
Vivado Design Suite
User Guide

Partial Reconfiguration

UG909 (v2015.4) November 18, 2015

Revision History
The following table shows the revision history for this document.

Date Version Revision

11/18/2015 2015.4 Updated device support in Overview and Design Considerations.
Updated PR license checking process in Partial Reconfiguration Licensing.
Added information to Avoiding Deadlock about handshaking across the RM.
Updated how I/O is treated during reconfiguration in I/O Rules.
Updated Clearing Bitstreams to clarify that the clearing bitstream is required to load
a new RM.
Added Partial Reconfiguration of a Hardware Accelerator with Vivado Design Suite for
Zynq-7000 AP SoC Processor (XAPP1231) to Appendix A, Additional Resources and
Legal Notices.

09/30/2015 2015.3 Updated device compatibility for UltraScale devices in Design Considerations.
Updated Design Criteria to include the new PR Decoupler IP and guidelines for
connecting an RM flop to an I/O buffer.
Added Reading Design Constraints section.
Clarif ied lock_design command in Preserving Implementation Data.
Updated Create a Floorplan for the Reconfigurable Region.
Revisions to Table 3-4, Pblock Commands and Properties.
Added “Important” note about HD.PARTPIN_RANGE to Context Property Examples:.
Added report_clock_utilization to Reporting.
Updated Bitstream Generation.
Updated Packing Logic and Design Instance Hierarchy.
Added “Recommended” to Reconfigurable Partition Interfaces.
Added section on Avoiding Deadlock.
Updated ROUTING entry in Table 5-1, SNAPPING_MODE Property Values for 7 Series
Devices.
Updated Global Clocking Rules.
Added figures and a table of DRCs to Partial Reconfiguration Checklist for UltraScale
Device Designs.
Removed Known Issues on running phys_opt_design in UltraScale.
Updated SEM IP support information and added UltraScale encryption use cases to
Known Limitations.
Partial Reconfiguration www.xilinx.com 2
UG909 (v2015.4) November 18, 2015

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG909&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Partial%20Reconfiguration%20%28UG909%29&releaseVersion=2015.4&docPage=2

06/24/2015 2015.2 Updated device compatibility for 2015.2 release.
Added additional consideration to Design Requirements and Guidelines.
Added IOB minimum PU to Creating Pblocks for UltraScale Devices.
Corrected available values for BITSTREAM.CONFIG.PERSIST in Overview. Updated
ChipScope references to Vivado Logic Analyzer.
Added section Blanking Bitstreams Recommended for 7 series and Zynq-7000 Family
Partial Reconfiguration Designs.

04/01/2015 2015.1 Added to the Overview section updated device support information and a link to a
QuickTake Video on using Partial Reconfiguration with UltraScale™ devices.
Updated device support information in the Design Requirements and Guidelines
section.
Updated section on Timing Constraints to note new Vivado Design Suite capability to
run cell level timing reports.
Updated section Apply Reset After Reconfiguration to add information regarding
designs that use the DRP interface of the 7 series XADC component.
Added a table showing SNAPPING_MODE property values for 7 series devices. Also
enhanced description of the SNAPPING_MODE property. See the section Automatic
Adjustments for Reconfigurable Partition Pblocks.
Added “Important” note at the bottom of section Automatic Adjustments for PU on
PBlocks.
Added a note to Global Clocking Rules section.
To the Partial Reconfiguration Checklist for UltraScale Device Designs:
Added information on DRC rule restrictions to the “Recommended Clocking
Networks” item.
Added an item for SSI technology.
Added section on Bitstream Type Definitions.
Added section Partial Reconfiguration through ICAP for Zynq Devices.
Revisions to Table 7-1, PCIe® block and Reset Locations Supporting PR, by Device.
Added section Formatting BIN Files for Delivery to Internal Configuration Ports.
Added item regarding Engineering Silicon (ES) for UltraScale devices page 106.

Date Version Revision
Partial Reconfiguration www.xilinx.com 3
UG909 (v2015.4) November 18, 2015

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG909&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Partial%20Reconfiguration%20%28UG909%29&releaseVersion=2015.4&docPage=3

Table of Contents
Revision History . 2

Chapter 1: Introduction
Overview . 7
Introduction to Partial Reconfiguration . 8
Terminology . 9
Design Considerations . 12
Partial Reconfiguration Licensing . 16

Chapter 2: Common Applications
Overview . 17
Networked Multiport Interface . 17
Configuration by Means of Standard Bus Interface. 19
Dynamically Reconfigurable Packet Processor . 21
Asymmetric Key Encryption . 22
Summary. 23

Chapter 3: Vivado Software Flow
Overview . 24
Partial Reconfiguration Commands . 25
Partial Reconfiguration Constraints and Properties . 31
Apply Reset After Reconfiguration . 38
Software Flow . 41
Tcl Scripts . 46

Chapter 4: Design Considerations and Guidelines for All Xilinx Devices
Overview . 47
Design Hierarchy . 47
Partition Pin Placement. 51
Active-Low Resets and Clock Enables . 51
Decoupling Functionality. 52
Black Boxes. 53
Effective Approaches for Implementation . 54
Partial Reconfiguration www.xilinx.com 4
UG909 (v2015.4) November 18, 2015

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG909&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Partial%20Reconfiguration%20%28UG909%29&releaseVersion=2015.4&docPage=4

Defining Reconfigurable Partition Boundaries . 55
Avoiding Deadlock . 56
Design Revision Checks . 57
Simulation and Verification. 57

Chapter 5: Design Considerations and Guidelines for 7 Series and Zynq Devices
Overview . 58
Design Elements Inside Reconfigurable Modules . 58
Global Clocking Rules. 59
Creating Pblocks for 7 Series Devices . 61
Using High Speed Transceivers . 70
Partial Reconfiguration Design Checklist (7 Series) . 70

Chapter 6: Design Considerations and Guidelines for UltraScale Devices
Overview . 74
Design Elements Inside Reconfigurable Modules . 74
Creating Pblocks for UltraScale Devices . 75
Global Clocking Rules. 78
I/O Rules . 79
Using High Speed Transceivers . 80
Partial Reconfiguration Checklist for UltraScale Device Designs . 80

Chapter 7: Configuring the Device
Overview . 87
Configuration Modes . 88
Bitstream Type Definitions . 89
Partial Reconfiguration through ICAP for Zynq Devices . 93
Accessing the Configuration Engine through the MCAP . 94
Formatting BIN Files for Delivery to Internal Configuration Ports . 96
Summary of BIT Files for UltraScale Devices . 97
System Design for Configuring an FPGA. 98
Partial BIT File Integrity . 99
Configuration Frames . 101
Configuration Time . 102
Configuration Debugging. 102

Chapter 8: Known Issues and Limitations
Known Issues . 106
Known Limitations . 108
Partial Reconfiguration www.xilinx.com 5
UG909 (v2015.4) November 18, 2015

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG909&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Partial%20Reconfiguration%20%28UG909%29&releaseVersion=2015.4&docPage=5

Appendix A: Additional Resources and Legal Notices
Xilinx Resources . 110
Solution Centers. 110
References . 110
Training Resources. 112
Please Read: Important Legal Notices . 112
Partial Reconfiguration www.xilinx.com 6
UG909 (v2015.4) November 18, 2015

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG909&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Partial%20Reconfiguration%20%28UG909%29&releaseVersion=2015.4&docPage=6

Chapter 1

Introduction

Overview
Partial Reconfiguration allows for the dynamic change of modules within an active design.
This flow requires the implementation of multiple configurations which ultimately results in
full bitstreams for each configuration, and partial bitstreams for each Reconfigurable
Module.

The number of configurations required varies by the number of modules that need to be
implemented. However, all configurations use the same top-level, or static, placement and
routing results. These static results are exported from the initial configuration, and
imported by all subsequent configurations using checkpoints.

This guide:

• Is intended for designers who want to create a partially reconfigurable FPGA design.

• Assumes familiarity with FPGA design software, particularly Xilinx® Vivado® Design Suite.

• Has been written specifically for Vivado Design Suite Release 2015.4. This release
supports the following products:

° 7 Series devices: This release supports Partial Reconfiguration for all Virtex®-7,
Kintex®-7, Artix®-7, and Zynq®-7000 All Programmable SoC devices.

° UltraScale™ devices: This release includes device support for the following:

- Place and route and bitstream generation is enabled for all production devices
except the KU025 and VU440, which will be supported in a future version of
Vivado design suite.

- Bitstream generation is disabled by default for ES2 devices, but place and route
can still be performed.

• Describes Partial Reconfiguration as implemented in the Vivado toolset.

VIDEO: For an overview of the Vivado Partial Reconfiguration solution in 7 series devices, see the
Vivado Design Suite QuickTake Video: Partial Reconfiguration in Vivado.
Partial Reconfiguration www.xilinx.com 7
UG909 (v2015.4) November 18, 2015

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/cgi-bin/docs/ndoc?t=training;d=vivado/partial-reconfiguration-in-vivado.htm
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG909&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Partial%20Reconfiguration%20%28UG909%29&releaseVersion=2015.4&docPage=7

Chapter 1: Introduction
VIDEO: For an overview of the Vivado Partial Reconfiguration solution in UltraScale devices, see the
Vivado Design Suite QuickTake Video: Partial Reconfiguration for UltraScale.

Introduction to Partial Reconfiguration
FPGA technology provides the flexibility of on-site programming and re-programming
without going through re-fabrication with a modified design. Partial Reconfiguration (PR)
takes this flexibility one step further, allowing the modif ication of an operating FPGA design
by loading a partial configuration file, usually a partial BIT f ile. After a full BIT f ile
configures the FPGA, partial BIT f iles can be downloaded to modify reconfigurable regions
in the FPGA without compromising the integrity of the applications running on those parts
of the device that are not being reconfigured.

Figure 1-1 illustrates the premise behind Partial Reconfiguration.

As shown, the function implemented in Reconfig Block A is modified by downloading one
of several partial BIT files, A1.bit, A2.bit, A3.bit, or A4.bit. The logic in the FPGA
design is divided into two different types, reconfigurable logic and static logic. The gray
area of the FPGA block represents static logic and the block portion labeled Reconfig Block
"A" represents reconfigurable logic. The static logic remains functioning and is unaffected
by the loading of a partial BIT f ile. The reconfigurable logic is replaced by the contents of
the partial BIT f ile.

There are many reasons why the ability to time multiplex hardware dynamically on a single
FPGA is advantageous. These include:

• Reducing the size of the FPGA required to implement a given function, with consequent
reductions in cost and power consumption

• Providing flexibility in the choices of algorithms or protocols available to an application

• Enabling new techniques in design security

• Improving FPGA fault tolerance

X-Ref Target - Figure 1-1

Figure 1-1: Basic Premise of Partial Reconfiguration

FPGA

Reconfig
Block “A”

A4.bit
A3.bit

A2.bit
A1.bit

X12001
Partial Reconfiguration www.xilinx.com 8
UG909 (v2015.4) November 18, 2015

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/cgi-bin/docs/ndoc?t=training;d=vivado/partial-reconfiguration-for-ultrascale.htm
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG909&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Partial%20Reconfiguration%20%28UG909%29&releaseVersion=2015.4&docPage=8

Chapter 1: Introduction
• Accelerating configurable computing

In addition to reducing size, weight, power and cost, Partial Reconfiguration enables new
types of FPGA designs that would be otherwise impossible to implement.

Terminology
The following terminology is specific to the Partial Reconfiguration feature and is used
throughout this document.

Bottom-Up Synthesis
Bottom-Up Synthesis is synthesis of the design by modules, whether in one project or
multiple projects. Bottom-Up Synthesis requires that a separate netlist is written for each
Partition, and no optimizations are done across these boundaries, ensuring that each
portion of the design is synthesized independently. Top-level logic must be synthesized
with black boxes for Partitions.

Configuration
A Configuration is a complete design that has one Reconfigurable Module for each
Reconfigurable Partition. There might be many Configurations in a Partial Reconfiguration
FPGA project. Each Configuration generates one full BIT f ile as well as one partial BIT f ile for
each Reconfigurable Module.

Configuration Frame
Configuration frames are the smallest addressable segments of the FPGA configuration
memory space. Reconfigurable frames are built from discrete numbers of these lowest-level
elements. In Xilinx devices, the base reconfigurable frames are one element (CLB, BRAM,
DSP) wide by one clock region high. The number of resources in these frames vary by device
family.

Internal Configuration Access Port (ICAP)
The Internal Configuration Access Port (ICAP) is essentially an internal version of the
SelectMAP interface. For more information, see the 7 Series FPGAs Configuration User Guide
(UG470) [Ref 7] or the UltraScale Architecture Configuration User Guide (UG570) [Ref 8].

Media Configuration Access Port (MCAP)
The MCAP is dedicated link to the ICAP from one specif ic PCIe® block per UltraScale device.
This entry point can be enabled when configuring the Xilinx PCIe IP.
Partial Reconfiguration www.xilinx.com 9
UG909 (v2015.4) November 18, 2015

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG909&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Partial%20Reconfiguration%20%28UG909%29&releaseVersion=2015.4&docPage=9

Chapter 1: Introduction
Partial Reconfiguration (PR)
Partial Reconfiguration is modifying a subset of logic in an operating FPGA design by
downloading a partial bitstream.

Partition
A Partition is a logical section of the design, user-defined at a hierarchical boundary, to be
considered for design reuse. A Partition is either implemented as new or preserved from a
previous implementation. A Partition that is preserved maintains not only identical
functionality but also identical implementation.

Partition Pin
Partition pins are the logical and physical connection between static logic and
reconfigurable logic. Partition pins are automatically created for all Reconfigurable
Partition ports.

Processor Configuration Access Port (PCAP)
The Processor Configuration Access Port (PCAP) is similar to the Internal Configuration
Access Port (ICAP) and is the primary port used for configuring a Zynq-7000 AP SoC device.
For more information, see the Zynq-7000 All Programmable Technical Reference Manual
(UG585) [Ref 9].

Programmable Unit (PU)
In the UltraScale architecture, the minimum required resources for reconfiguration. The size
of a PU varies by resource type. Because adjacent sites share a routing resource (or
Interconnect tile) in the UltraScale architecture, a PU is defined in terms of pairs.

Reconfigurable Frame
Reconfigurable frames (in all references other than "configuration frames" in this guide)
represent the smallest reconfigurable region within an FPGA. Bitstream sizes of
reconfigurable frames vary depending on the types of logic contained within the frame.

Reconfigurable Logic
Reconfigurable Logic is any logical element that is part of a Reconfigurable Module. These
logical elements are modified when a partial BIT f ile is loaded. Many types of logical
components can be reconfigured such as LUTs, flip-flops, block RAM, and DSP blocks.
Partial Reconfiguration www.xilinx.com 10
UG909 (v2015.4) November 18, 2015

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG909&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Partial%20Reconfiguration%20%28UG909%29&releaseVersion=2015.4&docPage=10

Chapter 1: Introduction
Reconfigurable Module (RM)
A Reconfigurable Module (RM) is the netlist or HDL description that is implemented within
a Reconfigurable Partition. Multiple Reconfigurable Modules will exist for a Reconfigurable
Partition.

Reconfigurable Partition (RP)
Reconfigurable Partition (RP) is an attribute set on an instantiation that defines the instance
as reconfigurable. The Reconfigurable Partition is the level of hierarchy within which
different Reconfigurable Modules are implemented. Tcl commands such as opt_design,
place_design and route_design detect the HD.RECONFIGURABLE property on the
instance and process it correctly.

Static Logic
Static logic is any logical element that is not part of a Reconfigurable Partition. The logical
element is never partially reconfigured and is always active when Reconfigurable Partitions
are being reconfigured. Static logic is also known as top-level logic.

Static Design
The Static design is the part of the design that does not change during partial
reconfiguration. The static design includes the top level and all modules not defined as
reconfigurable. The static design is built with static logic and static routing.
Partial Reconfiguration www.xilinx.com 11
UG909 (v2015.4) November 18, 2015

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG909&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Partial%20Reconfiguration%20%28UG909%29&releaseVersion=2015.4&docPage=11

Chapter 1: Introduction
Design Considerations
Partial Reconfiguration (PR) is an expert flow within the Vivado Design Suite. Prospective
customers must understand the following requirements and expectations before embarking
on a PR project.

Design Requirements and Guidelines
• Partial Reconfiguration requires the use of Vivado 2013.3 or newer.

° Partial Reconfiguration is supported in the ISE Design Suite as well. Use the ISE
Design Suite for Partial Reconfiguration only with Virtex-6, Virtex-5 and Virtex-4
devices. See the ISE Partial Reconfiguration User Guide (UG702) [Ref 10] for more
information.

• Device support in Vivado Design Suite 2015.4:

° 7 Series: All Artix-7, Kintex-7, Virtex-7, and Zynq-7000 SoC devices.

° UltraScale:

- Implementation support and bitstream generation for all production silicon
UltraScale devices except for the KU025 and VU440.

- Implementation support only (no bitstream generation) for ES2 versions of the
above devices. ES2 support is unofficial and should be used for development
purposes only.

• PR is supported through Tcl or by command line only; there is no project support at
this time.

• Floorplanning is required to define reconfigurable regions, per element type.

° For greatest eff iciency, and to use the RESET_AFTER_RECONFIG feature with 7
series devices, vertically align to frame/clock region boundaries.

° Horizontal alignment rules also apply. See Create a Floorplan for the Reconfigurable
Region in Chapter 3 for more information.

• Bottom-up synthesis (to create multiple netlist f iles) and management of
Reconfigurable Module netlist f iles is the responsibility of the user.

° Any synthesis tool can be used. Disable I/O insertion to create Reconfigurable
Module netlists.

° Vivado Synthesis uses the out-of-context Module Analysis flow for Reconfigurable
Module synthesis.

• Standard timing constraints are supported, and additional timing budgeting
capabilities are available if needed.
Partial Reconfiguration www.xilinx.com 12
UG909 (v2015.4) November 18, 2015

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG909&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Partial%20Reconfiguration%20%28UG909%29&releaseVersion=2015.4&docPage=12

Chapter 1: Introduction
• A unique set of design rule checks (DRCs) has been established to help ensure
successful design completion.

• A PR design must consider the initiation of Partial Reconfiguration as well as the
delivery of partial BIT f iles, either within the FPGA or as part of the system design.

• The 2015.1 release of the Vivado Design Suite introduced support for a new Partial
Reconfiguration Controller IP. This customizable IP manages the core tasks for partial
reconfiguration in a 7 series, Zynq-7000, or UltraScale device. The core receives
triggers from hardware or software, manages ing and decoupling tasks, fetches partial
bitstreams from memory locations, and delivers them to the ICAP.
More information on the PR Controller IP is available on the Xilinx website.

• A Reconfigurable Partition must contain a super set of all pins to be used by the
varying Reconfigurable Modules implemented for the partition. It is expected that this
results in unused inputs or outputs for some modules and is designed into the
flexibility of the PR solution. The unused inputs are left inside the module. Drive
outputs to a constant if this is an issue for your design.

• Black boxes are supported for bitstream generation. See Black Boxes in Chapter 4 for
details about how to tie off ports with constant values.

• For user reset signals, determine if the logic inside the RM is level or edge sensitive. If
the reset circuit is edge sensitive (as it may be in some IP such as FIFOs), then the RM
reset should not applied until after configuration is complete.

Design Performance
Performance metrics vary from design to design, and the best results are achieved if you
follow the Hierarchical Design techniques documented in the Hierarchical Design
Methodology Guide (UG748) [Ref 11]. This documents was created for the ISE Design Suite,
but the methodologies contained therein apply for the Vivado Design Suite. You can f ind
additional design recommendations in the UltraFast Design Methodology Guide for the
Vivado Design Suite (UG949) [Ref 12].

However, the additional restrictions that are required for silicon isolation are expected to
have an impact on most designs. The application of Partial Reconfiguration rules, such as
routing containment, exclusive placement, and no optimization across reconfigurable
module boundaries, means that the overall density and performance is lower for a PR
design than for the equivalent flat design. The overall design performance for PR designs
varies from design to design, based on factors such as the number of reconfigurable
partitions, the number of interface pins to these partitions, and the size and shape of
Pblocks.

Any potential Partial Reconfiguration design must have extra timing slack and resource
overhead before considering this solution. See the Building Up Implementation
Requirements, page 54 section for more information on evaluating a design for PR.
Partial Reconfiguration www.xilinx.com 13
UG909 (v2015.4) November 18, 2015

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/products/intellectual-property/prc.html
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG909&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Partial%20Reconfiguration%20%28UG909%29&releaseVersion=2015.4&docPage=13

Chapter 1: Introduction
Design Criteria
• Some component types can be reconfigured and some cannot.

For 7 series devices, the component rules are as follows:

° Reconfigurable resources include CLB, BRAM, and DSP component types as well as
routing resources.

° Clocks and clock modifying logic cannot be reconfigured, and therefore must reside
in the static region.

- Includes BUFG, BUFR, MMCM, PLL, and similar components

° The following components cannot be reconfigured, and therefore must reside in the
static region:

- I/O and I/O related components (ISERDES, OSERDES, IDELAYCTRL)

- Serial transceivers (MGTs) and related components

- Individual architecture feature components (such as BSCAN, STARTUP, ICAP,
XADC.)

For UltraScale devices, the list of reconfigurable component types is more extensive:

° CLB, BRAM, and DSP component types as well as routing resources

° Clocks and clock modifying logic, including BUFG, MMCM, PLL, and similar
components

° I/O and I/O related components (ISERDES, OSERDES, IDELAYCTRL)

Note: The types of changes for I/O components is limited. See I/O Rules in Chapter 6 for
more information.

° Serial transceivers (MGTs) and related components

° PCIe, CMAC, Interlaken, and SYSMON blocks

° Bitstream granularity of these new components require that certain rules are
followed. For example, partial reconfiguration of I/O require that the entire bank,
plus all clocking resources in that frame are reconfigured together.

° Only the configuration components (such as BSCAN, STARTUP, ICAP, and
FRAME_ECC) must remain in the static portion of the design.

• Global clocking resources to Reconfigurable Partitions are limited, depending on the
device and on the clock regions occupied by these Reconfigurable Partitions.
Partial Reconfiguration www.xilinx.com 14
UG909 (v2015.4) November 18, 2015

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG909&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Partial%20Reconfiguration%20%28UG909%29&releaseVersion=2015.4&docPage=14

Chapter 1: Introduction
• IP restrictions may occur due to components used to implement the IP. Examples
include:

° Vivado Debug Hub (BSCAN and BUFG)

° IP modules with embedded global buffers or I/O

° MIG controller (MMCM and BSCAN)

• Reconfigurable Modules must be initialized to ensure a predictable starting condition
after reconfiguration. You can do this manually with a local reset, or with dedicated
GSR events by selecting the RESET_AFTER_RECONFIG feature.
RESET_AFTER_RECONFIG is always enabled for UltraScale devices.

• Decoupling logic is highly recommended to disconnect the reconfigurable region from
the static portion of the design during the act of Partial Reconfiguration.

° Clock and other inputs to Reconfigurable Modules can be decoupled to prevent
spurious writes to memories during reconfiguration. This should be considered if
RESET_AFTER_RECONFIG is not used.

° The 2015.3 release introduced a new Partial Reconfiguration Decoupler IP. This IP
allows users to easily insert MUXes to eff iciently decouple AXI Lite, AXI4-Stream,
and custom interfaces. More information on the PR Decoupler IP is available on the
Xilinx website.

• A reconfigurable partition must be flooorplanned, so the module must be a block that
can be contained by a Pblock and meet timing. If the module is complete, it is
recommended to run this design through a non-PR flow to get an initial evaluation of
placement, routing, and timing results. If the design has issues in a non-PR flow, these
should be resolved before moving on to the PR flow.

• Each module pin on an RP has a partition pin. This is a routing point that connects
static logic to the RP. If a design has too many partition pins for the number of available
routing resources, routing congestion can occur. Consider the number of external pins
on the RP, and develop a module that has a minimum required set of pins.

• Virtex-7 SSI devices (7V2000T, 7VX1140T, 7VH870T, 7VH580T) have two fundamental
requirements. These requirements are:

° Reconfigurable regions must be fully contained within a single SLR. This ensures
that the global reset events are properly synchronized across all elements in the
Reconfigurable Module, and that all super long lines (SLL) are contained within the
static portion of the design. SLL are not partially reconfigurable.

° If the initial configuration of a 7 series SSI device is done through an SPIx1
interface, partial bitstreams must be delivered to the ICAP located on the SLR where
the Reconfigurable Partition exists, or to an external port, such as JTAG. If the initial
configuration is done through any other configuration port, the master ICAP can be
used as the delivery port for partial bitstreams.
Partial Reconfiguration www.xilinx.com 15
UG909 (v2015.4) November 18, 2015

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/products/intellectual-property/pr-decoupler.html
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG909&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Partial%20Reconfiguration%20%28UG909%29&releaseVersion=2015.4&docPage=15

Chapter 1: Introduction
• UltraScale devices have a new requirement related to partial reconfiguration events.
Before a partial bitstream for a new Reconfigurable Module is loaded, the current
Reconfigurable Module must be "cleared" to prepare for reconfiguration. For more
information, see Summary of BIT Files for UltraScale Devices in Chapter 7.

• Dedicated encryption support for partial bitstreams is available natively. See Known
Limitations, page 108 for specif ic unsupported use cases for UltraScale devices.

• Devices can use a per-frame CRC checking mechanism, enabled by
write_bitstream, to ensure each frame is valid before loading.

• In situations where an RM flop is connected directly to a static I/O buffer, ensure there
is no IOB=TRUE property on the RM flop. Failure to do so can lead to the register being
illegally placed, as well as pre-route_design DRC errors.

Partial Reconfiguration is a powerful capability within Xilinx devices, and understanding the
capabilities of the silicon and software is instrumental to success with this technology.
While trade-offs must be recognized and considered during the development process, the
overall result is a more flexible implementation of your FPGA design.

Partial Reconfiguration Licensing
Partial Reconfiguration is available as a licensed product within the Vivado Design Suite.
Contact your local sales off ices for pricing and ordering details.

A Partial Reconfiguration license is checked when the individual implementation commands
(opt_design, place_design, route_design, write_bitstream) are called on
designs containing the HD.RECONFIGURABLE property. A license is required to implement
(place and route) a Partial Reconfiguration design and to generate partial bitstreams. No
unique checks are done within the Vivado IDE, and the license feature is not held.
Partial Reconfiguration www.xilinx.com 16
UG909 (v2015.4) November 18, 2015

Send Feedback

http://www.xilinx.com/company/contact/index.htm
http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG909&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Partial%20Reconfiguration%20%28UG909%29&releaseVersion=2015.4&docPage=16

Chapter 2

Common Applications

Overview
The basic premise of Partial Reconfiguration is that the device hardware resources can be
time-multiplexed similar to the ability of a microprocessor to switch tasks. Because the
device is switching tasks in hardware, it has the benefit of both flexibility of a software
implementation and the performance of a hardware implementation. Several different
scenarios are presented here to illustrate the power of this technology.

