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Abstract—We present scalable and generalized fixed-point 

hardware designs (source VHDL code is provided) for Artificial 

Neural Networks (ANNs). Three architectures are presented: 

multiply-and-add, multiplier-less, fully pipelined. In addition, we 

include two approaches for ANN binary layers: accumulation-

based and fully pipelined. The fully customized hardware 

architectures allow for design space exploration to establish trade-

offs among numerical format, processing time, resource usage, 

and numerical accuracy. Users can select the ANN architecture, 

ANN parameters (structure, weights, biases), the numerical 

format for both the input/output data in every layer and the 

network parameters (weights and biases). Results are presented in 

terms of resources, processing time, and numerical accuracy. The 

proposed architectures were implemented on modern FPGAs. 

These hardware designs are expected to be used as building blocks 

on a variety of applications such as CNNs and SNNs, as well as a 

platform for educational purposes. 

Keywords— Artificial Neural Networks, Register Transfer Level, 

field-programmable gate array (FPGA). 

I. INTRODUCTION 

ANNs are fundamental components in many applications 
such as computer vision, speech recognition, natural language 
processing, and automatic driving [1]. 

Compared to software implementations, ANN hardware 
implementations can fully exploit the parallel operation of 
neurons and reduce the cost of implementation. In addition, they 
can be embedded in a wide range of systems. An extensive 
overview of hardware implementations (analog, digital, hybrid) 
for several ANN models is presented in [2]. 

Our focus is on digital hardware implementations at the 
Register Transfer Level (RTL). This type of hardware-level 
design can improve the efficiency and achieve greater 
acceleration, but it requires an in-depth understanding of the 
algorithm structure [3]. This is an active area of research and 
FPGA-based implementations have attracted attention due to its 
reconfiguration capability. A good summary of implementation 
schemes (targeted to FPGAs) is presented in [4].  

An FPGA-based implementation is presented in [5], where 
one layer implements all the network layers via a time-
multiplexing scheme; neurons are implemented with LUTs. A 
compact hardware implementation where each neuron is treated 
as a Boolean function is presented in [6]; the method is more 
efficient for low number of input bits. An implementation with 

fast carry look-ahead adder and Booth multiplier is presented in 
[7]. The work in [8] presents a reconfigurable feed forward 
neural networks: nodes can be reorganized for a particular 
application. 

Lately, high-level frameworks for the implementation of 
ANNs have become popular. The work in [9] presented a 
platform for the generation of parameterized FPGA-based 
architecture for feed forward ANN with backpropagation 
learning algorithms. The work in [10] features a design 
automation tool that generates RTL-based ANN accelerators. 
Layer implementation is straightforward: neurons as 
implemented via an adder tree. It allows for time-multiplexing 
of resources when there are logic constraints. The work in [11] 
presented an ANN designed with Xilinx System Generated and 
incorporated into an ECG classifier. 

CNN implementations are also worth mentioning. Within a 
convolutional layer, each feature map is the result of a sum of 
convolutions, the pooling operation and activation function. 
Each pixel of a feature map is the result of a sum of products. 
This resembles an ANN layer (with fewer computations). A 
review of techniques for accelerating deep learning networks on 
FPGAs is provided in [12]. Stochastic computing can simplify 
the hardware complexity in these implementations [13]. The 
work in [14] presents an implementation of LSTM (long short 
term memory) based on Stochastic Computing. 

High-level frameworks for CNN implementations are worth 
mentioning. In [15], a systolic array architecture is presented and 
a process by which a CNN is mapped onto a systolic array 
architecture. A related work is presented in [16], where symbolic 
descriptions of CNNs are converted into FPGA-based 
accelerators using RTL-HLS hybrid templates. Another high-
level framework is presented in [17]. 

The high-level frameworks are very useful in many 
applications as they allow for rapid prototyping, design space 
exploration, and the testing of optimization techniques at higher 
abstraction layers. However, this creates dependency on 
software tools (commercial and custom-built) that might not be 
typically available and that might lack future support.  

Though some frameworks present innovations in terms of 
hardware implementation of ANN components (e.g.: activation 
function, time multiplexing of resources), RTL architecture 
details are usually scarce, such as numerical format across the 
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datapath, implementations (folded, unfolded, systolic, etc.), 
cycle-accurate analysis of latency). 

We believe that there is room for architecture improvements 
at the pure RTL description domain targeted to FPGAs as well 
as ASICs. As a result, we propose a unified set of parameterized 
architectures that can be directly incorporated in the design of 
various ANN-based applications that use fixed-point arithmetic. 
The RTL design we provide is written in VHDL, it is self-
contained (no need of libraries) and it can be used directly in any 
FPGA-based tool or ASIC-based tool. Our dedicated fixed-point 
hardware designs let the user specify specific hardware design 
parameters (e.g.: datapath numerical format, weights/bias 
numerical formats, ANN architecture, implementation style) 
thereby allowing the user to select what to optimize for: resource 
usage, numerical accuracy, and processing time. We include 
designs for real-valued and binary-valued ANN layers. For the 
architectures, results in terms of accuracy, and hardware design 
parameters (e.g.: datapath bit-width, implementation approach) 
are provided. 

The remainder of the paper is organized as follows. Section 
II briefly describes a standard ANN. Section III describes the 
hardware implementation approaches for an ANN layer. Section 
IV describes hardware implementations for an ANN. Section V 
presents the results in terms of processing time, accuracy, and 
resources. Finally, conclusions are given in Section VI. 

II. ARTIFICIAL NEURAL NETWORK 

A. Notation 

ANNs are organized into layers, where all the neurons in one 
layer receive their inputs from neurons in a prior layer and 
provide outputs to the subsequent layer. We let 𝐿  denote the 
number of layers, and 𝑙 the layer index (0 to 𝐿 − 1), where 𝑙 =
0 is the input layer. 

Fig. 1(a) depicts a 3-layer neural network (also called Fully 
Connected Layer). Fig. 1(b) depicts the inputs and outputs of the 
first neuron in layer 𝑙 = 2. Fig. 1(c) depicts the artificial neuron 

model. The neuron output (action potential 𝑎𝑗
𝑙 ) results from 

applying an activation function to the membrane potential (𝑧𝑗
𝑙). 

The index corresponds to neuron 𝑗 in layer 𝑙 . The membrane 

potential 𝑧𝑗
𝑙  is a dot product between the inputs and the 

associated weights, to which a bias is then added [1]. 

 𝑧𝑗
𝑙 = ∑ 𝑤𝑗𝑘

𝑙 𝑎𝑘
𝑙−1

𝑘 + 𝑏𝑗
𝑙, 𝑙 ≥ 1 (1) 

Note that 𝑤𝑗𝑘
𝑙  represents the synaptic gain factor from 

neuron 𝑘 in layer 𝑙 − 1 (previous layer) to neuron 𝑗 in layer 𝑙. 

