
Fixed-Point Implementations for Feed-forward

Artificial Neural Networks

Daniel Llamocca

Electrical and Computer Engineering Department

Oakland University

Rochester, MI, USA

llamocca@oakland.edu

Abstract—We present scalable and generalized fixed-point

hardware designs (source VHDL code is provided) for Artificial

Neural Networks (ANNs). Three architectures are presented:

multiply-and-add, multiplier-less, fully pipelined. In addition, we

include two approaches for ANN binary layers: accumulation-

based and fully pipelined. The fully customized hardware

architectures allow for design space exploration to establish trade-

offs among numerical format, processing time, resource usage,

and numerical accuracy. Users can select the ANN architecture,

ANN parameters (structure, weights, biases), the numerical

format for both the input/output data in every layer and the

network parameters (weights and biases). Results are presented in

terms of resources, processing time, and numerical accuracy. The

proposed architectures were implemented on modern FPGAs.

These hardware designs are expected to be used as building blocks

on a variety of applications such as CNNs and SNNs, as well as a

platform for educational purposes.

Keywords— Artificial Neural Networks, Register Transfer Level,

field-programmable gate array (FPGA).

I. INTRODUCTION

ANNs are fundamental components in many applications
such as computer vision, speech recognition, natural language
processing, and automatic driving [1].

Compared to software implementations, ANN hardware
implementations can fully exploit the parallel operation of
neurons and reduce the cost of implementation. In addition, they
can be embedded in a wide range of systems. An extensive
overview of hardware implementations (analog, digital, hybrid)
for several ANN models is presented in [2].

Our focus is on digital hardware implementations at the
Register Transfer Level (RTL). This type of hardware-level
design can improve the efficiency and achieve greater
acceleration, but it requires an in-depth understanding of the
algorithm structure [3]. This is an active area of research and
FPGA-based implementations have attracted attention due to its
reconfiguration capability. A good summary of implementation
schemes (targeted to FPGAs) is presented in [4].

An FPGA-based implementation is presented in [5], where
one layer implements all the network layers via a time-
multiplexing scheme; neurons are implemented with LUTs. A
compact hardware implementation where each neuron is treated
as a Boolean function is presented in [6]; the method is more
efficient for low number of input bits. An implementation with

fast carry look-ahead adder and Booth multiplier is presented in
[7]. The work in [8] presents a reconfigurable feed forward
neural networks: nodes can be reorganized for a particular
application.

Lately, high-level frameworks for the implementation of
ANNs have become popular. The work in [9] presented a
platform for the generation of parameterized FPGA-based
architecture for feed forward ANN with backpropagation
learning algorithms. The work in [10] features a design
automation tool that generates RTL-based ANN accelerators.
Layer implementation is straightforward: neurons as
implemented via an adder tree. It allows for time-multiplexing
of resources when there are logic constraints. The work in [11]
presented an ANN designed with Xilinx System Generated and
incorporated into an ECG classifier.

CNN implementations are also worth mentioning. Within a
convolutional layer, each feature map is the result of a sum of
convolutions, the pooling operation and activation function.
Each pixel of a feature map is the result of a sum of products.
This resembles an ANN layer (with fewer computations). A
review of techniques for accelerating deep learning networks on
FPGAs is provided in [12]. Stochastic computing can simplify
the hardware complexity in these implementations [13]. The
work in [14] presents an implementation of LSTM (long short
term memory) based on Stochastic Computing.

High-level frameworks for CNN implementations are worth
mentioning. In [15], a systolic array architecture is presented and
a process by which a CNN is mapped onto a systolic array
architecture. A related work is presented in [16], where symbolic
descriptions of CNNs are converted into FPGA-based
accelerators using RTL-HLS hybrid templates. Another high-
level framework is presented in [17].

The high-level frameworks are very useful in many
applications as they allow for rapid prototyping, design space
exploration, and the testing of optimization techniques at higher
abstraction layers. However, this creates dependency on
software tools (commercial and custom-built) that might not be
typically available and that might lack future support.

Though some frameworks present innovations in terms of
hardware implementation of ANN components (e.g.: activation
function, time multiplexing of resources), RTL architecture
details are usually scarce, such as numerical format across the

mailto:llamocca@oakland.edu

datapath, implementations (folded, unfolded, systolic, etc.),
cycle-accurate analysis of latency).

