ELECTRICAL AND COMPUTER ENGINEERING DEPARTMENT, OAKLAND UNIVERSITY
Tutorial: High-Performance Embedded Programming with the Intel® Atom™ Platform RECRLAB@OU

Multi-threading — Basic Examples + 2D Convolution

OBJECTIVES

Learn the basics of multi-threading implementation using pthreadsin C.
Execute multi-threaded applications and measure the computation time.
Compare multi-threaded applications against sequential (non-threaded) implementations.

USEFUL INFORMATION

Refer to the Tutorial: Embedded Intel for the sourcefiles used in this Tutorial.
Refer to the board website orthe Tutorial: Embedded Intel for User Manuals and Guides.

BoARD SETUP (DE21-150 TERASIC DEV. KIT) AND POWERING

Connect the monitor (VGA or HDMI) as well as the keyboard and mouse.

Connect the provided power cord to the power supply and plug the cord into a poweroutlet.

Connect the supplied 12V DE2i-150 power adapter to the power connect (J1) on the DE2i-150 board. At this point, you
should seethe 12 V LED (D33) turn on.

v" Be careful not to plug the power adapterinto the SATA power connector (see DE2i-150 Getting Started Guide, page 7).
Click the (lower right corner) to boot the OS.

The board should power on, emitting some beeps to indicate a successful load of the BIOS.

ACTIVITIES

FIRST ACTIVITY: SIMPLE PTHREADS EXAMPLES

The following are simple examples thatillustrates the use of pthreads.

FIRST EXAMPLE:

Basicdeclaration of agroup of threads.
#include <pthread.h>

#include <stdlib.h>

#include <stdio.h>

void *execute work (void *arg) { // thread function
int i = *((int *) arg); // arg: originally a pointer to integer. Then passec
printf ("Thread %d: Started\n", 1i); printf ("Thread %d: Ended\n", 1i);
return 0; }

int main(int argc, char* argv[]) {
int i, status, NUM_THREADS;

UM THREADS: number

pthread t *thread; // De ntifier: pointer roup of threads

int *thread args; // Arguments

if (argc!=2) { printf (" (main) Usage: %s number of threads\n",argv[0]); exit(-1); }
NUM THREADS = atoi(argv[1l]);

if (NUM _THREADS < 1) { printf (" (main) Incorrect number of threads!\n"); exit(-1); }
thread args = (int *) calloc (NUM THREADS, sizeof(int)); // memory allocation:
thread = (pthread t*) malloc (NUM THREADS*sizeof (pthread t)); // memor

for (i = 0; i < NUM_THREADS; it++) { // creating a threads

thread args[i] = i; // unique argument per thread

status = pthread create (&thread[i], NULL, execute work, (void *) &thread args([i]);
if (status != 0) { perror("Can't create thread"); free (thread); exit (-1); } }

/ Wait for each thread to finish

for (i = 0; i < NUM THREADS; i++) pthread join (thread[i], NULL);

printf (" (main) program has ended\n");

free (thread args); free(thread);
return 0;
}
v’ thread start function: void *execute work (void *arg) Argument (passed): sthreads args[i]

= The function (the same forall threads) prints out the thread id provided to the function when the thread was created.
= This function specifies a return value (0). This is how we exit the threads.
v' The program creates nuM_THREADS threads via pthread_create. Then, waits forthem to finish by calling pthread join.

