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Main Contributions < KFtxLab

Extra layer of flexibility added to Dual Fixed Point (DFX)
CORDIC: Run-time reconfiguration of DFX CORDIC allow for
Dynamic DFX CORDIC implementation.

Methodology for self-reconfiguration based on user
input and output data: The run-time reconfigurable
embedded system swaps hardware configurations based on
external requirements and arithmetic overflow (issued via an
interrupt).

Comparison with CORDIC architectures on DFX, FX, and
FP arithmetic: This is to assess whether the hardware and
software overhead of DDFX CORDIC is justified by the
dynamic range and accuracy improvements.
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Dynamic DFX CORDIC* xetkiLan

DDFX: Set of DEX formats sharing the same word Iength

= Example: [32 26 4 6]: It includes DFX formats that guarantee
increasing range of values between DFX formats:
[32 26 20/, [3218 12], [32 10 4].
= DFX format: [n Po P1]: It can thought as two FX formats [n —
1 po] and [n — 1 p4], where py > p;.

= DDFX: Implemented by modifying the DFX format at run-time.

ooy Yo g« DDFX CORDIC: It uses the
—b’% ”i: ; E l&” %t 111 DEX CORDIC hardware.
o s o U 1 | rsw | = DFX format: Adjusted (vary

py S E gy . Vo jl po and pq, n fixed) by altering

1 V7 “ ‘%" 4re the combinational logic that
2 22 e | depends on py and py: this is
i R G L % """" | oz i=0  the run-time alterable area

det, 1| tan1(279) (_ Po (green Shaded)

: = Overflow: Issued to request a
---------------------------- numerical format with higher

E | B | b I d
namic range. OAKLAND
n ECT; Po P1l [n po pl]%yn %gll Po P1] [%V;OW y 9 UNIVERSITY.

___________________________________




DDFX CORDIC PP IR
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T = # of overflow-free
computations
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overflow=1

Low Precision
(LP)
High Dynamic
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no overflow for
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Precision (MP)
Medium Dynamic
Range (MDR)

overflow=1

¥ If the conditions do not hold,
stay in the current state

Run-time management

= DDFX CORDIC: Implemented by
run-time swapping DFX CORDIC
cores based on a State Diagram.

= State Diagram: Implemented as
software routine. It specifies
transitions to different DFX

formats based on OAKLAND
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Experimental Setup <« ®FvFLaE
Functions tested: atan(x), A,+/x2 + y2 . T=50.
Input domains: They were selected so that the State Diagram
can transition forward and backward across all states.

DDFX formats tested (32 and 24 bits), along with the DFX;
FX, FP CORDIC realization we perform comparisons against:

DDFX Set of DFX Max/Min | Dynamic m“
Range of Values | gazaiution | "Range  _PPX

[32 26 20]
26 226 4 1.49 x 1078 _

[321812] [-2%6,2% 2% [30%10,  313.07dB [32104] [324] 32-bit
[32 10 4]

[32 29 21] .

[321911] [-22,22-271  190* 107 340.12dB [3291] [321] 32-bit
[329 1]

[24 20 16] 24-bit
24 14 10 218 218 _p—4p 954X 1077 5500048 oag4l [244

[ I [2527 =271 ga5x 1072 ' [ 1 [244] gy,
[24 8 4] FW:16

[24 23 17] 24-bit
24 159 221 921 _p-1p  LIIXI0T oo o148 14711 [241

[ ] [_ ’ — ] 5 X 10—1 . [ ] [ ] EW:7,
[24 7 1] FW:16
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Results A
Accuracy (Relative Error)

= Increasing monotonic domains: Note how states transition from
states 1 to 3. State transitions are caused by output overflow.

= DDFX looks more accurate most of the time (even when using 24
bits) than single-precision FP. However, DDFX is less accurate
than FP when output values are very large.

Magnitude: A,/ x? + y? (24 bits)

Arc Tangent: atan(x) (32 bits)

FP[EW:7;FW:16]
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Results P> REWRLAR
Accuracy (Relative Error)

= Non-monotonic domains: disjoint piece-wise vectors. This forces
the States to transition back and forth between 1 and 3.

= For FP, relative error is steady. DDFX is more accurate than FP
except in some cases with State 3 (with large output values).

Magnitude: A,/ x? + y? (32 bits) Arc Tangent: atan(x) (24 bits)
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