Adaptive Wiring Panels using Cell-based Architectures: A First Approach

Victor Murray, Daniel Llamocca, Yuebing Jiang, James Lyke, Marios Pattichis, Stephen Achramowicz, Keith Avery

> Funding provided by the Air Force Research Laboratory under grant number QA9453-069C-0211.

SCHOOL of ENGINEERING

Outline

Introduction.

- Conceptual Architecture.
- Existing Technologies & Previous Efforts.
 - Implementation of Adaptive Wiring Panel.
 - Example of connecting the cells.
- Prototype 1 pictures (and video).
- Conclusions and Future Planned Work.

Introduction

- Programmable wiring harness is being built.
- Soft-configured at the time of use.
- Useful properties
 - Self-healing
 - Error diagnostics capabilities
- Software-defined probe signals facilitate the high level instructions of configuring the soft-wires and connections.
- Modules connected to cells through a defined but flexible interface.

Introduction (cont'd)

- Reconfigurable switch fabric enables dynamic routing of signals in many possible applications:
 - Power
 - Digital Signals
 - Analog Signals
 - High frequency transmissions
 - RF
- Applications ranging from space to terrestrial.
- Particularly useful for time sensitive development schedules.

Conceptual Architecture

- Basic idea is of adaptive wiring structure as substrate
 - Contains input and output termini.
 - Refer to termini as wiring "problem" to connect termini together based on rule set – similar to netlist.

Conceptual Architecture (cont'd)

Benefits of Adaptive Wiring

- Wiring panels can be pre-built and inventoried.
- Panel can be modified as needed during build.
- Unique Advantages
 - Adaptation to Faults Circumlocution of Defects.

Conceptual Architecture (cont'd)

- Benefits of Adaptive Wiring
- Unique Advantages
 - Ability to create probe connections, thus we can create "self-healing" system
 - Diagnostic self-healing
 - Restorative self-healing
 - O(n) computation time

Existing Technologies

Changes late in design cycle are costly.
Changes while deployed are often impossible.

Existing Technologies (cont'd)

Traditional Wiring Harness Implementations

- Fixed Wiring Architecture Automotive, Industrial, Aerospace
- Physical Cable Bundles

Review of previous work in Reconfigurable Wiring

- S. Hauck Mesh Topology
 - Connection schemes with grid-like array of FPGAs.
 - Studied speedup for purposes of logic emulation.

Images from: Hauck, S.; Borriello, G.; Ebeling, C.; , "Mesh routing topologies for multi-FPGA systems," *Very Large Scale Integration (VLSI) Systems, IEEE Transactions on*, vol.6, no.3, pp.400-408, Sep 1998

Review of previous work in Reconfigurable Wiring (cont'd)

A. DeHon

- Trade-offs between computational elements, interconnect count, and bandwidth.
- Interconnects dominate area.
- All studies with FPGA-based grids focus on logic emulation and system speedup – NOT analog (or non-digital media) routing.

Review of previous work in Reconfigurable Wiring (cont'd)

S. Thompson

н.

Significant work in Adaptive wiring.

SCHOOL of ENGINEERING

- Advances crossbar concept for other types of signals.
- Fault tolerance.

Scalable Cellular Implementation of the AWP

- Adaptive Wiring Panel (AWP) can be cast as a single overall panel.
- Three components:
 - Cell Units
 - Cell Management Unit (or, Master Controller)
 - Modules

Scalable Cellular Implementation of the AWP

- Control Programmable Connections (i.e., switch states).
- Communicate with up to four neighbors.
- Read netlist information from modules via probe pins.
- Power modules.
- Communications with Cell Management Unit (CMU).