We believe that there is room for architecture improvements
at the pure RTL description domain targeted to FPGAs as well
as ASICs. As a result, we propose a unified set of parameterized
architectures that can be directly incorporated in the design of
various ANN-based applications that use fixed-point arithmetic.
The RTL design we provide is written in VHDL, it is self-
contained (no need of libraries) and it can be used directly in any
FPGA-based tool or ASIC-based tool. Our dedicated fixed-point
hardware designs let the user specify specific hardware design
parameters (e.g.: datapath numerical format, weights/bias
numerical formats, ANN architecture, implementation style)
thereby allowing the user to select what to optimize for: resource
usage, numerical accuracy, and processing time. We include
designs for real-valued and binary-valued ANN layers. For the
architectures, results in terms of accuracy, and hardware design
parameters (e.g.: datapath bit-width, implementation approach)
are provided.

The remainder of the paper is organized as follows. Section
II briefly describes a standard ANN. Section III describes the
hardware implementation approaches for an ANN layer. Section
IV describes hardware implementations for an ANN. Section V
presents the results in terms of processing time, accuracy, and
resources. Finally, conclusions are given in Section VI.

II. ARTIFICIAL NEURAL NETWORK

A. Notation

ANNs are organized into layers, where all the neurons in one
layer receive their inputs from neurons in a prior layer and
provide outputs to the subsequent layer. We let 𝐿 denote the
number of layers, and 𝑙 the layer index (0 to 𝐿 − 1), where 𝑙 =
0 is the input layer.

Fig. 1(a) depicts a 3-layer neural network (also called Fully
Connected Layer). Fig. 1(b) depicts the inputs and outputs of the
first neuron in layer 𝑙 = 2. Fig. 1(c) depicts the artificial neuron

model. The neuron output (action potential 𝑎𝑗
𝑙) results from

applying an activation function to the membrane potential (𝑧𝑗
𝑙).

The index corresponds to neuron 𝑗 in layer 𝑙 . The membrane

potential 𝑧𝑗
𝑙 is a dot product between the inputs and the

associated weights, to which a bias is then added [1].

 𝑧𝑗
𝑙 = ∑ 𝑤𝑗𝑘

𝑙 𝑎𝑘
𝑙−1

𝑘 + 𝑏𝑗
𝑙, 𝑙 ≥ 1 (1)

Note that 𝑤𝑗𝑘
𝑙 represents the synaptic gain factor from

neuron 𝑘 in layer 𝑙 − 1 (previous layer) to neuron 𝑗 in layer 𝑙.

The action potential intensity of a neuron is denoted by 𝑎𝑗
𝑙, and

it is modeled as a scalar function (activation function) of 𝑧𝑗
𝑙.

 𝑎𝑗
𝑙 = 𝜎(𝑧𝑗

𝑙) = 𝜎(∑ 𝑤𝑗𝑘
𝑙 𝑎𝑘

𝑙−1
𝑘 + 𝑏𝑗

𝑙), 𝑙 ≥ 1 (2)

Common activation functions include these non-linear
operations:

▪ Rectified Linear Unit (ReLU): 𝜎(𝑧𝑗
𝑙) = 𝑚𝑎𝑥(0, 𝑧𝑗

𝑙).

▪ Hyperbolic Tangent: 𝜎(𝑧𝑗
𝑙) = 𝑡𝑎𝑛ℎ(𝑧𝑗

𝑙).

▪ Sigmoid function: 𝜎(𝑧𝑗
𝑙) = 1

(1 + 𝑒−𝑧𝑗
𝑙

)
⁄

The output of a layer 𝑙 can be described using a vectorized

notation (Eq. (3)). Fig. 2 depicts the matrix operation for 𝑧𝑙. We
let 𝑁𝑂 denote the number of outputs (or number of neurons),

and 𝑁𝐼 the number of inputs. Here, 𝑧𝑙 is a column vector that

includes all the membrane potentials of layer 𝑙, 𝑎𝑙−1 is a column

vector that includes all the input signals to layer 𝑙 , 𝑤𝑙 is the
weight matrix containing all the synaptic gain factors from layer

𝑙 − 1 to layer 𝑙 , and 𝑏𝑙 is a column vector that includes the

biases of all neurons of layer 𝑙. The result 𝑎𝑙 is a column vector
that includes all the action potentials of layer 𝑙.

