
ELECTRICAL AND COMPUTER ENGINEERING DEPARTMENT, OAKLAND UNIVERSITY
Tutorial: High-Performance Embedded Programming with the Intel® AtomTM Platform RECRLAB@OU

* This material is based upon work supported by Intel® Corporation 1 Daniel Llamocca

Multi-threading – Basic Examples + 2D Convolution

OBJECTIVES
▪ Learn the basics of multi-threading implementation using pthreads in C.

▪ Execute multi-threaded applications and measure the computation time.
▪ Compare multi-threaded applications against sequential (non-threaded) implementations.

USEFUL INFORMATION
▪ Refer to the Tutorial: Embedded Intel for the source files used in this Tutorial.

▪ Refer to the board website or the Tutorial: Embedded Intel for User Manuals and Guides.

BOARD SETUP (DE2I-150 TERASIC DEV. KIT) AND POWERING
▪ Connect the monitor (VGA or HDMI) as well as the keyboard and mouse.
▪ Connect the provided power cord to the power supply and plug the cord into a power outlet.

▪ Connect the supplied 12V DE2i-150 power adapter to the power connect (J1) on the DE2i -150 board. At this point, you
should see the 12 V LED (D33) turn on.

✓ Be careful not to plug the power adapter into the SATA power connector (see DE2i-150 Getting Started Guide, page 7).

▪ Click the Power ON/OFF Button (lower right corner) to boot the OS.

▪ The board should power on, emitting some beeps to indicate a successful load of the BIOS.

ACTIVITIES

FIRST ACTIVITY: SIMPLE PTHREADS EXAMPLES
▪ The following are s imple examples that illustrates the use of pthreads.

FIRST EXAMPLE:
▪ Basic declaration of a group of threads.

#include <pthread.h>

#include <stdlib.h>

#include <stdio.h>

void *execute_work (void *arg) { // thread function

 int i = *((int *) arg); // arg: originally a pointer to integer. Then passed as a pointer to void

 printf("Thread %d: Started\n", i); printf("Thread %d: Ended\n", i);

 return 0; }

int main(int argc, char* argv[]) {

 int i, status, NUM_THREADS; // NUM_THREADS: number of threads

 pthread_t *thread; // Declare threads’ identifier: pointer to a group of threads

 int *thread_args; // Arguments for threads

 if (argc!=2) { printf("(main) Usage: %s number_of_threads\n",argv[0]); exit(-1); }

 NUM_THREADS = atoi(argv[1]);

 if (NUM_THREADS < 1) { printf ("(main) Incorrect number of threads!\n"); exit(-1); }

 thread_args = (int *) calloc (NUM_THREADS, sizeof(int)); // memory allocation: threads arguments

 thread = (pthread_t*) malloc(NUM_THREADS*sizeof(pthread_t)); // memory allocation: threads indices

 for (i = 0; i < NUM_THREADS; i++) { // creating all threads

 thread_args[i] = i; // unique argument per thread

 status = pthread_create (&thread[i], NULL, execute_work, (void *) &thread_args[i]);

 if (status != 0) { perror("Can't create thread"); free (thread); exit (-1); } }

 // Wait for each thread to finish

 for (i = 0; i < NUM_THREADS; i++) pthread_join (thread[i], NULL);

 printf("(main) program has ended\n");

 free(thread_args); free(thread);

 return 0;

}

✓ thread start function: void *execute_work (void *arg) Argument (passed): &threads_args[i]

 The function (the same for all threads) prints out the thread id provided to the function when the thread was created.
 This function specifies a return value (0). This is how we exit the threads.

