICS

Getting Started with the
Hardware and Software
Platform

▪ Hardware Platform: Terasic DE2i-150 Dev. Kit
▪ Ubuntu 12.04.4

✓ Installation
✓ C++ Compiler and TBB library installation

▪ Board Setup and Examples

C/C++ Programming
Basics

C
▪ Basics, pointers, functions, structures, dynamic memory allocation
▪ Functions: compiling with different files

C++ ▪ Classes, objects, functors

Multithreading
▪ Image Convolution.
▪ Matrix multiplication.
▪ Mutexes: dot product

Multicore software
development

▪ Threading Building Blocks (TBB): parallel_for

▪ Threading Building Blocks (TBB): parallel_reduce

▪ Pipelining: Threading Building Blocks (TBB): parallel_pipeline

Real-Time Applications
▪ Interrupts: software, keyboard, real-time clock
▪ Direct Memory Access

Optimizing Real-Time
Embedded Applications

▪ Power and Performance Analysis Tools
▪ Power Optimization

Applications
▪ Convolutional Neural Network
▪ Beamforming

Reconfigurable Systems

Static Dynamic

Embedded Systems

Applications: DSP,

automotive,

communications

In
te

rf
a
ci

n
g

Digital Logic Design Power

Performance

Low-End Embedded

Microcontrollers

(A RM C ortex-M)

Low-C ost Processors

(Intel A tom)

Powerful Processors

(Intel C ore i7)

Servers

Desktops

Embedded

High Performance Scalable

Processors (Intel Xeon)

mailto:llamocca@oakland.edu
http://www.secs.oakland.edu/~llamocca/emb_intel.html

ELECTRICAL AND COMPUTER ENGINEERING DEPARTMENT, OAKLAND UNIVERSITY
Tutorial: High-Performance Embedded Programming with the Intel® AtomTM Platform RECRLAB@OU

* This material is based upon work supported by Intel® Corporation. 2 Daniel Llamocca

LIST OF SOFTWARE APPLICATION FILES

Getting Started
fibo.c

saxpy_ex.c

saxpy_fun.h, saxpy_fun.c

Fibonacci sequence

SAXPY

C/C++ fundamentals

2D convolution

conv2.c

conv2_fun.c, conv2_fun.h

input.txt, sharpen_kernel.txt

Makefile

Matrix convolution.

Read/write text files.

Makefile

Image convolution

imgconv.c

imgconv_fun.c, imgconv_fun.h

edge_kernel.txt

Makefile

img_op.m, iss.bif, iss.jpg

Image convolution

Read/write binary files.

Makefile

MATLAB script for verification

Classes Basics

class_samples.cpp

basic_constrs.cpp

basic_functors.cpp

Basic examples for classes

simple.cpp, simple_fun.cpp,

simple_fun, Makefile

Simple class split into two files (.cpp,.h). Use of

Makefile for C++.

Neuron neuron_imp.cpp Neuron implementation

Multithreading

Basic examples
pthreads_example.c

dot_prod.c

mutex_exam.c

Basic thread generation. Basic mutex example

Dot product with mutex

2D convolution

conv2m.c

sharpen_kernel.txt, input.txt

conv2m_pthreads.c

conv2m_fun.c, conv2m_fun.h

kernel_a.txt, kernel_b.txt

kernel_c.txt

Makefile

img_op_m.m, iss.bif, iss.jpg

2D convolution (small matrix or image)

Makefile

MATLAB script for verification

Matrix

multiplication

matrix_mult.c

matrix_mult_pthreads.c

matrix_mult_pthreads_old.c

mat_fun.c, mat_fun.h

Matrix multiplication (non-threaded and multi-

threaded)

Multicore Software

Development

TBB – parallel_for

basic.cpp Element-wise Vector operation: 𝑎(𝑖)2. Using class.

myceil.cpp
Element-wise Vector operation: ⌊

𝑎(𝑖)
2⁄ ⌋. Normal

and compact lambda expressions.

simple.cpp
Element-wise Vector operation: 𝑎(𝑖) × 2. Normal

and compact lambda expressions.

mov_avg.cpp
3-element moving average. Compact lambda

expression

vector_op.cpp

Vector operations:

𝑐(𝑖) ← 𝑎(𝑖) + 𝑏(𝑖), 𝑑(𝑖) ← 𝑎(𝑖) × 𝑏(𝑖)

Compact lambda expressions.
morpho.cpp, morpho_fun.cpp,

morpho_fun.h, Makefile

morpho.m, uchip.bif, uchip.jpg

Grayscale morphology: dilation, erosion.

TBB –

parallel_reduce

accum.cpp Accumulate a vector

accum_sq.cpp Accumulate the squared elements of a vector

mypi.cpp Compute pi. Seq. vs TBB
dot_product.cpp,

dot_product_fun.cpp,

dot_product_fun.h, Makefile

Dot product between two vectors

Sequential vs. TBB (use both reduce and for)

vm.cpp
Get maximum of each row of matrix (use

parallel_for and parallel_reduce)

TBB – run

TBB - pipelining

pip_mod.cpp Element-wise modulus of 2 vectors
pip_sumsq.cpp Accumulation of squared elements

pip_avgvec.cpp
element-wise powering and averaging of two

vectors. Item = 2 vectors

Real-Time

Programming

basic_sigint.c

basic_sigalrm.c

rtctst.c

Using SIGINT signal

Using SIGALRM signal

Testing the RTC driver