 𝑎𝑙 = 𝜎(𝑧𝑙), 𝑧𝑙 = 𝑤𝑙𝑎𝑙−1 + 𝑏𝑙, 𝑙 ≥ 1 (3)

As for activation functions, there are different nonlinear
functions, e.g.: tanh, sigmoid, softmax, ReLU. Due to its
simplicity, ReLU is preferred. Using specialized circuitry for the
computation of the other functions is impractical as there are
many neurons operating in parallel per layer. Approximation
methods and LUT-based approaches are preferred. The work in
[18] describes an approximate method to implement tanh, while
the work in [7] proposes a piecewise linear approximation for
the sigmoid function. The work in [19] presents a twofold LUT
generic approach, while the work in [9] implements the sigmoid
function using an LUT combined with linear interpolation.

B. Implementations

This standard ANN can be implemented in multiple domains
(e.g.: microprocessors, GPUs, FPGAs, ASICs). We focus on
RTL-based hardware designs using fixed-point arithmetic.

III. HARDWARE IMPLEMENTATIONS FOR AN ANN LAYER

In this section, we describe our parameterized, fixed-point
architecture implementations for a generic ANN layer. They are
designed at the Register Transfer Level (RTL) and described in
VHDL. We let 𝐿 denote the number of layers, and 𝑙 to denote
the layer index (from 0 to 𝐿 − 1), where 𝑙 = 0 is the input layer.

Note that we refer to an ANN hardware architecture (or
implementation) as the RTL hardware design, while the ANN
architecture is what is commonly understood as the ANN
structure (number of layers, neurons per layer, etc.)

The hardware designs are classified into two categories: real-
valued inputs and binary-valued inputs. For each category, we
present different implementation approaches, that are described
in detail (datapath, control mechanism, design parameters).

A. Real-valued inputs: Generic Layer

We let 𝑋𝐼 to denote the number of inputs, and 𝑋𝑂 the
number of outputs (or number of neurons). The inputs are

grouped as a vector 𝑎𝑙−1, and the outputs are 𝑎𝑙.

We use signed fixed-point representation for the datapath,
where [𝑁𝑂 𝑁𝑄] represents a fixed-point format with 𝑁𝑂
integer bits and 𝑁𝑄 fractional bits. Then, we let the input data
format be [𝑛𝑖 𝑝𝑖], the weights/biases format be [𝑛𝑤 𝑝𝑤], the
internal datapath format be [𝑛𝑡 𝑝𝑤 + 𝑝𝑖], and the output format
be [𝑛𝑜 𝑝𝑜]. For full accuracy, the output format is given by
[𝑛𝑡 𝑝𝑤 + 𝑝𝑖] , where 𝑛𝑡 = 𝑛𝑖 + 𝑛𝑤 + ⌈log2(𝑋𝐼 + 1)⌉ . The
user can truncate the output to the format [𝑛𝑜 𝑝𝑜]. The weight

matrix (𝑤𝑙) and bias vector (𝑏𝑙) are loaded as constant
parameters via text files.

Three implementation approaches are presented. The signal
𝑘 (𝑘 = 0, … , 𝑋𝐼 − 1) indexes an element of the input vector

𝑎𝑙−1. The index 𝑗 (𝑗 = 1, … , 𝑋𝑂) refers to a neuron in the layer.

1) Multiply-and-Accumulate: Fig. 3 depicts the generic
architecture for an ANN Layer with its parameters and I/O
ports. Fig. 4 depicts a neuron: its components (adder, multiplier,
register, mux), and the FX format at every stage. The
computation starts by loading the bias in the register, and then

accumulating the products (weight by input signal: 𝑤𝑗𝑘
𝑙 × 𝑎𝑘

𝑙−1)

at every clock cycle.

This architecture processes an input sample in 𝑋𝐼 + 1

cycles. We can feed input samples to the ANN layer every 𝑋𝐼 +
1 cycles. Fig. 5 depicts a timing diagram for 𝑋𝐼 = 5.

2) Fully parallel/pipelined: Fig. 6 depicts the generic
architecture for the ANN Layer with its parameters and I/O
ports. The neuron architecture uses 𝑋𝐼 multipliers, an adder tree
[20], and a register. All the products, computed in parallel, are
added up by the adder tree. An input sample is processed in
⌈𝑙𝑜𝑔2 𝑋𝐼 + 1⌉ + 2 cycles. Its fully pipelined nature allows us

to feed input samples at every clock cycle, i.e., a new output 𝑎𝑙
can be computed per clock cycle.