* This material is based upon work supported by Intel® Corporation 1 Daniel Llamocca

http://www.secs.oakland.edu/~llamocca/emb_intel.html
https://www.terasic.com.tw/cgi-bin/page/archive.pl?Language=English&CategoryNo=11&No=529
http://www.secs.oakland.edu/~llamocca/emb_intel.html

ELECTRICAL AND COMPUTER ENGINEERING DEPARTMENT, OAKLAND UNIVERSITY
Tutorial: High-Performance Embedded Programming with the Intel® Atom™ Platform RECRLAB@OU

Applicationfile: pthreads example.c

COan“etNSCOde:gcc -Wall pthreads example.c -o pthreads example -lpthread J

Execute this application: . /pthreads_example <number of threads>

v Example: ./pthreads 10 J

v" Fig. 1 shows the program execution. The program creates 10 threads and waits until they complete. Note that the threads
are not created, executed, and completed in a consecutive fashion. Fig. 1 execution varies every time codeis run.

daniel@daniel-Inspiron-1545: ~/Dropbox/mystufffwork_ubuntu/pthreads/pthreads_example

daniel@daniel-Inspiron-1545:~/Dropbox/mystuff/work_ubuntu/pthreads/pthreads_example$./p
threads_example 10
Thread Started
Ended
Started
Ended
Started
Ended
Started
Ended
Started
Ended
Started
Ended
Started
Ended
Started
Ended
Started
Ended
Started
3: Ended
(main) program has ended
daniel@daniel-Inspiron-1545:~/Dropbox/mystuff/work_ubuntu/pthreads/pthreads_example$ I

WhRMNBB-~@OOOUULNODES S =]

®® BE ®E SE BE EE EE SE S E BE EE SF S BE BE BB 8 ®%

Figure 1. Program execution with 10 threads. Note thatthread 11is created before thread 0. Also thread 9 ends before thread 3 ends.
This execution differs every time we run the code.

SECOND EXAMPLE:

Simple example illustrating mutexusage.

#include <stdio.h>

#include <stdlib.h>

#include <unistd.h>

#include <pthread.h>

pthread mutex t mutexl = PTHREAD MUTEX INITIALIZER;
void print(char* a, char* b) { y the mutex below and look at outpu
pthread mutex lock (&mutexl);
printf ("1l: %s\n", a); sleep(l);
printf("2: %s\n", b);

pthread mutex unlock (&mutexl); } // comment out/uncommen

// These two functions will run concurrently:
void* print i(void *ptr) { print("I am", " in i"); pthread exit (NULL); }
void* print j(void *ptr) { print("I am", " in j"); pthread exit (NULL); }

int main() {
pthread t tl1, t2;
int status;
status = pthread create(&tl, NULL, print i, NULL);
status = pthread create(&t2, NULL, print j, NULL);
status = pthread join(tl, NULL);
status = pthread join(t2, NULL);
return 0;
}
v’ thread start function:
s Thread tl1: void* print i (void *ptr)) Argument that is passed: NULL
s Thread t2: void* print j (void *ptr)) Argument that is passed: NULL

s The threads use pthread exit to exit.

* This material is based upon work supported by Intel® Corporation 2 Daniel Llamocca

ELECTRICAL AND COMPUTER ENGINEERING DEPARTMENT, OAKLAND UNIVERSITY
Tutorial: High-Performance Embedded Programming with the Intel® Atom™ Platform RECRLAB@OU

v' With a mutex, the two threads (when created) execute concurrently. However, when a thread (t1 or t2) starts executing,
itwill lock a portion of the code. Only when that portionis completed, itis unlocked so that the other thread can execute.

= Applicationfile: mutex_exam.c

= Compilethis code: gcc -Wall mutex exam.c -o mutex exam -lpthread
= Execute this application: ./mutex_exam .
v" Program output (with mutex):
1: I am
2: in i
1: I am
2: in j

THIRD EXAMPLE:
= Dotproductusing a mutex. Vectors’length: VECLENXNUMTHRDS.
#include <pthread.h>
#include <stdio.h>
#include <stdlib.h>
// Source: https://computing.llnl.gov/tutorials/pthreads
typedef struct {
double *a;
double *b;
double sum;
int veclen;
} DOTDATA;