✓ The program creates NUM_THREADS threads via pthread_create. Then, waits for them to finish by calling pthread_join.

http://www.secs.oakland.edu/~llamocca/emb_intel.html
https://www.terasic.com.tw/cgi-bin/page/archive.pl?Language=English&CategoryNo=11&No=529
http://www.secs.oakland.edu/~llamocca/emb_intel.html

ELECTRICAL AND COMPUTER ENGINEERING DEPARTMENT, OAKLAND UNIVERSITY
Tutorial: High-Performance Embedded Programming with the Intel® AtomTM Platform RECRLAB@OU

* This material is based upon work supported by Intel® Corporation 2 Daniel Llamocca

▪ Application file: pthreads_example.c

▪ Compile this code: gcc -Wall pthreads_example.c -o pthreads_example -lpthread 

▪ Execute this application: ./pthreads_example <number of threads> 

✓ Example: ./pthreads 10 

✓ Fig. 1 shows the program execution. The program creates 10 threads and waits until they complete. Note that the threads

are not created, executed, and completed in a consecutive fashion. Fig. 1 execution varies every time code is run.

SECOND EXAMPLE:

▪ Simple example illustrating mutex usage.
#include <stdio.h>

#include <stdlib.h>

#include <unistd.h>

#include <pthread.h>

pthread_mutex_t mutex1 = PTHREAD_MUTEX_INITIALIZER;

void print(char* a, char* b) { // try uncommenting and commenting the mutex below and look at output

 pthread_mutex_lock(&mutex1); // comment out/uncomment

 printf("1: %s\n", a); sleep(1);

 printf("2: %s\n", b);

 pthread_mutex_unlock(&mutex1); } // comment out/uncomment

// These two functions will run concurrently:

void* print_i(void *ptr) { print("I am", " in i"); pthread_exit(NULL); }

void* print_j(void *ptr) { print("I am", " in j"); pthread_exit(NULL); }

int main() {

 pthread_t t1, t2;

 int status;

 status = pthread_create(&t1, NULL, print_i, NULL);

 status = pthread_create(&t2, NULL, print_j, NULL);

 status = pthread_join(t1, NULL);

 status = pthread_join(t2, NULL);

 return 0;

}

✓ thread start function:

 Thread t1: void* print_i (void *ptr)) Argument that is passed: NULL

 Thread t2: void* print_j (void *ptr)) Argument that is passed: NULL

 The threads use pthread_exit to exit.

Figure 1. Program execution with 10 threads. Note that thread 1 is created before thread 0. Also thread 9 ends before thread 3 ends.

This execution differs every time we run the code.

ELECTRICAL AND COMPUTER ENGINEERING DEPARTMENT, OAKLAND UNIVERSITY
Tutorial: High-Performance Embedded Programming with the Intel® AtomTM Platform RECRLAB@OU

* This material is based upon work supported by Intel® Corporation 3 Daniel Llamocca

✓ With a mutex, the two threads (when created) execute concurrently. However, when a thread (t1 or t2) starts executing,

it will lock a portion of the code. Only when that portion is completed, it is unlocked so that the other thread can execute.

▪ Application file: mutex_exam.c

▪ Compile this code: gcc -Wall mutex_exam.c -o mutex_exam -lpthread 

▪ Execute this application: ./mutex_exam 

✓ Program output (with mutex):
1: I am

2: in i

1: I am

2: in j

THIRD EXAMPLE:
▪ Dot product using a mutex. Vectors ’ length: VECLENNUMTHRDS.

#include <pthread.h>

#include <stdio.h>

#include <stdlib.h>

// Source: https://computing.llnl.gov/tutorials/pthreads/

typedef struct {

 double *a;

 double *b;

 double sum;

 int veclen;

 } DOTDATA;

/* Define globally accessible variables and a mutex */

#define NUMTHRDS 4

#define VECLEN 100000 // This is the length of the vector each thread operates on

 DOTDATA dotstr; // global structure

 pthread_t callThd[NUMTHRDS];

 pthread_mutex_t mutexsum;

void *dotprod (void *arg) { // thread start function

 int i, start, end, len;

 long offset;

 double tsum, *x, *y;

 offset = (long)arg; // argument passed from main()

 len = dotstr.veclen; x = dotstr.a; y = dotstr.b;

 start = offset*len; end = start + len; // [start, end): range on which this thread operates

 tsum = 0; // sum computed by a single thread

 for (i = start; i < end; i++) { tsum += (x[i] * y[i]); } // perform dot product

 // Lock a mutex prior to updating the value in the shared structure, and unlock it upon updating

 pthread_mutex_lock (&mutexsum);

 dotstr.sum += tsum;

 printf("Thread %ld did %d to %d: tsum=%f global sum=%f\n",offset,start,end-1,tsum,dotstr.sum);

 pthread_mutex_unlock (&mutexsum);

 pthread_exit((void*) 0);