Cell Unit

- Minimum independent unit to create AWP.
- Top view:

Cell Management Unit

CMU Communication: Example Encodings

 -						
Address						
Decimal	Hexadecimal	Binary	Command	Туре	Data	Notes
0	00	0000000				First available command address.
68	44	01000100	Read Cell ID	Ш	Cell ID	
69	45	01000101	Read North Neighbor ID	Ш	North ID	
70	46	01000110	Read East Neighbor ID	Ш	East ID	
71	47	01000111	Read South Neighbor ID	Ш	South ID	
72	48	01001000	Read West Neighbor ID	Ш	West ID	
73	49	01001001	Read Module ID byte	Ш	Module ID	
90	5A	01011010	Write relay	1	Open/Close relay	Bits(7 to 1): number of relay. Bit(0) is '0' when open and '1' otherwise.
91	5В	01011011	Read relay status	IV	Relay number	Write command, write relay number, read status
94	5E	01011110	Read datasheet	111	Datasheet	Number of bytes, datasheet
255	FF	11111111				Last available command address.

Cell Management Unit: Dijkstra's Algorithm

- Calculates Minimum Shortest Path for Weighted, Directed Graph.
- Speed varies from O(n lg(n)) to O(n²).
- Graph Theory Nodes = Wires in AWP.
- Graph Theory Paths = Switches in AWP.

Left Image from: Gregory Feucht, "Design and control of a cellular architecture-based adaptive wiring manifold," Master Thesis, University of New Mexico, 2010.

SCHOOL of ENGINEERING

Modules

- Components to be Wired.
- Traversal over (at least) two cells and mechanical mount points.

 $5 \,\mathrm{cm}$

Signal connection

Recall: Cell unit

Power connection

X X X

 \sim

 $\times \times \times \times$

 \square

5cm

 \sim

 \sim

Module Probing Connector

SCHOOL of ENGINEERING

Cell Grid Assembly

- Protocol is breadth first search.
- Finishes with both all neighbors have been checked for other neighbors, and all identified cells added.
- Subgraph joining depends on orientation.

UNN SCHOOL of Engineering

Example of connecting be cells

	(1	,1)		/	(1	,2)		
0	0	0	0	0	0	0	0	AWP: 5 cells
	0		0		0		0	
0	0	0	0	0	0	0	0	
	0		0		0		0	
0	0	0	0	0	0	0	0	
	0		0		0		0	
0	0	0	0	0	0	0	0	
	0		0		0		0	
0	0	0	0					
	0		0					
0	0	0	0					
	0		0					

SCHOOL of ENGINEERING

		E>	SX	n	٦p		2 (of	Ċ	Ø	n	าย	9C	ţi	hç	L	Cells
		(1,	,1)			(1,	,2)		/	(1	,3)			(1	,4)		
	0	0	0	0	0	0	0	0	0	0	0	0					AWP: 8 cells
1		0		0		0		0		0		0					
5	0	0	0	0	0	0	0	0	0	0	0	0					
		0		0		0		0		0		0					
					0	0	0	0	0	0	0	0	0	0	0	0	
5						0		0		0		0		0		0	
2					0	0	0	0	0	0	0	0	0	0	0	0	
						0		0		0		0		0		0	
					0	0	0	0	0	0	0	0					
3)						0		0		0		0					
5					0	0	0	0	0	0	0	0					
						0		0		0		0					

Example of connecting be cells

		(1	,1)			(1	,2)		/	(1	,3)			(1	,4)								
	0	0	0	0	0	٩		_⊕	0	0	0	0						A	WP	: 8	cell	S	
(1,		0		0		0	Z	0 1_>		0		0							M	odul	e A	•	
(1	0	0	0	0	0	0	5	101	0	0	0	0							1 1	resis	stor		
		0		0		0		S		0		0							1	LED			
					0	0	0	0	0	0	0	0	0	0	0	0			Mo	odul	e B	•	
5						0		0		0		0		0		0			11	oatte	ery		
Ξ					0	0	0	0	0	0	0	0	0	0	0	0							
						0		0		0		0		0		0		\mathbf{X}					
					0	0	0	0	0	0	0	0			0	0	0	0	0	0	0	0	
3)						0		0		0		0				0	Ū	0	_			0	
5					0	0	0	0	0	0	0	0				0	0	0		M		0	
						0		0		0		0										0	
	T I	IN	M	- SCH	OOL of	ENGIN	EERING	3		Dep	artn	nent	t of	Elec	etric	o al S		o omp	uter	o Eng	□ gine	erin	ıg