3) Multiplier-less: Fig. 7 depicts the generic architecture
for the ANN Layer with its parameters and I/O ports. Fig. 8
depicts a neuron with its components (adder/subtractor,
register, MUX); the datapath format is indicated at every stage.
The computation starts by loading the bias in the register, and
then accumulating the products (weight by input signal). The

product 𝑤𝑗𝑘
𝑙 × 𝑎𝑘

𝑙−1 is implemented by accumulating (we add or

subtract based on the sign of 𝑎𝑘
𝑙−1) 𝑤𝑗𝑘

𝑙 for |𝑎𝑘
𝑙−1| times (𝑎𝑘

𝑙−1

treated as an integer value). The result includes 𝑝𝑖 extra

fractional bits to account for the fractional bits of 𝑎𝑘
𝑙−1.

The computation of 𝑤𝑗𝑘
𝑙 × 𝑎𝑘

𝑙−1 takes |𝑎𝑘
𝑙−1| cycles. This

means that the number of cycles can range from 0 to 2𝑛𝑖−1. As

a result, while this may be an effective approach for small 𝑛𝑖, it
can also be very impractical for large 𝑛𝑖. Also, the number of

cycles is non-deterministic as it depends on the input values.

This architecture processes an input sample (and can be fed

a new input sample) in ∑ |𝑎𝑘
𝑙−1|𝑋𝐼−1

𝑘=0 + 1 cycles.

B. Binary-valued inputs: Generic Layer (or Binary layer)

This is a special case where the input elements of vector 𝑎𝑙−1
are binary-valued (0 or 1). However, we note that the elements

of output vector 𝑎𝑙 are real-valued. This binary layer is different
than the real-valued input Layer with 𝑛𝑖 = 1 , where data is
treated as signed FX. A binary layer is useful in applications
such as Spiking Neural Networks [21], or an ANN whose first
layer processes binary-valued inputs.

We let the weights/biases format be [𝑛𝑤 𝑝𝑤], the internal
datapath format be [𝑛𝑡 𝑝𝑤], and the output format be [𝑛𝑜 𝑝𝑜].
For full accuracy, the output format is given by [𝑛𝑡 𝑝𝑤], where
𝑛𝑡 = 𝑛𝑤 + ⌈log2(𝑋𝐼 + 1)⌉. The user can truncate the output to

the format [𝑛𝑜 𝑝𝑜]. The weight matrix (𝑤𝑙) and bias vector (𝑏𝑙)
are loaded as constant parameters via text files. Two
implementation approaches are presented:

1) Accumulator-based: This is based on the multiply-and-
accumulate hardware for real-valued inputs. Given the binary
inputs, the multipliers are not needed, hence resembling the
multiplier-less approach applied to binary inputs.

The generic architecture for the Binary Layer is depicted in

Fig. 9 with its parameters and I/O ports. The neuron uses an

adder, multiplier, MUX. The computation starts by loading the

bias in the register, and then accumulating the products (weight

by input signal) at every clock cycle. The product 𝑤𝑗𝑘
𝑙 × 𝑎𝑘

𝑙−1 is

either 0 or 𝑤𝑗𝑘
𝑙 . This architecture processes an input sample in

𝑋𝐼 + 1 cycles. And we can feed input samples to the ANN layer

every 𝑋𝐼 + 1 cycles.

2) Fully parallel/pipelined: Fig. 10 depicts the generic
architecture for the Binary Layer, its parameters and I/O ports.

In the neuron architecture, each product 𝑤𝑗𝑘
𝑙 × 𝑎𝑘

𝑙−1 is either 0

or 𝑤𝑗𝑘
𝑙 . The adder tree adds up all the products (including the

bias). The architecture processes an input sample in ⌈𝑙𝑜𝑔2 𝑋𝐼 +
1⌉ + 2 cycles. Its fully pipelined nature lets us feed input

samples at every clock cycle, i.e., a new output 𝑎𝑙 can be
computed per clock cycle.

Table I lists the five architectures along with their processing

delay (latency), minimum number of cycles between input

samples, and hardware resources. Note that the multipliers we

employ have one constant operand.

C. Weight matrix and bias vector

These design parameters of the RTL hardware designs are
specified in .txt files, from which the VHDL code access

them. The weight matrix is stored in a raster scan fashion. The
generation of the .txt file can be carried out by any software

application (MATLAB, C++, Pytorch) after an ANN is trained.
More details are provided in the next section.

IV. HARDWARE IMPLEMENTATION FOR ANNS

Here, we present hardware implementations of ANNs with
real-valued inputs. As for binary-valued layers, they can be used
as part of an SNN, or as part of an ANN whose first layer
processes binary-valued data.