}

int main (int argc, char *argv[]) {

 long i;

 double *a, *b;

 void *status;

 a = (double*) malloc (NUMTHRDS*VECLEN*sizeof(double));

 b = (double*) malloc (NUMTHRDS*VECLEN*sizeof(double));

 for (i=0; i < VECLEN*NUMTHRDS; i++) { a[i]=1; b[i]=a[i]; } // input data (just 1’s)

 dotstr.veclen = VECLEN; dotstr.a = a; dotstr.b = b; dotstr.sum=0; // initializing global variables

 pthread_mutex_init(&mutexsum, NULL); // mutex: dynamic initialization

 // create and join threads

 for (i=0; i < NUMTHRDS; i++) pthread_create(&callThd[i], NULL, dotprod, (void *)i);

 for (i=0; i < NUMTHRDS; i++) pthread_join(callThd[i], &status);

 printf ("Sum = %f \n", dotstr.sum); // print out results

 free (a); free (b);

 pthread_mutex_destroy(&mutexsum);

 pthread_exit (NULL);

}

ELECTRICAL AND COMPUTER ENGINEERING DEPARTMENT, OAKLAND UNIVERSITY
Tutorial: High-Performance Embedded Programming with the Intel® AtomTM Platform RECRLAB@OU

* This material is based upon work supported by Intel® Corporation 4 Daniel Llamocca

✓ thread start function: void *dotprod (void *arg) Argument that is passed: void *i

 It includes the mutex lock and unlock.
 It uses pthread_exit to exit.

✓ The program creates NUMTHRDS threads and then waits for all threads to finish by calling pthread_join on each thread.

✓ Fig. 2 shows the thread strategy for 4 threads and vector length of 8. Each thread gets an index 𝑖 (called offset in the

thread start function) and processes data over the range [𝑖 × 𝑙𝑒𝑛, (𝑖 + 1) × 𝑙𝑒𝑛 −1] , where len=VECLEN. Then, it locks a

mutex, updates the global variable dotstr.sum, and unlocks the mutex.

 The mutex is necessary. Otherwise, the dot product result might be updated by a different thread than the one

generating a partial product. This will cause an incorrect value (tsum at the wrong time) to be added to the result.

▪ Application file: dotprod.c

▪ Compile this code: gcc -Wall dotprod.c -o dotprod -lpthread 

▪ Execute this application: ./dotprod 

✓ Program output:
thread 1: did 100000 to 199999: tsum = 100000 global sum = 100000

thread 0: did 0 to 99999: tsum = 100000 global sum = 200000

thread 2: did 200000 to 299999: tsum = 100000 global sum = 300000

thread 3: did 300000 to 399999: tsum = 100000 global sum = 400000

SECOND ACTIVITY: MULTIPLE 2D CONVOLUTIONS (SEQUENTIAL IMPLEMENTATION)
▪ Refer to Tutorial # 2 for details of the 2D convolution operation.

✓ In a 2D convolution, the input matrix I is of s ize SXSY (SX columns, SY rows), the kernel is of s ize KXKY, while the

output (considering only the central part of the convolution output) is of s ize SXSY.

▪ Here, we will apply multiple convolutions
(different kernels) to one input matrix. The

purpose of this exercise is to have a

sequential implementation to compare
against a multi-threaded implementation

(Third Activity).

▪ In this implementation, we read an input

matrix, three different kernels, and
generate three different output matrices.

Two examples are shown:

✓ Small input matrix: SX=SY=4, KX=KY=3 .

This is shown in Fig. 3. The input matrix

is read from a text file, and the output
matrix is written as a text file.

✓ Grayscale image: SX=640, SY=480,

KX=KY=3. This is shown in Fig. 4. Input

matrix: read as a binary file. Output

matrix: written as a binary file.

Figure 3. Applying three 2D convolution kernels to one input matrix. SX=SY=4,

KX=KY=3. Output size is the same as input size.