Example of connecting be cells

		(1,	,1)			(1	, 2)		/	(1	,3)			(1	,4)		
	0	0	0	0	0	٩		$\sqrt{2}$	0	0	0	0					AWP: 8 cells
(1)		0		0		0		0		0		0					Module A [.]
2	0	0	0	0	0	0	5	10	0	0	0	0					1 resistor
		0		0		0		S		0		0					1 LED
					0	0	0	0	•	0	0	0	•	0	0	0	Module B:
,2						0		0		0		0		0		0	1 battery
5					0	0	0	0	•	0	0	0	•	0	0	0	
						0		0		0		0		0		0	
					0	0	0	0	0	0	0	0					
3)						0		0	-	╺─┥		0					
5					0	0	0	0	0	0	0	0					
						0		0		0		0					

SCHOOL of ENGINEERING

Example of connecting be cells

		(1,	1)			(1	,2)			(1	,3)			(1,	4)		
	0	0	0	0	0	^	\mathbb{M}	$\sqrt{2}$	0	0	0	0					
(1)		0		0		þ				0		I 0					Connect:
1	0	0	0	0	0	þ	6		0	0	0	0					-Battery (+) to Resistor.
		0		0		þ		6		U	Ľ	0					-Resistor to LED (+). -LED (-) with Battery (-).
					0	þ	0	0	0	0	¢	0	D	0	0	0	What if the medule D
5						þ		0		0	C	0		0		0	(battery) is removed?
5					0	þ	0	0	0	0	¢	0	D	0	0	0	
						þ		0		0	C	0		0		0	
					0	þ	0	0	0	0	¢	0					
3 3						J		U	. 	╧┤┟╴							
Ę					0	0	0	0	0	0	0	0					
						0		0		0		0					

School of engineering

Example of connecting be cells

		(1	,1)			(1	, 2)		/	(1	,3)			(1	,4)		
	0	0	0	0	0	٩		$\sqrt{2}$	0	0	0	0					
(1		0		0		0	٦	0		0		0					Connect:
5	0	0	0	0	0	0	R	14	0	0	0	0					-Battery (+) to Resistor.
		0		0		0		b		0		0					-Resistor to LED (+). -LED (-) with Battery (-).
					0	0	0	0	0	0	0	0	0	0	0	0	What if the module P
5						0		0		0		0		0		0	(battery) is removed?
5					0	0	0	0	0	0	0	0	0	0	0	0	The AWP looks for the
						0		0		0		0		0		0	
					0	0	0	0	0	0	0	0					
3)						0		0		0		0					
5					0	0	0	0	0	0	0	0					
						0		0		0		0					

SCHOOL of ENGINEERING

Example of connecting be cells

		(1,	,1)			(1 ,	2)		/	(1	,3)			(1 ,	4)		
	0	0	0	0	0	0	0	0	0	0	0	0					
1)		0		0		0		0		0		0					Connect:
(1,	0	0	0	0	0	0	0	0	0	0	0	0					-Battery (+) to Resistor.
		0		0		0		0		0		0					-Resistor to LED (+). -LED (-) with Battery (-).
					0	0	0	2	0		0	0	0	0	0	0	
5						2		\mathbf{A}		0		U		╺┶┧╾	-	0	place it in another
5						₩			0	0	0	0	0	0	¢	0	location.
					5	U		Ū		-		^		0	J	0	
					0	0	0	0	0	0	0	0					
3)						0		0		0		0					
5					0	0	0	0	0	0	0	0					
						0		0		0		0					

SCHOOL of ENGINEERING

Prototype 1: alpha version

Prototype 1: alpha version (cont'd)

Conclusions and Future Work

UNM

SCHOOL of ENGINEERING

Conclusions and Future Work

- We have successfully implemented a first (and big) version of the AWP using Spartan3 boards, PhotoMOS relays, and a C based software.
- Reduce scale of cells to 5x5 cm.
- No cables, no wires.
- I2C expander.
- Exploit subgraph capabilities to route different signals.
- GUI implementation.
- RF signals.
- Fully Implement Self-Healing Algorithm.
- Greater decision making at the cellular level.