A. Generic ANN with L layers

For 𝐿 layers, 𝑙 denotes the layer index (0, … , 𝐿 − 1), where

𝑙 = 0 is the input layer (with 𝑋𝑂0 outputs). For 𝑙 ≥ 1 , 𝑋𝐼𝑙

denotes the number of inputs, and 𝑋𝑂𝑙 the number of outputs.
Fig. 11 depicts a generic architecture for an ANN Layer with its
parameters and I/O ports. The design parameters are ‘name’
(ANN name), ‘type’ (layer type: multiply-and-add, fully
parallel/pipelined, and multiplier-less), and [𝑛𝑖𝑙 𝑝𝑖𝑙] (user-
selectable FX format per layer, 𝑙 = 0, … , 𝐿 − 1).

An ANN is implemented by cascade connecting the
individual layers (one after the other), as in Fig. 11. The start (‘s’
or ‘E’) and ‘v’ signals are also connected in cascade.

The ANN name (‘name’) provides a reference to the ANN
structure as well as the weight matrix and bias vector per layer.
Specifically, it references these design parameters:

▪ FX format for weight matrix and bias vector elements for all
layers: [𝑛𝑤 𝑝𝑤].

▪ Input and output sizes for every layer, specified in parameter
𝑋𝐿 = [𝑋𝑂0, 𝑋𝑂1, … , 𝑋𝑂𝐿−1]. The input layer (𝑙 = 0) only
has outputs whose size is 𝑋𝑂0 × 1. For layer 𝑙 (𝑙 ≥ 1), we

have that 𝑋𝐼𝑙 = 𝑋𝑂𝑙−1, the input size is 𝑋𝐼𝑙 × 1, the output

size is 𝑋𝑂𝑙 × 1, the weight matrix size is 𝑋𝑂𝑙 × 𝑋𝐼𝑙, and the

bias vector size is 𝑋𝑂𝑙 × 1.

▪ Weight matrix (𝑤𝑙) and bias vector (𝑏𝑙) values per layer (𝑙 ≥
1), available in a set of .txt files. For layer 𝑙, the .txt

filenames for the weight matrix and bias vector are:

Weight matrix: w_<name>_L<Layer #>_XOlxXIl.txt

Bias vector: b_<name>_L<Layer #>_XOlx1.txt

B. Examples

A network can be built in a high-level platform like Pytorch
or MATLAB, where we train the network and then extract the
weights and matrices, and then generate the .txt files. We

show two ANN examples:

1) ‘test1’: This 4-layer ANN is depicted in Fig. 12. Table II

provides a summary. The structure (including the weight matrix

and bias vector per layer) is fixed. The user can select the FX

format for every layer (𝑙 ≥ 0). Table II lists the largest FX

format for full accuracy; however, a user can select shorter FX

formats that will incur in truncation and precision loss. The

.txt filenames are the following:

▪ 𝑙 = 1: w_test1_L1_3x2.txt, b_test_L1_3x1.txt

▪ 𝑙 = 2: w_test1_L2_3x3.txt, b_test_L2_3x1.txt

▪ 𝑙 = 3: w_test1_L3_1x3.txt, b_test_L3_1x1.txt

TABLE II. STRUCTURE AND DESIGN PARAMETERS FOR NETWORK ‘TEST1’.

L=4. WEIGHTS/BIAS FORMAT: [NW PW] = [8 2].

Layer
Input
Size

Output
Size

Weight
matrix

Bias
vector

FX Format

Input Output

0 2x1 [6 0]

1 2x1 3x1 3x2 3x1 [6 0] [16 2]

2 3x1 3x1 3x3 3x1 [16 2] [26 4]

3 3x1 1x3 1x3 1x1 [26 4] [36 6]

2) ‘mlosh’: This 3-layer ANN is depicted in Fig. 13. Table

III provides a summary and lists the largest FX format that

allows for full accuracy; a user can select a shorter FX format

that will incur in truncation and precision loss. The .txt

filenames are the following:

▪ 𝑙 = 1: w_mlosh_L1_16x196.txt, b_test_L1_16x1.txt

▪ 𝑙 = 2: w_mlosh_L2_10x16.txt, b_mlosh_L2_10x1.txt

TABLE III. STRUCTURE AND DESIGN PARAMETERS FOR NETWORK

‘MLOSH’. L=3. WEIGHTS/BIAS FORMAT: [NW PW] = [8 7].

Layer
Input

Size

Output

Size

Weight

matrix

Bias

vector

FX Format

Input Output

0 196x1 [9 0]

1 196x1 16x1 16x196 196x1 [9 0] [25 7]

2 16x1 10x1 10x16 10x1 [25 7] [38 14]

C. Feeding data to the ANN Architecture

The design parameter ‘type’ allows the user to select the
hardware implementation approach: multiply-and-add, fully
parallel/pipelined, and multiplier-less. The way input samples
are fed varies depending on the approach.