The action potential intensity of a neuron is denoted by 𝑎𝑗
𝑙, and 

it is modeled as a scalar function (activation function) of 𝑧𝑗
𝑙. 

 𝑎𝑗
𝑙 = 𝜎(𝑧𝑗

𝑙) = 𝜎(∑ 𝑤𝑗𝑘
𝑙 𝑎𝑘

𝑙−1
𝑘 + 𝑏𝑗

𝑙), 𝑙 ≥ 1 (2) 

Common activation functions include these non-linear 
operations: 

▪ Rectified Linear Unit (ReLU): 𝜎(𝑧𝑗
𝑙) = 𝑚𝑎𝑥(0, 𝑧𝑗

𝑙). 

▪ Hyperbolic Tangent: 𝜎(𝑧𝑗
𝑙) = 𝑡𝑎𝑛ℎ(𝑧𝑗

𝑙). 

▪ Sigmoid function: 𝜎(𝑧𝑗
𝑙) = 1

(1 + 𝑒−𝑧𝑗
𝑙

)
⁄  

The output of a layer 𝑙 can be described using a vectorized 

notation (Eq. (3)). Fig. 2 depicts the matrix operation for 𝑧𝑙. We 
let 𝑁𝑂 denote the number of outputs (or number of neurons), 

and 𝑁𝐼 the number of inputs. Here, 𝑧𝑙 is a column vector that 

includes all the membrane potentials of layer 𝑙, 𝑎𝑙−1 is a column 

vector that includes all the input signals to layer 𝑙 , 𝑤𝑙  is the 
weight matrix containing all the synaptic gain factors from layer 

𝑙 − 1  to layer 𝑙 , and 𝑏𝑙  is a column vector that includes the 

biases of all neurons of layer 𝑙. The result 𝑎𝑙 is a column vector 
that includes all the action potentials of layer 𝑙.  

 𝑎𝑙 = 𝜎(𝑧𝑙), 𝑧𝑙 = 𝑤𝑙𝑎𝑙−1 + 𝑏𝑙, 𝑙 ≥ 1 (3) 

As for activation functions, there are different nonlinear 
functions, e.g.: tanh, sigmoid, softmax, ReLU. Due to its 
simplicity, ReLU is preferred. Using specialized circuitry for the 
computation of the other functions is impractical as there are 
many neurons operating in parallel per layer. Approximation 
methods and LUT-based approaches are preferred. The work in 
[18] describes an approximate method to implement tanh, while 
the work in [7] proposes a piecewise linear approximation for 
the sigmoid function. The work in [19] presents a twofold LUT 
generic approach, while the work in [9] implements the sigmoid 
function using an LUT combined with linear interpolation. 

B. Implementations 

This standard ANN can be implemented in multiple domains 
(e.g.: microprocessors, GPUs, FPGAs, ASICs). We focus on 
RTL-based hardware designs using fixed-point arithmetic. 

III. HARDWARE IMPLEMENTATIONS FOR AN ANN LAYER 

In this section, we describe our parameterized, fixed-point 
architecture implementations for a generic ANN layer. They are 
designed at the Register Transfer Level (RTL) and described in 
VHDL. We let 𝐿 denote the number of layers, and 𝑙 to denote 
the layer index (from 0 to 𝐿 − 1), where 𝑙 = 0 is the input layer.  

Note that we refer to an ANN hardware architecture (or 
implementation) as the RTL hardware design, while the ANN 
architecture is what is commonly understood as the ANN 
structure (number of layers, neurons per layer, etc.) 

The hardware designs are classified into two categories: real-
valued inputs and binary-valued inputs. For each category, we 
present different implementation approaches, that are described 
in detail (datapath, control mechanism, design parameters). 

A. Real-valued inputs: Generic Layer 

We let 𝑋𝐼  to denote the number of inputs, and 𝑋𝑂  the 
number of outputs (or number of neurons). The inputs are 

grouped as a vector 𝑎𝑙−1, and the outputs are 𝑎𝑙. 

We use signed fixed-point representation for the datapath, 
where [𝑁𝑂 𝑁𝑄]  represents a fixed-point format with 𝑁𝑂 
integer bits and 𝑁𝑄 fractional bits. Then, we let the input data 
format be [𝑛𝑖 𝑝𝑖], the weights/biases format be [𝑛𝑤 𝑝𝑤], the 
internal datapath format be [𝑛𝑡 𝑝𝑤 + 𝑝𝑖], and the output format 
be [𝑛𝑜 𝑝𝑜]. For full accuracy, the output format is given by 
[𝑛𝑡 𝑝𝑤 + 𝑝𝑖] , where 𝑛𝑡 = 𝑛𝑖 + 𝑛𝑤 + ⌈log2(𝑋𝐼 + 1)⌉ . The 
user can truncate the output to the format [𝑛𝑜 𝑝𝑜]. The weight 

matrix ( 𝑤𝑙 ) and bias  vector ( 𝑏𝑙 ) are loaded as constant 
parameters via text files. 



Three implementation approaches are presented. The signal 
𝑘  (𝑘 = 0, … , 𝑋𝐼 − 1) indexes an element of the input vector 

𝑎𝑙−1. The index 𝑗 (𝑗 = 1, … , 𝑋𝑂) refers to a neuron in the layer. 

1) Multiply-and-Accumulate: Fig. 3 depicts the generic 
architecture for an ANN Layer with its parameters and I/O 
ports. Fig. 4 depicts a neuron: its components (adder, multiplier, 
register, mux), and the FX format at every stage. The 
computation starts by loading the bias in the register, and then 

accumulating the products (weight by input signal: 𝑤𝑗𝑘
𝑙 × 𝑎𝑘

𝑙−1) 

at every clock cycle.  

This architecture processes an input sample in 𝑋𝐼 + 1 

cycles. We can feed input samples to the ANN layer every 𝑋𝐼 +
1 cycles. Fig. 5 depicts a timing diagram for 𝑋𝐼 = 5. 

2) Fully parallel/pipelined: Fig. 6 depicts the generic 
architecture for the ANN Layer with its parameters and I/O 
ports. The neuron architecture uses 𝑋𝐼 multipliers, an adder tree 
[20], and a register. All the products, computed in parallel, are 
added up by the adder tree. An input sample is processed in 
⌈𝑙𝑜𝑔2 𝑋𝐼 + 1⌉  +  2 cycles. Its fully pipelined nature allows us 

to feed input samples at every clock cycle, i.e., a new output 𝑎𝑙 
can be computed per clock cycle. 

3) Multiplier-less: Fig. 7 depicts the generic architecture 
for the ANN Layer with its parameters and I/O ports. Fig. 8 
depicts a neuron with its components (adder/subtractor, 
register, MUX); the datapath format is indicated at every stage. 
The computation starts by loading the bias in the register, and 
then accumulating the products (weight by input signal). The 

product 𝑤𝑗𝑘
𝑙 × 𝑎𝑘

𝑙−1 is implemented by accumulating (we add or 

subtract based on the sign of 𝑎𝑘
𝑙−1) 𝑤𝑗𝑘

𝑙  for |𝑎𝑘
𝑙−1| times (𝑎𝑘

𝑙−1 

treated as an integer value). The result includes 𝑝𝑖  extra 

fractional bits to account for the fractional bits of 𝑎𝑘
𝑙−1.  