Networked Multiport Interface
Partial Reconfiguration optimizes traditional FPGA applications by reducing size, weight,
power, and cost. Time-independent functions can be identif ied, isolated, and implemented
as Reconfigurable Modules and swapped in and out of a single device as needed. A typical
example is a 40G OTN muxponder application. The ports of the client side of the
muxponder can support multiple interface protocols. However, it is not possible for the
system to predict which protocol will be used before the FPGA is configured. To ensure that
the FPGA does not have to be reconfigured and thus disable all ports, every possible
interface protocol is implemented for every port, as illustrated in Figure 2-1, page 18.
Partial Reconfiguration www.xilinx.com 17
UG909 (v2015.4) November 18, 2015

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG909&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Partial%20Reconfiguration%20%28UG909%29&releaseVersion=2015.4&docPage=17

Chapter 2: Common Applications

This is an inefficient design because only one of the standards for each port is in use at any
point in time. Partial Reconfiguration enables a more eff icient design by making each of the
port interfaces a Reconfigurable Module, as shown in Figure 2-2. This also eliminates the
MUX elements required to connect multiple protocol engines to one port.

A wide variety of designs can benefit from this basic premise. Software defined radio (SDR),
for example, is one of many applications that has mutually exclusive functionality, and
which sees a dramatic improvement in flexibility and resource usage when this functionality
is multiplexed.

X-Ref Target - Figure 2-1

Figure 2-1: Network Switch Without Partial Reconfiguration

X-Ref Target - Figure 2-2

Figure 2-2: Network Switch With Partial Reconfiguration
Partial Reconfiguration www.xilinx.com 18
UG909 (v2015.4) November 18, 2015

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG909&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Partial%20Reconfiguration%20%28UG909%29&releaseVersion=2015.4&docPage=18

Chapter 2: Common Applications
There are additional advantages with a partially reconfigurable design other than eff iciency.
In the Figure 2-2, page 18 example, a new protocol can be supported at any time without
affecting the static logic, the switch fabric in this example. When a new standard is loaded
for any port, the other existing ports are not affected in any way. Additional standards can
be created and added to the configuration memory library without requiring a complete
redesign. This allows greater flexibility and reliability with less down time for the switch
fabric and the ports. A debug module could be created so that if a port was experiencing
errors, an unused port could be loaded with analysis/correction logic to handle the problem
real-time.

In the Figure 2-2, page 18 example, a unique partial BIT file must be generated for each
unique physical location that could be targeted by each protocol. Partial BIT f iles are
associated with an explicit region on the device. In this example, sixteen unique partial BIT
f iles to accommodate four protocols for four locations.

Configuration by Means of Standard Bus Interface
Partial Reconfiguration can create a new configuration port using an interface standard
more compatible with the system architecture. For example, the FPGA could be a peripheral
on a PCIe® bus and the system host could configure the FPGA through the PCIe connection.
After power-on reset the FPGA must be configured with a full BIT f ile. However, the full BIT
f ile might only contain the PCIe interface and connection to the internal configuration
access port (ICAP).

Bitstream compression can be used to reduce the size and therefore configuration time of
this initial device load, helping the FPGA configuration meet PCIe enumeration
specifications.

The system host could then configure the majority of the FPGA functionality with a partial
BIT f ile downloaded through the PCIe port as shown in Figure 2-3.

X-Ref Target - Figure 2-3

Figure 2-3: Configuration by Means of PCIe Interface
Partial Reconfiguration www.xilinx.com 19
UG909 (v2015.4) November 18, 2015

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG909&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Partial%20Reconfiguration%20%28UG909%29&releaseVersion=2015.4&docPage=19

Chapter 2: Common Applications
The PCIe standard requires the peripheral (the FPGA in this case) to acknowledge any
requests even if it cannot service the request. Reconfiguring the entire FPGA would violate
this requirement. Because the PCIe interface is part of the static logic, it is always active
during the Partial Reconfiguration process, thus ensuring that the FPGA can respond to
PCIe commands even during reconfiguration.

Tandem Configuration is a related solution that at f irst glance appears to be the same as is
shown here. However, the solution using Partial Reconfiguration differs from Tandem
Configuration on 7 series devices in two regards:

• First, the configuration process with PR is a full device configuration, made smaller and
faster through compression, followed by a partial bitstream that overwrites the black
box region to complete the overall configuration. Tandem Configuration is a two-stage
configuration where each configuration frame is programmed exactly once.

• Second, Tandem Configuration for 7 series devices does not permit dynamic
reconfiguration of the user application. Using Partial Reconfiguration, the dynamic
region can be reloaded with different user applications or f ield updates.

Tandem Configuration is designed to be a specif ic solution for a specific goal: fast
configuration of a PCIe endpoint to meet enumeration requirements. For more information,
see the following manuals:

• 7 Series FPGAs Integrated Block for PCI Express Product Guide (PG054) [Ref 13]

• Virtex-7 FPGA Gen3 PCIe Integrated Block for PCI Express Product Guide (PG023) [Ref 14]

• LogiCORE IP UltraScale FPGAs Gen3 Integrated Block for PCI Express Product Guide
(PG156) [Ref 15]
Partial Reconfiguration www.xilinx.com 20
UG909 (v2015.4) November 18, 2015

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG909&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Partial%20Reconfiguration%20%28UG909%29&releaseVersion=2015.4&docPage=20

Chapter 2: Common Applications
Dynamically Reconfigurable Packet Processor
A packet processor can use Partial Reconfiguration to change its processing functions
quickly, based on the packet types received. In Figure 2-4, a packet has a header that
contains the partial BIT f ile, or a special packet contains the partial BIT f ile. After the partial
BIT f ile is processed, it is used to reconfigure a coprocessor in the FPGA. This is an example
of the FPGA reconfiguring itself based on the data packet received instead of relying on a
predefined library of partial BIT f iles.

X-Ref Target - Figure 2-4

Figure 2-4: Dynamically Reconfigurable Packet Processor
Partial Reconfiguration www.xilinx.com 21
UG909 (v2015.4) November 18, 2015

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG909&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Partial%20Reconfiguration%20%28UG909%29&releaseVersion=2015.4&docPage=21

Chapter 2: Common Applications
Asymmetric Key Encryption
There are some new applications that are not possible without Partial Reconfiguration. A
very secure method for protecting the FPGA configuration file can be architected when
Partial Reconfiguration and asymmetric cryptography are combined. (See Public-key
cryptography for asymmetric cryptography details.)

In Figure 2-5, the group of functions in the shaded box can be implemented within the
physical package of the FPGA. The cleartext information and the private key never leave a
well-protected container.

In a real implementation of this design, the initial BIT file is an unencrypted design that
does not contain any proprietary information. The initial design only contains the algorithm
to generate the public-private key pair and the interface connections between the host,
FPGA and ICAP.

After the initial BIT f ile is loaded, the FPGA generates the public-private key pair. The public
key is sent to the host which uses it to encrypt a partial BIT file. The encrypted partial BIT
f ile is downloaded to the FPGA where it is decrypted and sent to the ICAP to partially
reconfigure the FPGA, as shown in Figure 2-6, page 23.

X-Ref Target - Figure 2-5

Figure 2-5: Asymmetric Key Encryption
Partial Reconfiguration www.xilinx.com 22
UG909 (v2015.4) November 18, 2015

Send Feedback

http://en.wikipedia.org/wiki/Public-key_cryptography
http://en.wikipedia.org/wiki/Public-key_cryptography
http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG909&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Partial%20Reconfiguration%20%28UG909%29&releaseVersion=2015.4&docPage=22

Chapter 2: Common Applications

The partial BIT file could be the vast majority of the FPGA design with the logic in the static
design consuming a very small percentage of the overall FPGA resources.

This scheme has several advantages:

• The public-private key pair can be regenerated at any time. If a new configuration is
downloaded from the host it can be encrypted with a different public key. If the FPGA is
configured with the same partial BIT f ile, such as after a power-on reset, a different
public key pair is used even though it is the same BIT file.

• The private key is stored in SRAM. If the FPGA ever loses power the private key no
longer exists.

• Even if the system is stolen and the FPGA remains powered, it is extremely diff icult to
f ind the private key because it is stored in the general purpose FPGA programmable
logic. It is not stored in a special register. You could manually locate each register bit
that stores the private key in physically remote and unrelated regions.

Summary
In addition to reducing size, weight, power and cost, Partial Reconfiguration enables new
types of FPGA designs that would otherwise be impossible to implement.

X-Ref Target - Figure 2-6

Figure 2-6: Loading an Encrypted Partial Bit File
Partial Reconfiguration www.xilinx.com 23
UG909 (v2015.4) November 18, 2015

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG909&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Partial%20Reconfiguration%20%28UG909%29&releaseVersion=2015.4&docPage=23

Chapter 3

Vivado Software Flow

Overview
The Vivado® Partial Reconfiguration design flow is similar to a standard design flow, with
some notable differences. The implementation software automatically manages the
low-level details to meet silicon requirements. You must provide guidance to define the
design structure and floorplan. The following steps summarize processing a PR design:

1. Synthesize the static and Reconfigurable Modules separately.

2. Create physical constraints (Pblocks) to define the reconfigurable regions.

3. Set the HD.RECONFIGURABLE property on each Reconfigurable Partition.

4. Implement a complete design (static and one Reconfigurable Module per
Reconfigurable Partition) in context.

5. Save a design checkpoint for the full routed design.

6. Remove Reconfigurable Modules from this design and save a static-only design
checkpoint.

7. Lock the static placement and routing.

8. Add new Reconfigurable Modules to the static design and implement this new
configuration, saving a checkpoint for the full routed design.

9. Repeat Step 8 until all Reconfigurable Modules are implemented.

10. Run a verif ication utility (pr_verify) on all configurations.

11. Create bitstreams for each configuration.
Partial Reconfiguration www.xilinx.com 24
UG909 (v2015.4) November 18, 2015

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG909&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Partial%20Reconfiguration%20%28UG909%29&releaseVersion=2015.4&docPage=24

Chapter 3: Vivado Software Flow
Partial Reconfiguration Commands
The PR flows are currently only supported through the non-project batch/Tcl interface (no
project based commands). Example scripts are provided in the Vivado Design Suite Tutorial:
Partial Reconfiguration (UG947) [Ref 1], along with step-by-step instructions for setting up
the flows. See that Tutorial for more information.

The following sections describe a few specialized commands and options needed for the PR
flows. Examples of how to use these commands to run a PR flow are given. For more
information on individual commands, see the Vivado Design Suite Tcl Command Reference
Guide (UG835) [Ref 16].

Synthesis
Synthesizing a partially reconfigurable design does not require any special commands, but
does require bottom-up synthesis. There are currently no unsupported commands for
synthesis, optimization, or implementation.

These synthesis tools are supported:

• XST (supported for 7 series only)

• Synplify

• Vivado Synthesis

IMPORTANT: NGC format files are not supported in the Vivado Design Suite for UltraScale devices.
Xilinx recommends that you regenerate the IP using the Vivado Design Suite IP customization tools
with native output products. Alternatively, you can use the NGC2EDIF command to migrate the NGC
file to EDIF format for importing. However, Xilinx recommends using native Vivado IP rather than
XST-generated NGC format files going forward.

IMPORTANT: Bottom-up synthesis refers to a synthesis flow in which each module has its own
synthesis project. This generally involves turning off automatic I/O buffer insertion for the lower level
modules.

This document only covers the Vivado synthesis flow.

Synthesizing the Top Level

You must have a top-level netlist with a black box for each Reconfigurable Partition (RP).
This requires the top-level synthesis to have module or entity declarations for the
partitioned instances, but no logic; the module is empty.
Partial Reconfiguration www.xilinx.com 25
UG909 (v2015.4) November 18, 2015

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG909&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Partial%20Reconfiguration%20%28UG909%29&releaseVersion=2015.4&docPage=25

Chapter 3: Vivado Software Flow
The top-level synthesis infers or instantiates I/O buffers on all top level ports. For more
information on controlling buffer insertion, see this link in the Vivado Design Suite User
Guide: Synthesis (UG901) [Ref 17].

synth_design -flatten_hierarchy rebuilt -top <top_module_name> -part <part>

Synthesizing Reconfigurable Modules

Because each Reconfigurable Module must be instantiated in the same black box in the
static design, the different versions must have identical interfaces. The name of the block
must be the same in each instance, and all the properties of the interfaces (names, widths,
direction) must also be identical. Each configuration of the design is assembled like a flat
design.

To synthesize a Reconfigurable Module, turn off all buffer insertions. You can do so in
Vivado Synthesis using the synth_design command in conjunction with the -mode
out_of_context switch:

synth_design -mode out_of_context -flatten_hierarchy rebuilt -top
<reconfig_module_name> -part <part>

The synth_design command synthesizes the design and stores the results in memory. In
order to write the results out to a f ile, use:

write_checkpoint <file_name>.dcp

It is recommended to close the design in memory after synthesis, and run implementation
separately from synthesis.

Reading Design Modules

If there is currently no design in memory, you must load a design. This can be done in a
variety of ways, for either the static design or for Reconfigurable Modules. After the
configurations are implemented, checkpoints are exclusively used to read in placed and
routed module databases.

Table 3-1: synth_design Options

Command Option Description

-mode out_of_context Prevents I/O insertion for synthesis and downstream tools.
The out_of_context mode is saved in the checkpoint if
write_checkpoint is issued.

-flatten_hierarchy rebuilt There are several values allowed for -flatten_hierarchy,
but rebuilt is the recommended setting for PR flows.

-top This is the module/entity name of the module being
synthesized.

-part This is the Xilinx® part being targeted (for example,
xc7k325tffg900-3)
Partial Reconfiguration www.xilinx.com 26
UG909 (v2015.4) November 18, 2015

Send Feedback

http://www.xilinx.com/cgi-bin/docs/rdoc?v=2015.4;d=ug901-vivado-synthesis.pdf;a=xSettingABottomUpFlowUsingTheOutOfContextFlow
http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG909&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Partial%20Reconfiguration%20%28UG909%29&releaseVersion=2015.4&docPage=26

Chapter 3: Vivado Software Flow
Method 1: Read Netlist Design

This approach should be used when modules have been synthesized by tools other than
Vivado synthesis.

read_edif <top>.edf/edn/ngc

read_edif <rp1_a>.edf/edn/ngc

read_edif <rp2_a>.edf/edn/ngc

link_design -top <top_module_name> -part <part>

Method 2: Open/Read Checkpoint

If the static (top-level) design has synthesis or implementation results stored as a
checkpoint, then it can be loaded using the open_checkpoint command. This command
reads in the static design checkpoint and opens it in active memory:

open_checkpoint <file>

If the checkpoint is for a reconfigurable module (that is, not for static), then the instance
name must be specified using read_checkpoint -cell. If the checkpoint is a
post-implementation checkpoint, then the additional -strict option must be used as
well. This option can also be used with a post-synthesis checkpoint to ensure exact port
matching has been achieved. To read in a checkpoint in a Reconfigurable Module, the
top-level design must already be opened, and must have a black box for the specif ied cell.
Then the following command can be specif ied:

read_checkpoint -cell <cellname > <file> [-strict]

Table 3-2: link_design Options

Command Option Description

-part This is the Xilinx part being targeted (for example,
xc7k325tffg900-3)

-top This is the module/entity name of the module being
implemented. This switch can be omitted if set_property
top <top_module_name> [current_fileset] is issued
prior to link_design.

Table 3-3: read_checkpoint Switches

Switch Name Description

-cell Specifies the full hierarchical name of the Reconfigurable
Module.

-strict Requires exact ports match for replacing cell, and checks that
part, package, and speed grade values are identical. Should
be used when restoring implementation data.

<file> Specifies the full or relative path to the checkpoint (DCP) to
be read in.
Partial Reconfiguration www.xilinx.com 27
UG909 (v2015.4) November 18, 2015

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG909&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Partial%20Reconfiguration%20%28UG909%29&releaseVersion=2015.4&docPage=27

Chapter 3: Vivado Software Flow
Method 3: Open Checkpoint/Update Design

This is useful when the synthesis results are in the form of a netlist (EDF or EDN), but static
has already been implemented. The following example shows the commands for the second
configuration in which this is true.

open_checkpoint <top>.dcp

lock_design -level routing

update_design -cells <rp1> -from_file <rp1_b>.{edf/edn}

update_design -cells <rp2> -from_file <rp2_b>.{edf/edn}

Adding Reconfigurable Modules with Sub-Module Netlists

If a Reconfigurable Module has sub-module netlists, it can be diff icult for the Vivado tools
to process the sub-module netlists. This is because in the PR flow the RM netlists are added
to a design that is already open in memory. This means the update_design -cells
command must be used, which requires the cell name for every EDIF file, which can be
troublesome to get.

There are two ways to make loading RM sub-module netlists easier in the Vivado Design
Suite.

Method 1: Create a Single RM Checkpoint (DCP)

Create an RM checkpoint (DCP) that includes all netlists. Use add_files to add all of the
EDIF (or NGC) f iles, and use link_design to resolve the EDIF f iles to their respective cells.
Here is an example of the commands used in this process:

add_files [list rm.edf ip_1.edf … ip_n.edf]

Run if RM XDC exists

add_files rm.xdc

link_design -top <rm_module> -part <part>

write_checkpoint rm_v#.dcp

close_project

IMPORTANT: Using this methodology to combine/convert a netlist into a DCP is the recommended way
to handle an RM that has one or more NGC source files as well.

Then this newly-created RM checkpoint can be used in the PR flow. In the commands below,
the single read_checkpoint -cell command replaces what could be many
update_design -cell commands.

add_files static.dcp

link_design -top <top> part <part>

lock_design -level routing

read_checkpoint -cell <rm_inst> rm_v#.dcp
Partial Reconfiguration www.xilinx.com 28
UG909 (v2015.4) November 18, 2015

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG909&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Partial%20Reconfiguration%20%28UG909%29&releaseVersion=2015.4&docPage=28

Chapter 3: Vivado Software Flow
Method 2: Place the Sub-Module Netlists in the Same Directory as the RM’s Top-Level Netlist

When the top-level RM netlist is read into the PR design using update_design -cell,
make sure that all sub-module netlists are in the same directory as the RM top-level netlist.
In this case, the lower-level netlists do not need to be specif ied, but they are picked up
automatically by the update_design -cells command. This is less explicit than Method
1, but requires fewer steps. In this case the commands to load the RM netlist would look like
the following:

add_files static.dcp

link_design -top <top> part <part>

lock_design -level routing

update_design -cells <rm_inst> -from_file rm_v#.edf

In the last (update_design) command above, the lower-level netlists are picked up
automatically if they are in the same directory as rm_v#.edf.

Reading Design Constraints
New constraints can be applied for each configuration at various points in the flow. If an
RM is read in as a DCP, then any constraints stored in the DCP are automatically applied.
Additionally, the read_xdc command can be used to apply constraints scoped to the
top-level, or to the specific cell (using -cell switch). If constraint are expected to directly
or indirectly affect the RM, then the RM must be resolved (not a black box) prior to reading
in the new constraints. Otherwise, the constraints may be dropped or not correctly
propagated in the constraint system. Because Static is only placed and routed in the initial
configuration, all constraints for subsequent configurations (where Static is locked) should
be focused strictly on the RP regions being implemented.

Implementation
Because the PR flow allows for various configurations in hardware, multiple implementation
runs are required. Each implementation of a PR design is referred to as a configuration. Each
module of the design (static or Reconfigurable Module) can be implemented or imported (if
previously implemented). Implementation results for the static design must be consistent
for each configuration, so that the design is implemented in one configuration, and then
imported in subsequent configurations. Additional configurations can be constructed by
importing static, and implementing or importing each Reconfigurable Module.
Partial Reconfiguration www.xilinx.com 29
UG909 (v2015.4) November 18, 2015

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG909&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Partial%20Reconfiguration%20%28UG909%29&releaseVersion=2015.4&docPage=29

Chapter 3: Vivado Software Flow
There are no restrictions to the support of implementation commands or options for PR,
but certain optimizations and sub-routines are not done if they oppose the fundamental
requirements of partial reconfiguration. The following list of commands can be run after the
logical design is loaded (using link_design or open_checkpoint):

Run if all constraints are not already loaded

read_xdc

Optional command

opt_design

place_design

Optional command

phys_opt_design

route_design

Preserving Implementation Data

In the PR flow, it is a requirement to lock down the placement and routing results of the
static logic from the f irst configuration for all subsequent configurations. The static
implementation of the first configuration must be saved as a checkpoint. When the
checkpoint is read for subsequent configurations, the placement and routing must be
locked, to ensure that the static design remains completely identical from configuration to
configuration. To lock the placement and routing of an imported checkpoint (static or
reconfigurable), the lock_design command is used.

lock_design -level [logical|placement|routing] [cell_name]

When locking down the static logic with the above command, the optional [cell_name]
can be omitted.

lock_design -level routing

To lock the results of an imported RM, the full hierarchical name should be specified within
the post-implementation checkpoint:

lock_design -level routing u0_RM_instance

For Partial Reconfiguration, the only supported preservation level is routing. Other
preservation levels are available for this command, but they must only be used for other
Hierarchical Design flows.
Partial Reconfiguration www.xilinx.com 30
UG909 (v2015.4) November 18, 2015

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG909&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Partial%20Reconfiguration%20%28UG909%29&releaseVersion=2015.4&docPage=30

Chapter 3: Vivado Software Flow
Partial Reconfiguration Constraints and Properties
There are properties and constraints unique to the Partial Reconfiguration flow. These
initiate PR-specific implementation processing and apply specif ic characteristics in the
partial bitstreams. The four areas for constraints and properties for partial reconfiguration
are:

Define a Module as Reconfigurable
In order to implement a PR design, it is required to specify each Reconfigurable Module as
such. To do this you must set a property on the top level of each hierarchical cell that is
going to be reconfigurable. For example, take a design where one Reconfigurable Partition
named inst_count exists, and it has two Reconfigurable Modules, count_up and
count_down. The following command must be issued prior to implementation of the first
configuration.

set_property HD.RECONFIGURABLE TRUE [get_cells inst_count]

This initiates the Partial Reconfiguration features in the software that are required to
successfully implement a PR design. The HD.RECONFIGURABLE property implies a number
of underlying constraints and tasks:

• Sets DONT_TOUCH on the specified cell and its interface nets. This prevents
optimization across the boundary of the module.

• Sets EXCLUDE_PLACEMENT on the cell's Pblock. This prevents static logic from being
placed in the reconfigurable region.

• Sets CONTAIN_ROUTING on the cell's Pblock. This keeps all the routing for the
Reconfigurable Module within the bounding box.

• Enables special code for DRCs, clock routing, etc.

Create a Floorplan for the Reconfigurable Region
Each Reconfigurable Partition is required to have a Pblock to define the physical resources
available for the Reconfigurable Module. Because this Pblock is set on a Reconfigurable
Partition, these restrictions and requirements apply:

Constraints and Properties Necessity

Defining a module as reconfigurable Required

Creating a floorplan for the reconfigurable region Required

Applying reset after reconfiguration Optional, but highly recommended

Turn on visualization scripts Optional
Partial Reconfiguration www.xilinx.com 31
UG909 (v2015.4) November 18, 2015

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG909&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Partial%20Reconfiguration%20%28UG909%29&releaseVersion=2015.4&docPage=31

Chapter 3: Vivado Software Flow
• The Pblock must contain only valid reconfigurable element types. The region may
overlap other site types, but these other sites must not be included in the
resize_pblock commands.

• Multiple Pblock rectangles for each component type may be used to create the
Reconfigurable Partition region, but for the greatest routability, they should be
contiguous. Gaps to account for non-reconfigurable resources are permitted, but in
general, the simpler the overall shape, the easier the design will be to place and route.

• If using the RESET_AFTER_RECONFIG property for 7 series devices, the Pblock height
must align to clock region boundaries. See Apply Reset After Reconfiguration for more
detail.

• The width and composition of the Pblock must not split interconnect columns for
7 series devices. See Creating Pblocks for 7 Series Devices in Chapter 5 for more detail.

• The largest RM needs to be taken into consideration when defining the Pblock in SVD
parts. Otherwise, the design can be overutilized and write_bitstream will generate
an error.

• The Pblock must not overlap any other Pblock in the design.

• Nesting of Reconfigurable Partitions (a Reconfigurable Partition within another
Reconfigurable Partition) is currently not supported. Standard pblocks for
floorplanning logic within a Reconfigurable Partition are supported, as are nested
Pblocks.

Table 3-4: Pblock Commands and Properties

Command/Property Name Description

create_pblock Command used to create the initial Pblock for each
Reconfigurable Partition instance.

add_cells_to_pblock Command used to specify the instances that belong to the
Pblock. This is typically a level of hierarchy as defined by the
bottom-up synthesis processing.

resize_pblock Command used to define the site types (such as SLICE or
RAMB36) and site locations that are owned by the Pblock.

RESET_AFTER_RECONFIG Pblock property used to control the use of the dedicated GSR
event on the reconfigurable region. Use of this property is
highly recommended and, for 7 series and Zynq devices,
requires clock region alignment in the vertical direction.

CONTAIN_ROUTING Pblock property used to control the routing to prevent usage
of routing resources not owned by the Pblock. This property
is mandatory for PR and is set to True automatically for
Reconfigurable Partitions. Static routing is still allowed to use
resources inside of the Pblock.
Partial Reconfiguration www.xilinx.com 32
UG909 (v2015.4) November 18, 2015

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG909&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Partial%20Reconfiguration%20%28UG909%29&releaseVersion=2015.4&docPage=32

Chapter 3: Vivado Software Flow
The following is an example of a set of constraints for a Reconfigurable Partition:

#define a new pblock

create_pblock pblock_count

#add a hierarchical module to the pblock

add_cells_to_pblock [get_pblocks pblock_count] [get_cells [list inst_count]]

#define the size and components within the pblock

resize_pblock [get_pblocks pblock_count] -add {SLICE_X136Y50:SLICE_X145Y99}

resize_pblock [get_pblocks pblock_count] -add {RAMB18_X6Y20:RAMB18_X6Y39}

resize_pblock [get_pblocks pblock_count] -add {RAMB36_X6Y10:RAMB36_X6Y19}

Floorplan in the Vivado IDE
Although Project Mode support is not available, the Vivado IDE can be used for planning
and visualization tasks. The best example of this is using the Device view to create and
modify Pblock constraints for floorplanning.

1. Open the synthesized static design and the largest of each Reconfigurable Module. Here
are the commands, using the tutorial design (found in the Vivado Design Suite Tutorial:
Partial Reconfiguration (UG947) [Ref 1]) as an example:

open_checkpoint synth/Static/top_synth.dcp

read_checkpoint -cell [get_cells inst_count] synth/count_up/count_synth.dcp

read_checkpoint -cell [get_cells inst_shift] synth/shift_right/shift_synth.dcp

set_property HD.RECONFIGURABLE true [get_cells inst_count]

set_property HD.RECONFIGURABLE true [get_cells inst_shift]

At this point, a full configuration has been loaded into memory, and the Reconfigurable
Partitions have been defined.

EXCLUDE_PLACEMENT Pblock Property used to prevent the placement of any logic,
not belonging to the Pblock, inside the defined Pblock
RANGE. This property is mandatory for PR and set to true
automatically for Reconfigurable Partitions. Static logic can
be placed inside of the Reconfigurable Partition with a
specific LOC property if RESET_AFTER_RECONFIG is not
used.

PARTPIN_SPREADING Used to control the maximum number of PartPins per INT tile.
Default is 5.
Setting a lower value (i.e. 3) increases the spreading between
partition pin placements. This typically eases routing
congestion in areas with dense PartPin placement, but can
negatively affect RP interface timing.