1) Multiply-and-accumulate: Each layer 𝑙 has a processing

delay given by 𝑝𝑙 = 𝑋𝐼𝑙 + 1 . The total processing delay

(latency) is 𝑃 = ∑ 𝑝𝑙
𝐿−1
𝑙=1 cycles. A naïve approach is to issue a

new sample every 𝑃 cycles. An optimized approach is to think

of layers (𝑙 = 1, … , 𝐿 − 1) as pipeline stages. Here, we can

issue a new sample every 𝐹 = 𝑚𝑎𝑥(𝑝1, 𝑝2, … , 𝑝𝐿−1) cycles.

Fig. 14(a) illustrates this for the ‘test1’ ANN (see Fig. 12). Fig.

14(b) illustrates why 𝐹 is the largest delay among all stages.

Fig. 15 shows a timing diagram that illustrates the behavior

of the ‘s’ and ‘v’ signals for every stage (for ANN ‘test1’). For

the first input sample, the ‘s’ and ‘v’ pulses of every stage are

shaded in gray. For the second input sample, the associated ‘s’

and ‘v’ pulses are shaded in orange. For the third input sample,

the associated ‘s’ and ‘v’ pulses are shaded in green. For the

fourth input sample, the associated ‘s’ and ‘v’ pulses are shaded

in cyan. Note how we can feed a new input sample every 𝐹 = 4

clock cycles.

2) Fully parallel/pipelined: Each layer 𝑙 has a processing

delay 𝑝𝑙 = ⌈𝑙𝑜𝑔2(𝑋𝐼𝑙 + 1)⌉ + 2 . The total processing delay

(latency) is 𝑃 = ∑ 𝑝𝑙
𝐿−1
𝑙=1 cycles. Here, the nature of the

architecture allows us to issue a new input sample every clock

cycle (𝐹 = 1). Note that instead of ‘s’, we call the signal ‘E’

(enable) as this is more standard for pipelined architectures.

3) Multiplier-less: Each layer 𝑙 has a processing delay 𝑝𝑙 =
∑ |𝑎𝑘

𝑙−1|𝑋𝐼𝑙−1
𝑘=0 + 1 . The total processing delay (latency) is 𝑃 =

∑ 𝑝𝑙
𝐿−1
𝑙=1 cycles. Here, we can use a pipelined approch and issue

a new sample every 𝐹 = 𝑚𝑎𝑥(𝑝1, 𝑝2, … , 𝑝𝐿−1) cycles. In

practice, it is not possible to compute 𝑝𝑙 . The best we can do is

to establish a bound (assuming the largest data values) to

compute 𝑝𝑙 . Usually, as the number of bits grow per layer, 𝐹 =
𝑝𝐿−1. This approach can be helpful when the number of bits is

small (say less than 8), otherwise it is impractical.

Table IV lists the three ANN architecture types along with
their processing delay, and the minimum number of cycles
between input samples (using a pipelined feeding approach).

In addition, when processing 𝑁 input samples (images) the
throughput is given by:

 𝑇ℎ𝑟𝑜𝑢𝑔ℎ𝑝𝑢𝑡 =
𝑜𝑓 𝑠𝑎𝑚𝑝𝑙𝑒𝑠 (𝑁)

𝑇𝑖𝑚𝑒 𝑡𝑜 𝑝𝑟𝑜𝑐𝑒𝑠𝑠 𝑁 𝑠𝑎𝑚𝑝𝑙𝑒𝑠
=

𝑁

∑ 𝑝𝑙
𝐿−1
𝑙=1 + 𝐹×(𝑁−1)

 (4)

Given Eq. (4), we can refer to the formulas for 𝑝𝑙 and 𝐹 for
each implementation approach. For sufficiently large 𝑁 , the
throughput results in 1/𝐹 (input sample per 𝐹 clock cycles). 𝐹
is known for the multiply-and-accumulate approach, 𝐹 = 1 for
the fully parallel/pipelined approach, and 𝐹 is a non-
deterministic quantity in the multiplier-less approach.

D. On Finite Precision effects

Throughout the datapath, we have truncated the fixed-point
format of the data in our ANN examples (see Tables II and III).
A fixed-point format that considers full numerical precision
requires an impractical number of bits. RTL-based ANN
hardware designs are affected by the finite wordlength of the
fixed-point format in the datapath, the weights/bias format, and
the input data format (if truncated). A survey of recent methods
of ANN quantization techniques is available in [22].