The computation of 𝑤𝑗𝑘
𝑙 × 𝑎𝑘

𝑙−1  takes |𝑎𝑘
𝑙−1|  cycles. This 

means that the number of cycles can range from 0 to 2𝑛𝑖−1. As 

a result, while this may be an effective approach for small 𝑛𝑖, it 
can also be very impractical for large 𝑛𝑖. Also, the number of 

cycles is non-deterministic as it depends on the input values. 

This architecture processes an input sample (and can be fed 

a new input sample) in ∑ |𝑎𝑘
𝑙−1|𝑋𝐼−1

𝑘=0 + 1 cycles. 

B. Binary-valued inputs: Generic Layer (or Binary layer) 

This is a special case where the input elements of vector 𝑎𝑙−1 
are binary-valued (0 or 1). However, we note that the elements 

of output vector 𝑎𝑙 are real-valued. This binary layer is different 
than the real-valued input Layer with 𝑛𝑖 = 1 , where data is 
treated as signed FX. A binary layer is useful in applications 
such as Spiking Neural Networks [21], or an ANN whose first 
layer processes binary-valued inputs. 

We let the weights/biases format be [𝑛𝑤 𝑝𝑤], the internal 
datapath format be [𝑛𝑡 𝑝𝑤], and the output format be [𝑛𝑜 𝑝𝑜]. 
For full accuracy, the output format is given by [𝑛𝑡 𝑝𝑤], where 
𝑛𝑡 = 𝑛𝑤 + ⌈log2(𝑋𝐼 + 1)⌉. The user can truncate the output to 

the format [𝑛𝑜 𝑝𝑜]. The weight matrix (𝑤𝑙) and bias  vector (𝑏𝑙) 
are loaded as constant parameters via text files. Two 
implementation approaches are presented: 

1) Accumulator-based: This is based on the multiply-and-
accumulate hardware for real-valued inputs. Given the binary 
inputs, the multipliers are not needed, hence resembling the 
multiplier-less approach applied to binary inputs.  

The generic architecture for the Binary Layer is depicted in 

Fig. 9 with its parameters and I/O ports. The neuron uses an 

adder, multiplier, MUX. The computation starts by loading the 

bias in the register, and then accumulating the products (weight 

by input signal) at every clock cycle. The product 𝑤𝑗𝑘
𝑙 × 𝑎𝑘

𝑙−1 is 

either 0 or 𝑤𝑗𝑘
𝑙 . This architecture processes an input sample in 

𝑋𝐼 + 1 cycles. And we can feed input samples to the ANN layer 

every 𝑋𝐼 + 1 cycles.  

2) Fully parallel/pipelined: Fig. 10 depicts the generic 
architecture for the Binary Layer, its parameters and I/O ports. 

In the neuron architecture, each product 𝑤𝑗𝑘
𝑙 × 𝑎𝑘

𝑙−1 is either  0 

or 𝑤𝑗𝑘
𝑙 . The adder tree adds up all the products (including the 

bias). The architecture processes an input sample in ⌈𝑙𝑜𝑔2 𝑋𝐼 +
1⌉  +  2  cycles. Its fully pipelined nature lets us feed input 

samples at every clock cycle, i.e., a new output 𝑎𝑙  can be 
computed per clock cycle. 

Table I lists the five architectures along with their processing 

delay (latency), minimum number of cycles between input 

samples, and hardware resources. Note that the multipliers we 

employ have one constant operand. 

C. Weight matrix and bias vector 

These design parameters of the RTL hardware designs are 
specified in .txt files, from which the VHDL code access 

them. The weight matrix is stored in a raster scan fashion. The 
generation of the .txt file can be carried out by any software 

application (MATLAB, C++, Pytorch) after an ANN is trained. 
More details are provided in the next section. 

IV. HARDWARE IMPLEMENTATION FOR ANNS 

Here, we present hardware implementations of ANNs with 
real-valued inputs. As for binary-valued layers, they can be used 
as part of an SNN, or as part of an ANN whose first layer 
processes binary-valued data. 

A. Generic ANN with L layers 

For 𝐿 layers, 𝑙 denotes the layer index (0, … , 𝐿 − 1), where 

𝑙 = 0  is the input layer (with 𝑋𝑂0  outputs). For 𝑙 ≥ 1 , 𝑋𝐼𝑙 

denotes the number of inputs, and 𝑋𝑂𝑙 the number of outputs. 
Fig. 11 depicts a generic architecture for an ANN Layer with its 
parameters and I/O ports. The design parameters are ‘name’ 
(ANN name), ‘type’ (layer type: multiply-and-add, fully 
parallel/pipelined, and multiplier-less), and [𝑛𝑖𝑙  𝑝𝑖𝑙]  (user-
selectable FX format per layer, 𝑙 = 0, … , 𝐿 − 1). 

An ANN is implemented by cascade connecting the 
individual layers (one after the other), as in Fig. 11. The start (‘s’ 
or ‘E’) and ‘v’ signals are also connected in cascade. 

The ANN name (‘name’) provides a reference to the ANN 
structure as well as the weight matrix and bias vector per layer. 
Specifically, it references these design parameters: 



▪ FX format for weight matrix and bias vector elements for all 
layers: [𝑛𝑤 𝑝𝑤]. 

▪ Input and output sizes for every layer, specified in parameter 
𝑋𝐿 = [𝑋𝑂0, 𝑋𝑂1, … , 𝑋𝑂𝐿−1]. The input layer (𝑙 = 0) only 
has outputs whose size is 𝑋𝑂0 × 1. For layer 𝑙 (𝑙 ≥ 1), we 

have that 𝑋𝐼𝑙 = 𝑋𝑂𝑙−1, the input size is 𝑋𝐼𝑙 × 1, the output 

size is 𝑋𝑂𝑙 × 1, the weight matrix size is 𝑋𝑂𝑙 × 𝑋𝐼𝑙, and the 

bias vector size is 𝑋𝑂𝑙 × 1.  