Table 3-4: Pblock Commands and Properties

Command/Property Name Description
Partial Reconfiguration www.xilinx.com 33
UG909 (v2015.4) November 18, 2015

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG909&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Partial%20Reconfiguration%20%28UG909%29&releaseVersion=2015.4&docPage=33

Chapter 3: Vivado Software Flow
2. To create Pblock constraints for the Reconfigurable Partitions, right-click on an instance
in the Netlist window (in this case, inst_count or inst_shift) and select Draw Pblock .
Create a rectangle in the Device view to select resources for this Reconfigurable
Partition.

3. With this Pblock selected, note that the Pblock Properties pane shows the number of
available and required resources. The number required is based on the currently loaded
Reconfigurable Module, so keep in mind that other modules may have different
requirements. If additional rectangles are required to build the appropriate shape (an
"L", for example), right-click the Pblock in the Device view and select Add Pblock
Rectangle.

4. Design rule checks (DRCs) can be issued to validate the floorplan and other design
considerations for the in-memory configuration. To run, select Tools > Report >
Report DRC and ensure the Partial Reconfiguration checks are present (see Figure 3-1,
page 35). Note that if HD.RECONFIGURABLE has not been set on a Pblock, only a single
DRC is available, instead of the full complement shown below.

Partial Reconfiguration www.xilinx.com 34
UG909 (v2015.4) November 18, 2015

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG909&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Partial%20Reconfiguration%20%28UG909%29&releaseVersion=2015.4&docPage=34

Chapter 3: Vivado Software Flow
X-Ref Target - Figure 3-1

Figure 3-1: Partial Reconfiguration DRCs in the Vivado IDE
Partial Reconfiguration www.xilinx.com 35
UG909 (v2015.4) November 18, 2015

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG909&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Partial%20Reconfiguration%20%28UG909%29&releaseVersion=2015.4&docPage=35

Chapter 3: Vivado Software Flow
This set of DRCs can be run from the Tcl Console or within a script, by using the
report_drc command. To limit the checks to the ones shown here for Partial
Reconfiguration, use this syntax:

report_drc -checks [get_drc_checks HDPR*]

To extend the DRCs to those checked during specific phases of design processing the
-ruledeck option can be used. For example, the following command can be issued on a
placed and routed design:

report_drc -ruledeck bitstream_checks

To save these floorplanning constraints, enter the following command in the Tcl Console:

write_xdc top_fplan.xdc

The Pblock constraints stored in this constraints f ile can be used directly or can be copied
to another top-level design constraints f ile. This XDC file contains all the constraints in the
current design in memory not just the constraints recently added.

CAUTION! Do NOT save the overall design from the Vivado IDE using File > Save Checkpoint or the
equivalent button. If you save the currently loaded design in this way, you will overwrite your
synthesized static design checkpoint with a new version that includes Reconfigurable Modules and
additional constraints.

Timing Constraints
Timing constraints for a Partial Reconfigurable design are similar to timing constraints for
a traditional flat design. The primary clocks and I/Os must be constrained with the
corresponding constraints. For more information on these constraints, see this link (for
defining clocks) and this link (for constraining I/O delays) in the Vivado Design Suite User
Guide: Using Constraints (UG903) [Ref 18].

After the correct constraints are applied to the design, run static timing analysis to verify
the performance of the design. This verif ication must be run for each reconfigurable
module in the overall static design. For more information on how to analyze the design, see
the Vivado Design Suite User Guide: Design Analysis and Closure Techniques (UG906)
[Ref 19].

The Vivado Design Suite includes the capability to run cell level timing reports. Use the
-cell option for report_timing or report_timing_summary to focus timing analysis
on a specific Reconfigurable Module. This is especially useful on configurations where the
static design has been imported and locked from a prior configuration.

The current constraint set does not allow the use of constraining or timing analysis for
interconnect tiles at the reconfigurable module boundary. The ability to constrain and
analyze for the interconnect tiles is being researched for a future release.
Partial Reconfiguration www.xilinx.com 36
UG909 (v2015.4) November 18, 2015

Send Feedback

http://www.xilinx.com/cgi-bin/docs/rdoc?v=2015.4;d=ug903-vivado-using-constraints.pdf;a=xDefiningClocks
http://www.xilinx.com/cgi-bin/docs/rdoc?v=2015.4;d=ug903-vivado-using-constraints.pdf;a=xConstrainingIODelay
http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG909&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Partial%20Reconfiguration%20%28UG909%29&releaseVersion=2015.4&docPage=36

Chapter 3: Vivado Software Flow
Partition Pins
Interface points called partition pins are automatically created within the Pblock ranges
defined for the Reconfigurable Partition. These virtual I/O are established within
interconnect tiles as the anchor points that remain consistent from one module to the next.
No physical resources such as LUTs or flip-flops are required to establish these anchor
points, and no additional delay is incurred at these points.

The placer chooses locations based on source and loads and timing requirements, but you
can specify these locations as well. The following constraints can be applied to influence
partition pin placement.

Note: The PARTPIN_SPREADING command in Table 3-4, page 32, can also be used to affect
Partition Pins, but is applied at the Pblock level.

Context Property Examples:

• set_property HD.PARTPIN_LOCS INT_R_X4Y153 [get_ports <port_name>]

• set_property HD.PARTPIN_RANGE SLICE_X4Y153:SLICE_X5Y157
[get_ports <port_name>]

Instance names for interconnect tile sites can be seen in the Device View with the Routing
Resources enabled.

Note: The HD.PARTPIN_RANGE is automatically set during place_design if no user-defined
value is found. Once the value is set, it will not be reset during interactive place and route, such as
making experimental changes to the RP Pblocks and running place_design -unplace. In this
case, the HD.PARTPIN_RANGE and HD.PARTPIN_LOCS need to be reset manually if Pblock
adjustments are made. The properties can be reset like most properties.

Table 3-5: Context Properties

Command/Property Name Description

HD.PARTPIN_LOCS Used to define a specif ic interconnect tile (INT) for the specified
port to be routed. Overrides an HD.PARTPIN_RANGE value.
Affects placement and routing of logic on both sides of the
Reconfigurable Partition boundary.
Do not use this property on clock ports, as this assumes local
routing for the clock.
Do not use this property on dedicated connections.

HD.PARTPIN_RANGE Used to define a range of component sites (SLICE, DSP, BRAM)
or interconnect tiles (INT) that can be used to route the
specified port(s).
The value is automatically calculated based on Pblock range if
no user-defined HD.PARTPIN_RANGE value exists.
Partial Reconfiguration www.xilinx.com 37
UG909 (v2015.4) November 18, 2015

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG909&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Partial%20Reconfiguration%20%28UG909%29&releaseVersion=2015.4&docPage=37

Chapter 3: Vivado Software Flow
The following Tcl proc can be useful when doing this kind of interactive floorplanning on PR
designs:

Proc to unroute, uplace, and reset HD.PARTPIN_*
###
proc pr_unplace {} {
route_design -unroute
place_design -unplace
set cells [get_cells -quiet -hier -filter HD.RECONFIGURABLE]
foreach cell $cells {
reset_property HD.PARTPIN_LOCS [get_pins $cell/*]
reset_property HD.PARTPIN_RANGE [get_pins $cell/*]

}
}

Apply Reset After Reconfiguration
With the Reset After Reconfiguration feature, the reconfiguring region is held in a steady
state during partial reconfiguration, and then all logic in the new Reconfigurable Module is
initialized to its starting values. Static routes can still freely pass unaffected through the
region, and static logic (and all other PR regions) elsewhere in the device continue to
operate normally during Partial Reconfiguration. Partial Reconfiguration with this feature
behaves in the same manner as the initial configuration of the FPGA, with synchronous
elements being released in a known, initialized state.

IMPORTANT: Release of global signals such as GSR (Global Set Reset) and GWE (Global Write Enable)
are not guaranteed to be synchronized chip-wide. If functionality within a Reconfigurable Module relies
on synchronized startup of initialized sequential elements, the clock(s) driving the logic in that module
or Clock Enables on these elements can be disabled during reconfiguration, then re-enabled after
reconfiguration has been completed. For more details, see the “Design Advisory for techniques on
properly synchronizing flip-flops and SRLs” answer record (AR#44174) [Ref 31].

This is the RESET_AFTER_RECONFIG property syntax:

set_property RESET_AFTER_RECONFIG true [get_pblocks <reconfig_pblock_name>]

If the design uses the DRP interface of the 7 series XADC component, the interface will be
blocked (held in reset) during partial reconfiguration when RESET_AFTER_RECONFIG is
enabled. The interface will be non-responsive (busy), and there will be no access during the
length of the partial reconfiguration period. The interface will become accessible again
after partial reconfiguration is complete.
Partial Reconfiguration www.xilinx.com 38
UG909 (v2015.4) November 18, 2015

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG909&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Partial%20Reconfiguration%20%28UG909%29&releaseVersion=2015.4&docPage=38

Chapter 3: Vivado Software Flow
To apply the Reset After Reconfiguration methodology for 7 series and Zynq-7000 AP SoC
devices, Pblock constraints must align to reconfigurable frames. Because the GSR affects
every synchronous element within the region, exclusive use of reconfiguration frames is
required; static logic is not permitted within these reconfigurable frames (static routing is
permitted). Pblocks must align vertically to clock regions, since that matches the base
region for a reconfigurable frame. The width of a Pblock does not matter when using
RESET_AFTER_RECONFIG.

UltraScale™ devices do not have this clock region alignment requirement, and GSR can be
applied at a f ine granularity. Because of this, RESET_AFTER_RECONFIG is automatically
applied for all Reconfigurable Partitions in the UltraScale architecture.

In Figure 3-2, the Pblock on the left (pblock_shift) is frame-aligned because the top and
bottom of the Pblock align to the height of clock region X1Y3. The Pblock on the right
(pblock_count) is not frame-aligned.

° For 7 series devices: Pblocks that are not frame-aligned (such as pblock_count in
the figure below) cannot have RESET_AFTER_RECONFIG set because any static
logic placed between it and the clock region boundary above it would be affected
by GSR after that module was partially reconfigured.

° For UltraScale devices: because of the improved GSR controls, both Pblocks
automatically use RESET_AFTER_RECONFIG.

Using the SNAPPING_MODE constraint automatically creates legal, reconfigurable Pblocks.
See Automatic Adjustments for Reconfigurable Partition Pblocks in Chapter 5 (for 7 series
devices) or Automatic Adjustments for PU on PBlocks in Chapter 6 (for UltraScale devices)
for more information.
Partial Reconfiguration www.xilinx.com 39
UG909 (v2015.4) November 18, 2015

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG909&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Partial%20Reconfiguration%20%28UG909%29&releaseVersion=2015.4&docPage=39

Chapter 3: Vivado Software Flow

The GSR capabilities are embedded within the partial bitstreams, so nothing extra must be
done to include this feature during reconfiguration. However, because this process utilizes
the SHUTDOWN sequence (masked to the reconfiguring region only), the external DONE pin
are pulled LOW when reconfiguration starts, then pull HIGH when it successfully completes.
This behavior must be considered when setting up the board. Using the STARTUP block
DONEO is not an option to prevent the DONE pin from changing state, since this block is
disabled during shutdown. Nor can STARTUP be used for other purposes, such as
generating a configuration clock for partial reconfiguration if RESET_AFTER_RECONFIG is
used.

X-Ref Target - Figure 3-2

Figure 3-2: RESET_AFTER_RECONFIG Compatible (Left) and Incompatible (Right) Pblocks
Partial Reconfiguration www.xilinx.com 40
UG909 (v2015.4) November 18, 2015

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG909&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Partial%20Reconfiguration%20%28UG909%29&releaseVersion=2015.4&docPage=40

Chapter 3: Vivado Software Flow
An alternative approach would be to forego this property and apply a local reset to any
reconfigured logic that requires initialization to function properly. This approach does not
require vertical alignment to clock region boundaries. Without GSR or a local reset, the
initial starting value of a synchronous element within a reconfigured module cannot be
guaranteed.

Turn On Visualization Scripts
The configuration tiles that are part of the partial bitstreams can be visualized within the
Device View in the Vivado IDE. These are identif ied by scripts that are created during
implementation. To turn on script creation, set this parameter before starting
implementation:

set_param HD.VISUAL true

This generates multiple scripts placed in the hd_visual directory, which is created in the
directory where the run script is launched. To use these scripts, read a routed design
checkpoint into the Vivado IDE, then source one of the scripts. These design-specif ic scripts
highlight configuration tiles as you have defined them, show configuration frames used to
create the partial bit f ile, or show sites excluded by the PR floorplan. Additional scripts are
created for other flows, such as Module Analysis or Tandem Configuration, and are not used
for PR.

Software Flow
This section describes the basic flow, and gives sample commands to execute this flow.

Synthesis
Each module (including Static) needs to be synthesized bottom-up so that a netlist or
checkpoint exists for static and each Reconfigurable Module.

1. Synthesize the top level:

read_verilog top.v (and other HDL associated with the static design, including
black box module definitions for Reconfigurable Modules)

then:

read_xdc top_synth.xdc

synth_design -top top -part xc7k70tfbg676-2

write_checkpoint top_synth.dcp
Partial Reconfiguration www.xilinx.com 41
UG909 (v2015.4) November 18, 2015

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG909&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Partial%20Reconfiguration%20%28UG909%29&releaseVersion=2015.4&docPage=41

Chapter 3: Vivado Software Flow
2. Synthesize a Reconfigurable Module:

read_verilog rp1_a.v

synth_design -top rp1 -part xc7k70tfbg676-2 -mode out_of_context

write_checkpoint rp1_a_synth.dcp

3. Repeat for each remaining Reconfigurable Module

read_verilog rp1_b.v

synth_design -top rp1 -part xc7k70tfbg676-2 -mode out_of_context

write_checkpoint rp1_b_synth.dcp

Implementation
Create as many configurations as necessary to implement all Reconfigurable Modules at
least once. The first configuration loads in synthesis results for top and the f irst
Reconfigurable Module. You must then mark the module as being reconfigurable, then run
implementation. Write out a checkpoint for the complete routed configuration, and
optionally for the Reconfigurable Module so it can be reused later if desired. Finally, remove
the Reconfigurable Module from the design (update_design -cell -black_box) and
write out a checkpoint for the locked static design alone.

Configuration 1:

open_checkpoint top_synth.dcp

read_xdc top_impl.xdc

read_checkpoint -cell rp1 rp1_a_synth.dcp

set_property HD.RECONFIGURABLE true [get_cells rp1]

opt_design

place_design

route_design

write_checkpoint config1_routed.dcp

write_checkpoint -cell rp1 rp1_a_route_design.dcp

update_design -cell rp1 -black_box

lock_design -level routing

write_checkpoint static_routed.dcp

For the second configuration, load the placed and routed checkpoint for static (if it was
closed), which currently has a black box for the Reconfigurable Module. Then load in the
synthesis results for the second Reconfigurable Module and implement the design. Finally
write out an implementation checkpoint for the second version of the Reconfigurable
Module.
Partial Reconfiguration www.xilinx.com 42
UG909 (v2015.4) November 18, 2015

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG909&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Partial%20Reconfiguration%20%28UG909%29&releaseVersion=2015.4&docPage=42

Chapter 3: Vivado Software Flow
Configuration 2:

open_checkpoint static_routed.dcp

read_checkpoint -cell rp1 rp1_b_synth.dcp

opt_design

place_design

route_design

write_checkpoint config2_routed.dcp

write_checkpoint -cell rp1 rp1_b_route_design.dcp

TIP: Keep each configuration in a separate folder so that all intermediate checkpoints, log and report
files, bit files, and other design outputs are kept unique.

If multiple Reconfigurable Partitions exist, then other configurations may be required.
Additional configurations can also be created by importing previously implemented
Reconfigurable Modules to create full designs that exist in hardware. This can be useful for
creating full bitstreams with a desired combination for power-up, or for performing static
timing analysis, power analysis, or simulation.

IMPORTANT: See Known Issues in Chapter 8 for a current issue with reuse of implemented
Reconfigurable Module checkpoints.

Reporting
Each step of the implementation flow performs design rule checks (DRCs) unique to partial
reconfiguration. Keep a close eye on the messages given by the implementation steps to
ensure no critical warnings are issued. These messages provide guidance to optimize
module interfaces, floorplans, and other key aspects of PR designs.

Most reports that can be generated do not have PR-specif ic sections, but useful
information can be extracted nonetheless. For example, utilization information can be
obtained by using the -pblocks switch for the report_utilization command. This
shows the used and available resources within a given reconfigurable module. Here is an
example using the design from the Vivado Design Suite Tutorial: Partial Reconfiguration
(UG947) [Ref 1]:

report_utilization -pblocks [get_pblocks pblock_count]

For clock reporting, however, report_clock_utilization shows the clocks reserved
for partial reconfiguration implementation.
Partial Reconfiguration www.xilinx.com 43
UG909 (v2015.4) November 18, 2015

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG909&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Partial%20Reconfiguration%20%28UG909%29&releaseVersion=2015.4&docPage=43

Chapter 3: Vivado Software Flow
Verifying Configurations
Once all configurations have been completely placed and routed, a f inal verif ication check
can be done to validate consistency between these configurations using pr_verify. This
command takes in multiple routed checkpoints (DCPs) as arguments, and outputs a log of
any differences found in the static implementation and Partition Pin placement between
them. Placement and routing within any RMs is ignored during the comparison.

When just two configurations are to be compared, list the two routed checkpoints as
<file1> and <file2>. The pr_verify command loads both in memory and makes the
comparison.

When more than two configurations are to be compared, provide a "master" configuration
using the -initial switch, then list the remaining configurations by using the
-additional switch, listing configurations in braces ({ and }). The initial configuration is
kept in memory and the remaining configurations are compared against the initial one.
Bitstreams should not be generated for any configurations if any pair of configurations do
not pass the PR Verify check.

pr_verify [-full_check] [-file <arg>] [-initial <arg>] [-additional <arg>] [-quiet]
[-verbose] [<file1>] [<file2>]

The following is a sample command line comparing two configurations:

pr_verify -full_check config1_routed.dcp config2_routed.dcp -file pr_verify_c1_c2.log

The following is a second example verifying three configurations:

pr_verify -full_check -initial config1.dcp -additional {config2.dcp config3.dcp} -file
three_config.log

Table 3-6: pr_verify Options

Command Option Description

-full_check Default behavior is to report the f irst difference only; if this
option is selected, pr_verify reports all differences in
placement or routing.

-file Filename to output results to. Send output to console if
-file is not used.

-initial Select one routed design checkpoint against which all others
will be compared.

-additional Select one or more routed design checkpoints to compare
against the initial one. List multiple checkpoints within
braces, separated by a space, as in this example:

{config2.dcp config3.dcp config4.dcp}

-quiet Ignore command errors.

-verbose Suspend message limits during command execution.
Partial Reconfiguration www.xilinx.com 44
UG909 (v2015.4) November 18, 2015

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG909&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Partial%20Reconfiguration%20%28UG909%29&releaseVersion=2015.4&docPage=44

Chapter 3: Vivado Software Flow
The scripts provided with the Vivado Design Suite Tutorial: Partial Reconfiguration (UG947)
[Ref 1] have a Tcl Proc called verify_configs that automatically runs all existing
configurations through pr_verify, and reports if the DCPs are compatible or not.

Bitstream Generation
As in a flat flow, bitstreams are created with the write_bitstream command. For each
design configuration, simply issue write_bitstream to create a full standard
configuration f ile plus one partial bit f ile for each Reconfigurable Module within that
configuration.

Xilinx recommends providing the configuration name and Reconfigurable Module names in
the -file option specif ied with write_bitstream. Only the base bit f ile name can be
modif ied, so it is important to record which Reconfigurable Modules were selected for each
configuration.

Using the previous design, the following is an example of reading routed checkpoints
(configurations) and creating bitstreams for all implemented Reconfigurable Modules.

open_checkpoint config1_routed.dcp

write_bitstream config1

This command creates a full design bitstream called config1.bit. This bitstream should
be used to program the device from power-up and includes the functionality of any
Reconfigurable Modules contained within. It also creates partial bit f iles
config1_pblock_rp1_partial.bit and config1_pblock_rp2_partial.bit that
can be used to reconfigure these modules while the FPGA continues to operate. Repeat
these steps for each configuration.

TIP: Rename each partial bit file to match the Reconfigurable Module instance from which it was built
to uniquely identify these modules. The current solution names partial bit files only on the
configuration base name and Pblock name: <base_name>_<pblock_name>_partial.bit

If the full design configuration f ile is not required, then a single partial bitstream can be
created on its own. With a full design configuration checkpoint loaded in memory, use the
-cell option to identify the instance for which a partial bitstream is needed. The name of
this partial bitstream can be given, as it is not automatically derived from the Pblock name.

write_bitstream -cell rp1 RM_count_down_partial.bit

This creates only a partial bitstream for the Reconfigurable Partition identif ied.

CAUTION! Do not run write_bitstream directly on Reconfigurable Module checkpoints; only use
full design checkpoints. Reconfigurable module checkpoints, while they are placed and routed
submodules, have no information regarding the top level design implementation, and therefore would
create unsuitable partial bit files.
Partial Reconfiguration www.xilinx.com 45
UG909 (v2015.4) November 18, 2015

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG909&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Partial%20Reconfiguration%20%28UG909%29&releaseVersion=2015.4&docPage=45

Chapter 3: Vivado Software Flow
If a power-on configuration of the static design only is desired, run write_bitstream on
the checkpoint that has empty Reconfigurable Partitions (after update_design
-black_box and update_design -buffer_ports have run). This "black box
configuration" can be compressed to reduce the bit f ile size and configuration time.

IMPORTANT: The outputs of the RPs are undriven, so structure the design so that it powers up with the
decoupling logic enabled.

The size of each partial bitstream is reported in the output from write_bitstream. As
this command is run, these messages will be reported for each partial and clearing bit f ile.

Creating bitmap...
Creating bitstream...
Partial bitstream contains 3441952 bits.
Writing bitstream ./Bitstreams/right_up_pblock_inst_shift_partial.bit...

Bitstream compression, encryption, and other advanced features can be used. See Known
Limitations, page 108 for specif ic unsupported use cases for UltraScale devices.

Tcl Scripts
Scripts are provided to run this flow in the Vivado Design Suite Tutorial: Partial
Reconfiguration (UG947) [Ref 1]. The details of these sample scripts are documented in the
tutorial itself and in the readme.txt contained in the sample design archive.
Partial Reconfiguration www.xilinx.com 46
UG909 (v2015.4) November 18, 2015

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG909&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Partial%20Reconfiguration%20%28UG909%29&releaseVersion=2015.4&docPage=46

Chapter 4

Design Considerations and Guidelines for
All Xilinx Devices

Overview
This chapter explains design requirements that are unique to Partial Reconfiguration, and
covers specif ic PR features within the Xilinx® design software tools.

To take advantage of the Partial Reconfiguration capability of Xilinx FPGAs, you must
analyze the design specif ication thoroughly, and consider the requirements, characteristics,
and limitations associated with PR designs. This simplif ies both the design and debug
processes, and avoids potential future risks of malfunction in the design.

This chapter describes the design requirements that apply to all Xilinx 7 series and
UltraScale™ devices. For design requirements specif ic to the individual FPGA and SoC
architectures, see the following chapters in this manual:

• Chapter 5, Design Considerations and Guidelines for 7 Series and Zynq Devices

• Chapter 6, Design Considerations and Guidelines for UltraScale Devices

Design Hierarchy
Good hierarchical design practices resolve many complexities and diff iculties when
implementing a Partially Reconfigurable FPGA design. A clear design instance hierarchy
simplif ies physical and timing constraints. Registering signals at the boundary between
static and reconfigurable logic eases timing closure. Grouping logic that is packed together
in the same hierarchical level is necessary.

These are all well known design practices that are often not followed in general FPGA
designs. Following these design rules is not strictly required in a partially reconfigurable
design, but the potential negative effects of not following them are more pronounced. The
benefits of Partial Reconfiguration are great, but the extra complexity in design could be
more challenging to debug, especially in hardware.
Partial Reconfiguration www.xilinx.com 47
UG909 (v2015.4) November 18, 2015

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG909&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Partial%20Reconfiguration%20%28UG909%29&releaseVersion=2015.4&docPage=47

Chapter 4: Design Considerations and Guidelines for All Xilinx Devices
For additional information about design hierarchy, see Hierarchical Design Methodology
Guide (UG748) [Ref 11]

Dynamic Reconfiguration Using the DRP
Logic that is in the static region, and therefore is never partially reconfigured, can still be
reconfigured dynamically through the Dynamic Reconfiguration Port (DRP). The DRP can be
used to configure logic elements such as MMCMs, PLLs, and serial transceivers (MGTs).

Information about the DRP and dynamic reconfiguration, including how to use the DRP for
specific design resources, can be found in these documents:

• 7 Series FPGAs Configuration User Guide (UG470) [Ref 7]

• 7 Series FPGAs GTX/GTH Transceivers User Guide (UG476) [Ref 20]

• 7 Series FPGAs GTP Transceivers User Guide (UG482) [Ref 21]

• MMCM and PLL Dynamic Reconfiguration (7 Series) (XAPP888) [Ref 22]

• UltraScale Architecture Configuration User Guide (UG570) [Ref 8]

• UltraScale Architecture Clocking Resources User Guide (UG572) [Ref 23]

• UltraScale Architecture GTH Transceivers User Guide (UG576) [Ref 24]

• UltraScale Architecture GTY Transceivers User Guide (UG578) [Ref 25]

Packing Logic
Any logic that must be packed together must be placed in the same group, whether it is
static or reconfigurable. For example, if a LUT and a flip-flop are expected to be placed
within the same slice, they must be within the same partition. Partition boundaries are
barriers to optimization.

For Reconfigurable Partitions that include I/O, Clocking, and GT resources, it might be
necessary to instantiate any I/O buffers that are automatically inferred by the tools inside
that RP level. For example, if GT_COMMON is in an RP, the IBUFDS_GTE needs to be
instantiated. If the associated I/O buffer is in the top-level/static portion, it cannot be
packed.

Design Instance Hierarchy
The most simple method is to instantiate the Reconfigurable Partitions in the top-level
module, but this is not required because a Reconfigurable Partition may be located in any
level of hierarchy. Each Reconfigurable Partition must correspond to exactly one
instance—an RP might not have more than one top. The instantiation has multiple modules
with which it is associated.
Partial Reconfiguration www.xilinx.com 48
UG909 (v2015.4) November 18, 2015

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG909&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Partial%20Reconfiguration%20%28UG909%29&releaseVersion=2015.4&docPage=48

Chapter 4: Design Considerations and Guidelines for All Xilinx Devices
Changes in design hierarchy can be used to merge and/or separate modules and leaf cells
into and out of an RP level of hierarchy. There are several reasons to do this:

• To balance device resources between the PR region and Static region, making the
design more efficient. For example, if the target RP takes up most of the device, and
there is a module in the Static region that requires a high number of Block RAMs
unavailable to Static, you can move that module into the PR region.

• If you need cells to reside in the same physical area of the device, but they are in a
different design hierarchy. For example, if you need GT_CHANNELS to be placed in the
same UltraScale Clock Region, but the design has GTs in both the Static and RP regions.