11

1 2 3 4

5 6 7 8

9 10 12

13 14 15 16

5

0 -1 0

-1 -1

0 -1 0
11

-2 0 2 9

9 6 7 17

17 10 25

42 32 34 53
*

8

-1 -1 -1

-1 -1

-1 -1 -1

*

*

0

-5 -6 -3 14

12 0 0 27

24 0 39

71 54 57 90

0

1 0 -1

0 0

-1 0 1
0

6 2 2 -7

8 0 0 -8

8 0 -8

-10 -2 -2 11

Figure 2. Task allocation for 4 threads and vector length of 8 (VECLEN = 2). Thread 0 computes partial dot product for

elements 0 and 1. Thread 1 operates on elements 2 and 3. Thread 2 operates on elements 4 and 5. Thread 3 operates on

elements 6 and 7. The computation of each partial dot product occurs concurrently. However, updating the global variable

dotstr.sum (the result) occurs sequentially. This is enforced via the mutex.

a2 a3 a4 a5

b2 b3 b4 b5 b6 b7

a6 a7a0 a1

b0 b1

Dot Product time

ELECTRICAL AND COMPUTER ENGINEERING DEPARTMENT, OAKLAND UNIVERSITY
Tutorial: High-Performance Embedded Programming with the Intel® AtomTM Platform RECRLAB@OU

* This material is based upon work supported by Intel® Corporation 5 Daniel Llamocca

▪ General Procedure (sequential execution of convolutions):

1. Read input matrix I (from a text file or binary file)

2. Read kernel matrices Ki from text files.

3. for i = 0 to 2 do

Compute convolution with kernel Ki.

Store result on output matrix Oi and then save it on a text file or binary file.

4. end for

▪ Application files: conv2m.c, conv2m_fun.c, conv2m_fun.h, Makefile

✓ Note that we measure the processing time (us) using gettimeofday().

▪ Compile this application: make conv2m 

✓ You can also do: make all 

▪ Execute this application: ./conv_2m <modifier> 

✓ Two execution possibilities:

 ./conv2m 1: Input matrix I read as a text file; output matrix O is stored as a text file. See Fig. 3 for the matrices.

Fig. 5 depicts the execution on the Terasic DE2i-150 Board.

 ./conv2m 2: Input matrix I read as a binary file; output matrix O is stored as a binary file. See Fig. 4 for the images.

Fig. 6 depicts the execution on the Terasic DE2i-150 Board.

✓ You can use MATLAB® to verify that your results (output images) are correct.
 Files: img_op_m.m, iss.jpg.

Figure 4. 2D convolution for a grayscale image. SX=640, SY=480, KX=KY=3. Output image: the pixel values might fall outside the [0,255]

bounds. When displaying, it is customary to restrict the pixel values to [0, 255]. This figure also shows the strategy when implementing

this with threads: each thread computes one convolution concurrently.

5

0 -1 0

-1 -1

0 -1 0

*

8

-1 -1 -1

-1 -1

-1 -1 -1

0

1 0 -1

0 0

-1 0 1

*

*

Sharpen

Edge Detection

Edge Detection

ELECTRICAL AND COMPUTER ENGINEERING DEPARTMENT, OAKLAND UNIVERSITY
Tutorial: High-Performance Embedded Programming with the Intel® AtomTM Platform RECRLAB@OU

* This material is based upon work supported by Intel® Corporation 6 Daniel Llamocca

Figure 5. Execution of three matrix convolutions of size 4x4 on the Terasic DE2i-150 FPGA Development Kit. This is a

sequential (non-threaded) implementation

Figure 6. Execution of three image convolutions of size 640x480 on the Terasic DE2i-150 FPGA Development Kit. This is a

sequential (non-threaded) implementation

ELECTRICAL AND COMPUTER ENGINEERING DEPARTMENT, OAKLAND UNIVERSITY
Tutorial: High-Performance Embedded Programming with the Intel® AtomTM Platform RECRLAB@OU

* This material is based upon work supported by Intel® Corporation 7 Daniel Llamocca

THIRD ACTIVITY: 2D CONVOLUTION WITH PTHREADS

▪ Using pthreads leverages the parallel computing capabilities of the microprocessor. Here, parallelism is achieved by

distributing the operations (ideally evenly) among threads than run in parallel.