▪ Weight matrix (𝑤𝑙) and bias vector (𝑏𝑙) values per layer (𝑙 ≥
1), available in a set of .txt files. For layer 𝑙, the .txt 

filenames for the weight matrix and bias vector are: 

Weight matrix: w_<name>_L<Layer #>_XOlxXIl.txt 

Bias vector: b_<name>_L<Layer #>_XOlx1.txt 

B. Examples 

A network can be built in a high-level platform like Pytorch 
or MATLAB, where we train the network and then extract the 
weights and matrices, and then generate the .txt files. We 

show two ANN examples: 

1) ‘test1’: This 4-layer ANN is depicted in Fig. 12. Table II 

provides a summary. The structure (including the weight matrix 

and bias vector per layer) is fixed. The user can select the FX 

format for every layer (𝑙 ≥ 0). Table II lists the largest FX 

format for full accuracy; however, a user can select shorter FX 

formats that will incur in truncation and precision loss. The 

.txt filenames are the following: 

▪ 𝑙 = 1: w_test1_L1_3x2.txt, b_test_L1_3x1.txt 

▪ 𝑙 = 2: w_test1_L2_3x3.txt, b_test_L2_3x1.txt 

▪ 𝑙 = 3: w_test1_L3_1x3.txt, b_test_L3_1x1.txt 

 
TABLE II. STRUCTURE AND DESIGN PARAMETERS FOR NETWORK ‘TEST1’. 

L=4. WEIGHTS/BIAS FORMAT: [NW PW] = [8 2]. 

Layer 
Input 
Size 

Output 
Size 

Weight 
matrix 

Bias 
vector 

FX Format 

Input Output 

0  2x1    [6 0] 

1 2x1 3x1 3x2 3x1 [6 0] [16 2] 

2 3x1 3x1 3x3 3x1 [16 2] [26 4] 

3 3x1 1x3 1x3 1x1 [26 4]  [36 6] 

 

2) ‘mlosh’: This 3-layer ANN is depicted in Fig. 13. Table 

III provides a summary and lists the largest FX format that 

allows for full accuracy; a user can select a shorter FX format 

that will incur in truncation and precision loss. The .txt 

filenames are the following: 

▪ 𝑙 = 1: w_mlosh_L1_16x196.txt, b_test_L1_16x1.txt 

▪ 𝑙 = 2: w_mlosh_L2_10x16.txt, b_mlosh_L2_10x1.txt 

 
TABLE III. STRUCTURE AND DESIGN PARAMETERS FOR NETWORK 

‘MLOSH’. L=3. WEIGHTS/BIAS FORMAT: [NW PW] = [8 7]. 

Layer 
Input 

Size 

Output 

Size 

Weight 

matrix 

Bias 

vector 

FX Format 

Input Output 

0  196x1    [9 0] 

1 196x1 16x1 16x196 196x1 [9 0] [25 7] 

2 16x1 10x1 10x16 10x1 [25 7] [38 14] 

C. Feeding data to the ANN Architecture 

The design parameter ‘type’ allows the user to select the 
hardware implementation approach: multiply-and-add, fully 
parallel/pipelined, and multiplier-less. The way input samples 
are fed varies depending on the approach. 

1) Multiply-and-accumulate: Each layer 𝑙 has a processing 

delay given by 𝑝𝑙 = 𝑋𝐼𝑙 + 1 . The total processing delay 

(latency) is 𝑃 = ∑ 𝑝𝑙
𝐿−1
𝑙=1  cycles. A naïve approach is to issue a 

new sample every 𝑃 cycles. An optimized approach is to think 

of layers (𝑙 = 1, … , 𝐿 − 1) as pipeline stages. Here, we can 

issue a new sample every 𝐹 = 𝑚𝑎𝑥(𝑝1, 𝑝2, … , 𝑝𝐿−1)  cycles. 

Fig. 14(a) illustrates this for the ‘test1’ ANN (see Fig. 12). Fig. 

14(b) illustrates why 𝐹 is the largest delay among all stages.  

Fig. 15 shows a timing diagram that illustrates the behavior 

of the ‘s’ and ‘v’ signals for every stage (for ANN ‘test1’). For 

the first input sample, the ‘s’ and ‘v’ pulses of every stage are  

shaded in gray. For the second input sample, the associated ‘s’ 

and ‘v’ pulses are shaded in orange. For the third input sample, 

the associated ‘s’ and ‘v’ pulses are shaded in green. For the 

fourth input sample, the associated ‘s’ and ‘v’ pulses are shaded 

in cyan. Note how we can feed a new input sample every 𝐹 = 4 

clock cycles.  

2) Fully parallel/pipelined: Each layer 𝑙 has a processing 

delay 𝑝𝑙 = ⌈𝑙𝑜𝑔2(𝑋𝐼𝑙 + 1)⌉ + 2 . The total processing delay 

(latency) is 𝑃 = ∑ 𝑝𝑙
𝐿−1
𝑙=1  cycles. Here, the nature of the 

architecture allows us to issue a new input sample every clock 

cycle (𝐹 = 1). Note that instead of ‘s’, we call the signal ‘E’ 

(enable) as this is more standard for pipelined architectures. 

3) Multiplier-less: Each layer 𝑙 has a processing delay 𝑝𝑙 =
∑ |𝑎𝑘

𝑙−1|𝑋𝐼𝑙−1
𝑘=0 + 1 . The total processing delay (latency) is 𝑃 =

∑ 𝑝𝑙
𝐿−1
𝑙=1  cycles. Here, we can use a pipelined approch and issue 

a new sample every 𝐹 = 𝑚𝑎𝑥(𝑝1, 𝑝2, … , 𝑝𝐿−1)  cycles. In 

practice, it is not possible to compute 𝑝𝑙 . The best we can do is 

to establish a bound (assuming the largest data values) to 

compute 𝑝𝑙 . Usually, as the number of bits grow per layer, 𝐹 =
𝑝𝐿−1. This approach can be helpful when the number of bits is 

small (say less than 8), otherwise it is impractical. 

Table IV lists the three ANN architecture types along with 
their processing delay, and the minimum number of cycles 
between input samples (using a pipelined feeding approach). 

In addition, when processing 𝑁 input samples (images) the 
throughput is given by: 

 𝑇ℎ𝑟𝑜𝑢𝑔ℎ𝑝𝑢𝑡 =
# 𝑜𝑓 𝑠𝑎𝑚𝑝𝑙𝑒𝑠 (𝑁)

𝑇𝑖𝑚𝑒 𝑡𝑜 𝑝𝑟𝑜𝑐𝑒𝑠𝑠 𝑁 𝑠𝑎𝑚𝑝𝑙𝑒𝑠
=

𝑁

∑ 𝑝𝑙
𝐿−1
𝑙=1  + 𝐹×(𝑁−1)

 (4) 

Given Eq. (4), we can refer to the formulas for 𝑝𝑙   and 𝐹 for 
each implementation approach. For sufficiently large 𝑁 , the 
throughput results in 1/𝐹 (input sample per 𝐹 clock cycles). 𝐹 
is known for the multiply-and-accumulate approach, 𝐹 = 1 for 
the fully parallel/pipelined approach, and 𝐹  is a non-
deterministic quantity in the multiplier-less approach. 

D. On Finite Precision effects 

 



Throughout the datapath, we have truncated the fixed-point 
format of the data in our ANN examples (see Tables II and III). 
A fixed-point format that considers full numerical precision 
requires an impractical number of bits. RTL-based ANN 
hardware designs are affected by the finite wordlength of the 
fixed-point format in the datapath, the weights/bias format, and 
the input data format (if truncated). A survey of recent methods 
of ANN quantization techniques is available in [22]. 