• To ensure that dedicated connections, for example from IBUFDS_GT to GT_COMMON,
reside in the same region.

Reconfigurable Partition Interfaces
One of the fundamental requirements of a partially reconfigurable design is consistency
between Reconfigurable Modules (RMs). As one module is swapped for another, the
connections between the static design and the Reconfigurable Module must be identical,
both logically and physically. To achieve this consistency, optimizations across the partition
boundary or of the boundary itself are prohibited.

RECOMMENDED: Keep interface logic connecting to and from RM ports consistent across all RMs. Do
not change the levels of logic between RMs, such as using one level of logic in the initial design and five
levels of logic in next RM. Also, do not change the driver type, such as using flip-flops in the initial RM
and BRAM in next RM. Since the static side of the interface is locked after the initial configuration, the
tools are unable to adjust for these changes in later configurations. Xilinx recommends registering all
inputs and outputs of the RMs.

For optimal eff iciency, all ports of a Reconfigurable Partition should be actively used on the
static design side. For example, if static drivers of the Reconfigurable Partition are driven by
constants (0 or 1), they are implemented through the creation of a LUT instance and local
tie-off to a constant driver and cannot be trimmed away. Likewise, unconnected outputs
remain on Reconfigurable Partition outputs, creating unnecessary waste in the overall
design. These measures must be taken by the implementation tools to ensure that all
Reconfigurable Modules have the same port map during design assembly.

RECOMMENDED: Examine the interface of all Reconfigurable Partitions after synthesis to ensure that
as few constants or unconnected ports as possible remain. By clearing out dead logic, resource
utilization is reduced, and congestion and timing closure challenges easier to address.
Partial Reconfiguration www.xilinx.com 49
UG909 (v2015.4) November 18, 2015

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG909&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Partial%20Reconfiguration%20%28UG909%29&releaseVersion=2015.4&docPage=49

Chapter 4: Design Considerations and Guidelines for All Xilinx Devices
Six different cases are possible for partition interface usage:

1. Both Static and Reconfigurable Module sides have active logic. (Applies to partition
inputs or outputs)

This is the optimal situation. A partition pin is inserted.

RECOMMENDED: If partition inputs are driven by VCC or GND, push these constants into the
Reconfigurable Modules. This reduces LUT usage and allow the implementation tools to optimize these
constants with the RM logic.

2. The Static side has an active driver but the Reconfigurable Module does not have
active loads. (Applies to partition inputs)

This is acceptable because it accommodates the situation in which not every
Reconfigurable Module has the same I/O requirements. A partition pin is inserted, and
the unused input ports are left unconnected.

For example, one module might require CLK_A, while a second might require CLK_B.
Clock spines are pre-routed to the Reconfigurable Partition clock regions, but the
module only taps into the clock source that is needed. However, if a partition input is
not used by any Reconfigurable Module, it should be removed from the partition
instantiation.

3. The Static side has active loads but the Reconfigurable Module does not have an
active driver. (Applies to partition outputs)

This is acceptable and similar to the case above. A partition pin is inserted, and it is
driven by ground (logic 0) within the Reconfigurable Module.

4. The Static side does not have an active driver, but the Reconfigurable Module has
active loads. (Applies to partition inputs)

This results in an error that must be resolved by modifying the partition interface.

The following is an example of an error that may be seen for this scenario:

ERROR: [Opt 31-65] LUT input is undriven either due to a missing connection from
a design error, or a connection removed during opt_design.

This error message would be followed by a LUT instance that is within the
Reconfigurable Module.

5. Reconfigurable Module has an active driver, but the Static side has no active loads.
(Applies to partition outputs)

This does not result in an error, but is far from optimal because the RM logic remains. No
partition pin is inserted. These partition outputs should be removed.
Partial Reconfiguration www.xilinx.com 50
UG909 (v2015.4) November 18, 2015

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG909&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Partial%20Reconfiguration%20%28UG909%29&releaseVersion=2015.4&docPage=50

Chapter 4: Design Considerations and Guidelines for All Xilinx Devices
6. Neither Static nor Reconfigurable Module sides have driver or loads for a partition
port. (Applies to partition inputs or outputs.)

Nothing is inserted or used, so there is no implementation ineff iciency, but it is
unnecessary in terms of the instantiation port list.

Partition Pin Placement
Each pin of an RP has a partition pin (PartPin). By default the tools automatically place these
PartPins inside of the RP Pblock range (which is required). For many cases, this automatic
placement can be suff icient for the design. However, for timing-critical interface signals or
designs with high congestion, it might be necessary to help guide the placement of the
PartPins. The following is an example of how to achieve this:

• Define user HD.PARTPIN_RANGE constraints for some or all of the pins.

set_property HD.PARTPIN_RANGE {SLICE_Xx0Yx0:SLICE_Xx1Yy1
SLICE_XxNYyN:SLICE_XxMYyM} [get_pins <rp_cell_name>/*]

By default the HD.PARTPIN_RANGE is set to the entire Pblock range. Defining a user
range allows the tools to place PartPins in the specif ied areas, improving timing and/or
reducing congestion.

IMPORTANT: When examining the placement of PartPins, there are limited routing resources available
along the edges, and especially in the corners, of the Pblock. The PartPin placer attempts to spread the
partition pins, minimizing the number of partition pins per interconnect along the edges, and
increasing the PartPin density towards the middle of the Pblock. When defining a custom
HD.PARTPIN_RANGE constraint, be sure to make the range wide enough to allow for spreading, or you
are likely to see congestion around the PartPins.

Active-Low Resets and Clock Enables
In Xilinx 7 series FPGAs, there are no local inverters on control signals (resets or clock
enables). The following description uses a reset as the example, but the same applies for
clock enables.

If a design uses an active-Low reset, a LUT must be used to invert the signal. In non-PR
designs that use all active-Low resets multiple LUTs are inferred but can be combined into
a single LUT and pushed into the I/O elements (the LUT goes away). In non-PR designs that
use a mix of High and Low, the LUT inverters can be combined into one LUT that remains in
the design, but that has minimal effect on routing and the timing of the reset net (output of
LUT can still be put on global resources). However, for a design that uses active-Low resets
on a partition, it is possible to have inverters inferred inside the partition that cannot be
Partial Reconfiguration www.xilinx.com 51
UG909 (v2015.4) November 18, 2015

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG909&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Partial%20Reconfiguration%20%28UG909%29&releaseVersion=2015.4&docPage=51

Chapter 4: Design Considerations and Guidelines for All Xilinx Devices
pulled out and combined. This makes it impossible to put the reset on global resources, and
can lead to poor reset timing and to routing issues if the design is already congested.

The best way to avoid this is to avoid using active-Low control signals. However, there are
cases where this is not possible (for example, when using an IP core with an Advanced
eXtensible Interface (AXI) interface). In these cases the design should assign the active-Low
reset to a signal at the top level, and use that new signal everywhere in the design.

As an example:

reset_n <= !reset;

Use the reset_n signal for all cases, and do not use the!reset assignments on signals or
ports.

This ensures that a LUT is inferred only for the reset net for the whole design and has a
minimal effect on design performance.

Decoupling Functionality
Because the reconfigurable logic is modif ied while the device is operating, the static logic
connected to outputs of Reconfigurable Modules must ignore data from Reconfigurable
Modules during Partial Reconfiguration. The Reconfigurable Modules do not output valid
data until Partial Reconfiguration is complete and the reconfigured logic is reset. There is
no way to predict or simulate the functionality of the reconfiguring module.

You must decide how the decoupling strategy is solved. A common design practice to
mitigate this issue is to register all output signals (on the static side of the interface) from
the Reconfigurable Module. An enable signal can be used to isolate the logic until it is
completely reconfigured. Other approaches range from a simple 2-to-1 MUX on each
output port, to higher level bus controller functions.

The static design should include the logic required for the data and interface management.
It can implement mechanisms such as handshaking or disabling interfaces (which might be
required for bus structures to avoid invalid transactions). It is also useful to consider the
down-time performance effect of a PR module (that is, the unavailability of any shared
resources included in a PR module during or after reconfiguration).

A Partial Reconfiguration Decoupler IP is available, allowing users to insert MUXes to
eff iciently decouple AXI Lite, AXI4-Stream, and custom interfaces. More information about
the PR Decoupler IP is available on the Xilinx website.
Partial Reconfiguration www.xilinx.com 52
UG909 (v2015.4) November 18, 2015

Send Feedback

http://www.xilinx.com/products/intellectual-property/pr-decoupler.html
http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG909&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Partial%20Reconfiguration%20%28UG909%29&releaseVersion=2015.4&docPage=52

Chapter 4: Design Considerations and Guidelines for All Xilinx Devices
Black Boxes
You can implement an RP as a pseudo black box. To do this, the RP must be a black box in
the static design (either from bottom-up synthesis results or from running
update_design -black_box). Then the black box can have LUT1 buffers placed on all
inputs and outputs using the command update_design -buffer_ports on the black
box RP cell:

update_design -cell <rp_cellName> -buffer_ports

Now you can run this design through implementation to place and route the LUT1 buffers
(and static logic, if not already placed and routed).

All the inserted LUT1 output buffers are tied to a logic 0 (ground). If it is necessary to drive
a logic 1 (VCC) from the RP outputs, this can be controlled using an RP pin property called
HD.PARTPIN_TIEOFF. This property can be set at any time (all the way up to
pre-write_bitstream), and it controls the LUT equation of the LUT1 buffer connected to the
specified port. The default value is '0', which configures the LUT as a route-thru (output is
0). Setting this property to '1' configures the LUT as an inverter (output is 1). You might
have to change the output value in some design situations.

set_property HD.PARTPIN_TIEOFF 1 [get_pins <RP_cellName>/<output_pinName>]

The pseudo black box has no user logic (just the tool-inserted LUT1 buffers). The black box
bitstream contains information for these LUTs, as well as any static logic/routes that use
resources inside the RP frames. Static routes that pass through the region, including
interface nets up to the partition pin nodes, exist within this region. Programming
information for these signals is included in the black box programming bitstream.

Use of black boxes is an effective way to reduce the size of a full configuration BIT f ile, and
therefore reduce the initial configuration time. The compression feature might also be
enabled to reduce the size of BIT f iles. This option looks for repeated configuration frame
structures to reduce the amount of configuration data that must be stored in the BIT f ile.
The compression results in reduced configuration and reconfiguration time. When the
compression option is applied to a routed PR design, all of the BIT f iles (full and partial) are
created as compressed BIT f iles. To enable compression, set this property prior to running
write_bitstream:

set_property BITSTREAM.GENERAL.COMPRESS TRUE [current_design]
Partial Reconfiguration www.xilinx.com 53
UG909 (v2015.4) November 18, 2015

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG909&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Partial%20Reconfiguration%20%28UG909%29&releaseVersion=2015.4&docPage=53

Chapter 4: Design Considerations and Guidelines for All Xilinx Devices
Effective Approaches for Implementation
There are trade-offs associated with optimizing any FPGA design. Partial Reconfiguration is
no different. Partitions are barriers to optimization, and reconfigurable frames require
specific layout constraints. These are the additional costs to building a reconfigurable
design. The additional overhead for timing and area needs vary from design to design. To
minimize the impact, follow the design considerations stated in this guide.

When building Configurations of a reconfigurable design, the f irst Configuration to be
chosen for implementation should be the most challenging one. Be sure that the physical
region selected has adequate resources (especially elements such as block RAM and DSP48)
for each Reconfigurable Module in each Reconfigurable Partition, then select the most
demanding (in terms of either timing or area) RM for each RP. If all of the RMs in the
subsequent Configurations are smaller or slower, it is easier to meet their demands. Timing
budgets should be established to meet the needs of all Reconfigurable Modules.

If it is not clear which reconfigurable module is the most challenging, each can be
implemented in parallel in context with static, allowing static to be placed and routed for
each. Examine resource utilization statistics and timing reports to see which configuration
met design criteria most easily and which had the tightest tolerances, or which missed by
the widest margins.

IMPORTANT: Focus attention on the configuration that is the furthest from meeting its goals, iterating
on design sources, constraints, and strategies until needs are met. At some point, one configuration
must be established as the golden result for the static design, and that implementation of the static
logic will be used for all other configurations.

Building Up Implementation Requirements
Implementation of Partial Reconfiguration designs requires that certain fundamental rules
are followed. These rules have been established to ensure that a partial bitstream can be
accurately created and safely delivered to an active device. As noted throughout this
document, these rules include these basic premises:

• The logical and physical interface of a Reconfigurable Partition remains consistent as
each Reconfigurable Module is implemented.

• The logic and routing of a Reconfigurable Module is fully contained within a physical
region which is then translated into a partial bitstream.

• The logic of the static design must be kept out of the reconfigurable region if the
dedicated initialization feature is used.
Partial Reconfiguration www.xilinx.com 54
UG909 (v2015.4) November 18, 2015

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG909&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Partial%20Reconfiguration%20%28UG909%29&releaseVersion=2015.4&docPage=54

Chapter 4: Design Considerations and Guidelines for All Xilinx Devices
These requirements necessitate specific implementation rules for optimization, placement
and routing. Application of these rules might make it more diff icult to meet design goals,
including timing closure. A recommended strategy is to build up this set of requirements
one at a time, allowing you to analyze the results at each step. Starting with the most
challenging configuration and the full set of timing constraints, implement the design
through place and route and examine the results, making sure you have suff icient timing
slack and resources available to continue to the next step.

1. Implement the design with no Pblocks. Use bottom-up synthesis and follow general
Hierarchical Design recommendations, such as registered boundaries, to achieve a
baseline result.

2. Add Pblocks for the design partitions that will later be marked reconfigurable. This
floorplan can be based on the results established in the bottom-up synthesis run from
Step 1. Logic from the Reconfigurable Modules must be placed in the Pblocks, but static
logic may be included there as well.

While creating these Pblocks, the HD.RECONFIGURABLE property (and optionally, the
RESET_AFTER_RECONFIG property) can be added temporarily to run PR-specif ic
Design Rule Checks. This ensures that the floorplan created meets PR size and alignment
requirements.

3. With the floorplan established, separate the placement of static design resources from
those to be reconfigurable by adding the EXCLUSIVE_PLACEMENT property to the
Pblocks. This keeps static logic placed outside the defined Pblocks.

4. Keep the routing for Reconfigurable Modules bound within the Pblocks by applying the
CONTAIN_ROUTING property to the Pblocks. With the properties from this and the
previous step, the only remaining rules relate to boundary optimization procedures as
well as PR-specif ic Design Rule Checks.

5. Finally, mark the Reconfigurable Partition Pblocks as HD.RECONFIGURABLE. The
EXCLUSIVE_PLACEMENT and CONTAIN_ROUTING properties are now redundant and
can be removed.

If design requirements are not met at any of these steps, you have to opportunity to review
the design structure and constraints in light of the newly applied implementation condition.

Defining Reconfigurable Partition Boundaries
Partial reconfiguration is done on a frame-by-frame basis. As such, when partial BIT files are
created, they are built with a discrete number of configuration frames. The size of a partial
bit f ile depends on the number and type of frames included. You can see this size in the
header of a raw bit f ile (.rbt) created by write_bitstream -rawbitfile.
Partial Reconfiguration www.xilinx.com 55
UG909 (v2015.4) November 18, 2015

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG909&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Partial%20Reconfiguration%20%28UG909%29&releaseVersion=2015.4&docPage=55

Chapter 4: Design Considerations and Guidelines for All Xilinx Devices
Partition boundaries do not have to align to reconfigurable frame boundaries, but the most
eff icient place and route results are achieved when this is done. Static logic is permitted to
exist in a frame that will be reconfigured, as long as:

• It is outside the area group defined by the Pblock, and

• It does not contain dynamic elements such as Block RAM, Distributed (LUT) RAM, or
SRLs. (7 series only)

When static logic is placed in a reconfigured frame, the exact functionality of the static logic
is rewritten, and is guaranteed not to glitch.

Irregular shaped Partitions (such as a T or L shapes) are permitted but discouraged.
Placement and routing in such regions can become challenging, because routing resources
must be entirely contained within these regions. Boundaries of Partitions can touch, but this
is not recommended, as some separation helps mitigate potential routing restriction issues
as these partitions connect to the static design. Nested or overlapping Reconfigurable
Partitions (Partitions within Partitions) are not permitted. Design rule checks (Tools >
Report > Report DRC) validate the Partitions and settings in a PR design.

Only one Reconfigurable Partition can exist per physical Reconfigurable Frame.

A Reconfigurable Frame is the smallest size physical region that can be reconfigured, and
its height aligns with clock region or I/O bank boundaries. A Reconfigurable Frame cannot
contain logic from more than one Reconfigurable Partition. If it were to contain logic from
more than one Reconfigurable Partition, it would be very easy to reconfigure the region
with information from an incorrect Reconfigurable Module, thus creating contention. The
software tools are designed to avoid that potentially dangerous occurrence.

Avoiding Deadlock
Some transactions across an RM boundary can take multiple cycles to complete. Removing
an RM after a transaction has started but before it completes causes the system to deadlock
(for example, the master, which initiated the transaction, waits for a response from a slave
which no longer exists).

Additionally, the RM itself can cause deadlock. For example, assume some software is
polling an RM register for a particular value. If the RM is removed, the software might stall
as it continues to wait. It could also stall while waiting on a large block transfer to complete.

Any Partial Reconfiguration design should be built with some sort of handshaking, ensuring
that the removal of a Reconfigurable Module occurs when it is safe to do so. This request or
acknowledgement pairing is part of the user design and can be built in any fashion you
deem appropriate.
Partial Reconfiguration www.xilinx.com 56
UG909 (v2015.4) November 18, 2015

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG909&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Partial%20Reconfiguration%20%28UG909%29&releaseVersion=2015.4&docPage=56

Chapter 4: Design Considerations and Guidelines for All Xilinx Devices
Design Revision Checks
A partial bitstream contains programming information and little else, as described in
Chapter 7, Configuring the Device. While you do not need to identify the target location of
the bitstream (the die location is determined by the addressing that is part of the BIT f ile),
there are no checks in the hardware to ensure the partial bitstream is compatible with the
currently operating design. Loading a partial bitstream into a static design that was not
implemented with that Reconfigurable Module revision can lead to unpredictable behavior.

Xilinx suggests that you prefix a partial bitstream with a unique identif ier indicating the
particular design, revision and module that follows. This identif ier can be interpreted by
your configuration controller to verify that the partial bitstream is compatible with the
resident design. A mismatch can be detected, and the incompatible bitstream can be
rejected, before being loaded into configuration memory. This functionality must be part of
your design, and would be similar to or in conjunction with decryption and/or CRC checks,
as described in PRC/EPRC: Data Integrity and Security Controller for Partial Reconfiguration
(XAPP887) [Ref 26].

A bitstream feature provides a simple mechanism for tagging a design revision. The
BITSTREAM.CONFIG.USR_ACCESS property allows you to enter a revision ID directly into
the bitstream. This ID is placed in the USR_ACCESS register, accessible from the FPGA
programmable logic through a library primitive of the same name. Partial Reconfiguration
designs can read this value and compare it to information a user can add to a header of a
partial bitstream to confirm the revisions of the design match. More information on this
switch can be found at this link in the Vivado Design Suite User Guide: Programming and
Debugging (UG908) [Ref 27].

CAUTION! Do not use the TIMESTAMP feature because this value is not consistent for each call to
write_bitstream. Only select a consistent, explicit ID to be used for all write_bitstream runs.

Simulation and Verification
Configurations of Partial Reconfiguration designs are complete designs in and of
themselves. All standard simulation, timing analysis, and verif ication techniques are
supported for PR designs. Partial reconfiguration itself cannot be simulated. Specifically,
the delivery of a partial bitstream to a configuration port like the ICAP to see the resulting
change (including intermediate states) in a Reconfigurable Partition.
Partial Reconfiguration www.xilinx.com 57
UG909 (v2015.4) November 18, 2015

Send Feedback

http://www.xilinx.com/cgi-bin/docs/rdoc?v=2015.4;d=ug908-vivado-programming-debugging.pdf;a=xDeviceConfigurationBitstreamSettings
http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG909&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Partial%20Reconfiguration%20%28UG909%29&releaseVersion=2015.4&docPage=57

Chapter 5

Design Considerations and Guidelines for
7 Series and Zynq Devices

Overview
This chapter explains design requirements that are unique to Partial Reconfiguration, and
are specif ic to 7 series and Zynq®-7000 AP SoC devices.

To take advantage of the Partial Reconfiguration capability of Xilinx devices, you must
analyze the design specif ication thoroughly, and consider the requirements, characteristics,
and limitations associated with PR designs. This simplif ies both the design and debug
processes, and avoids potential future risks of malfunction in the design.

Design Elements Inside Reconfigurable Modules
Not all logic is permitted to be actively reconfigured. Global logic and clocking resources
must be placed in the static region to not only remain operational during reconfiguration,
but to benefit from the initialization sequence that occurs at the end of a full device
configuration.

Logic that can be placed in a Reconfigurable Module includes:

• All logic components that are mapped to a CLB slice in the device. This includes LUTs
(look-up tables), FFs (flip-flops), SRLs (shift registers), RAMs, and ROMs.

• Block RAM and FIFO:

° RAMB18E1, RAMB36E1, BRAM_SDP_MACRO, BRAM_SINGLE_MACRO,
BRAM_TDP_MACRO

° FIFO18E1, FIFO36E1, FIFO_DUALCLOCK_MACRO, FIFO_SYNC_MACRO

Note: The IN_FIFO and OUT_FIFO design elements cannot be placed in an RM. These design
elements must remain in static logic.

• DSP blocks: DSP48E1

• PCIe® (PCI Express): Entered using PCIe IP
Partial Reconfiguration www.xilinx.com 58
UG909 (v2015.4) November 18, 2015

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG909&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Partial%20Reconfiguration%20%28UG909%29&releaseVersion=2015.4&docPage=58

Chapter 5: Design Considerations and Guidelines for 7 Series and Zynq Devices
All other logic must remain in static logic and must not be placed in an RM, including:

• Clocks and Clock Modifying Logic - Includes BUFG, BUFR, MMCM, PLL, and similar
components

• I/O and I/O related components (ISERDES, OSERDES, IDELAYCTRL, etc.)

• Serial transceivers (MGTs) and related components

• Individual architecture feature components (such as BSCAN, STARTUP, XADC, etc.)

Global Clocking Rules
Because the clocking information for every Reconfigurable Module for a particular
Reconfigurable Partition is not known at the time of the first implementation, the PR tools
pre-route each BUFG output driving a partition pin on that RP to all clock regions that the
Pblock encompasses. This means that clock spines in those clock regions might not be
available for static logic to use, regardless of whether the RP has loads in that region.

In 7 series devices, up to 12 clock spines can be pre-routed into each clock region. This limit
must account for both static and reconfigurable logic. For example, if 3 global clocks route
to a clock region for static needs, any RP that covers that clock region can use the 9 global
clocks available, collectively, in addition to those three top-level clocks.

In the example shown in Figure 5-1, page 60, icap_clk is routed to clock regions X0Y1,
X0Y2, and X0Y3 prior to placement, and static logic is able to use the other clock spines in
that region.
Partial Reconfiguration www.xilinx.com 59
UG909 (v2015.4) November 18, 2015

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG909&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Partial%20Reconfiguration%20%28UG909%29&releaseVersion=2015.4&docPage=59

Chapter 5: Design Considerations and Guidelines for 7 Series and Zynq Devices

RECOMMENDED: If there are a large number of global clocks driving an RP, create area groups that
encompass complete clock regions to ease placement and routing of static logic. Global clocks can be
downgraded to regional clocks (for example, BUFR, BUFH) for clocks with fewer loads or less
demanding requirements. Shifting clocks from global to local resources allows for more flexibility in
floorplanning when the RP requires many unique clocks.

X-Ref Target - Figure 5-1

Figure 5-1: Pre-routing Global Clock to Reconfigurable Partition
Partial Reconfiguration www.xilinx.com 60
UG909 (v2015.4) November 18, 2015

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG909&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Partial%20Reconfiguration%20%28UG909%29&releaseVersion=2015.4&docPage=60

Chapter 5: Design Considerations and Guidelines for 7 Series and Zynq Devices
Creating Pblocks for 7 Series Devices
As noted in Apply Reset After Reconfiguration in Chapter 3, the height of the
Reconfigurable Partition must align to clock region boundaries if
RESET_AFTER_RECONFIG is to be used. Otherwise, any height can be selected for the
Reconfigurable Partition.

The width of the Reconfigurable Partition must be set appropriately to make most efficient
usage of interconnect and clocking resources. The left and right edges of Pblock rectangles
should be placed between two resource columns (for example, CLB-CLB, CLB-BRAM or
CLB-DSP) and not between two interconnect columns (INT-INT). This allows the placer and
router tools the full use of all resources for both static and reconfigurable logic.
Implementation tool DRCs provide guidance if this approach is not followed.

Automatic Adjustments for Reconfigurable Partition Pblocks
The Pblock SNAPPING_MODE property automatically resizes Pblocks to ensure no
back-to-back violations occur for 7 series designs. When SNAPPING_MODE is set to a value
of ON or ROUTING, it creates a new set of derived Pblock ranges that are used for
implementation. The new ranges are stored in memory, and are not written out to the XDC.
Only the SNAPPING_MODE property is written out, in addition to the normal Pblock
constraints.

In 7 series devices the structure is such that the routing resources, called interconnect tiles,
are placed adjacent, or back-to-back. When floorplanning for partial reconfiguration, it is
important to understand where these back-to-back boundaries exist. If a Pblock splits these
paired interconnect tiles, it is called a back-to-back violation. For more information on
back-to-back interconnect please refer to Creating Reconfigurable Partition Pblocks
Manually, page 64.

The original Pblock rectangle(s) are not modified when using SNAPPING_MODE and can still
be resized, moved, or extended with additional rectangles. Whenever the original Pblock
rectangle is modif ied, the derived ranges are automatically recalculated. The
SNAPPING_MODE property is supported in batch mode, so there is no requirement to open
the current Pblock in the Vivado® IDE to set the SNAPPING_MODE value, although this
option is available when performing interactive floorplanning, as shown in Figure 5-2,
page 62.
Partial Reconfiguration www.xilinx.com 61
UG909 (v2015.4) November 18, 2015

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG909&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Partial%20Reconfiguration%20%28UG909%29&releaseVersion=2015.4&docPage=61

Chapter 5: Design Considerations and Guidelines for 7 Series and Zynq Devices
When you set the SNAPPING_MODE property using the following syntax (or by selecting the
Pblock Property as shown above), the implementation tools automatically see the corrected
Pblock ranges.

set_property SNAPPING_MODE ON [get_pblocks <pblock_name>]

The table below shows SNAPPING_MODE property values for 7 series devices.

The SNAPPING_MODE property also works in conjunction with RESET_AFTER_RECONFIG.
Using RESET_AFTER_RECONFIG requires Pblocks to be vertically frame (or clock region)
aligned. When SNAPPING_MODE is set to ON or to ROUTING and RESET_AFTER_RECONFIG
is set to TRUE, the derived ranges automatically include all sites necessary to meet this
requirement.