Among the Post-Training quantization techniques, we can
mention the work in [23] that converts a pre-trained single
floating-point ANN to an 8-bit fixed-point ANN using various
techniques: quantization range setting, cross layer equalization,
bias correction, and AdaRound. AdaRound [24] is a weight-
rounding mechanism that adapts to the data and the task loss;
this improves significantly over rounding-to-nearest. Other
methods include Ternary Quantization [25] and Loss-Aware
Post-Training quantization [26].

V. RESULTS AND ANALYSIS

This section details the experimental setup for the proposed
hardware designs and then provides results in terms of
arithmetic precision, hardware resources, and performance.

A. Experimental Setup

We test both the real-valued ANN examples (‘test1’,
‘mlosh’) and the Binary Layers. A MATLAB model (in double
floating-point arithmetic) is used as a basis for comparison.

For the ‘mlosh’ ANN, we specifically trained this network
using a downsampled version (14x14 images) of the 60,000-
element MNIST database [27]. Training was carried out via
MATLAB using the standard back-propagation method (‘mse-
loss’ as cost function) with a learning rate of 0.5 and 2 epochs.

Results in terms of arithmetic precision and hardware
resources are obtained by evaluating the proposed hardware
designs via both synthesis (on Xilinx® FPGAs) and cycle-
accurate simulation on Xilinx® Vivado software.

For the real-valued ANN examples (‘test1’, ‘mlosh’), Tables
II and III provide ANN structure details, the weights/bias
format, and the I/O FX format per layer that allows for full
arithmetic precision (based on the given weight/bias format).
This largest FX format is an artifact of the FX formulas; in
practice, data values might need smaller FX formats.

We evaluate how different I/O FX formats (per layer) and

weights/bias FX format affect arithmetic precision. Table V lists

3 different I/O FX formats (including ‘a’, the largest FX format)

for the network ‘test1’. Table VI lists 3 different I/O FX formats

for the network ‘mlosh’. We compare all the three cases (‘a’, ‘b’,

‘c’) against our MATLAB model.

In addition, we compare the arithmetic precision of the cases
‘b’ and ‘c’ with those of the ‘a’ case. This will provide insight
as how the effect of I/O FX formats differ from that of the
weights/bias format.

The parameterized VHDL implementations of the proposed
designs allow us to get results in terms of arithmetic precision
and performance. A space of hardware configurations is
generated by varying the design parameters (I/O FX formats,

weights/bias format, input size). For ‘test1’, we use a 100-
element dataset, while for ‘mlosh’, we use a downsampled
version (14x14) of the 10,000-element MNIST database.

TABLE V. DIFFERENT SETS OF FX FORMATS FOR ‘TEST1’ ANN. L=4.
WEIGHTS/BIAS FORMAT: [NW PW] = [8 2].

 Approach Layer 1 Layer 2 Layer 3

In / Out

a [6 0] / [16 2] [16 2] / [26 4] [26 4] / [36 6]

b [6 0] / [14 2] [14 2] / [22 4] [22 4] / [30 6]

c [6 0] / [12 0] [12 0] / [18 0] [18 0] / [24 0]

TABLE VI. DIFFERENT SETS OF FX FORMATS FOR ‘MLOSH’ ANN. L=3.
WEIGHTS/BIAS FORMAT: [NW PW] = [8 7].

 Approach Layer 1 Layer 2

In / Out

a [9 0] / [25 7] [25 7] / [38 14]

b [9 0] / [24 6] [24 6] / [36 12]

c [9 0] / [22 4] [22 4] / [32 8]

B. Arithmetic Precision Assessment

The precision of a fixed-point architecture is affected by the
FX format selected by the design parameters.

We evaluate arithmetic precision using the mean squared
error (MSE) between the ANN the results from the model in
MATLAB. We also report the ANN accuracy to show how
different FX formats affect this accuracy.

TABLE VII. ‘TEST1’ ANN. L=4. FOR QUANTIZED APPROACHES (A,B,C),
THE WEIGHTS/BIAS FORMAT IS [NW PW] = [8 2]. THE MSE IS MEASURED ON THE

OUTPUT OF THE FCN.