Among the Post-Training quantization techniques, we can 
mention the work in [23] that converts a pre-trained single 
floating-point ANN to an 8-bit fixed-point ANN using various 
techniques: quantization range setting, cross layer equalization, 
bias correction, and AdaRound. AdaRound [24] is a weight-
rounding mechanism that adapts to the data and the task loss; 
this improves significantly over rounding-to-nearest. Other 
methods include Ternary Quantization [25] and Loss-Aware 
Post-Training quantization [26]. 

V. RESULTS AND ANALYSIS 

This section details the experimental setup for the proposed 
hardware designs and then provides results in terms of 
arithmetic precision, hardware resources, and performance. 

A. Experimental Setup 

We test both the real-valued ANN examples (‘test1’, 
‘mlosh’) and the Binary Layers. A MATLAB model (in double 
floating-point arithmetic) is used as a basis for comparison. 

For the ‘mlosh’ ANN, we specifically trained this network 
using a downsampled version (14x14 images) of the 60,000-
element MNIST database [27]. Training was carried out via 
MATLAB using the standard back-propagation method (‘mse-
loss’ as cost function) with a learning rate of 0.5 and 2 epochs. 

Results in terms of arithmetic precision and hardware 
resources are obtained by evaluating the proposed hardware 
designs via both synthesis (on Xilinx® FPGAs) and cycle-
accurate simulation on Xilinx® Vivado software.  

For the real-valued ANN examples (‘test1’, ‘mlosh’), Tables 
II and III provide ANN structure details, the weights/bias 
format, and the I/O FX format per layer that allows for full 
arithmetic precision (based on the given weight/bias format). 
This largest FX format is an artifact of the FX formulas; in 
practice, data values might need smaller FX formats. 

We evaluate how different I/O FX formats (per layer) and 

weights/bias FX format affect arithmetic precision. Table V lists 

3 different I/O FX formats (including ‘a’, the largest FX format) 

for the network ‘test1’. Table VI lists 3 different I/O FX formats 

for the network ‘mlosh’. We compare all the three cases (‘a’, ‘b’, 

‘c’) against our MATLAB model. 

In addition, we compare the arithmetic precision of the cases 
‘b’ and ‘c’ with those of the ‘a’ case. This will provide insight 
as how the effect of I/O FX formats differ from that of the 
weights/bias format.  

The parameterized VHDL implementations of the proposed 
designs allow us to get results in terms of arithmetic precision 
and performance. A space of hardware configurations is 
generated by varying the design parameters (I/O FX formats, 

weights/bias format, input size). For ‘test1’, we use a 100-
element dataset, while for ‘mlosh’, we use a downsampled 
version (14x14) of the 10,000-element MNIST database. 

TABLE V. DIFFERENT SETS OF FX FORMATS FOR ‘TEST1’ ANN. L=4. 
WEIGHTS/BIAS FORMAT: [NW PW] = [8 2]. 

 Approach Layer 1 Layer 2 Layer 3 

In / Out 

a [6 0] / [16 2] [16 2] / [26 4] [26 4] / [36 6] 

b [6 0] / [14 2] [14 2] / [22 4] [22 4] / [30 6] 

c [6 0] / [12 0] [12 0] / [18 0] [18 0] / [24 0] 

 

TABLE VI. DIFFERENT SETS OF FX FORMATS FOR ‘MLOSH’ ANN. L=3. 
WEIGHTS/BIAS FORMAT: [NW PW] = [8 7]. 

 Approach Layer 1 Layer 2 

In / Out 

a [9 0] / [25 7] [25 7] / [38 14] 

b [9 0] / [24 6] [24 6] / [36 12] 

c [9 0] / [22 4] [22 4] / [32 8] 

 

B. Arithmetic Precision Assessment 

The precision of a fixed-point architecture is affected by the 
FX format selected by the design parameters. 

We evaluate arithmetic precision using the mean squared 
error (MSE) between the ANN the results from the model in 
MATLAB. We also report the ANN accuracy to show how 
different FX formats affect this accuracy. 

TABLE VII. ‘TEST1’ ANN. L=4. FOR QUANTIZED APPROACHES (A,B,C), 
THE WEIGHTS/BIAS FORMAT IS [NW PW] = [8 2]. THE MSE IS MEASURED ON THE 

OUTPUT OF THE FCN. 

Approach a b c 

MSE w.r.t. ideal 1.0298x106 1.0298x106 1.3981x106 

MSE w.r.t. ‘a’  0 1.7789x105 

 

TABLE VIII. ‘MLOSH’ ANN. L=3.  FOR QUANTIZED APPROACHES (A,B,C), 
THE WEIGHTS/BIAS FORMAT IS [NW PW] = [8 7]. THE MSE IS MEASURED ON THE 

10 OUTPUTS OF THE FCN. THE ACCURACY OF THE IDEAL CASE IS 92.87%. 

Approach a b c 

MSE w.r.t. ideal 

216.8886 216.9236 217.1275 

230.2636 230.3180 230.6217 

1073.9 1074.1 1075.2 

894.4896 894.6366 895.56 

178.4973 178.5286 178.7447 

1059.6 1059.8 1060.9 

51.9337 51.9435 52.0091 

299.6514 299.7131 300.1101 

297.3214 297.3657 297.6845 

448.9770 449.0701 449.6818 

MSE w.r.t ‘a’  

6.9271x10-6 2.0295x10-4 

1.3485x10-5 3.6790x10-4 

2.7388x10-5 8.3988x10-4 

2.3380x10-5 7.1864x10-4 

1.3938x10-5 3.5657x10-4 

2.3494x10-5 7.3138x10-4 

6.0845x10-6 1.6207x10-4 

1.5755x10-5 4.5142x10-4 

2.9504x10-5 7.3988x10-4 

3.1058x10-5 8.8308x10-4 

ANN Accuracy 92.83% 92.83% 92.83% 

 

For ‘test1’, Table VII shows the MSE for the 100-element 
dataset, a different MSE for each FX case. 



For ‘mlosh’, Table VIII shows 10 MSEs (one for each 
output) for all the samples. This is shown for each FX case. 
Here, we also show ANN accuracy for each FX case. 

When computing the MSE of the cases ‘b’ and ‘c’ with 
respect to ‘a’, keep in mind that the ANN weights and biases are 
quantized. As such, these MSE results are useful to determine 
how the circuit structure affect the precision of the results. 

We also computed the MSE of the cases ‘a’, ‘b’, and ‘c’ with 
respect to an ideal MATLAB implementation with unquantized 
weights/biases. The results are mixed: it looks like we need more 
fractional bits for weights/biases as the MSE is large, though 
ANN accuracy does not change.  