X-Ref Target - Figure 5-2

Figure 5-2: Enabling the SNAPPING_MODE Property in the Vivado IDE

Table 5-1: SNAPPING_MODE Property Values for 7 Series Devices

Property Value Description

SNAPPING_
MODE

OFF Default for 7 series. No adjustments are made and
DERIVED_RANGES == GRID_RANGES

ON Fixes all back-to-back violations.

ROUTING Same behavior as ON, except for the following exceptions:

• Does not f ix back-to-back violations across the center
clock column to improve routing.

• Grabs unbonded I/O and GT sites that are within or
adjacent to the RP Pblock to improve routing. It can only
use these resources for PR routing if they sites are
unbonded and if the entire column (Clock Region in
height) are included in the Pblock rectangle.

This is the recommended value for 7 series and Zynq designs.
Partial Reconfiguration www.xilinx.com 62
UG909 (v2015.4) November 18, 2015

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG909&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Partial%20Reconfiguration%20%28UG909%29&releaseVersion=2015.4&docPage=62

Chapter 5: Design Considerations and Guidelines for 7 Series and Zynq Devices
Figure 5-3 shows the original user-created pblock in purple. RESET_AFTER_RECONFIG has
been enabled, and both left and right edges split interconnect columns. By applying
SNAPPING_MODE, the resulting derived Pblock (shown in yellow) is narrower to avoid
INT-INT boundaries, and taller to snap to the height of a clock region.

X-Ref Target - Figure 5-3

Figure 5-3: Original and Derived Pblocks using SNAPPING_MODE
Partial Reconfiguration www.xilinx.com 63
UG909 (v2015.4) November 18, 2015

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG909&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Partial%20Reconfiguration%20%28UG909%29&releaseVersion=2015.4&docPage=63

Chapter 5: Design Considerations and Guidelines for 7 Series and Zynq Devices
Creating Reconfigurable Partition Pblocks Manually
If automatic modification to the Reconfigurable Partition Pblock is not desired to fix
back-to-back issues, you can create Pblock ranges manually to meet your needs. This is
most useful when explicit control is needed for Pblocks that must span non-reconfigurable
sites, such as configuration blocks or the center column, which contains clock buffer
resources.

In Figure 5-4, note that the left and right edges are drawn between CLB columns for the
Pblock highlighted in white. Visualization of the interconnect tiles as shown in this image
requires that the routing resources are turned on, using this symbol in the Device View: .

The Reconfigurable Partition Pblock must include all reconfigurable element types within
the shape drawn. In other words, if the rectangle selected encompasses CLB (Slice), block
RAM, and DSP elements, all three types must be included in the Pblock constraints. If one
of these is omitted, a DRC is triggered with an alert that a split interconnect situation has
been detected.

X-Ref Target - Figure 5-4

Figure 5-4: Optimal - Reconfigurable Partition Pblock Splitting CLB-CLB on Both Left and Right Edges
Partial Reconfiguration www.xilinx.com 64
UG909 (v2015.4) November 18, 2015

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG909&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Partial%20Reconfiguration%20%28UG909%29&releaseVersion=2015.4&docPage=64

Chapter 5: Design Considerations and Guidelines for 7 Series and Zynq Devices
Other considerations must be taken if the Reconfigurable Partition spans
non-reconfigurable sites, such as the center-column clocking resources or configuration
components (ICAP, BSCAN, etc.), or abuts non-reconfigurable components such as I/O. If a
Pblock edge splits interconnect columns for different resource types, implementation tools
accept this layout, but restrict placement in the columns on each side of the boundary. If
this prohibits sites that are needed for the design (such as the ICAP or BSCAN, for example),
the Pblock must be broken into multiple rectangles to clearly define reconfigurable logic
usage, or SNAPPING_MODE must be used.

The implementation tools automatically prevent placement on both sides of the
back-to-back interconnect by creating PROHIBIT constraints. If the sites that are
prohibited due to a back-to-back violation are not needed in the design, it is acceptable to
leave the back-to-back violation in the design. Doing so allows an extra column of routing
tiles to be included in the PR region, and can reduce congestion in a PR region that spans
non-reconfigurable sites. In this case, a Critical Warning is issued by DRCs, but the warning
can be safely ignored if you understand the trade-offs of placement versus routing
resources.

The one exception to this behavior is around the clock column. If a violation occurs at the
clock column boundary, PROHIBIT constraints are generated for the RM side of the
violation (typically SLICE prohibits), but the clocking resources do not get prohibit
constraints and are still available to the static logic. The reason SNAPPING_MODE has a
value of ROUTING is to take advantage of this special exception. The SNAPPING_MODE
property has a value of ROUTING is to take advantage of this special exception. For
example, the initial floorplan shown in Figure 5-5, page 66 spans the center column, which
contains clock buffer resources (BUFHCE/BUFGCTRL). These resources have not been
included in the Pblock, as they are not highlighted in Figure 5-5. There is violation caused
by spanning this clock column but the resources can still be used by the static logic.
Partial Reconfiguration www.xilinx.com 65
UG909 (v2015.4) November 18, 2015

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG909&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Partial%20Reconfiguration%20%28UG909%29&releaseVersion=2015.4&docPage=65

Chapter 5: Design Considerations and Guidelines for 7 Series and Zynq Devices

Prohibited sites appear in placed or routed checkpoints as sites with a red circle with a slash,
as shown in Figure 5-6, page 67. With this automatic prohibit feature, the routing
interconnect associated with reconfigurable sites (CLBs) can still be used for the
reconfigurable module even though the CLBs themselves are not used. In Figure 5-6, the
column of INT on the left are available for the RM, but the column of INT on the right is only
available for static logic because these are part of the clock tile, which is not reconfigurable
for 7 series devices.

X-Ref Target - Figure 5-5

Figure 5-5: Pblock Spanning Non-Reconfigurable Sites
Partial Reconfiguration www.xilinx.com 66
UG909 (v2015.4) November 18, 2015

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG909&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Partial%20Reconfiguration%20%28UG909%29&releaseVersion=2015.4&docPage=66

Chapter 5: Design Considerations and Guidelines for 7 Series and Zynq Devices

If a back-to-back violation prohibits sites that are needed for the design (that is, ICAP or
BSCAN sites), a placement error is issued, stating that not enough sites are available in the
device.

ERROR: [Common 17-69] Command failed: Placer could not place
all instances

To avoid this restriction, create multiple Pblock rectangles that avoid splitting interconnect
columns, as shown in Figure 5-7, page 68, or use the Pblock SNAPPING_MODE property.

RECOMMENDED: In general, spanning non-reconfigurable site types (such as IOB, configuration, or
clocking columns) should be avoided whenever possible. If the Pblock must span one of these, the
clocking column is the least risky choice, owing to its special nature (described previously). Use
SNAPPING_MODE ROUTING to cross this boundary as efficiently as possible.

X-Ref Target - Figure 5-6

Figure 5-6: Prohibited Sites in a Checkpoint
Partial Reconfiguration www.xilinx.com 67
UG909 (v2015.4) November 18, 2015

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG909&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Partial%20Reconfiguration%20%28UG909%29&releaseVersion=2015.4&docPage=67

Chapter 5: Design Considerations and Guidelines for 7 Series and Zynq Devices
X-Ref Target - Figure 5-7

Figure 5-7: Multiple Pblock Rectangles that Avoid Non-Reconfigurable Resources
Partial Reconfiguration www.xilinx.com 68
UG909 (v2015.4) November 18, 2015

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG909&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Partial%20Reconfiguration%20%28UG909%29&releaseVersion=2015.4&docPage=68

Chapter 5: Design Considerations and Guidelines for 7 Series and Zynq Devices
Figure 5-8 is a close-up of this split, showing Slice (CLB) and Interconnect (INT) resource
types. The gap between the two Pblock rectangles gives full access to the BUFHCE
components to route completely using static resources. This also leaves one column of CLBs
available for the static design to use. Although routing resources exist that can cross these
gaps, the overall routability of such structures is notably reduced. This approach is more
challenging and should be avoided if possible. When spanning other static boundaries,
such as IOB or configuration tiles, the routing gap for the PR region becomes two INT
resources, and routing becomes diff icult.

Irregular shaped Partitions (such as a T or L shapes) are permitted, but you are encouraged
to keep overall shapes a simple as possible. Placement and routing in such regions can
become challenging because routing resources must be entirely contained within these
regions. Boundaries of Partitions can touch, but this is not recommended, as some
separation helps mitigate potential routing restriction issues. Nested or overlapping
Reconfigurable Partitions (Partitions within Partitions) are not permitted.

Finally, only one Reconfigurable Partition can exist per physical Reconfigurable Frame. A
Reconfigurable Frame is the smallest size physical region that can be reconfigured, and
aligns with clock region boundaries. A Reconfigurable Frame cannot contain logic from
more than one Reconfigurable Partition. If it were to contain logic from more than one
Reconfigurable Partition, it would be very easy to reconfigure the region with information
from an incorrect Reconfigurable Module, thus creating contention. The Vivado tools are
designed to avoid that potentially dangerous occurrence.

X-Ref Target - Figure 5-8

Figure 5-8: Close-up Showing Columns Reserved for Clock Routing Usage
Partial Reconfiguration www.xilinx.com 69
UG909 (v2015.4) November 18, 2015

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG909&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Partial%20Reconfiguration%20%28UG909%29&releaseVersion=2015.4&docPage=69

Chapter 5: Design Considerations and Guidelines for 7 Series and Zynq Devices
Using High Speed Transceivers
Xilinx high speed transceivers (GTP, GTX, GTH,GTZ) are not reconfigurable in 7 series
devices, and must remain in static logic. However, settings for the transceivers can be
updated during operation using the DRP ports. For more information on the transceiver
settings and DRP access, see 7 Series FPGAs GTX/GTH Transceivers User Guide (UG476)
[Ref 20], or 7 Series FPGAs GTP Transceivers User Guide (UG482) [Ref 21].

Partial Reconfiguration Design Checklist (7 Series)
Xilinx highly encourages the following items for a 7 series FPGA design using Partial
Reconfiguration:

Recommended Clocking Networks

Are you using Global Clock Buffers, Regional Clock Buffers, or Clock Modifying Blocks
(MMCM, PLL)?

These blocks must be in static logic.

See Design Elements Inside Reconfigurable Modules, page 58 for more information, and
Global Clocking Rules, page 59 for complete details on global clock implementation.

Configuration Feature Blocks

Are you using device feature blocks (BSCAN, CAPTURE, DCIRESET, FRAME_ECC, ICAP,
STARTUP, USR_ACCESS)?

These featured blocks must be in static logic.

See Design Elements Inside Reconfigurable Modules, page 58 for more information.

High Speed Transceiver Blocks

Do you have high speed transceivers in your design?

High speed transceivers must remain in the static partition.

See Using High Speed Transceivers, page 70 for specif ic requirements.
Partial Reconfiguration www.xilinx.com 70
UG909 (v2015.4) November 18, 2015

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG909&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Partial%20Reconfiguration%20%28UG909%29&releaseVersion=2015.4&docPage=70

Chapter 5: Design Considerations and Guidelines for 7 Series and Zynq Devices
System Generator DSP Cores, HLS cores, or IP Integrator Block Diagrams

Are you using System Generator DSP cores, HLS cores, or IP Integrator block diagrams in your
Partial Reconfiguration design?

Any type of source can be used as long as it follows the fundamental requirements for
Partial Reconfiguration. Any code processed by SysGen, HLS, or Vivado IP Integrator (or
other tools) is eventually synthesized. The resulting design checkpoint or netlist must be
made up entirely of reconfigurable elements (CLB, block RAM, DSP) for it to be legally
included in an RP.

Packing I/Os into Reconfigurable Partitions

Do you have I/Os in reconfigurable modules?

All I/Os must reside in static logic.

See Design Elements Inside Reconfigurable Modules, page 58 for more information.

Packing Logic into Reconfigurable Partitions

Is all logic that must be packed together in the same Reconfigurable Partition?

Any logic that must be packed together must be in the same RP and RM.

See Packing Logic, page 48 for more information.

Packing Critical Paths into Reconfigurable Partitions

Are critical paths contained within the same partition?

Reconfigurable partition boundaries limit some optimization and packing, so critical
paths should be contained within the same partition.

See Packing Logic, page 48 for more information.

Floorplanning

Can your Reconfigurable Partitions be floorplanned efficiently?

See Creating Pblocks for 7 Series Devices, page 61 for more information.

Recommended Decoupling Logic

Have you created decoupling logic on the outputs of your RMs?

During reconfiguration the outputs of RPs are in an indeterminate state, so decoupling
logic must be used to prevent static data corruption.

See Decoupling Functionality, page 52 for more information.
Partial Reconfiguration www.xilinx.com 71
UG909 (v2015.4) November 18, 2015

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG909&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Partial%20Reconfiguration%20%28UG909%29&releaseVersion=2015.4&docPage=71

Chapter 5: Design Considerations and Guidelines for 7 Series and Zynq Devices
Recommended Reset after Reconfiguration

Are you resetting the logic in an RM after reconfiguration?

After reconfiguration, new logic might not start at its initial value. If the Reset After
Reconfiguration property is not used, a local reset must be used to ensure it comes up
as expected when decoupling is released. Clock and other inputs to the reconfigurable
partition can also be disabled during reconfiguration to prevent initialization issues.
Alternatively, the Reset After Reconfiguration property can be applied. This option holds
internal signals steady during reconfiguration, then issues a masked global reset to the
reconfigured logic.

See Apply Reset After Reconfiguration in Chapter 3 for more information.

Debugging with Logic Analyzer Blocks

Are you using the Vivado Logic Analyzer with your Partial Reconfiguration design?

Vivado Logic Analyzer (ILA/VIO debug cores) can be used in your Partial
Reconfiguration design, but they must be in static logic.

Efficient Reconfigurable Partition Pblocks

Have you created efficient Reconfigurable Partition Pblock(s) for your design?

The height of the Reconfigurable Partition Pblock must align with the top and bottom of
a clock region boundary, if the RESET_AFTER_RECONFIG property is to be used.
Otherwise, any height can be selected for the Reconfigurable Partition Pblock.

See Creating Pblocks for 7 Series Devices, page 61 for more information.

Validating Configurations

How do you validate consistency between configurations?

The pr_verify command is used to make sure all configurations have matching
imported resources.

See Verifying Configurations in Chapter 3 for more information.

Configuration Requirements

Are you aware of the particular configuration requirements for Partial Reconfiguration for
your design and device?

Each device family has specif ic configuration requirements and considerations.

See the Chapter 7, Configuring the Device for more information.
Partial Reconfiguration www.xilinx.com 72
UG909 (v2015.4) November 18, 2015

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG909&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Partial%20Reconfiguration%20%28UG909%29&releaseVersion=2015.4&docPage=72

Chapter 5: Design Considerations and Guidelines for 7 Series and Zynq Devices
Effective Pblock recommendations

Does an RP Pblock extend over the center clock column or the configuration column in the
device?

Due to the back-to-back INT tile requirement for 7 series devices, coupled with the
CONTAIN_ROUTING requirement, extending a Pblock over these specialized blocks in
the device can make routing very diff icult or impossible. Avoid extending an RP Pblock
across these areas whenever possible.

See Automatic Adjustments for Reconfigurable Partition Pblocks, page 61 and Creating
Reconfigurable Partition Pblocks Manually, page 64 for more information on
back-to-back requirements.
Partial Reconfiguration www.xilinx.com 73
UG909 (v2015.4) November 18, 2015

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG909&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Partial%20Reconfiguration%20%28UG909%29&releaseVersion=2015.4&docPage=73

Chapter 6

Design Considerations and Guidelines for
UltraScale Devices

Overview
This chapter explains design requirements that are unique to Partial Reconfiguration, and
are specif ic to UltraScale™ devices.

To take advantage of the Partial Reconfiguration capability of Xilinx devices, you must
analyze the design specif ication thoroughly, and consider the requirements, characteristics,
and limitations associated with PR designs. This simplif ies both the design and debug
processes, and avoids potential future risks of malfunction in the design.

Design Elements Inside Reconfigurable Modules
In UltraScale devices, nearly all component types may be partially reconfigured.

Logic that can be placed in a Reconfigurable Module includes:

• All logic components that are mapped to a CLB slice in the FPGA. This includes LUTs
(look-up tables), FFs (flip-flops), SRLs (shift registers), RAMs, and ROMs.

• Block RAM (BRAM) and FIFO: RAMB18E2, RAMB36E2, FIFO18E2, FIFO36E2

• DSP blocks: DSP48E2

• PCIe® (PCI Express), CMAC (100G MAC), and ILKN (Interlaken MAC) blocks

• SYSMON (XADC and System Monitor)

• Clocks and Clock Modifying Logic: Includes BUFG, BUFGCE, BUFGMUX, MMCM, PLL,
and similar components

• I/O and I/O related components (ISERDES, OSERDES, IDELAYCTRL, etc.)

• Serial transceivers (MGTs) and related components
Partial Reconfiguration www.xilinx.com 74
UG909 (v2015.4) November 18, 2015

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG909&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Partial%20Reconfiguration%20%28UG909%29&releaseVersion=2015.4&docPage=74

Chapter 6: Design Considerations and Guidelines for UltraScale Devices
Only configuration components must remain in the static part of the design. These
components are:

• BSCAN

• CFG_IO_ACCESS

• DCIRESET

• DNA_PORT

• EFUSE_USR

• FRAME_ECC

• ICAP

• MASTER_JTAG

• STARTUP

• USR_ACCESS

Creating Pblocks for UltraScale Devices
As part of improvements to the UltraScale architecture, the smallest unit that can be
reconfigured is much smaller than in previous architectures. The minimum required
resources for reconfiguration varies based on the resource type, and are referred to as a
Programmable Unit (PU). Because adjacent sites share a routing resource (or Interconnect
Tile) in UltraScale, a PU is defined in terms of pairs.

Examples of some of the minimum PU that can be reconfigured based on the site types:

• CLB PU: 2 adjacent CLBs, and the shared interconnect

• Block RAM PU: 1 BRAM/FIFO, the 5 adjacent CLBs, and the shared interconnect

• DSP PU: 1 DSP, the 5 adjacent CLBs, and the shared interconnect

• IOB PU: The IO of the full height of the clock_region and includes BITSLICE_CONTROL,
BITSLICE_RX_TX, BITSLICE_TX, BUFGCE, BUFGCE_DIV, BUFGCTRL, IOB, MMCME3_ADV,
PLLE3_ADV, PLL_SELECT_SITE, RIU_OR, etc. The adjacent 60 CLBs and the shared
interconnect.
Partial Reconfiguration www.xilinx.com 75
UG909 (v2015.4) November 18, 2015

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG909&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Partial%20Reconfiguration%20%28UG909%29&releaseVersion=2015.4&docPage=75

Chapter 6: Design Considerations and Guidelines for UltraScale Devices
Automatic Adjustments for PU on PBlocks
In UltraScale devices, there is no height requirement of Pblocks for
RESET_AFTER_RECONFIG capability. For this reason, the feature is always ON, and there
are no special requirements that need to be met. However, to ensure that the Pblock does
not violate any rules for minimum PU sizes, the SNAPPING_MODE property is also always on
by default, and automatically adjusts the Pblock to make sure it is valid for PR.

Figure 6-1 and Figure 6-2, page 77 below give an example of how SNAPPING_MODE adjusts
the Pblock for PU alignment. In Figure 6-1, despite the larger outer rectangle, only the
selected tiles belong to the RP Pblock. The upper block RAM and DSP sites are not included
because they are not fully contained in the Pblock, and the associated CLB sites are not
included either, based on the PU rules. There are also CLB sites on both the left and right
edge that are not included in the Pblock because the adjacent CLBs are not owned by the
original rectangle.

X-Ref Target - Figure 6-1

Figure 6-1: SNAPPING_MODE Example - UltraScale
Partial Reconfiguration www.xilinx.com 76
UG909 (v2015.4) November 18, 2015

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG909&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Partial%20Reconfiguration%20%28UG909%29&releaseVersion=2015.4&docPage=76

Chapter 6: Design Considerations and Guidelines for UltraScale Devices
While SNAPPING_MODE made the above Pblock legal for the RP, it is possible that the intent
was to include all of these sites. By making a small adjustment to the original Pblock
rectangle, you can prevent SNAPPING_MODE from removing sites that are intended for the
PR region. In Figure 6-2 the Pblock has been expanded by one CLB on the left, right, and
top edges. The highlighted tiles that are owned by the RP Pblock now match the outer
rectangle.

Note: The images Figure 6-1 and Figure 6-2 were created using highlighting scripts that the Vivado
Design Suite tools create automatically created when the parameter HD.VISUAL is set in. The
following steps can be used to reproduce these images for debugging/verifying Pblocks:

1. In the Vivado IDE Tcl Console, type:

set_param hd.visual 1

2. Create or make an adjustment to a Pblock.

3. Source the highlighting script that was generated by the Vivado tools.

source ./hd_visual/<pblock_name>_AllTiles.tcl

X-Ref Target - Figure 6-2

Figure 6-2: PU Aligned Pblock
Partial Reconfiguration www.xilinx.com 77
UG909 (v2015.4) November 18, 2015

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG909&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Partial%20Reconfiguration%20%28UG909%29&releaseVersion=2015.4&docPage=77

Chapter 6: Design Considerations and Guidelines for UltraScale Devices
IMPORTANT: The SNAPPING_MODE property for UltraScale devices is always set to ON and should not
be adjusted or turned OFF. SNAPPING_MODE has special behavior for certain types of logic like IOB
and Laguna for SSI devices. In these cases, SNAPPING_MODE expands the PR Pblock outward to include
all necessary resources.

Sharing Configuration Frames between RP and Static Logic
Even though UltraScale device Pblocks are not required to be frame aligned (that is, the
height of the clock region), Partial Reconfiguration still programs the entire configuration
frame. This means that logic outside of the RP is overwritten. This does not cause any issues
in PR, but in previous architectures there were some limitations about what kind of static
logic could be in the same frame as reconfigurable logic.

For UltraScale devices, any static logic can be placed in the same configuration frame as the
RM, in any sites not owned by the RP Pblock. This includes block RAM, DSP, and LUT RAM.
There is still a restriction however, that there can be only one RP per configuration frame.
That means you cannot vertically stack two RPs in the same clock region.

Global Clocking Rules
As with architectures previous to UltraScale, all unique clocks driving the Reconfigurable
Partition are pre-routed to every clock region in which the RP owns sites. Effectively, this
means that the total number of global clocks driving the Reconfigurable Partition
(regardless of size) is a maximum of 24. Higher clock utilization is possible when the clock
source is in the RM, since these do not need to be pre-routed to every clock region. For this
reason it is always important to carefully consider the RP Pblock size and shape. However,
one difference in the UltraScale architecture is that there are now 24 global clocks available
per clock region instead of the 12 available in 7 series devices.

Note: For BUFGCTRL components, the PRESELECT_I0 and PRESELECT_I1 properties are ignored
during partial reconfiguration, even with RESET_AFTER_RECONFIG enabled. The clock source
selected depends only on the select and clock enable inputs of the BUFGCTRL instance.

Currently, an RM is not allowed to drive a clock out of the module. A clock created in the
static region can drive an input pin of an RP, and clocks created inside an RM can only drive
logic within that RM. However, a clock net cannot drive an output pin of an RP. If this case
is detected, a DRC error is issued.
Partial Reconfiguration www.xilinx.com 78
UG909 (v2015.4) November 18, 2015

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG909&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Partial%20Reconfiguration%20%28UG909%29&releaseVersion=2015.4&docPage=78

Chapter 6: Design Considerations and Guidelines for UltraScale Devices
I/O Rules
In UltraScale devices, I/O logic and buffers can be included in an RP. While the I/O can be
modif ied from one RM to another, there are some rules that must be followed.

The following checks are done between all configurations that use the I/O sites. If an I/O
site changes from being used to unused, or vice versa, then these checks are not done for
those configurations.

• The I/O direction, standard, reference voltage, slew, and drive strength must be the
same between all RMs whenever the I/O is used.

• For DCI_CASCADE, the member bank assignments between RMs cannot overlap.

° Legal example: In Configuration 1, DCI_CASCADE has banks 12, 13. In
Configuration 2, DCI_CASCADE has banks 14, 15 and 16. They do not have
overlapped banks.

° Illegal example: In Configuration 1, DCI_CASCADE has banks 12 and 13. In
Configuration 2, DCI_CASCADE has banks 13, 14, 15 and 16. In this case bank 13
overlaps.

• For DCI_CASCADE, member banks must be fully contained within the reconfigurable
region. All of the member banks for the same DCI_CASCADE must be in either the
same RP Pblock, or completely in static.

Changes to the IOB from one configuration to another are limited by the rules above.
However, adding the I/O sites into the RP requires that the entire PU (encompassing the I/O
bank, BITSLICE, MMCM, PLL, and one column of CLBs plus shared interconnect) be added.
All components in this fundamental region are reconfigured and reinitialized, and adding
these other site types to the reconfigurable region can be beneficial in some cases for these
reasons:

• Adding I/O sites allows use of the routing resources of the I/O, which reduces
congestion (instead of increasing congestion, as it could if the I/O sites were in Static,
and caused a gap in the reconfigurable region).

• Allows reconfiguration of other clocking resources like the MMCM and PLL.

• Allows reconfiguration of other I/O logic sites such as BITSLICE and
BITSLICE_CONTROL.

Regardless of whether or not the I/O usage or characteristics change during
reconfiguration, the entire bank is reconfigured. During reconfiguration, all I/O in the
banks defined by the RP pblock is held with the dedicated global tri-state (GTS) signal,
which is released at the end of reconfiguration.
Partial Reconfiguration www.xilinx.com 79
UG909 (v2015.4) November 18, 2015

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG909&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Partial%20Reconfiguration%20%28UG909%29&releaseVersion=2015.4&docPage=79

Chapter 6: Design Considerations and Guidelines for UltraScale Devices
Using High Speed Transceivers
Xilinx high speed transceivers (GTH, GTY) are supported within a Reconfigurable Partition.
As with other reconfigurable site types, the entire PU must be included. For the UltraScale
GT transceivers, the PU includes

• 4 GT_CHANNEL sites (GT Quad)

• Associated GT_COMMON site

• Associated BUFG_GT_SYNC sites

• Associated BUFG_GT sites

• Associated Interconnect and CLB sites

The required GT PU is the entire height of a clock region. As with previous architectures, it
is also possible to leave the GT components in static logic and change the functionality
through the DRP. For more information on using UltraScale transceivers, see the UltraScale
Architecture GTH Transceivers User Guide (UG576) [Ref 24] or the UltraScale Architecture
GTY Transceivers User Guide (UG578) [Ref 25].

Partial Reconfiguration Checklist for UltraScale
Device Designs
Xilinx highly encourages the following for an UltraScale device design using Partial
Reconfiguration:

Recommended Clocking Networks

Are you using Global Clock Buffers or Clock Modifying Blocks (MMCM, PLL)?

These blocks can be reconfigured, but all elements in this frame type must be
reconfigured. This includes an entire I/O bank and all clocking elements in that shared
region, plus one column of CLBs that share the interconnect.