▪ Though an individual 2D convolution could be parallelized, we prefer to execute several 2D convolutions in parallel. This has

an important application in the development o f Convolutional Neural Networks (CNNs).
▪ Here, we distributed the operation in terms of individual convolutions.

STRATEGY

▪ To compute a group of 2D convolutions, a group of threads is generated, where each thread computes an individual 2D
convolutions. All these threads s imultaneously compute the 2D convolutions.

▪ If the number of threads is given by nthreads, then the index i represents each thread form 0 to nthreads-1. Thread i computes

convolution i.

▪ Fig. 7 depicts the strategy for 3 threads, each in charge of computing an individual computation on a 4x4 matrix. The same

strategy is depicted in Fig. 4 for a 640x480 image.

▪ Application files: conv2m_pthreads.c, conv2m_fun.c, conv2m_fun.h, Makefile

✓ Note that we measure the processing time (us) using gettimeofday(). In Fig. 8 and 9, the measurements include the

printing of the messages: “computing slice or thread i”.

✓ Code structure:

 Thread generation and initialization of arguments.

 Initialization of input I, and the kernels Ka, Kb, Kc by reading from binary files and/or text files

 Create nthreads threads, where each thread i computes an individual 2D convolution.

 Wait until threads complete, merge all the results.
 Store result (output matrices) on text files or binary files (one per convolution output).

▪ Compile this application: make conv2m_pthreads 

▪ Execute this application: ./conv2m_pthreads <modifier> 

✓ Fig. 8 and Fig. 9 display the execution on the Terasic DE2i-150 Board for the 4x4 matrix (./conv2m_pthreads 1) and

the 640x480 grayscale image (./conv2m_pthreads 2) respectively.

PERFORMANCE COMPARISON
▪ Table I shows the comparison of the computation time between the sequential implementation and the multi -threaded

implementation. When processing images, we see a reduction in the execution time (as this is a relatively large computation).

Note that when processing the small matrix, the execution time using threads is larger than the basic sequential
implementation. This is because the setup overhead is longer than the actual computation time.

TABLE I. EXECUTION TIME (US) COMPARISON BETWEEN MULTI-THREADED AND NON-THREADED IMPLEMENTATIONS

 Implementation

Application Sequential (non-threaded) Multi-threaded (3 threads)

4x4 image (Fig. 5) 12 432

640x480 images (Fig. 2) 154568 84810

Figure 7. 2D convolution example. SX=SY=4, KX=KY=3. Output size is the same as input size.

11

1 2 3 4

5 6 7 8

9 10 12

13 14 15 16

5

0 -1 0

-1 -1

0 -1 0
11

-2 0 2 9

9 6 7 17

17 10 25

42 32 34 53
*

8

-1 -1 -1

-1 -1

-1 -1 -1

0

1 0 -1

0 0

-1 0 1

*

*

0

-5 -6 -3 14

12 0 0 27

24 0 39

71 54 57 90

0

6 2 2 -7

8 0 0 -8

8 0 -8

-10 -2 -2 11

ELECTRICAL AND COMPUTER ENGINEERING DEPARTMENT, OAKLAND UNIVERSITY
Tutorial: High-Performance Embedded Programming with the Intel® AtomTM Platform RECRLAB@OU

* This material is based upon work supported by Intel® Corporation 8 Daniel Llamocca

Figure 8. Execution of three matrix convolutions of size 4x4 on the Terasic DE2i-150 FPGA Development Kit. This is a multi-

threaded (3 threads) implementation.

Figure 9. Execution of three image convolutions of size 640x480 on the Terasic DE2i-150 FPGA Development Kit. This is a multi-threaded

(3 threads) implementation.

	Objectives
	Useful Information
	Board Setup (DE2i-150 Terasic Dev. Kit) and Powering

	Activities
	First Activity: Simple pthreads examples
	Second Activity: Multiple 2D Convolutions (Sequential Implementation)
	Third Activity: 2D Convolution with pthreads