All in all, there is not much variation when MSE is computed 
with respect to the case ‘a’, i.e., the effect of weights/bias FX 
format is not pronounced. However, there is large variation 
when computing the MSE with respect the ideal MATLAB 
implementation (that has quantized weights/bias). These results 
suggest that quantizing the weights/bias has a larger effect than 
quantizing the I/O FX format per layer. 

C. Hardware Resource Utilization 

Tables IX and X show the hardware resource utilization of 
the different architectures in terms of slice registers, 6-input 
LUTs, and DSP Slices for the design parameters specified in 
Table V and Table VI respectively. The results were obtained 
using Vivado software tool targeted to Artix-7 FPGA device. 

TABLE IX. ‘TEST1’ ANN. L=4. WEIGHTS/BIAS FORMAT: [NW PW] = [8 2]. 
THE QUANTIZED APPROACHES (REFER TO TABLE V) ARE LABELED ‘A’, ‘B’, ‘C’. 

 Multiply-and-accumulate Fully parallel/pipelined Multiplier-less 

LUT FF DSP LUT FF DSP LUT FF 

a 485 301 4 732 776 9 436 349 

b 435 279 4 548 633 12 445 321 

c 419 253 4 503 574 12 396 289 

 

TABLE X. ‘MLOSH’ ANN. L=3. WEIGHTS/BIAS FORMAT: [NW PW] = [8 7]. 
THE QUANTIZED APPROACHES (REFER TO TABLE VI) ARE LABELED ‘A’, ‘B’, ‘C’. 

 Multiply-and-accumulate Fully parallel/pipelined Multiplier-less 

LUT FF DSP LUT FF DSP LUT FF 

a 3559 3056 10 75108 76828 115 2670 3095 

b 3516 3030 10 74900 76579 115 2633 3068 

c 3372 2978 10 74314 76255 115 2561 3014 

As for the ANN Binary Layers, Table XI shows some 

resource results for the Layer 1 of both the ‘test1’ and ‘mlosh’ 

networks. We use the largest output FX format for Layer 1. The 

fully pipelined case uses more resources, and this is evident the 

larger the ANN is. 

TABLE XI. RESOURCE UTILIZATION FOR BINARY LAYERS. ‘TEST1’ 
LAYER 1: XI=2, XO=3, [NW PW] = [8 2]. ‘MLOSH’ LAYER 1: XI=196, XO=16, 

[NW PW] = [8 7]  

Output FX Format 
Accumulation-based Fully pipelined 

LUT FF LUT FF 

Layer 1 ‘test1’: [10 2] 48 33 33 40 

Layer 1, ‘mlosh’: [16 7] 910 574 12324 15651 

For fixed input data wordlength, the I/O FX formats have a 

small effect on hardware resources. Implementation-wise, the 

fully parallel/pipelined approach uses significantly more 

resources than the multiply-and-add or the multiplier-less 

approach. The multiply-and-add approach uses slightly more 

resources than the multiplier-less.  

Unsurprisingly, the ANN architecture (number of layers, 

neurons per layer) plays a significant role. Finally, the 

weight/bias FX format does not play a significant role unless the 

wordlength is modified. 

D. Hardware Performance 

Performance-related formulas are available in Table I (for 
individual layers) and Table IV (for ANNs with real-valued 
inputs). 

Table XII lists the actual processing cycles for ‘test1’ and 

‘mlosh’ ANNs (with real-valued inputs). For each case, the 

wordlenghts for full accuracy are employed. Note that the results 

from multiplier-less implementation are data dependent (we 

tried with one specific sample for each case). We can see how 

the multiplier-less can only be useful for very small networks. 

TABLE XII. PROCESSING CYCLES FOR ANN EXAMPLES ‘TEST1’ AND ‘MLOSH’  

ANN Metric 
Multiply-and-

accumulate 

Fully Parallel/ 

Pipelined 

Multiplier-

less 

‘test1’ 

Latency (1 sample) 11 12 2.65*1014 

Min. # of cycles between 

input samples (F) 
4 1 2.637*1014 

Throughput 

(samples/cycle) 
0.25 1 1/2.637*1014 

‘mlosh’ 

Latency (1 sample) 214 17 4.6385*1014 

Min. # of cycles between 

input samples (F) 
197 1 4.531*1014 

Throughput 1/197 1 1/4.531*1014 

As for throughput, Table XII expresses it in samples per 
clock cycle. Another way to look at it is by considering a 100 
MHz operating frequency. Here, the multiply-and-accumulate 
architecture has a throughput of 25 Msamples per second for 
‘test1’ and 0.507 Msamples for second for ‘mlosh’. For the fully 
parallel/pipelined case, the throughput is 100 Msamples per 
second for all cases. We do not include the multiplier-less results 
as they are too low. 

E. Comparison with other implementations 

We note that hardware comparisons are very difficult to 
carry out fairly as the test cases presented vary greatly in terms 
of implementations: ANN architecture, datawidth of the 
datapath, weights/bias datawidth pooling mechanism, activation 
function. When comparing different works, if comparable 
designs are not found, it might be preferable to compare the 
method/architecture rather than raw resources. 

Table XIII provides some comparisons with related works. 
We include a comparable RTL design [5], and designs generated 
by high-level frameworks [9],[10],[11]. We note that some RTL 
details are difficult (sometimes not found) to extract. 

Our proposed approach generates less overall hardware 
consumption and it takes less processing cycles than the others 
(for comparatively similar ANN architectures and hardware 
implementation approaches). We note that other 
implementations usually implement activation functions other 
than ReLU: this is an area where our proposed architectures can 
improve and for which there are remarkable approaches [9][19].  



F. Selection of design paramters for given ANN applications 

Based on our results, we provide general guidelines on the 
selection of the optimal designs for given ANN applications. 

First, numerical precision of the datapath does not play a 
major role in the final ANN accuracy. So, we can truncate the 
fractional bits in the datapath to improve resource utilization 
without affecting ANN accuracy. However, the weights/bias FX 
format greatly affects the numerical precision, and it should not 
be truncated further. 

Second, the multiplier-less implementation should be 
avoided except for applications that need small ANNs (e.g.: 8-
5-3, 3-4-1). For larger ANNs, the multiply-and-accumulate 
implementation should be chosen if resources are to be 
optimized. If resources are not a big concern, the fully 
parallel/pipelined implementation must be selected, as it allows 
for output data to be used at every new clock cycle. 

Third, to take advantage of multi-stage pipelining, the 
number of neurons of the ANN layers should be relatively 
similar, otherwise the throughput will be dominated by the 
largest layer (e.g.: ‘mlosh’ ANN: 196-16-10). 

Finally, for applications that require binary layers (e.g.: 
ANNs with binary input data, SNNs) and the proposed binary 
layer implementations are the most optimized: accumulator-
based (to save resources), fully parallel/pipelined (to maximize 
throughput). 