See Design Elements Inside Reconfigurable Modules, page 74 for more information, and
Global Clocking Rules, page 78 for complete details on global clock implementation.
Partial Reconfiguration www.xilinx.com 80
UG909 (v2015.4) November 18, 2015

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG909&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Partial%20Reconfiguration%20%28UG909%29&releaseVersion=2015.4&docPage=80

Chapter 6: Design Considerations and Guidelines for UltraScale Devices
In addition, the following restrictions are currently enforced by Vivado Design Suite DRC
rules. The use of clocking resources BUFGCTRL, BUFG_CE and BUFG_GT is supported
with the following restrictions:

° Xilinx recommends using rectangular Pblock shapes. Non-rectangular shapes are
also supported for RPs with clocking logic, as long as the tallest column of the
Pblock is aligned vertically and horizontally with the clock region. The tallest
column of the RP Pblock must also range the IOB, and this range must cover the full
height of all the rectangles that define the RP Pblock, as shown in Figure 6-3,
page 81. In other words, this vertical column of IOB ranges must be able to access
all rows of the Pblock. Pblock shapes like a sideways "L" are not supported unless
the vertical section of the shaped includes the IOB range.

X-Ref Target - Figure 6-3

Figure 6-3: Tallest Column of Pblock Clock Region Aligned
Partial Reconfiguration www.xilinx.com 81
UG909 (v2015.4) November 18, 2015

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG909&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Partial%20Reconfiguration%20%28UG909%29&releaseVersion=2015.4&docPage=81

Chapter 6: Design Considerations and Guidelines for UltraScale Devices
° A gap is defined as an unranged site type with ranged sites on both sides of it. The
following gaps are not allowed:

- Gaps in the IOB/XIPHY ranges, such as the gap in the IOB column shown in
Figure 6-4 below.

- Gaps in the DSP ranges.

° A clock region cannot be shared by two RP Pblocks if:

- At least one of them has a global clock source.

- The other has ranged a global clock source.

° For SSI Technology devices, clock regions in the corners of an SLR cannot be
included in the RP region if the following are true:

- The pblock is contained in single SLR.

- The RMs contains clocking logic (MMCM, PLL, BUFGCTRL, BUFG_CE, or
BUFG_GT).

X-Ref Target - Figure 6-4

Figure 6-4: Gap in the IOB Column Not Supported
Partial Reconfiguration www.xilinx.com 82
UG909 (v2015.4) November 18, 2015

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG909&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Partial%20Reconfiguration%20%28UG909%29&releaseVersion=2015.4&docPage=82

Chapter 6: Design Considerations and Guidelines for UltraScale Devices
These rules are enforced by the following list of DRC checks:

Configuration Feature Blocks

Are you using device feature blocks (BSCAN, DCIRESET, FRAME_ECC, ICAP, STARTUP,
USR_ACCESS)?

These featured blocks must be in static logic.

See Design Elements Inside Reconfigurable Modules, page 74 for more information.

SSI Technology

Does the Pblock span an SLR of an SSI device?

If using an SSI device it is recommended to keep a PR region within a single SLR.
However, for UltraScale devices, if a PR Pblock must span an SLR, the necessary Laguna
sites must be included to allow for routing across this boundary. This requires that at
least one full clock regions belongs to the PR region on both sides of the SLR boundary.
SNAPPING_MODE automatically expands the Pblock to own the necessary sites as long
as the Laguna resource is ranged. Verify this site type is selected when defining the PR
Pblock.

For more information on SSI Technology devices and Laguna, see Devices using Stacked
Silicon Interconnect (SSI) Technology in the UltraScale Architecture Configurable Logic
Block User Guide (UG574) [Ref 29].

DRC Description

HDPR-57 Reconfigurable Pblock using Global Clock resources must share a common clock
region column that does not contain unused LAGUNA sites.

HDPR-58 Reconfigurable Pblock using Global Clock resources must share a common clock
region column that does not contain CONFIG_SITES.

HDPR-59 Clock Net Rule Violation

HDPR-60 Reconfigurable Pblock using Global Clock resources must have contiguous clock
regions.

HDPR-61 Reconfigurable Pblock using Global Clock resources must not skip over clock
region rows.

HDPR-62 Reconfigurable Pblock using Global Clock resources must share a common clock
region column.

HDPR-63 Reconfigurable Pblock using Global Clock resources must have complete
horizontal spines through edge DSP columns.

HDPR-64 Reconfigurable Pblock using Global Clock resources must have complete
horizontal spines through XIPHY tiles.

HDPR-65 Reconfigurable Pblock using Global Clock resources cannot share Clock Regions.
Partial Reconfiguration www.xilinx.com 83
UG909 (v2015.4) November 18, 2015

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG909&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Partial%20Reconfiguration%20%28UG909%29&releaseVersion=2015.4&docPage=83

Chapter 6: Design Considerations and Guidelines for UltraScale Devices
High Speed Transceiver Blocks

Do you have high speed transceivers in your design?

High speed transceivers can be reconfigured. An entire quad, including all component
types (GT_CHANNEL, GT_COMMON, BUFG_GT) must be reconfigured together.

See Using High Speed Transceivers, page 80 for specif ic requirements.

System Generator DSP Cores, HLS cores, or IP Integrator Block Diagrams

Are you using System Generator DSP cores, HLS cores, or IP Integrator block diagrams in your
Partial Reconfiguration design?

Any type of source can be used as long as it follows the fundamental requirements for
Partial Reconfiguration. Any code processed by SysGen, HLS, or IP Integrator (or other
tools) is eventually synthesized. The resulting design checkpoint or netlist must be
comprised entirely of reconfigurable elements in order for it to be legally included in an
RP.

Packing I/Os into Reconfigurable Partitions

Do you have I/Os in reconfigurable modules?

I/Os can be partially reconfigured. An entire I/O bank, along with all I/O logic (XiPhy)
and clocking resources, must be reconfigured at once.

See Design Elements Inside Reconfigurable Modules, page 74 for more information.

Packing Logic into Reconfigurable Partitions

Is all logic that must be packed together in the same Reconfigurable Partition?

Any logic that must be packed together must be in the same RP and RM.

See Packing Logic, page 48 for more information.

Packing Critical Paths into Reconfigurable Partitions

Are critical paths contained within the same partition?

Reconfigurable partition boundaries limit some optimization and packing, so critical
paths should be contained within the same partition.

See Packing Logic, page 48 for more information.
Partial Reconfiguration www.xilinx.com 84
UG909 (v2015.4) November 18, 2015

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG909&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Partial%20Reconfiguration%20%28UG909%29&releaseVersion=2015.4&docPage=84

Chapter 6: Design Considerations and Guidelines for UltraScale Devices
Floorplanning

Can your Reconfigurable Partitions be floorplanned efficiently?

See Creating Pblocks for UltraScale Devices, page 75 for more information.

Recommended Decoupling Logic

Have you created decoupling logic on the outputs of your RMs?

During reconfiguration the outputs of RPs are in an indeterminate state, so decoupling
logic must be used to prevent static data corruption.

See Decoupling Functionality, page 52 for more information.

Recommended Reset After Reconfiguration

Are you resetting the logic in an RM after reconfiguration?

Reset After Reconfiguration is always enabled for UltraScale devices.

See Apply Reset After Reconfiguration, page 38 for more information.

Debugging with Logic Analyzer Blocks

Are you using the Vivado Logic Analyzer with your Partial Reconfiguration design?

Vivado logic analyzer (ILA/VIO debug cores) can be used in your Partial Reconfiguration
design, but they must be in static logic.

Efficient Reconfigurable Partition Pblocks

Have you created efficient Reconfigurable Partition Pblock(s) for your design?

A Reconfigurable Partition Pblock can be any height, but multiple Reconfigurable
Partitions cannot be stacked vertically within a single clock region.

See Creating Pblocks for UltraScale Devices, page 75 for more information.

Validating Configurations

How do you validate consistency between configurations?

The pr_verify command is used to make sure all configurations have matching
imported resources.

See Verifying Configurations in Chapter 3 for more information.
Partial Reconfiguration www.xilinx.com 85
UG909 (v2015.4) November 18, 2015

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG909&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Partial%20Reconfiguration%20%28UG909%29&releaseVersion=2015.4&docPage=85

Chapter 6: Design Considerations and Guidelines for UltraScale Devices
Configuration Requirements

Are you aware of the particular configuration requirements for Partial Reconfiguration for
your design and device?

Each device family has specif ic configuration requirements and considerations.

See the Chapter 7, Configuring the Device for more information.
Partial Reconfiguration www.xilinx.com 86
UG909 (v2015.4) November 18, 2015

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG909&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Partial%20Reconfiguration%20%28UG909%29&releaseVersion=2015.4&docPage=86

Chapter 7

Configuring the Device

Overview
This chapter describes the system design considerations when configuring your device with
a partial BIT f ile, as well as architectural features in the FPGA that facilitate Partial
Reconfiguration. Because most aspects of Partial Reconfiguration are no different than
standard full configuration, this section concentrates on the details that are unique to PR.

Any of the following configuration ports can be used to load the partial bitstream:
SelectMAP, Serial, JTAG, or ICAP (Internal Configuration Access Port). For Zynq®-7000 AP
SoC devices, deliver partial bitstreams using the JTAG or PCAP (Processor Configuration
Access Port) ports. For UltraScale™ devices, the MCAP (Media Configuration Access Port)
within the PCIe® block is also a valid configuration port.

To use SelectMAP or Serial modes for loading a partial BIT f ile, these pins must be reserved
for use after the initial device configuration. This is achieved by using the
BITSTREAM.CONFIG.PERSIST property to keep the dual-purpose I/O for configuration
usage and to set the configuration width. Refer to this link in the Vivado Design Suite User
Guide: Programming and Debugging (UG908) [Ref 27]. The Tcl command syntax to set this
property is:

set_property BITSTREAM.CONFIG.PERSIST <value> [current_design]

where <value> is either No or Yes.

Partial bitstreams contain all the configuration commands and data necessary for Partial
Reconfiguration. The task of loading a partial bitstream into an FPGA does not require
knowledge of the physical location of the RM because configuration frame addressing
information is included in the partial bitstream. A valid partial bitstream cannot be sent to
the wrong part of the FPGA.

A Partial Reconfiguration controller retrieves the partial bitstream from memory, then
delivers it to a configuration port. The Partial Reconfiguration control logic can either
reside in an external device (for example, a processor) or in the programmable logic of the
FPGA to be reconfigured. A user-designed internal PR controller loads partial bitstreams
through the ICAP interface. As with any other logic in the static design, the internal Partial
Reconfiguration control circuitry operates without interruption throughout the Partial
Reconfiguration process.
Partial Reconfiguration www.xilinx.com 87
UG909 (v2015.4) November 18, 2015

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/cgi-bin/docs/rdoc?v=2015.4;d=ug908-vivado-programming-debugging.pdf;a=xDeviceConfigurationBitstreamSettings
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG909&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Partial%20Reconfiguration%20%28UG909%29&releaseVersion=2015.4&docPage=87

Chapter 7: Configuring the Device
Internal configuration can consist of either a custom state machine, or an embedded
processor such as MicroBlaze™. For a Zynq-7000 AP SoC, the Processor Subsystem (PS) can
be used to manage Partial Reconfiguration events.

Note: For Zynq-7000 AP SoC devices, the Programmable Logic (PL) can be partially reconfigured,
but the Processing System cannot.

As an aid in debugging Partial Reconfiguration designs and PR control logic, the Vivado®

Logic Analyzer can be used to load full and partial bitstreams into an FPGA by means of the
JTAG port.

For more information on loading a bitstream into the configuration ports, see the
Configuration Interfaces chapter in these documents:

• 7 Series FPGAs Configuration User Guide (UG470) [Ref 7]

• Zynq-7000 AP SoC Technical Reference Manual (UG585) [Ref 9]

Configuration Modes
Partial Reconfiguration is supported using the following configuration modes:

• ICAP: A good choice for user configuration solutions. Requires the creation of an ICAP
controller as well as logic to drive the ICAP interface.

• MCAP: (UltraScale devices only) Provides a dedicated connection to the ICAP from one
specific PCIe® block per device.

• PCAP: The primary configuration mechanism for Zynq-7000 AP SoC designs.

• JTAG: A good interface for quick testing or debug. Can be driven with the Vivado Logic
Analyzer.

• Slave SelectMAP or Slave Serial: A good choice to perform full configuration and
Partial Reconfiguration over the same interface.

Master modes are not directly supported because IPROG housecleaning clears the
configuration memory.
Partial Reconfiguration www.xilinx.com 88
UG909 (v2015.4) November 18, 2015

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG909&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Partial%20Reconfiguration%20%28UG909%29&releaseVersion=2015.4&docPage=88

Chapter 7: Configuring the Device
Bitstream Type Definitions
When designs are compiled for Partial Reconfiguration in Xilinx devices, different types of
bitstreams are created. This section defines terminology and explains the details for each
type of bitstream for 7 series and UltraScale devices. The types of bitstreams are:

• Full Configuration Bitstreams

• Partial Bitstreams

• Blanking Bitstreams

• Clearing Bitstreams

Full Configuration Bitstreams
All PR designs start with standard configuration of the full device using a full configuration
bitstream. The format and structure is no different than for a flat design solution, and there
is no difference in how this bitstream can be used to initially program the FPGA. However,
note that the design itself has been processed in preparation for partial reconfiguration of
the device after the full programming has been done. All standard features, such as
encryption and compression, are supported.

Reconfigurable Partitions (RP) set as black boxes are supported, so Reconfigurable Modules
(RM) with no functionality can be delivered as part of the initial configuration, to be
replaced later with a desired Reconfigurable Module. Bitstream compression can be
effective in this case, reducing bitstream size and initial configuration time.

Downloading a Full BIT File

The FPGA in a digital system is configured after power on reset by downloading a full BIT
f ile, either directly from a PROM or from a general purpose memory space by a
microprocessor. A full BIT f ile contains all the information necessary to reset the FPGA,
configure it with a complete design, and verify that the BIT file is not corrupt. The figure
below illustrates this process.
Partial Reconfiguration www.xilinx.com 89
UG909 (v2015.4) November 18, 2015

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG909&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Partial%20Reconfiguration%20%28UG909%29&releaseVersion=2015.4&docPage=89

Chapter 7: Configuring the Device
After the initial configuration is completed and verif ied, the FPGA enters user mode, and
the downloaded design begins functioning. If a corrupt BIT f ile is detected, the DONE signal
is never asserted, the FPGA never enters user mode, and the corrupt design never starts
functioning.

Partial Bitstreams
Partial bitstreams are delivered during normal device operation to replace functionality in a
pre-defined device region. These bitstreams have the same structure as full bitstreams but
are limited to specif ic address sets to program a specif ic portion of the device. Dedicated
PR features such as per-frame CRC checks (to ensure bitstream integrity) and automatic
initialization (so the region starts in a known state) are available, along with full bitstream
features such as encryption and compression.

The size of a partial bitstream is directly proportional to the size of the region it is
reconfiguring. For example, if the Reconfigurable Partition is composed of 20% of the
device resources, the partial bitstream is roughly 20% the size of the full design bitstream.

Partial bitstreams are fully self-contained, so they are delivered to an appropriate
configuration port. All addressing, header, and footer details are contained within these
bitstreams, just as they would be for full configuration bitstreams. You deliver partial
bitstreams are delivered to the FPGA through any external non-master configuration mode,
such as JTAG, Slave Serial, or Slave SelectMap. Internal configuration access includes the
ICAP (all devices), PCAP (Zynq-7000 AP SoC devices), and MCAP (UltraScale devices through
PCIe).

Partial bitstreams are automatically created when write_bitstream is run on a PR
configuration. Each partial bitstream file name references your top-level design name, plus
the pblock name for the Reconfigurable Partition, plus _partial. For example, for a full
design bit f ile top_first.bit, a partial bit f ile could be named
top_first_pblock_red_partial.bit.

X-Ref Target - Figure 7-1

Figure 7-1: Configuring with a Full BIT File
Partial Reconfiguration www.xilinx.com 90
UG909 (v2015.4) November 18, 2015

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG909&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Partial%20Reconfiguration%20%28UG909%29&releaseVersion=2015.4&docPage=90

Chapter 7: Configuring the Device
RECOMMENDED: The pblock instance is always the same, regardless of the RM contained within, so it
is recommended that you use a descriptive base configuration name or rename the partial bit files to
clarify which module it represents.

Downloading a Partial BIT File

A partially reconfigured FPGA is in user mode while the partial BIT file is loaded. This allows
the portion of the FPGA logic not being reconfigured to continue functioning while the
reconfigurable portion is modif ied. Figure 7-2 illustrates this process.

The partial BIT f ile has a simplif ied header, and there is no startup sequence that brings the
FPGA into user mode. The BIT f ile contains (essentially, and with default settings) only frame
address and configuration data, plus a f inal checksum value. Additional CRC checks can be
inserted, if desired, to perform bitstream integrity checking.

If Reset After Reconfiguration is used, the DONE pin pulls LOW when reconfiguration
begins and pulls HIGH again when partial reconfiguration successfully completes, although
the partial bitstream can still be monitored internally as well. In UltraScale devices, this
behavior is echoed on the PRDONE output pin of the ICAP.

Note: With UltraScale devices, the DONE and PRDONE pins pull LOW at the beginning of the
clearing bitstream and remain low until the end of the partial bitstream because the two bitstreams
together constitute a complete partial reconfiguration sequence. The DONE/PRDONE pin does NOT
return high at the end of the clearing bitstream.

X-Ref Target - Figure 7-2

Figure 7-2: Configuring with a Partial BIT File
Partial Reconfiguration www.xilinx.com 91
UG909 (v2015.4) November 18, 2015

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG909&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Partial%20Reconfiguration%20%28UG909%29&releaseVersion=2015.4&docPage=91

Chapter 7: Configuring the Device
If Reset After Reconfiguration is not selected, you must monitor the data being sent to
know when configuration has completed. The end of a partial BIT file has a DESYNCH word
(0000000D) that informs the configuration engine that the BIT f ile has been completely
delivered. This word is given after a series of padding NO OP commands, ensuring that once
the DESYNCH has been reached, all the configuration data has already been sent to the
target frames throughout the device. As soon as the complete partial BIT f ile has been sent
to the configuration port, it is safe to release the reconfiguration region for active use.

Blanking Bitstreams
A blanking bitstream is a specific type of partial bitstream, one that represents a black box.
It removes the functionality of an existing Reconfigurable Module by replacing it with new
functionality, which consists simply of tie-off LUTs on all appropriate module I/O.

To create a black box Reconfigurable Module, you remove the logical and physical
representation of a fully placed and routed design configuration and replaces it with tie-off
LUTs. Starting with a routed configuration (with the static design locked) in active memory,
run these steps:

update_design -cell <foo> -black_box
update_design -cell <foo> -buffer_ports
place_design
route_design

The design must be placed and routed to implement the LUTs that have been inserted into
the design. Outputs of the black box RM are tied to ground by default, but can be set to Vcc
by setting the HD.PARTPIN_TIEOFF on desired ports.

Compression can be used to greatly reduce the size of blanking bitstreams. Note that these
bitstreams still contain, not only the tie-off LUTs, but also any static routing that happens to
pass through this region of the FPGA. Blanking bitstreams are generated and named in the
same way as standard partial bitstreams, as the black box variation is saved as another
configuration checkpoint.

Clearing Bitstreams
Unlike the bitstream types noted above, this type is for UltraScale devices only. A new
requirement for this architecture is to "clear" an existing module before loading a new
module. This clearing bitstream prepares the device for the delivery of any subsequent
partial bitstream for that Reconfigurable Partition by establishing the global signal mask for
the region to be reconfigured. Although the existing module is technically not removed (the
current logical module remains), it is easiest to think of it this way. If a clearing bitstream is
not delivered, the subsequent reconfigurable module will not be initialized.
Partial Reconfiguration www.xilinx.com 92
UG909 (v2015.4) November 18, 2015

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG909&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Partial%20Reconfiguration%20%28UG909%29&releaseVersion=2015.4&docPage=92

Chapter 7: Configuring the Device
Clearing bitstreams are not partial bitstreams. They comprise less than 10% of the frames
for the target region and are therefore less than 10% the size of the corresponding partial
bitstreams. They do not change the functionality but shut down clocks driving logic in the
region. They must be delivered between partial bitstreams and should always be followed
as soon as possible by the next partial bitstream.

Each clearing bitstream is built for a specif ic Reconfigurable Module and must be applied
after that module has been used, and must be sent to the configuration engine immediately
before the next partial bitstream is delivered. For example, to transition from module A to
module B, the clearing bitstream for A must be delivered just before the partial bitstream
for B is delivered. To transition from module B back to module A, the clearing bitstream for
B must be delivered just before the partial bitstream for A is delivered. This is the case even
if any partial bitstream in question is a blanking bitstream.

Clearing bitstreams are automatically generated and have the same name as partial
bitstreams with _clear at the end. Looking at the example above, if top_first is an
UltraScale device design, the clearing bit f ile name would be
top_first_pblock_red_partial_clear.bit.

Partial Reconfiguration through ICAP for Zynq
Devices
The primary configuration mechanism for the programmable logic (PL) of Zynq devices is
through the processing system (PS), which delivers bitstreams to the PCAP. The most
straightforward mechanism for partial reconfiguration is also via this path. However, to
manage partial reconfiguration completely within the PL (either through the PR Controller
IP or through a custom-designed controller module), partial bitstreams can also be
delivered to the ICAP, just as they can be for FPGA devices.

The PCAP and ICAP interfaces are mutually exclusive and cannot be used simultaneously.
Switching between ICAP and PCAP is possible, but you must ensure that no commands or
data are being transmitted or received before changing interfaces. Failure to do this could
lead to unexpected behavior. Bit 27 (PCAP_PR) of the Control Register (devc.CTRL)
selects between ICAP and PCAP for PL reconfiguration. The default is PCAP (1), but that
can be changed to ICAP (0) to enable this configuration port. Note that bit 28
(PCAP_MODE) must also be set to 1, which is the default. For more details, see the
Zynq-7000 All Programmable SoC Technical Reference Manual (UG585) [Ref 9].
Partial Reconfiguration www.xilinx.com 93
UG909 (v2015.4) November 18, 2015

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG909&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Partial%20Reconfiguration%20%28UG909%29&releaseVersion=2015.4&docPage=93

Chapter 7: Configuring the Device
Accessing the Configuration Engine through the
MCAP
UltraScale devices introduce a dedicated connection from one specif ic PCIe block on a
device to the configuration engine, providing an efficient mechanism for delivering partial
bitstreams. No explicit routes are required to connect the PCIe block to the ICAP, saving
considerable resources.

To enable this capability, select the PR over PCIe value for the Tandem Configuration or
Partial Reconfiguration option (as shown in the f igure below) when generating the
UltraScale FPGA Gen3 Integrated Block for PCI Express IP. Advanced Mode must be selected,
the MCAP-enabled PCIe Block Location must be selected, and a device that currently
supports Partial Reconfiguration and Tandem Configuration must be selected before the
option becomes available.

X-Ref Target - Figure 7-3

Figure 7-3: Selecting the PR over PCIe Option when Generating the Xilinx PCIe IP
Partial Reconfiguration www.xilinx.com 94
UG909 (v2015.4) November 18, 2015

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG909&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Partial%20Reconfiguration%20%28UG909%29&releaseVersion=2015.4&docPage=94

Chapter 7: Configuring the Device
The PCIe block that must be selected in most cases is the lowest instance in the device,
except for SSI devices with three Super Logic Regions (SLRs), in which case it is the lowest
PCIe instance in the center SLR. A complete listing of the specif ic supported blocks is shown
here. All other PCIe blocks do not have the dedicated MCAP feature.

*: Not yet supported in Vivado software.

The MCAP is capable of operating at 200 MHz with a 32-bit data path. Traditionally
bitstreams are loaded into the MCAP from a host PC through PCI Express configuration
packets. In these systems the host PC and host PC software are the main factors which limit
MCAP performance and bitstream throughput. Because PCIe performance of specific host
PC and host PC software can vary widely, overall MCAP performance throughput might vary.

For more information and sample drivers, see the answer record, Bitstream Loading across
the PCI Express Link in UltraScale Devices for Tandem PCIe and Partial Reconfiguration (AR#
64761) [Ref 5].

Table 7-1: PCIe Block and Reset Locations Supporting PR, by Device

Device PCIe Block Instance Supporting Partial Reconfiguration PCIe Reset Location

Kintex® UltraScale

XCKU025* PCIE_3_1_X0Y0 IOB_X1Y103

XCKU035 PCIE_3_1_X0Y0 IOB_X1Y103

XCKU040 PCIE_3_1_X0Y0 IOB_X1Y103

XCKU060 PCIE_3_1_X0Y0 IOB_X2Y103

XCKU085 PCIE_3_1_X0Y0 IOB_X2Y103

XCKU095 PCIE_3_1_X0Y0 IOB_X1Y103

XCKU115 PCIE_3_1_X0Y0 IOB_X2Y103

Virtex® UltraScale

XCVU065 PCIE_3_1_X0Y0 IOB_X1Y103

XCVU080 PCIE_3_1_X0Y0 IOB_X1Y103

XCVU095 PCIE_3_1_X0Y0 IOB_X1Y103

XCVU125 PCIE_3_1_X0Y0 IOB_X1Y103

XCVU160 PCIE_3_1_X0Y1 IOB_X1Y363

XCVU190 PCIE_3_1_X0Y2 IOB_X1Y363

XCVU440* PCIE_3_1_X0Y2 IOB_X1Y363
Partial Reconfiguration www.xilinx.com 95
UG909 (v2015.4) November 18, 2015

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG909&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Partial%20Reconfiguration%20%28UG909%29&releaseVersion=2015.4&docPage=95

Chapter 7: Configuring the Device
Formatting BIN Files for Delivery to Internal
Configuration Ports
Partial bit f iles have the same basic format as full bit f iles, but they are reduced to the set
of configuration frames for the target region and restricted to the set of events that make
sense for active devices. Partial bit f iles can be:

• Delivered to external interfaces, such as JTAG or slave configuration ports.

• Reformatted as BIN files to be delivered to the internal configuration ports: ICAP (7
series or UltraScale devices), PCAP (Zynq devices only) or MCAP (UltraScale devices
only).

Generate BIN files using the write_cfgmem utility. Three options are critical:

• Set -format as BIN to generate that f ile type.

• Use -interface to select the SelectMap width, and use SMAPx32 for PCAP or MCAP
for UltraScale ICAP.

° SMAPx16 and SMAPx8 (default) can also be used for the 7 series ICAP.

° SMAPx8 is required for 7 series encrypted partial bitstreams.

• You must use -disablebitswap to target the PCAP or MCAP.

Examples
ICAP (for 7 series devices)

write_cfgmem -format BIN -interface SMAPx8 -loadbit "up 0x0 <partial_bitfile>”

ICAP (for UltraScale devices)

write_cfgmem -format BIN -interface SMAPx32 -loadbit "up 0x0 <partial_bitfile>”

PCAP (for Zynq-7000 SoC devices) or MCAP (for one specific PCIe block per UltraScale device)

write_cfgmem -format BIN -interface SMAPx32 -disablebitswap -loadbit "up 0x0
<partial_bitfile>”
Partial Reconfiguration www.xilinx.com 96
UG909 (v2015.4) November 18, 2015

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG909&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Partial%20Reconfiguration%20%28UG909%29&releaseVersion=2015.4&docPage=96

Chapter 7: Configuring the Device
Summary of BIT Files for UltraScale Devices
With the f iner granularity of global signals (that is, GSR) and the ability to reconfigure new
element types, a new configuration process is necessary. Prior to loading in a partial
bitstream for a new Reconfigurable Module, the existing Reconfigurable Module must be
cleared. This clearing bitstream prepares the device for delivery of any subsequent partial
bitstream for that Reconfigurable Partition by establishing the global signal mask for the
region to be reconfigured. Although the existing module technically is not removed, it is
easiest to think of it this way.