/* Define globally =

#define NUMTHRDS 4

#define VECLEN 100000 // This is
DOTDATA dotstr; // global structu
pthread t callThd[NUMTHRDS];

pthread mutex t mutexsum;

of the vector each

void *dotprod (void *arg) { //
int i, start, end, len;
long offset;
double tsum, *x, *y;

offset = (long)arg; // argument pec from main ()

len = dotstr.veclen; x = dotstr.a; y = dotstr.b;

start = offset*len; end = start + len; // [start, end): range on which this thread operates
tsum = 0; // sum computed by a single thread

for (1 = start; i < end; i++) { tsum += (x[i] * y[i]); } // perform dot product

// Lock a mutex prior to updating the value in the shared structure, and unlock it upon updating

pthread mutex lock (&mutexsum) ;
dotstr.sum += tsum;
printf ("Thread %1d did %d to %d: tsum=%f global sum=%f\n",offset,start,end-1, tsum,dotstr.sum);
pthread mutex unlock (&mutexsum) ;
pthread exit ((void*) 0);
}

int main (int argc, char *argv[]) {
long 1i;
double *a, *b;
void *status;

a = (double*) malloc (NUMTHRDS*VECLEN*sizeof (double)) ;

b = (double*) malloc (NUMTHRDS*VECLEN*sizeof (double)) ;

for (i=0; i < VECLEN*NUMTHRDS; i++) { a[i]l=1l; blil=alil; } // input data (jJust 1’'s)
dotstr.veclen = VECLEN; dotstr.a = a; dotstr.b = b; dotstr.sum=0; // initializing global variables
pthread mutex init (&mutexsum, NULL); // mutex: dynamic initialization

// create and join thre 5
for (i=0; i < NUMTHRDS; i++) pthread create(&callThd[i], NULL, dotprod, (void *)i);
for (i=0; i < NUMTHRDS; i++) pthread join(callThd[i], &status);

printf ("Sum = %f \n", dotstr.sum); // print out re
free (a); free (b);

pthread mutex destroy (&mutexsum) ;

pthread exit (NULL);

* This material is based upon work supported by Intel® Corporation 3 Daniel Llamocca

ELECTRICAL AND COMPUTER ENGINEERING DEPARTMENT, OAKLAND UNIVERSITY

Tutorial: High-Performance Embedded Programming with the Intel® Atom™ Platform

RECRLAB@OU

v

thread start function: void *dotprod (void *arg) Argument thatis passed:void *i
s Itincludes the mutex lock and unlock.

s Jtuses pthread exit to exit.

The program creates NuMTHRDS threads and then waits for all threads to finish by calling pthread join on each thread.
Fig. 2 shows the thread strategy for 4 threads and vector length of 8. Each thread gets an index i (called of£set in the

thread start function) and processesdata overthe range [i x len, (i + 1) x len — 1], where 1en=VECLEN. Then, it locks a

mutex, updates the global variable dotstr.sum, and unlocks the mutex.

= The mutex is necessary. Otherwise, the dot product result might be updated by a different thread than the one
generating a partial product. This will cause an incorrect value (tsum at the wrong time) to be added to the result.

Figure 2. Task allocation for 4 threads and vector length of 8 (VECLEN = 2). Thread 0 computes partial dot product for
elements 0 and 1. Thread 1 operates on elements 2 and 3. Thread 2 operates on elements 4 and 5. Thread 3 operates on

dg | a1 |azx | asz | aas| as | as | av
— 7 —
/fﬁb/l by [bs | bs]| bs | bg| by
Dot Product y time

elements 6 and 7. The computation of each partial dot product occurs concurrently. However, updating the global variable

dotstr.sum (the result) occurs sequentially. Thisis enforced via the mutex.