VI. CONCLUSIONS 

We presented and successfully validated a set of hardware 
architectures for Artificial Neural Networks, both with real-
valued inputs and with binary-valued inputs. The fixed-point 
implementations can handle varied numerical ranges with 
reasonable resource requirements, while providing the same 
levels of ANN accuracy. Overall, the multiplier-and-accumulate 
and the fully parallel/pipelined approaches are the most optimal 
designs, whereas the multiplier-less architecture could only 
provide acceptable results for small number of bits. These 
architecture implementations can be used in varied settings: as 
part of CNNs and SNNs. 
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Figure 1. (a) ANN with 3 layers (𝐿 = 3). (b) First neuron (index ‘1’) in layer 𝑙 = 2. (c) Artificial neuron model. The membrane potential is a sum of products 

(input activations by weights) to which a bias term is added. 𝑗 represents the neuron index in layer 𝑙. The input activations come from a previous layer (𝑙 − 1). 

Figure 2. Matrix computation for membrane potentials (𝑧𝑙) in layer 𝑙. The 

index 𝑘 is for the neurons in layer 𝑙 − 1, while the index 𝑗 is for the neurons 

in layer 𝑙. The weight matrix 𝑤𝑙 has NO rows by NI columns, the action 

potential vector 𝑎𝑙−1 has NI rows, and the bias vector 𝑏𝑙 has NO rows. The 

membrane potential 𝑧𝑙 and the action potential 𝑎𝑙 have NO rows. 

NO

NI

class 1

class 2

class 3

input

hidden 

layer

output

layer

(a) (b)

S

...

membrane
potential

action
potential

(c)



 
 

 

 
 

 

 
 

 

 
 

 

 
 

 

 
 

 

 
 

 

 

 

 

 
 

 
 

 

 
 

 

 
 

 

 
 

 

 
 

 

 
 

 

 
 

 

 
 

 

 
 

 

 
 

 

 
 

 

 

 

 

 
 

 

 
 

 

 
 

 

 

S1

S2

resetn=0

1

0
s

k=XI-1

k  0

Eo  1 

no

yes

k  k+1

E, Eo, bs  1 

k  0, d_v  1

ANN
NEURON

...

...

...

ANN
NEURON

...

ANN
NEURON

...

...

FSM

E

E

E

0

XI-1

1...

s

Eo

Eo

bs

...

v

E

k

d_v

Eo

bs

Eo

bs

XI XO

bs

Figure 3. ANN Layer for real-valued inputs: Multiply-and-add architecture. The design parameters are indicated. 𝑋𝐼: number of inputs, 𝑋𝑂: number of outputs. 

Input data: 𝑎⃗𝑙−1 = [𝑎1
𝑙−1  𝑎2

𝑙−1 … 𝑎𝑋𝐼
𝑙−1]𝑇. Output Data: 𝑎⃗𝑙 = [𝑎1

𝑙   𝑎2
𝑙 … 𝑎𝑋𝑂

𝑙 ]𝑇. Weight matrix: 𝑤𝑙, bias vector: 𝑏𝑙. The FX format of the inputs, weights/biases, 

and output is specified as [𝑛𝑖 𝑝𝑖], [𝑛𝑤 𝑝𝑤], and [𝑛𝑜 𝑝𝑜] respectively. The FSM ensures input data is captured in registers and then processed sequentially. 
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𝑙 ]𝑇. Weight matrix: 𝑤𝑙, bias vector: 𝑏𝑙. The FX format of the inputs, weights/biases, and output is 

specified as [𝑛𝑖 𝑝𝑖], [𝑛𝑤 𝑝𝑤], and [𝑛𝑜 𝑝𝑜] respectively. The architecture of neuron 𝑗 (𝑗 = 1, … , 𝑋𝑂) is also shown. Each neuron only receives row 𝑗 of the 

weight matrix 𝑤𝑙, as well as the element 𝑗 in the bias vector 𝑏𝑙.  
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Figure 7. ANN Layer for real-valued inputs: Multiplier-less architecture. 𝑋𝐼: number of inputs, 𝑋𝑂: number of outputs. Input data: 𝑎⃗𝑙−1 = [𝑎1
𝑙−1  𝑎2

𝑙−1 … 𝑎𝑋𝐼
𝑙−1]𝑇. 

Output Data: 𝑎⃗𝑙 = [𝑎1
𝑙   𝑎2

𝑙 … 𝑎𝑋𝑂
𝑙 ]𝑇. Weight matrix: 𝑤𝑙, bias vector: 𝑏𝑙. The FX format of the inputs, weights/biases, and output is specified as [𝑛𝑖 𝑝𝑖], [𝑛𝑤 𝑝𝑤], 

and [𝑛𝑜 𝑝𝑜] respectively. The FSM orchestrates data capture in registers and the neuron output computations. 
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TABLE I. ANN LAYER HARDWARE FOR REAL-VALUED (𝑛𝑡 = 𝑛𝑖 + 𝑛𝑤 + ⌈𝑙𝑜𝑔2(𝑋𝐼 + 1)⌉) AND BINARY-VALUED (𝑛𝑡 = 𝑛𝑤 + ⌈𝑙𝑜𝑔2(𝑋𝐼 + 1)⌉)  INPUTS: FEATURES. 

 
Architecture Latency (cycles) 

Min. # of cycles 
between input samples 

Hardware per neuron 
Largest output 

FX format 
Comments 

R
ea

l-
v
al

u
ed

 

L
ay

er
 

Multiply-and-

accumulate 
𝑋𝐼 + 1 𝑋𝐼 + 1 

MUX XI-to-1, multiplier, MUX 2-to-1 

𝑛𝑡-bit adder, register, and ReLU 

[𝑛𝑡 𝑝𝑤 + 𝑝𝑖] 

Multipliers: one 

constant 

operand. 
Fully Parallel/ 

Pipelined 
⌈log2(XI + 1)⌉  +  2 1 

XI multipliers, adder tree (XI+1 inputs) 

𝑛𝑡-bit register and ReLU 

Multiplier-less ∑ |𝑎𝑘
𝑙−1|

𝑋𝐼−1

𝑘=0

+ 1 ∑ |𝑎𝑘
𝑙−1|

𝑋𝐼−1

𝑘=0

+ 1 
MUX XI-to-1, MUX 2-to-1. 

𝑛𝑡-bit adder/subtractor, register, ReLU 
Latency is non-

deterministic 

B
in

ar
y

 

L
ay

er
 Accumulator-

based 
𝑋𝐼 + 1 𝑋𝐼 + 1 

MUX XI-to-1, MUX 2-to-1. 

𝑛𝑡-bit adder, register, and ReLU. 
[𝑛𝑡 𝑝𝑤] No multipliers 

Fully Parallel/ 

Pipelined 
⌈log2(𝑋𝐼 + 1)⌉  +  2 1 

XI MUXs 2-to-1, XI+1 input adder tree 

𝑛𝑡-bit register and ReLU 
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Figure 9. Binary Layer: accumulator-based architecture. 𝑋𝐼 inputs, 𝑋𝑂 outputs. Input data: 𝑎⃗𝑙−1 = [𝑎1
𝑙−1  𝑎2

𝑙−1 … 𝑎𝑋𝐼
𝑙−1]𝑇. Output Data: 𝑎⃗𝑙 = [𝑎1

𝑙   𝑎2
𝑙 … 𝑎𝑋𝑂

𝑙 ]𝑇. 