When running write_bitstream on a design configuration with Reconfigurable
Partitions, a clearing BIT file per RP is created. For example, take a design in which two
Reconfigurable Partitions (RP1 and RP2), with two Reconfigurable Modules each, A1 and B1
into RP1, and A2 and B2 into RP2, have been implemented. Two configurations (configA
and configB) have been run through place and route, and pr_verify has passed. When
bitstreams are generated, each configuration produces f ive bitstreams. For configA, these
could be named:

• configA.bit - This is the full design bitstream that is used to configure the device
from power-up. This contains the static design plus functions A1 and A2.

• configA_RP1_A1_partial.bit - This is the partial BIT file for function A1. This is
loaded after another RM has been cleared from this Reconfigurable Partition.

• configA_RP1_A1_partial_clear.bit - This is the clearing BIT f ile for function
A1. Before loading in any other partial BIT f ile into RP1 after function A1, this f ile must
be loaded.

• configA_RP2_A2_partial.bit - This is the partial BIT file for function A2. This is
loaded after another RM has been cleared from this Reconfigurable Partition.

• configA_RP2_A2_partial_clear.bit - This is the clearing BIT f ile for function
A2. Before loading in any other partial BIT f ile into RP2 after function A2, this f ile must
be loaded.

Likewise, configB produces f ive similar bitstreams:

• configB.bit - This is the full design bitstream that is used to configure the device
from power-up. This contains the static design plus functions B1 and B2.

• configB_RP1_B1_partial.bit - This is the partial BIT file for function B1. This is
loaded after another RM has been cleared from this Reconfigurable Partition.

• configB_RP1_B1_partial_clear.bit - This is the clearing BIT file for function B1.
Before loading in any other partial BIT f ile into RP1 after function B1, this f ile must be
loaded.

• configB_RP2_B2_partial.bit - This is the partial BIT file for function B2. This is
loaded after another RM has been cleared from this Reconfigurable Partition.
Partial Reconfiguration www.xilinx.com 97
UG909 (v2015.4) November 18, 2015

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG909&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Partial%20Reconfiguration%20%28UG909%29&releaseVersion=2015.4&docPage=97

Chapter 7: Configuring the Device
• configB_RP2_B2_partial_clear.bit - This is the clearing BIT file for function B2.
Before loading in any other partial BIT f ile into RP2 after function B2, this f ile must be
loaded.

The sequence for any reconfiguration is to f irst load a clearing BIT f ile for a current
Reconfigurable Module, immediately followed by a new Reconfigurable Module. For
example, to transition Reconfigurable Partition RP1 from function A1 to function B1, f irst
load the BIT f ile configA_RP1_A1_partial_clear.bit, then load
configB_RP1_B1_partial.bit. The f irst bitstream prepares the region by opening the
mask, and the second bitstream loads the new function, initializes only that region, then
closes the mask.

If a clearing bit f ile is not loaded, initialization routines (GSR) have no effect. If a clearing f ile
for a different Reconfigurable Partition is loaded, then that RP is initialized instead of the
one that has been just reconfigured. If the incorrect clearing file for the proper RP is used,
the current RM or possibly even the static design could be disrupted until the following
partial bit f ile has been loaded.

System Design for Configuring an FPGA
A partial BIT file can be downloaded to the FPGA in the same manner as a full BIT f ile. An
external microprocessor determines which partial BIT file should be downloaded, where it
exists in an external memory space, and directs the partial BIT f ile to a standard FPGA
configuration port such as JTAG, Select MAP or serial interface. The FPGA processes the
partial BIT file correctly without any special instruction that it is receiving a partial BIT f ile.

It is common to assert the INIT or PROG signals on the FPGA configuration interface before
downloading a full BIT file. This must not be done before downloading a partial BIT file, as
that would indicate the delivery of a full BIT f ile, not a partial one.

Any indication to the working design that a partial BIT f ile will be sent (such as holding
enable signals and disabling clocks) must be done in the design—and not by means of
dedicated FPGA configuration pins. Figure 7-4, page 99 shows the process of configuring
through a microprocessor.
Partial Reconfiguration www.xilinx.com 98
UG909 (v2015.4) November 18, 2015

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG909&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Partial%20Reconfiguration%20%28UG909%29&releaseVersion=2015.4&docPage=98

Chapter 7: Configuring the Device

In addition to the standard configuration interfaces, Partial Reconfiguration supports
configuration by means of the Internal Configuration Access Port (ICAP). The ICAP protocol
is identical to SelectMAP and is described in the Configuration User Guide for the target
device. The ICAP library primitive can be instantiated in the HDL description of the FPGA
design, thus enabling analysis and control of the partial BIT file before it is sent to the
configuration port. The partial BIT f ile can be downloaded to the FPGA through general
purpose I/O or gigabit transceivers and then routed to the ICAP in the FPGA programmable
logic.

The ICAP must be used with an 8-bit bus only for Partial Reconfiguration for encrypted 7
series BIT f iles. Reconfiguration through external configuration ports is permitted only
when bitstream readback security is not set to Level2.

Partial BIT File Integrity
Error detection and recovery of partial BIT f iles have unique requirements compared to
loading a full BIT f ile. If an error is detected in a full BIT file when it is being loaded into an
FPGA, the FPGA never enters user mode. The error is detected after the corrupt design has
been loaded into configuration memory, and specif ic signals are asserted to indicate an
error condition. Because the FPGA never enters user mode, the corrupt design never
becomes active. You must determine the system behavior for recovering from a
configuration error such as downloading a different BIT file if the error condition is
detected.

X-Ref Target - Figure 7-4

Figure 7-4: Configuring Through a Microprocessor

X12033

Self-reconfiguring
FPGA

ICAP uP

uP

RP A

JTAG
port

RP A

FPGA

full
configuration

RM A1
config.

RM A2
config.

RM A3
config.

Off-chip memory or System ACE
Partial Reconfiguration www.xilinx.com 99
UG909 (v2015.4) November 18, 2015

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG909&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Partial%20Reconfiguration%20%28UG909%29&releaseVersion=2015.4&docPage=99

Chapter 7: Configuring the Device
When you download partial BIT f iles, you cannot use this methodology for error detection
and recovery. The FPGA is by definition already in user mode when the partial BIT f ile is
loaded. Because the configuration circuitry supports error detection only after a BIT f ile has
been loaded, a corrupt partial BIT file can become active, potentially damaging the FPGA if
left operating for an extended period of time.

If a CRC error is detected during a partial reconfiguration, it asserts the INIT_B pin of the
FPGA (INIT_B goes Low to indicate a CRC error). In UltraScale devices, this behavior is
echoed on the PRERROR output pin of the ICAP. It is important to note that if a system
monitors INIT_B for CRC errors during the initial configuration, a CRC error during a partial
reconfiguration might trigger the same response. To detect the presence of a CRC error
from within the FPGA, the CRC status can be monitored through the ICAP block. The Status
Register (STAT) indicates that the partial BIT file has a CRC error, by asserting the
CRC_ERROR flag (bit 0).

There are two types of partial BIT f ile errors to consider: data errors and address errors (the
partial BIT file is essentially address and data information). Given that static routes are free
to pass through reconfigurable regions, both types of errors can corrupt the static design,
although the likelihood is very small. The only method for completely safe recovery is to
download a new full BIT f ile to ensure the state of the static logic, which requires the entire
FPGA to be reset.

Many systems do not need a complex recovery mechanism because resetting the entire
FPGA is not critical, or the partial BIT f ile is stored locally. In that case, the chance of BIT file
corruption is not appreciable. Systems in which the BIT f iles are at risk of becoming
corrupted (such as sending the partial BIT f ile over a radio link) should use a dedicated
silicon feature that avoids the problem.

The configuration engines of 7 series and UltraScale FPGAs and Zynq-7000 AP SoC devices
have the ability to perform a frame-by-frame CRC check and do not load a frame into the
configuration memory if that CRC check fails. A failure is reported on the INIT_B pin (it is
pulled Low) and gives you the opportunity to take the next steps: retry the partial bit f ile,
fall back to a golden partial bit f ile, etc. The partially loaded reconfiguration region does
not have valid programming in it, but the CRC check ensures the remainder of the device
(static region and any other reconfigurable modules) stays operational while the system
recovers from the error.

To enable this feature for these devices, set the PerFrameCRC property prior to running
write_bitstream. The default is No, and Yes inserts the extra CRC checks. The size of an
uncompressed bit f ile increases four to f ive percent with this option enabled. No specific
design considerations are necessary to select this option, but your partial reconfiguration
controller solution should be designed to choose the course of action should the INIT_B pin
indicate a failure has occurred.

The syntax for setting the PerFrameCRC property is:

set_property bitstream.general.perFrameCRC yes [current_design]
Partial Reconfiguration www.xilinx.com 100
UG909 (v2015.4) November 18, 2015

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG909&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Partial%20Reconfiguration%20%28UG909%29&releaseVersion=2015.4&docPage=100

Chapter 7: Configuring the Device
After a partial bit f ile has been loaded (with or without the per-frame CRC checks), the
overall configuration of the device has changed. If the POST_CRC feature for SEU mitigation
is enabled, the SEU mitigation engine automatically recalculates the embedded SEU CRC
value after the partial bitstream has been loaded and after you have de-synced the
configuration interface. Upon completion of the CRC recalibration, the FRAME_ECCE2
FRAME_VALID output toggles again to indicate that SEU detection has resumed.

Configuration Frames
All user-programmable features inside Xilinx FPGA and AP SoC devices are controlled by
volatile memory cells that must be configured at power-up. These memory cells are
collectively known as configuration memory. They define the LUT equations, signal routing,
IOB voltage standards, and all other aspects of the design.

Xilinx FPGA and AP SoC architectures have configuration memory arranged in frames that
are tiled about the device. These frames are the smallest addressable segments of the
device configuration memory space, and all operations must therefore act upon whole
configuration frames.

Reconfigurable Frames are built upon these configuration frames, and these are the
minimum building blocks for performing Partial Reconfiguration.

• Base Regions in 7 series FPGAs are:

° CLB: 50 high by 1 wide

° DSP48: 10 high by 1 wide

° Block RAM: 10 high by 1 wide

• Base Regions in UltraScale™ FPGAs are:

° CLB: 60 high by 1 wide

° DSP48: 24 high by 1 wide

° Block RAM: 12 high by 1 wide

° I/O and Clocking: 52 I/O (one bank), plus related XiPhy, MMCM, and PLL resources

° Gigabit Transceivers: 4 high (one quad, plus related clocking resources)
Partial Reconfiguration www.xilinx.com 101
UG909 (v2015.4) November 18, 2015

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG909&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Partial%20Reconfiguration%20%28UG909%29&releaseVersion=2015.4&docPage=101

Chapter 7: Configuring the Device
Configuration Time
The speed of configuration is directly related to the size of the partial BIT f ile and the
bandwidth of the configuration port. The different configuration ports in 7 series
architectures have the maximum bandwidths shown in Table 7-2.

The exact bitstream length is available in the created .rbt f ile by using the
-raw_bitfile option for write_bitstream. Use this number along with the bandwidth
to calculate the total configuration time. Here is an example of the header in a raw bit f ile:

Xilinx ASCII Bitstream
Created by Bitstream 2015.1
Design name: led_shift_count;UserID=0XFFFFFFFF
Architecture:kintex7
Part: 7k325tffg900
Date: Mon Mar 16 16:42:05 2015
Bits: 1211072
11111111111111111111111111111111

Configuration Debugging
The ICAP interface can be use used to monitor the configuration process, even if other
configuration means are used (JTAG or Slave SelectMAP). In fact, the status of the
configuration is automatically pushed out to the “O” port of the ICAP without having to
issue a read.

In addition to the techniques described below, the UltraScale architecture introduces two
new dedicated ports on the ICAP to aid in Partial Reconfiguration:

• The PRDONE signal echoes the external DONE pin. It drops LOW when reconfiguration
starts (at the beginning of the clearing bitstream) and returns HIGH upon successful
completion (at the end of the partial bitstream).

• The PRERROR pin echoes the external INIT_B pin. It drops LOW when a CRC error
occurs, either with the standard full CRC value at the end of the bit f ile, or with any
per-frame CRC value.

Table 7-2: Maximum Bandwidths for Configuration Ports in 7 Series Architectures

Configuration Mode Max Clock Rate Data Width Maximum Bandwidth

ICAP 100 MHz 32 bit 3.2 Gb/s

SelectMAP 100 MHz 32 bit 3.2 Gb/s

Serial Mode 100 MHz 1 bit 100 Mb/s

JTAG 66 MHz 1 bit 66 Mb/s
Partial Reconfiguration www.xilinx.com 102
UG909 (v2015.4) November 18, 2015

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG909&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Partial%20Reconfiguration%20%28UG909%29&releaseVersion=2015.4&docPage=102

Chapter 7: Configuring the Device
The “O” port of the ICAP block is a 32-bit bus, but only the lowest byte is used. The mapping
of the lower byte is as follows:

The most signif icant nibble of this byte reports the status. These Status bits indicate
whether the Sync word been received and whether a configuration error has occurred. The
following table displays the values for these conditions.

Figure 7-5, page 104 shows a completed full configuration, followed by a partial
reconfiguration with a CRC error, and finally a successful partial reconfiguration. Using the
table above, and the description below, you can see how the “O” port of the ICAP can be
used to monitor the configuration process. If a CRC error occurs, these signals can be used
by a configuration state machine to recover from the error. These signals can also be used
by Vivado Logic Analyzer to capture a configuration failure for debug purposes. With this
information Vivado Logic Analyzer can also be used to capture the various points of a
partial reconfiguration.

Table 7-3: ICAP “O” Port Bits

ICAP “O” Port Bits Status Bit Meaning

O[7] CFGERR_B Configuration error (active-Low)
0 = A configuration error has occurred.
1 = No configuration error.

O[6] DALIGN Sync word received (active-High)
0 = No sync word received.
1 = Sync word received by interface logic.

O[5] RIP Readback in progress (active-High)
0 = No readback in progress.
1 = A readback is in progress.

O[4] IN_ABORT_B ABORT in progress (active-Low)
0 = Abort is in progress.
1 = No abort in progress.

O[3:0] 1 Reserved

Table 7-4: ICAP Sync Bits

O[7:0] Sync Word? CFGERR?

9F No Sync No CFGERR

DF Sync No CFGERR

5F Sync CFGERR

1F No Sync CFGERR
Partial Reconfiguration www.xilinx.com 103
UG909 (v2015.4) November 18, 2015

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG909&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Partial%20Reconfiguration%20%28UG909%29&releaseVersion=2015.4&docPage=103

Chapter 7: Configuring the Device

The markers in the Vivado Logic Analyzer display indicate the following:

• 1st_done

This marker indicates the completion of the initial full bitstream configuration. The
DONE pin (done_pad in this waveform) goes HIGH.

• cfgerr

This marker indicates a CRC error is detected while loading partial bitstream. The status
can be observed through O[31:0] (icap_o_top[31:0] in the waveform).

° Icap_o_top[31:0] starts at 0x9F

° After seen SYNC word, Icap_o_top[31:0] change to 0xDF

° After detect CRC error, Icap_o_top[31:0] change to 0x5F for one cycle, and then
switches to 0x1F

° INIT_B pin is pulled Low (init_pad in the waveform)

• RCRC

This marker indicates when the partial bitstream is loaded again. The RCRC command
resets the cfgerr status, and removes the pull-down on the INIT_B pin (init_pad in
this waveform).

X-Ref Target - Figure 7-5

Figure 7-5: Vivado Logic Analyzer Display for Partial Reconfiguration
Partial Reconfiguration www.xilinx.com 104
UG909 (v2015.4) November 18, 2015

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG909&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Partial%20Reconfiguration%20%28UG909%29&releaseVersion=2015.4&docPage=104

Chapter 7: Configuring the Device
° Icap_o_top[31:0] change from 0x1F to 0x5F when the SYNC word is seen

° Icap_o_top[31:0] change from 0x5F to 0xDF when RCRC command is received

• pr_done

This marker indicates a successful Partial Reconfiguration.

° Icap_o_top[31:0] change from 0xDF to 0x9F when the DESYNC command is
received and no configuration error is detected.
Partial Reconfiguration www.xilinx.com 105
UG909 (v2015.4) November 18, 2015

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG909&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Partial%20Reconfiguration%20%28UG909%29&releaseVersion=2015.4&docPage=105

Chapter 8

Known Issues and Limitations

Known Issues
This is a list of issues that might be encountered when using Partial Reconfiguration in the
current Vivado® Design Suite release. If you encounter any of these issues, or discover any
others, please inform Xilinx® and send an example design that shows the issue. These test
cases are very helpful for our efforts to improve the overall solution.

• Report to Xilinx all cases of fatal or internal errors, incomplete routing (partial
antennas), or other rule violations that prevent place and route, pr_verify, and
write_bitstream from succeeding. Including a design showing the failure is critical
for proper analysis and implementation of f ixes.

• Reuse of implemented Reconfigurable Modules is not 100% preserved. In a future
release, a checkpoint representing an implemented Reconfigurable Module could be
saved from one configuration and then reused in another configuration. However, in
the current release, the interface nets between the partition pins and the internal logic
are not captured, so these signals must be rerouted.

° This can be done by running route_design after loading in a routed RM
checkpoint. This process has not been extensively tested and is not recommended.

• If the initial configuration of a 7 series SSI device (7V2000T, 7VX1140T) is done through
an SPI interface, partial bitstreams cannot be delivered to the master (or any) ICAP;
they must be delivered to an external port, such as JTAG. If the initial configuration is
done through any other configuration port, the master ICAP can be used as the
delivery port for partial bitstreams.

° Contact Xilinx Support for a workaround.

• Do not drive multiple outputs of a single Reconfigurable Module with the same source.
Each output of an RM must have a unique driver.

• Engineering Silicon (ES) for UltraScale™ devices do not off icially support Partial
Reconfiguration. To investigate the capabilities of PR on ES devices, please contact
Xilinx Support for advice.

• Bottom up synthesis on a non-IP level of hierarchy in IPI is not currently supported.
Partial Reconfiguration www.xilinx.com 106
UG909 (v2015.4) November 18, 2015

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG909&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Partial%20Reconfiguration%20%28UG909%29&releaseVersion=2015.4&docPage=106

Chapter 8: Known Issues and Limitations
Blanking Bitstreams Recommended for 7 series and Zynq-7000
Family Partial Reconfiguration Designs
This issue affects designs in all versions of Vivado Design Suite and ISE using Xilinx 7 series
and Zynq-7000 devices. Below is a description of the issue and current solution. A future
version of the Vivado software will automate the solution without requiring user action.

Description

There is a small probability that during reconfiguration, static signals passing through
reconfigurable regions may experience a brief glitch that could disrupt the operation of the
static design. Multiple factors must exist for this to occur and the expected failure rate is
considered extremely low; these factors include routing resources used, configuration
frame ordering, order of the delivery of partial bitstreams, and the current value of the static
signal.

Given that the glitch condition is partially based on bitstream construction, the behavior is
repeatable – a specif ic transition from one reconfigurable module to another
reconfigurable module (but not back) may exhibit the condition. If hardware testing has not
shown any disruption in static design behavior, it is unlikely to be seen in a deployed
system. Nevertheless, to ensure the integrity of the static design during reconfiguration,
inserting a blanking bitstream is recommended.

Solution

Users can create and deliver black box or “blanking” partial bitstreams to effectively remove
all routes in a Reconfigurable Partition (RP) prior to the loading of the next Reconfigurable
Module (RM). This blanking bitstream will contain only static routes for the defined region,
thus ensuring no glitch behavior can occur. Unlike clearing bitstreams for UltraScale
devices, delivery of blanking bitstreams is not order-dependent and only one is required
per RP. See Blanking Bitstreams, page 92 for more information.

Creation of the blanking bitstream is simple:

• Vivado: From a routed full design checkpoint, call update_design -black_box for
each Reconfigurable Partition, a required step in the PR flow, and save the resulting
checkpoint. write_bitstream creates a blanking bitstream for each RP, and the -cell
option can be used to target specific RPs.

• ISE: Create an explicit design configuration with black boxes, importing the static
results from the primary design configuration. bitgen creates a blanking bitstream for
each RP. See Partial Reconfiguration User Guide (UG702) [Ref 10] for more information.
Partial Reconfiguration www.xilinx.com 107
UG909 (v2015.4) November 18, 2015

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG909&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Partial%20Reconfiguration%20%28UG909%29&releaseVersion=2015.4&docPage=107

Chapter 8: Known Issues and Limitations
Bitstream compression can be used to minimize blanking bitstream size. Blanking
bitstreams should be considered the same as standard partial bitstreams when it comes to
behavior (e.g. DONE) and delivery with one note: Decoupling logic should be enabled prior
to loading the blanking bitstream and held through delivery of the subsequent partial
bitstream, as the module outputs are undriven for the blanking module. The Partial
Reconfiguration Controller (PRC) IP can be used to manage standard and blanking partial
bitstreams, however, the user must define the sequence of events outside the PRC.
Alternatively, contact Xilinx Support for a more automated approach using the PRC.

A future version of Vivado software will automate this blanking process without requiring
user action.

Known Limitations
Certain features are not yet developed or supported in the current release. Some of these
features might be added in upcoming releases. These include:

• When selecting Pblock ranges to define the size and shape of the Reconfigurable
Partition, do not use the CLOCKREGION resource type for 7 series or Zynq designs.
Pblock ranges must only include types SLICE, RAMB18, RAMB36, and DSP48 resource
types.

• Project support. Compiling configurations using projects and project commands
(create_run, launch_runs, etc.) is not yet supported. Managing PR projects in the
Vivado IDE is likewise not yet supported.

Checkpoints can be opened in the IDE and many analysis features can be used, but the
Design Runs features cannot be used.

• Do not use Vivado Debug core insertion features within Reconfigurable Partitions. This
flow inserts the debug hub, which includes BSCAN primitive, which is not permitted
inside reconfigurable bitstreams.

• Do not use Partial Reconfiguration with Tandem Configuration capabilities within Xilinx
PCIe® IP. For more information regarding Tandem Configuration with Field Updates,
see the UltraScale Architecture Gen3 Integrated Block for PCI Express (PG156) [Ref 28].

• UpdateMEM does not support partial bitstreams. To associate memory f iles with PR
designs, the ELF Association flow must be applied. See this link in the Vivado Design
Suite User Guide: Designing IP Subsystems Using IP Integrator (UG994) [Ref 30] for
details.

• The Soft Error Mitigation (SEM) IP core is supported in conjunction with PR in
monolithic devices. For more information on using the SEM IP in PR designs, see
Demonstration of Soft Error Mitigation IP and Partial Reconfiguration Capability on
Monolothic Devices (XAPP1261) [Ref 4]. The SEM IP core is not supported when using
Partial Reconfiguration on SSI devices.
Partial Reconfiguration www.xilinx.com 108
UG909 (v2015.4) November 18, 2015

Send Feedback

http://www.xilinx.com/cgi-bin/docs/rdoc?v=2015.4;d=ug994-vivado-ip-subsystems.pdf;a=xAddingAndAssociatingAnElfFileToAnEmbeddedDesign
http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG909&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Partial%20Reconfiguration%20%28UG909%29&releaseVersion=2015.4&docPage=108

Chapter 8: Known Issues and Limitations
• Two use cases regarding encryption will not be supported when using new features
within UltraScale devices:

a. If RSA authentication is selected for the initial configuration, then encrypted partial
reconfiguration is not supported. RSA authentication is not supported for partial
bitstreams.

b. If the initial configuration bitstream uses an obfuscated AES-256 key stored in either
the eFUSE or BBRAM, then any encrypted partial bitstreams must use the same
obfuscated key. Encrypted PR bitstreams using a different key than the initial
bitstream is not supported.

In either of these two cases, an unencrypted partial bitstream may be delivered to the
ICAP to partially reconfigure the device.
Partial Reconfiguration www.xilinx.com 109
UG909 (v2015.4) November 18, 2015

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG909&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Partial%20Reconfiguration%20%28UG909%29&releaseVersion=2015.4&docPage=109

Appendix A

Additional Resources and Legal Notices

Xilinx Resources
For support resources such as Answers, Documentation, Downloads, and Forums, see Xilinx
Support.

Solution Centers
See the Xilinx Solution Centers for support on devices, software tools, and intellectual
property at all stages of the design cycle. Topics include design assistance, advisories, and
troubleshooting tips.