Applicationfile: dotprod.c

Compilethis code: gcc -Wall dotprod.c -o dotprod -lpthread

Execute this application: . /dotprod 4
v Program output:

thread 1: did 100000 to 199999: tsum = 100000 global sum = 100000
thread 0: did 0 to 99999: tsum = 100000 global sum = 200000

thread 2: did 200000 to 299999: tsum = 100000 global sum = 300000
thread 3: did 300000 to 399999: tsum = 100000 global sum = 400000

SECOND ACTIVITY: MULTIPLE 2D CONVOLUTIONS (SEQUENTIAL IMPLEMENTATION)

Refer to Tutorial # 2 for details of the 2D convolution operation.
v" In a 2D convolution, the input matrix I is of size SXxSY (SX columns, SY rows), the kernel is of size KXxKY, while the

output (considering only the central part of the convolutionoutput)is of size SXxSY.

Here, we will apply multiple convolutions 0 -1 0 -2 0 2 9
(different kernels) to one input matrix. The 9 6 7 17
purpose of this exercise is to have a -1 5 -1 =
. . 17 10 11 25
sequential implementation to compare 0 -1 0
against a multi-threaded implementation " 42 32 34 53|
(Third Activity).
In this implementation, we read an input o2 3 4 1 -1 -1 -5 -6 -3 14
matrix, three different kernels, and 5 6 7 8 % 12 0 0 27
generate three different output matrices. | o 15 17 15 -8 -1 = 24 0 0 39
Two examples are shown: -1 -1 -1
13 14 15 16 71 54 57 90
v" Small input matrix: SX=SY=4, KX=KY=3.
This is shownin Fig. 3. The input matrix * T6e 2 2 =77
is read from a text file, and the output 1 0 -1
matrix is written as a text file. o o ol = 8 0 0 -8
v Grayscale image: SX=640, SY=480, 18 o o -8
KX=KY=3. This is shownin Fig.4. Input -1 0 1 210 -2 -2 11

matrix: read as a binary file. Output
matrix: written as a binary file.

Figure 3. Applying three 2D convolution kernels to one input matrix. SX=5Y=4,

KX=KY=3. Output size is the same as input size.

* This material is based upon work supported by Intel® Corporation

Daniel Llamocca

ELECTRICAL AND COMPUTER ENGINEERING DEPARTMENT, OAKLAND UNIVERSITY
Tutorial: High-Performance Embedded Programming with the Intel® Atom™ Platform RECRLAB@OU

= General Procedure (sequential execution of convolutions):
1. Read input matrix I (from a text file or binary file)
2. Read kernel matrices Ki from text files.
3. fori=0to2do
Compute convolutionwith kernel Ki.
Store result on output matrix Oi and then saveit on a text file or binary file.
4. end for

» Applicationfiles: conv2m.c, conv2m fun.c, conv2m fun.h, Makefile
v" Note that we measure the processing time (us) using gettimeofday ().

- Compilethis appIication: make conv2m
v Youcan alsodo:make all J

= Execute this application: ./conv_2m <modifier> .
v" Two execution possibilities:
s . /conv2m 1: Input matrix Iread as a text file; output matrix O is stored as a text file. See Fig. 3 for the matrices.
Fig. 5 depicts the execution on the Terasic DE2i-150 Board.
s . /conv2m 2:Input matrix I read as a binary file; output matrix O is stored as a binary file. See Fig. 4 for the images.
Fig. 6 depicts the execution on the Terasic DE2i-150 Board.
v" You can use MATLAB® to verify that your results (outputimages) are correct.
o Files:img op m.m, iss.jpg.

0 -1 0
-1 5 -1| =
0 -1 0
Sharpen
~
|

-1 -1 -1
-1 8 -1 =
-1 -1 -1

Edge Detection
1 0 -1
0 0 0 =
-1 0 1

Edge Detection

Figure 4. 2D convolution for a grayscale image. SX=640, SY=480, KX=KY=3. Outputimage: the pixel values might fall outside the [0,255]
bounds. When displaying, itis customary to restrict the pixel values to [0, 255]. This figure also shows the strategy when implementing
this with threads: each thread computes one convolution concurrently.