Weight matrix: 𝑤𝑙, bias vector: 𝑏𝑙. The FX format of the weights/biases and output is specified as [𝑛𝑤 𝑝𝑤], and [𝑛𝑜 𝑝𝑜] respectively. The FSM orchestrates 

data capture in registers and the neuron output computations. The architecture of neuron 𝑗 (𝑗 = 1, … , 𝑋𝑂) is also shown. Each neuron only receives row 𝑗 of the 

weight matrix 𝑤𝑙, as well as the element 𝑗 in the bias vector 𝑏𝑙. 
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Figure 10. Binary Layer: Fully parallel/pipelined architecture. 𝑋𝐼 inputs, 𝑋𝑂 outputs. Input data: 𝑎⃗𝑙−1 = [𝑎1
𝑙−1  𝑎2

𝑙−1 … 𝑎𝑋𝐼
𝑙−1]𝑇. Output Data: 𝑎⃗𝑙 =

[𝑎1
𝑙   𝑎2

𝑙 … 𝑎𝑋𝑂
𝑙 ]𝑇. Weight matrix: 𝑤𝑙, bias vector: 𝑏𝑙. The FX format of the weights/biases and output is specified as [𝑛𝑤 𝑝𝑤], and [𝑛𝑜 𝑝𝑜] respectively. The 

architecture of neuron 𝑗 (𝑗 = 1, … , 𝑋𝑂) is also shown. Each neuron only receives row 𝑗 of the weight matrix 𝑤𝑙, as well as the element 𝑗 in the bias vector 𝑏𝑙.  

Figure 11. ANN with 𝐿 layers. I/Os are indicated for every Layer. Layer 0 refers to input data. 𝑋𝐼𝑙 = 𝑋𝑂𝑙−1 for 𝑙 = 1, … , 𝐿 − 1. The parameter ‘name’ specifies 

the weight matrix and bias vector for every layer. The parameter ‘type’ has three choices: ‘multiply-and-add’, ‘fully parallel/pipelined’, ‘multiplier-less’. 
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Figure 12. ANN ‘test1’. (a) ANN structure, 𝐿 = 4 layers. (b) Bit-width (and FX format for full accuracy) per layer. Size of I/Os is depicted. (c) 

Weights and biases for every layer (𝑙 ≥ 1). 
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Figure 14. ‘test1’ ANN: multiply-and-add approach. (a) Layers as stages along with their processing delays. An input sample is fed when the 

corresponding ‘s’ signal is asserted. (b) Pipelined approach that illustrates why 𝐹 = 𝑚𝑎𝑥(3,4,4) = 4. 
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TABLE IV. LATENCY OF ANN HARDWARE (REAL-VALUED INPUTS). TO FEED DATA ONTO THE ANNS, A PIPELINED APPROACH IS USED. 
Architecture Latency (cycles) Min. # of cycles between input samples Comments 

Multiply-and-

accumulate 
∑(𝑋𝐼𝑙 + 1)

𝐿−1

𝑙=1

 
𝐹 = 𝑚𝑎𝑥(𝑝1, 𝑝2, … , 𝑝𝐿−1), 

𝑝𝑙 = 𝑋𝐼𝑙 + 1 
Multipliers: one 

constant operand. 
Fully Parallel/ 

Pipelined 
∑(⌈log2(𝑋𝐼𝑙 + 1)⌉ +  2)

𝐿−1

𝑙=1

 1 

Multiplier-less ∑ ( ∑ |𝑎𝑘
𝑙−1|

𝑋𝐼𝑙−1

𝑘=0

+ 1)

𝐿−1

𝑙=1

 

𝐹 = 𝑚𝑎𝑥(𝑝1, 𝑝2, … , 𝑝𝐿−1), 

𝑝𝑙 = ∑ |𝑎𝑘
𝑙−1|

𝑋𝐼𝑙−1

𝑘=0

+ 1 

Latency is non-
deterministic 

 

 

 
 

TABLE XIII. COMPARISON OF DIFFERENT ANN ARCHITECTURES. VIRTEX-4: 4-INPUT LUTS, 18X18-BIT DSP MULTIPLIERS. VIRTEX-6, VIRTEX-7, ZYNQ-7000: 6-

INPUT LUTS 25X18-BIT DSP MULTIPLIERS. 

 Proposed Gomperts et al. [9] Himavathi et al. [5] Wang et al. [10] Gaikwad et al. [11] 

Architecture 

Multiply-

and-
accumulate 

Fully parallel/ 

pipelined 

Multiplier-

less 

Multiply-and-

accumulate 

Multiply-and-

accumulate 
Fully parallel 

Multiply-and-

accumulate 

Activation 

Function 
ReLU 

sigmoid: LUT with 

interpolation 
sigmoid/ReLU ReLU sigmoid 

Numerical 

format 

Fixed Point 

(variable, grows with the datapath)  

Fixed Point 
 (3 fractional bits, 

variable for activation 

function) 

Fixed Point 

[29 16] 
Fixed Point 

Fixed-Point 

8-bit precision 

ANN 
196-16-10 

[9 0]: input data, [32 8] output data 
10-3-1 8-5-5-3 4-layer 5-4-2 

Device and 

frequency 

Artix-7 XC7A100T 

@ 100 MHz 
Virtex-5 XCVSX50T 

XCV400 

@ 73 MHz 

Zynq-7045 @ 100 

MHz 

Artix-7 XC7A35T 

@ 10 MHz 

FPGA 

Resources 

2978 FFs 

3372 LUTs 
10 DSPs 

76255 FFs 
74314 

LUTs 

115 DSPs 

3014 FFs 

2561 LUTs 

2243 FFs 

8043 LUTs 
246 DSP48E1s 

2863 Slices 

(~5600 LUTs, 5600 
FFs) 

3621 LUTs 

2532 FFs 

1295 FFs 

3244 LUTs 
79 DSPs 

Processing 

cycles 
214 cycles 17 cycles 

4.61014 

cycles 
- 186 cycles - 31 us (~310 cycles ) 

Notes self-contained VHDL design 
Hardware generated 

by high-level platform 

Only largest layer is 

implemented (and 

reused) 

Hardware 

generated by high-

level platform.  

Hardware generated 

by Xilinx SysGen 
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Figure 15. ‘test1’ ANN: multiply-and-add approach. Timing diagram that illustrates how we can feed data every 𝐹 = 4 cycles. Note how we 

can assert the ‘s’ signal of Layer 1 (𝑠0) every 𝐹 = 4 clock cycles. The behavior of the ‘s’ and ‘v’ signals for every layer is depicted. 