References
1. Vivado Design Suite Tutorial: Partial Reconfiguration (UG947)

2. Partial Reconfiguration Controller IP (PG193)

3. Partial Reconfiguration Decoupler IP (PG227)

4. Demonstration of Soft Error Mitigation IP and Partial Reconfiguration Capability on
Monolothic Devices (XAPP1261)

5. Bitstream Loading across the PCI Express Link in UltraScale Devices for Tandem PCIe and
Partial Reconfiguration (AR# 64761)

6. Partial Reconfiguration of a Hardware Accelerator with Vivado Design Suite for
Zynq-7000 AP SoC Processor (XAPP1231)

7. 7 Series FPGAs Configuration User Guide (UG470)

8. UltraScale Architecture Configuration User Guide (UG570)

9. Zynq-7000 All Programmable SoC Technical Reference Manual (UG585)

10. Partial Reconfiguration User Guide (UG702) - For ISE Design Tools
Partial Reconfiguration www.xilinx.com 110
UG909 (v2015.4) November 18, 2015

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/cgi-bin/docs/ipdoc?c=prc;v=latest;d=pg193-partial-reconfiguration-controller.pdf
http://www.xilinx.com/support/solcenters.htm
http://www.xilinx.com/support
http://www.xilinx.com/support
http://www.xilinx.com/cgi-bin/docs/ndoc?t=user_guides;d=ug470_7Series_Config.pdf
http://www.xilinx.com/cgi-bin/docs/ndoc?t=user_guides;d=ug570-ultrascale-configuration.pdf
http://www.xilinx.com/cgi-bin/SW_Docs_Redirect/sw_docs_redirect?locale=en&topic=user+guides&sub=ug585-Zynq-7000-TRM.pdf
http://www.xilinx.com/cgi-bin/docs/ipdoc?c=pr_decoupler;v=latest;d=pg227-pr-decoupler.pdf
http://www.xilinx.com/cgi-bin/docs/rdoc?v=14.7;d=ug702.pdf
http://www.xilinx.com/cgi-bin/docs/ndoc?t=answers;d=64761.html
http://www.xilinx.com/cgi-bin/docs/ndoc?t=application_notes;d=xapp1261-demo-sem-pr.pdf
http://www.xilinx.com/support/documentation/application_notes/xapp1231-partial-reconfig-hw-accelerator-vivado.pdf
http://www.xilinx.com/cgi-bin/docs/rdoc?v=2015.4;d=ug947-vivado-partial-reconfiguration-tutorial.pdf
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG909&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Partial%20Reconfiguration%20%28UG909%29&releaseVersion=2015.4&docPage=110

Appendix A: Additional Resources and Legal Notices
11. Hierarchical Design Methodology Guide (UG748) - For ISE Design Tools

12. UltraFast Design Methodology Guide for the Vivado Design Suite (UG949)

13. 7 Series FPGAs Integrated Block for PCI Express Product Guide (PG054)

14. Virtex-7 FPGA Gen3 Integrated Block for PCI Express Product Guide (PG023)

15. LogiCORE IP UltraScale FPGAs Gen3 Integrated Block for PCI Express Product Guide
(PG156)

16. Vivado Design Suite Tcl Command Reference Guide (UG835)

17. Vivado Design Suite User Guide: Synthesis (UG901)

18. Vivado Design Suite User Guide: Using Constraints (UG903)

19. Vivado Design Suite User Guide: Design Analysis and Closure Techniques (UG906)

20. 7 Series FPGAs GTX/GTH Transceivers User Guide (UG476)

21. 7 Series FPGAs GTP Transceivers User Guide (UG482)

22. MMCM and PLL Dynamic Reconfiguration (7 Series) (XAPP888)

23. UltraScale Architecture Clocking Resources User Guide (UG572)

24. UltraScale Architecture GTH Transceivers User Guide (UG576)

25. UltraScale Architecture GTY Transceivers User Guide (UG578)

26. PRC/EPRC: Data Integrity and Security Controller for Partial Reconfiguration (XAPP887)

27. Vivado Design Suite User Guide: Programming and Debugging (UG908)

28. UltraScale Architecture Gen3 Integrated Block for PCI Express (PG156)

29. UltraScale Architecture Configurable Logic Block User Guide (UG574)

30. Vivado Design Suite User Guide: Designing IP Subsystems Using IP Integrator (UG994)

31. Design Advisory for techniques on properly synchronizing flip-flops and SRLs (AR# 44174)

32. Vivado Design Suite Documentation
Partial Reconfiguration www.xilinx.com 111
UG909 (v2015.4) November 18, 2015

Send Feedback

http://www.xilinx.com/cgi-bin/docs/rdoc?v=14.7;d=Hierarchical_Design_Methodology_Guide.pdf
http://www.xilinx.com/support/documentation/sw_manuals/ug949-vivado-design-methodology.pdf
http://www.xilinx.com/cgi-bin/docs/ipdoc?c=pcie3_ultrascale;v=latest;d=pg156-ultrascale-pcie-gen3.pdf
http://www.xilinx.com/cgi-bin/SW_Docs_Redirect/sw_docs_redirect?locale=en&topic=application+notes&sub=xapp883_Fast_Config_PCIe.pdf
http://www.xilinx.com/cgi-bin/SW_Docs_Redirect/sw_docs_redirect?locale=en&topic=user+guides&sub=ug476_7Series_Transceivers.pdf
http://www.xilinx.com/cgi-bin/SW_Docs_Redirect/sw_docs_redirect?locale=en&topic=user+guides&sub=ug482_7Series_GTP_Transceivers.pdf
http://www.xilinx.com/cgi-bin/SW_Docs_Redirect/sw_docs_redirect?locale=en&topic=user+guides&sub=ug572-ultrascale-clocking.pdf
http://www.xilinx.com/cgi-bin/docs/rdoc?v=2015.4;d=ug908-vivado-programming-debugging.pdf
http://www.xilinx.com/support/documentation/application_notes/xapp888_7Series_DynamicRecon.pdf
http://www.xilinx.com/cgi-bin/docs/ipdoc?c=pcie3_ultrascale;v=latest;d=pg156-ultrascale-pcie-gen3.pdf
http://www.xilinx.com/support/documentation/application_notes/xapp887_PRC_EPRC.pdf
http://www.xilinx.com/cgi-bin/docs/ipdoc?c=pcie_7x;v=latest;d=pg054-7series-pcie.pdf
http://www.xilinx.com
http://www.xilinx.com/cgi-bin/docs/rdoc?l=en;v=2015.4;d=ug835-vivado-tcl-commands.pdf
http://www.xilinx.com/cgi-bin/docs/rdoc?v=2015.4;d=ug903-vivado-using-constraints.pdf
http://www.xilinx.com/cgi-bin/SW_Docs_Redirect/sw_docs_redirect?locale=en&topic=application+notes&sub=xapp883_Fast_Config_PCIe.pdf
http://www.xilinx.com/cgi-bin/docs/rdoc?v=2015.4;d=ug994-vivado-ip-subsystems.pdf
http://www.xilinx.com/cgi-bin/docs/ipdoc?c=pcie3_7x;v=latest;d=pg023_v7_pcie_gen3.pdf
http://www.xilinx.com/cgi-bin/docs/ndoc?t=answers;d=44174.html
http://www.xilinx.com/cgi-bin/docs/ndoc?t=user_guides;d=ug574-ultrascale-clb.pdf
http://www.xilinx.com/cgi-bin/docs/rdoc?v=2015.4;d=ug906-vivado-design-analysis.pdf
http://www.xilinx.com/cgi-bin/docs/rdoc?v=2015.4;t=vivado+docs
http://www.xilinx.com/cgi-bin/SW_Docs_Redirect/sw_docs_redirect?locale=en&topic=user+guides&sub=ug576-ultrascale-gth-transceivers.pdf
http://www.xilinx.com/cgi-bin/docs/rdoc?v=2015.4;d=ug901-vivado-synthesis.pdf
http://www.xilinx.com/cgi-bin/SW_Docs_Redirect/sw_docs_redirect?locale=en&topic=user+guides&sub=ug578-ultrascale-gty-transceivers.pdf
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG909&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Partial%20Reconfiguration%20%28UG909%29&releaseVersion=2015.4&docPage=111

Appendix A: Additional Resources and Legal Notices
Training Resources
Xilinx provides a variety of training courses and QuickTake videos to help you learn more
about the concepts presented in this document. Use these links to explore related training
resources:

1. Vivado Design Suite QuickTake Video Tutorials

2. Vivado Design Suite QuickTake Video: Partial Reconfiguration in Vivado

3. Partial Reconfiguration Flow on Zynq using Vivado

4. Xilinx Partial Reconfiguration Tools and Techniques

Please Read: Important Legal Notices
The information disclosed to you hereunder (the “Materials”) is provided solely for the selection and use of Xilinx products. To the
maximum extent permitted by applicable law: (1) Materials are made available "AS IS" and with all faults, Xilinx hereby DISCLAIMS
ALL WARRANTIES AND CONDITIONS, EXPRESS, IMPLIED, OR STATUTORY, INCLUDING BUT NOT LIMITED TO WARRANTIES OF
MERCHANTABILITY, NON-INFRINGEMENT, OR FITNESS FOR ANY PARTICULAR PURPOSE; and (2) Xilinx shall not be liable (whether
in contract or tort, including negligence, or under any other theory of liability) for any loss or damage of any kind or nature related
to, arising under, or in connection with, the Materials (including your use of the Materials), including for any direct, indirect, special,
incidental, or consequential loss or damage (including loss of data, profits, goodwill, or any type of loss or damage suffered as a
result of any action brought by a third party) even if such damage or loss was reasonably foreseeable or Xilinx had been advised
of the possibility of the same. Xilinx assumes no obligation to correct any errors contained in the Materials or to notify you of
updates to the Materials or to product specifications. You may not reproduce, modify, distribute, or publicly display the Materials
without prior written consent. Certain products are subject to the terms and conditions of Xilinx’s limited warranty, please refer to
Xilinx’s Terms of Sale which can be viewed at http://www.xilinx.com/legal.htm#tos; IP cores may be subject to warranty and support
terms contained in a license issued to you by Xilinx. Xilinx products are not designed or intended to be fail-safe or for use in any
application requiring fail-safe performance; you assume sole risk and liability for use of Xilinx products in such critical applications,
please refer to Xilinx’s Terms of Sale which can be viewed at http://www.xilinx.com/legal.htm#tos.
© Copyright 2012–2015 Xilinx, Inc. Xilinx, the Xilinx logo, Artix, ISE, Kintex, Spartan, Virtex, Vivado, Zynq, and other designated
brands included herein are trademarks of Xilinx in the United States and other countries. PCI, PCIe and PCI Express are trademarks
of PCI-SIG and used under license. All other trademarks are the property of their respective owners.
Partial Reconfiguration www.xilinx.com 112
UG909 (v2015.4) November 18, 2015

Send Feedback

http://www.xilinx.com/legal.htm#tos
http://www.xilinx.com/legal.htm#tos
http://www.xilinx.com/cgi-bin/docs/ndoc?t=training;d=vivado/partial-reconfiguration-in-vivado.htm
http://www.xilinx.com
http://www.xilinx.com/support/university/vivado/vivado-workshops/Vivado-partial-reconfiguration-flow-zynq.html
http://www.xilinx.com/cgi-bin/docs/ndoc?t=training;d=fpga/partial-reconfiguration-tools-and-techniques.htm
http://www.xilinx.com/cgi-bin/docs/ndoc?t=training;d=vivado/index.htm
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG909&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Partial%20Reconfiguration%20%28UG909%29&releaseVersion=2015.4&docPage=112

	Vivado Design Suite User Guide: Partial Reconfiguration
	Revision History
	Table of Contents
	Ch. 1: Introduction
	Overview
	Introduction to Partial Reconfiguration
	Terminology
	Bottom-Up Synthesis
	Configuration
	Configuration Frame
	Internal Configuration Access Port (ICAP)
	Media Configuration Access Port (MCAP)
	Partial Reconfiguration (PR)
	Partition
	Partition Pin
	Processor Configuration Access Port (PCAP)
	Programmable Unit (PU)
	Reconfigurable Frame
	Reconfigurable Logic
	Reconfigurable Module (RM)
	Reconfigurable Partition (RP)
	Static Logic
	Static Design

	Design Considerations
	Design Requirements and Guidelines
	Design Performance
	Design Criteria

	Partial Reconfiguration Licensing

	Ch. 2: Common Applications
	Overview
	Networked Multiport Interface
	Configuration by Means of Standard Bus Interface
	Dynamically Reconfigurable Packet Processor
	Asymmetric Key Encryption
	Summary

	Ch. 3: Vivado Software Flow
	Overview
	Partial Reconfiguration Commands
	Synthesis
	Synthesizing the Top Level
	Synthesizing Reconfigurable Modules
	Reading Design Modules
	Adding Reconfigurable Modules with Sub-Module Netlists

	Reading Design Constraints
	Implementation
	Preserving Implementation Data

	Partial Reconfiguration Constraints and Properties
	Define a Module as Reconfigurable
	Create a Floorplan for the Reconfigurable Region
	Floorplan in the Vivado IDE
	Timing Constraints
	Partition Pins
	Context Property Examples:

	Apply Reset After Reconfiguration
	Turn On Visualization Scripts

	Software Flow
	Synthesis
	Implementation
	Reporting
	Verifying Configurations
	Bitstream Generation

	Tcl Scripts

	Ch. 4: Design Considerations and Guidelines for All Xilinx Devices
	Overview
	Design Hierarchy
	Dynamic Reconfiguration Using the DRP
	Packing Logic
	Design Instance Hierarchy
	Reconfigurable Partition Interfaces

	Partition Pin Placement
	Active-Low Resets and Clock Enables
	Decoupling Functionality
	Black Boxes
	Effective Approaches for Implementation
	Building Up Implementation Requirements

	Defining Reconfigurable Partition Boundaries
	Avoiding Deadlock
	Design Revision Checks
	Simulation and Verification

	Ch. 5: Design Considerations and Guidelines for 7 Series and Zynq Devices
	Overview
	Design Elements Inside Reconfigurable Modules
	Global Clocking Rules
	Creating Pblocks for 7 Series Devices
	Automatic Adjustments for Reconfigurable Partition Pblocks
	Creating Reconfigurable Partition Pblocks Manually

	Using High Speed Transceivers
	Partial Reconfiguration Design Checklist (7 Series)

	Ch. 6: Design Considerations and Guidelines for UltraScale Devices
	Overview
	Design Elements Inside Reconfigurable Modules
	Creating Pblocks for UltraScale Devices
	Automatic Adjustments for PU on PBlocks
	Sharing Configuration Frames between RP and Static Logic

	Global Clocking Rules
	I/O Rules
	Using High Speed Transceivers
	Partial Reconfiguration Checklist for UltraScale Device Designs

	Ch. 7: Configuring the Device
	Overview
	Configuration Modes
	Bitstream Type Definitions
	Full Configuration Bitstreams
	Downloading a Full BIT File

	Partial Bitstreams
	Downloading a Partial BIT File

	Blanking Bitstreams
	Clearing Bitstreams

	Partial Reconfiguration through ICAP for Zynq Devices
	Accessing the Configuration Engine through the MCAP
	Formatting BIN Files for Delivery to Internal Configuration Ports
	Examples

	Summary of BIT Files for UltraScale Devices
	System Design for Configuring an FPGA
	Partial BIT File Integrity
	Configuration Frames
	Configuration Time
	Configuration Debugging

	Ch. 8: Known Issues and Limitations
	Known Issues
	Blanking Bitstreams Recommended for 7 series and Zynq-7000 Family Partial Reconfiguration Designs
	Description
	Solution

	Known Limitations

	Appx. A: Additional Resources and Legal Notices
	Xilinx Resources
	Solution Centers
	References
	Training Resources
	Please Read: Important Legal Notices

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.6
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings false
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Remove
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Impact
 /LucidaConsole
 /Tahoma
 /Tahoma-Bold
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF0633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F006200650020005000440046002006450646062706330628062900200644063906310636002006480637062806270639062900200648062B06270626064200200627064406230639064506270644002E00200020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644062A064A0020062A0645002006250646063406270626064706270020062806270633062A062E062F062706450020004100630072006F00620061007400200648002000410064006F00620065002000520065006100640065007200200036002E00300020064806450627002006280639062F0647002E>
 /BGR <FEFF04180437043F043E043B043704320430043904420435002004420435043704380020043D0430044104420440043E0439043A0438002C00200437043000200434043000200441044A0437043404300432043004420435002000410064006F00620065002000500044004600200434043E043A0443043C0435043D04420438002C0020043F043E04340445043E0434044F044904380020043704300020043D04300434043504360434043D043E00200440043004370433043B0435043604340430043D0435002004380020043F04350447043004420430043D04350020043D04300020043104380437043D0435044100200434043E043A0443043C0435043D04420438002E00200421044A04370434043004340435043D043804420435002000500044004600200434043E043A0443043C0435043D044204380020043C043E0433043004420020043404300020044104350020043E0442043204300440044F0442002004410020004100630072006F00620061007400200438002000410064006F00620065002000520065006100640065007200200036002E0030002004380020043F043E002D043D043E043204380020043204350440044104380438002E>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200036002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200036002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF0054006f0074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002000760068006f0064006e00fd006300680020006b0065002000730070006f006c00650068006c0069007600e9006d0075002000700072006f0068006c00ed017e0065006e00ed002000610020007400690073006b00750020006f006200630068006f0064006e00ed0063006800200064006f006b0075006d0065006e0074016f002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e0074007900200050004400460020006c007a00650020006f007400650076015900ed007400200076002000610070006c0069006b0061006300ed006300680020004100630072006f006200610074002000610020004100630072006f006200610074002000520065006100640065007200200036002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200036002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200036002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200036002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e400740074006500690064002c0020006500740020006c0075007500610020005000440046002d0064006f006b0075006d0065006e00740065002c0020006d0069007300200073006f00620069007600610064002000e4007200690064006f006b0075006d0065006e00740069006400650020007500730061006c006400750073007600e400e4007200730065006b0073002000760061006100740061006d006900730065006b00730020006a00610020007000720069006e00740069006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e0074006500200073006100610062002000610076006100640061002000760061006900640020004100630072006f0062006100740020006a0061002000410064006f00620065002000520065006100640065007200200036002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200036002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03A703C103B703C303B903BC03BF03C003BF03B903AE03C303C403B5002003B103C503C403AD03C2002003C403B903C2002003C103C503B803BC03AF03C303B503B903C2002003B303B903B1002003BD03B1002003B403B703BC03B903BF03C503C103B303AE03C303B503C403B5002003AD03B303B303C103B103C603B1002000410064006F006200650020005000440046002003BA03B103C403AC03BB03BB03B703BB03B1002003B303B903B1002003B103BE03B903CC03C003B903C303C403B7002003C003C103BF03B203BF03BB03AE002003BA03B103B9002003B503BA03C403CD03C003C903C303B7002003B503C003B103B303B303B503BB03BC03B103C403B903BA03CE03BD002003B503B303B303C103AC03C603C903BD002E0020002003A403B1002003AD03B303B303C103B103C603B10020005000440046002003C003BF03C5002003B803B1002003B403B703BC03B903BF03C503C103B303B703B803BF03CD03BD002003B103BD03BF03AF03B303BF03C503BD002003BC03B50020004100630072006F006200610074002003BA03B103B9002000410064006F00620065002000520065006100640065007200200036002E0030002003BA03B103B9002003BD03B503CC03C403B503C103B503C2002003B503BA03B403CC03C303B503B903C2002E>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105E705D105D905E205D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05EA05D005D905DE05D905DD002005DC05EA05E605D505D205D4002005D505DC05D405D305E405E105D4002005D005DE05D905E005D505EA002005E905DC002005DE05E105DE05DB05D905DD002005E205E105E705D905D905DD002E0020002005E005D905EA05DF002005DC05E405EA05D505D7002005E705D505D105E605D90020005000440046002005D1002D0020004100630072006F006200610074002005D505D1002D002000410064006F006200650020005200650061006400650072002005DE05D205E805E105D400200036002E0030002005D505DE05E205DC05D4002E>
 /HRV <FEFF004F0076006500200070006F0073007400610076006B00650020006B006F00720069007300740069007400650020006B0061006B006F0020006200690073007400650020007300740076006F00720069006C0069002000410064006F00620065002000500044004600200064006F006B0075006D0065006E007400650020006B006F006A00690020007300750020007000720069006B006C00610064006E00690020007A006100200070006F0075007A00640061006E00200070007200650067006C006500640020006900200069007300700069007300200070006F0073006C006F0076006E0069006800200064006F006B0075006D0065006E006100740061002E0020005300740076006F00720065006E0069002000500044004600200064006F006B0075006D0065006E007400690020006D006F006700750020007300650020006F00740076006F007200690074006900200075002000700072006F006700720061006D0069006D00610020004100630072006F00620061007400200069002000410064006F00620065002000520065006100640065007200200036002E0030002000690020006E006F00760069006A0069006D0020007600650072007A0069006A0061006D0061002E>
 /HUN <FEFF0045007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c002000fc007a006c00650074006900200064006f006b0075006d0065006e00740075006d006f006b0020006d00650067006200ed007a00680061007400f30020006d00650067006a0065006c0065006e00ed007400e9007300e900720065002000e900730020006e0079006f006d00740061007400e1007300e10072006100200061006c006b0061006c006d00610073002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740075006d006f006b006100740020006b00e90073007a00ed0074006800650074002e002000200041007a002000ed006700790020006c00e90074007200650068006f007a006f007400740020005000440046002d0064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200036002c0030002d0073002000e900730020006b00e9007301510062006200690020007600650072007a006900f3006900760061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 6.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200036002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200036002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d0069002000730075006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c002000740069006e006b0061006d0075007300200076006500720073006c006f00200064006f006b0075006d0065006e00740061006d00730020006b006f006b0079006200690161006b006100690020007000650072017e0069016b007201170074006900200069007200200073007000610075007300640069006e00740069002e002000530075006b00750072007400750073002000500044004600200064006f006b0075006d0065006e007400750073002000670061006c0069006d006100200061007400690064006100720079007400690020007300750020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200036002e00300020006200650069002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF004c006900650074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200069007a0076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020007000690065006d01130072006f00740069002000640072006f01610061006900200075007a01460113006d0075006d006100200064006f006b0075006d0065006e0074007500200073006b00610074012b01610061006e0061006900200075006e0020006400720075006b010101610061006e00610069002e00200049007a0076006500690064006f0074006f0073002000500044004600200064006f006b0075006d0065006e00740075007300200076006100720020006100740076011300720074002c00200069007a006d0061006e0074006f006a006f0074002000700072006f006700720061006d006d00750020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200036002e003000200076006100690020006a00610075006e0101006b0075002000760065007200730069006a0075002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 6.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200036002e003000200065006c006c00650072002e>
 /POL <FEFF004b006f0072007a0079007300740061006a010500630020007a00200074007900630068002000750073007400610077006900650144002c0020006d006f017c006e0061002000740077006f0072007a0079010700200064006f006b0075006d0065006e00740079002000410064006f00620065002000500044004600200070006f007a00770061006c0061006a01050063006500200077002000730070006f007300f300620020006e00690065007a00610077006f0064006e0079002000770079015b0077006900650074006c00610107002000690020006400720075006b006f00770061010700200064006f006b0075006d0065006e007400790020006600690072006d006f00770065002e00200020005500740077006f0072007a006f006e006500200064006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d0061006300680020004100630072006f00620061007400200069002000410064006f0062006500200052006500610064006500720020007700200077006500720073006a006900200036002e00300020006f00720061007a002000770020006e006f00770073007a00790063006800200077006500720073006a00610063006800200074007900630068002000700072006f006700720061006d00f30077002e004b006f0072007a0079007300740061006a010500630020007a00200074007900630068002000750073007400610077006900650144002c0020006d006f017c006e0061002000740077006f0072007a0079010700200064006f006b0075006d0065006e00740079002000410064006f00620065002000500044004600200070006f007a00770061006c0061006a01050063006500200077002000730070006f007300f300620020006e00690065007a00610077006f0064006e0079002000770079015b0077006900650074006c00610107002000690020006400720075006b006f00770061010700200064006f006b0075006d0065006e007400790020006600690072006d006f00770065002e00200020005500740077006f0072007a006f006e006500200064006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d0061006300680020004100630072006f00620061007400200069002000410064006f0062006500200052006500610064006500720020007700200077006500720073006a006900200036002e00300020006f00720061007a002000770020006e006f00770073007a00790063006800200077006500720073006a00610063006800200074007900630068002000700072006f006700720061006d00f30077002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200036002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006C0069007A00610163006900200061006300650073007400650020007300650074010300720069002000700065006E007400720075002000610020006300720065006100200064006F00630075006D0065006E00740065002000410064006F006200650020005000440046002000610064006500630076006100740065002000700065006E007400720075002000760069007A00750061006C0069007A006100720065002000640065002000EE006E00630072006500640065007200650020015F0069002000700065006E00740072007500200069006D007000720069006D006100720065006100200064006F00630075006D0065006E00740065006C006F007200200064006500200061006600610063006500720069002E00200044006F00630075006D0065006E00740065006C00650020005000440046002000630072006500610074006500200070006F00740020006600690020006400650073006300680069007300650020006300750020004100630072006F0062006100740020015F0069002000410064006F00620065002000520065006100640065007200200036002E003000200073006100750020007600650072007300690075006E006900200075006C0074006500720069006F006100720065002E>
 /RUS <FEFF04180441043F043E043B044C043704430439044204350020044D044204380020043F043004400430043C043504420440044B0020043F0440043800200441043E043704340430043D0438043800200434043E043A0443043C0435043D0442043E0432002000410064006F006200650020005000440046002C0020043F043E04340445043E0434044F04490438044500200434043B044F0020043D0430043404350436043D043E0433043E0020043F0440043E0441043C043E044204400430002004380020043F043504470430044204380020043104380437043D04350441002D0434043E043A0443043C0435043D0442043E0432002E00200421043E043704340430043D043D044B043500200434043E043A0443043C0435043D0442044B00200050004400460020043C043E0436043D043E0020043E0442043A0440044B0442044C002C002004380441043F043E043B044C04370443044F0020004100630072006F00620061007400200438002000410064006F00620065002000520065006100640065007200200036002E00300020043B04380431043E00200438044500200431043E043B043504350020043F043E04370434043D043804350020043204350440044104380438002E>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200073006c00fa017e006900610020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f007600200076006f00200066006f0072006d00e100740065002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300fa002000760068006f0064006e00e90020006e0061002000730070006f013e00610068006c0069007600e90020007a006f006200720061007a006f00760061006e006900650020006100200074006c0061010d0020006f006200630068006f0064006e00fd0063006800200064006f006b0075006d0065006e0074006f0076002e002000200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e0074007900200076006f00200066006f0072006d00e10074006500200050004400460020006a00650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d00650020004100630072006f0062006100740020006100200076002000700072006f006700720061006d0065002000410064006f006200650020005200650061006400650072002c0020007600650072007a0069006900200036002e003000200061006c00650062006f0020006e006f007601610065006a002e>
 /SLV <FEFF005400650020006E006100730074006100760069007400760065002000750070006F0072006100620069007400650020007A00610020007500730074007600610072006A0061006E006A006500200064006F006B0075006D0065006E0074006F0076002000410064006F006200650020005000440046002C0020007000720069006D00650072006E006900680020007A00610020007A0061006E00650073006C006A006900760020006F0067006C0065006400200069006E0020007400690073006B0061006E006A006500200070006F0073006C006F0076006E0069006800200064006F006B0075006D0065006E0074006F0076002E0020005500730074007600610072006A0065006E006500200064006F006B0075006D0065006E0074006500200050004400460020006A00650020006D006F0067006F010D00650020006F00640070007200650074006900200073002000700072006F006700720061006D006F006D00610020004100630072006F00620061007400200069006E002000410064006F00620065002000520065006100640065007200200036002E003000200074006500720020006E006F00760065006A01610069006D0069002E>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200036002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200036002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF0130015f006c006500200069006c00670069006c0069002000620065006c00670065006c006500720069006e0020006700fc00760065006e0069006c0069007200200062006900e70069006d006400650020006700f6007200fc006e007400fc006c0065006e006d006500730069006e0065002000760065002000790061007a0064013100720131006c006d006100730131006e006100200075007900670075006e002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e0020004f006c0075015f0074007500720075006c0061006e002000500044004600200064006f007300790061006c0061007201310020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200036002e003000200076006500200073006f006e00720061006b00690020007300fc007200fc006d006c0065007200690079006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043A043E0440043804410442043E043204430439044204350020044604560020043F043004400430043C043504420440043800200434043B044F0020044104420432043E04400435043D043D044F00200434043E043A0443043C0435043D044204560432002000410064006F006200650020005000440046002C0020043F044004380437043D043004470435043D0438044500200434043B044F0020043D0430043404560439043D043E0433043E0020043F0435044004350433043B044F04340443002004560020043404400443043A0443002004340456043B043E04320438044500200434043E043A0443043C0435043D044204560432002E0020042104420432043E04400435043D04560020005000440046002D0434043E043A0443043C0435043D044204380020043C043E0436043D04300020043204560434043A04400438043204300442043800200437043000200434043E043F043E043C043E0433043E044E0020043F0440043E043304400430043C04380020004100630072006F00620061007400200456002000410064006F00620065002000520065006100640065007200200036002E00300020044204300020043F04560437043D04560448043804450020043204350440044104560439002E>
 /ENU (Use these settings to create Adobe PDF documents suitable for reliable viewing and printing of business documents. Created PDF documents can be opened with Acrobat and Adobe Reader 6.0 and later.)
 >>
>> setdistillerparams
<<
 /HWResolution [1200 1200]
 /PageSize [612.000 792.000]
>> setpagedevice