* This material is based upon work supported by Intel® Corporation 5 Daniel Llamocca

ELECTRICAL AND COMPUTER ENGINEERING DEPARTMENT, OAKLAND UNIVERSITY
Tutorial: High-Performance Embedded Programming with the Intel® Atom™ Platform RECRLAB@OU

MO E eced4900@atom: ~fwork_ubuntu/pthreads/conv2m

(write_txtfile) Output Matrix
-2 d] 2 9
9 6 7 17
17 10 11 25
42 32 34 53
(write_txtfile) Output Matrix
-5 -6 -3 14
12 0 0 27
24 §] §] 39
71 54 57 90
(write_txtfile) Output Matrix
2
§] §]
d]
-10 -2
start: 329691 us
end: 329703 us
Elapsed time (only convolutions (3) computation): 12 us
eced4900@atom:~/work_ubuntu/pthreads/conv2ms I

Figure 5. Execution of three matrix convolutions of size 4x4 on the Terasic DE2i-150 FPGA Development Kit. This is a

sequential (non-threaded) implementation

S eced4900@atom: ~fwork_ubuntu/pthreads/fconvZm

eced4900@atom:~/work_ubuntu/pthreads/conv2m$./convZm 2
(read_binfile) Input binary file 'iss.bif': # of elements read = 3
07200

(read _binfile) Size of each element: 1 bytes

(write_binfile) oOutput binary FLLR 'iss_a.bof': # of elements writ
ten = 307200
(write_binfile) Output binary file 'iss b.bof': # of elements writ
ten = 307200
(write_binfile) oOutput binary file 'iss_c.bof': # of elements writ
ten = 307200
start: 181824 us
end: 336392 us
Elapsed time (only convolutions (3) computation): 154568 us
ece4900@atom:~/work_ubuntu/pthreads/conv2ms

Figure 6. Execution of three image convolutions of size 640x480 on the Terasic DE2i-150 FPGA DevelopmentKit. Thisis a

sequential (non-threaded) implementation

* This material is based upon work supported by Intel® Corporation 6 Daniel Llamocca

ELECTRICAL AND COMPUTER ENGINEERING DEPARTMENT, OAKLAND UNIVERSITY
Tutorial: High-Performance Embedded Programming with the Intel® Atom™ Platform RECRLAB@OU

THIRD ACTIVITY: 2D CONVOLUTION WITH PTHREADS

Using pthreads leverages the parallel computing capabilities of the microprocessor. Here, parallelism is achieved by
distributing the operations (ideally evenly) among threads than run in parallel.

Though an individual 2D convolution could be parallelized, we prefer to execute several 2D convolutions in parallel. This has
an importantapplicationinthe development of Convolutional Neural Networks (CNNs).

Here, we distributed the operationin terms of individual convolutions.

STRATEGY

To compute a group of 2D convolutions, a group of threads is generated, where each thread computes an individual 2D
convolutions. All these threads simultaneously compute the 2D convolutions.

If the number of threads is given by nthreads, then the indexi represents each thread form 0 to nthreads-1. Thread i computes
convolutioni.

Fig. 7 depicts the strategy for 3 threads, each in charge of computing an individual computation on a 4x4 matrix. The same
strategy is depictedinFig. 4 fora 640x480 image.

-2 0 2 9
0 -1 0
9 6 7 17
-1 5 -1| =
AN 17 10 11 25
\\\\ o0 2 32 34 53
4 4 5
*
1 2 4 -5 -6 -3 14
-1 -1 -1
5 6 7 \8 * 12 0 0 27
-1 8 -1 =
9 10 11 1 24 0 0 39
-1 -1 -1
13 14 15 16 71 54 57 90
* 6 2 2 -7
10 -1
8 0 0 -8
o o0 o0 =
8 0 0 -8
-10

-10 -2 -2 11
Figure 7. 2D convolution example. SX=5Y=4, KX=KY=3. Output size is the same as inputsize.

Applicationfiles: conv2m pthreads.c, conv2m fun.c, conv2m fun.h, Makefile
v" Notethat we measure the processing time (us) using gettimeofday (). In Fig. 8 and 9, the measurements include the
printing of the messages: “computing slice or thread i”.
v' Codestructure:
o Thread generationand initialization of arguments.
o Initializationof inputI, and the kernels Ka, Kb, Kc by reading from binary files and/or text files
o Create nthreads threads, where each thread i computes an individual 2D convolution.
s Wait until threads complete, merge all the results.
o Store result (output matrices) on text files or binary files (one per convolution output).

Compile this application: make conv2m pthreads

Execute this application: ./conv2m pthreads <modifier>

v Fig. 8 and Fig. 9 display the execution on the Terasic DE2i-150 Board for the 4x4 matrix (./conv2m pthreads 1) and
the 640x480 grayscaleimage (./conv2m pthreads 2) respectively.

PERFORMANCE COMPARISON

Table I shows the comparison of the computation time between the sequential implementation and the multi-threaded
implementation. When processing images, we see a reduction in the execution time (as this is a relatively large computation).
Note that when processing the small matrix, the execution time using threads is larger than the basic sequential
implementation. This is because the setup overhead is longer than the actual computation time.

TABLE |. EXECUTION TIME (US) COMPARISON BETWEEN MULTI-THREADED AND NON-THREADED IMPLEMENTATIONS

Implementation
Application Sequential (non-threaded) Multi-threaded (3 threads)
4x4 image (Fig. 5) 12 432
640x480 images (Fig. 2) 154568 84810

* This material is based upon work supported by Intel® Corporation 7 Daniel Llamocca

ELECTRICAL AND COMPUTER ENGINEERING DEPARTMENT, OAKLAND UNIVERSITY
Tutorial: High-Performance Embedded Programming with the Intel® Atom™ Platform RECRLAB@OU

MEE ece4900@atom: ~/work_ubuntu/pthreadsfconv2m

Creating 3 Threads
Computing slice (or thread) @
Computing slice (or thread) 1
Computing slice (or thread) 2
(write_txtfile) Output Matrix
i] 2 9
3] T 17
10 11 25
32 34 53
(write_txtfile) Output Matrix
=5 -6 -3 14
12 3] 3] 27
24 3] 3] 39
71 54 57 90
(write_txtfile) Output Matrix
2
3]
i]
-16 -2
start: 767012 us
end: 767696 us
Elapsed time (only convolutions (3) computation): 684 us
ece4900@atom:~/work_ubuntu/pthreads/convZm$ I

Figure 8. Execution of three matrix convolutions of size 4x4 on the Terasic DE2i-150 FPGA Development Kit. Thisis a multi-
threaded (3 threads) implementation.

MO FE eced4900@atom: ~fwork_ubuntu/pthreadsfconvZm

§] -1
-1 5
0] -1
Kernel 1:

Creating 3 Threads

Computing slice (or thread) o

Computing slice (or thread) 2

Computing slice (or thread) 1 h
: # of elements written 307200
: # of elements written 307200
: # of elements written 307200

(write_binfile) Output binary file 'iss_a.bof'
(write_binfile) oOutput binary file 'iss_b.bof"’
(write_binfile) Output binary file 'iss_c.bof'
start: 868407 us

end: 955453 us

Elapsed time (only convolutions (3) computation): 87046 us
eced4900@atom:~/work_ubuntu/pthreads/conv2ms I

Figure 9. Execution of three image convolutions of size 640x480 on the Terasic DE2i-150 FPGA DevelopmentKit. Thisis a multi-threaded

(3 threads) implementation.

* This material is based upon work supported by Intel® Corporation 8 Daniel Llamocca

	Objectives
	Useful Information
	Board Setup (DE2i-150 Terasic Dev. Kit) and Powering

	Activities
	First Activity: Simple pthreads examples
	Second Activity: Multiple 2D Convolutions (Sequential Implementation)
	Third Activity: 2D Convolution with pthreads