Approach a b c

MSE w.r.t. ideal 1.0298x106 1.0298x106 1.3981x106

MSE w.r.t. ‘a’ 0 1.7789x105

TABLE VIII. ‘MLOSH’ ANN. L=3. FOR QUANTIZED APPROACHES (A,B,C),
THE WEIGHTS/BIAS FORMAT IS [NW PW] = [8 7]. THE MSE IS MEASURED ON THE

10 OUTPUTS OF THE FCN. THE ACCURACY OF THE IDEAL CASE IS 92.87%.

Approach a b c

MSE w.r.t. ideal

216.8886 216.9236 217.1275

230.2636 230.3180 230.6217

1073.9 1074.1 1075.2

894.4896 894.6366 895.56

178.4973 178.5286 178.7447

1059.6 1059.8 1060.9

51.9337 51.9435 52.0091

299.6514 299.7131 300.1101

297.3214 297.3657 297.6845

448.9770 449.0701 449.6818

MSE w.r.t ‘a’

6.9271x10-6 2.0295x10-4

1.3485x10-5 3.6790x10-4

2.7388x10-5 8.3988x10-4

2.3380x10-5 7.1864x10-4

1.3938x10-5 3.5657x10-4

2.3494x10-5 7.3138x10-4

6.0845x10-6 1.6207x10-4

1.5755x10-5 4.5142x10-4

2.9504x10-5 7.3988x10-4

3.1058x10-5 8.8308x10-4

ANN Accuracy 92.83% 92.83% 92.83%

For ‘test1’, Table VII shows the MSE for the 100-element
dataset, a different MSE for each FX case.

For ‘mlosh’, Table VIII shows 10 MSEs (one for each
output) for all the samples. This is shown for each FX case.
Here, we also show ANN accuracy for each FX case.

When computing the MSE of the cases ‘b’ and ‘c’ with
respect to ‘a’, keep in mind that the ANN weights and biases are
quantized. As such, these MSE results are useful to determine
how the circuit structure affect the precision of the results.

We also computed the MSE of the cases ‘a’, ‘b’, and ‘c’ with
respect to an ideal MATLAB implementation with unquantized
weights/biases. The results are mixed: it looks like we need more
fractional bits for weights/biases as the MSE is large, though
ANN accuracy does not change.

All in all, there is not much variation when MSE is computed
with respect to the case ‘a’, i.e., the effect of weights/bias FX
format is not pronounced. However, there is large variation
when computing the MSE with respect the ideal MATLAB
implementation (that has quantized weights/bias). These results
suggest that quantizing the weights/bias has a larger effect than
quantizing the I/O FX format per layer.

C. Hardware Resource Utilization

Tables IX and X show the hardware resource utilization of
the different architectures in terms of slice registers, 6-input
LUTs, and DSP Slices for the design parameters specified in
Table V and Table VI respectively. The results were obtained
using Vivado software tool targeted to Artix-7 FPGA device.

TABLE IX. ‘TEST1’ ANN. L=4. WEIGHTS/BIAS FORMAT: [NW PW] = [8 2].
THE QUANTIZED APPROACHES (REFER TO TABLE V) ARE LABELED ‘A’, ‘B’, ‘C’.

 Multiply-and-accumulate Fully parallel/pipelined Multiplier-less

LUT FF DSP LUT FF DSP LUT FF

a 485 301 4 732 776 9 436 349

b 435 279 4 548 633 12 445 321

c 419 253 4 503 574 12 396 289

TABLE X. ‘MLOSH’ ANN. L=3. WEIGHTS/BIAS FORMAT: [NW PW] = [8 7].
THE QUANTIZED APPROACHES (REFER TO TABLE VI) ARE LABELED ‘A’, ‘B’, ‘C’.

 Multiply-and-accumulate Fully parallel/pipelined Multiplier-less

LUT FF DSP LUT FF DSP LUT FF

a 3559 3056 10 75108 76828 115 2670 3095

b 3516 3030 10 74900 76579 115 2633 3068

c 3372 2978 10 74314 76255 115 2561 3014

As for the ANN Binary Layers, Table XI shows some

resource results for the Layer 1 of both the ‘test1’ and ‘mlosh’

networks. We use the largest output FX format for Layer 1. The

fully pipelined case uses more resources, and this is evident the

larger the ANN is.

TABLE XI. RESOURCE UTILIZATION FOR BINARY LAYERS. ‘TEST1’
LAYER 1: XI=2, XO=3, [NW PW] = [8 2]. ‘MLOSH’ LAYER 1: XI=196, XO=16,

[NW PW] = [8 7]

Output FX Format
Accumulation-based Fully pipelined

LUT FF LUT FF

Layer 1 ‘test1’: [10 2] 48 33 33 40

Layer 1, ‘mlosh’: [16 7] 910 574 12324 15651

For fixed input data wordlength, the I/O FX formats have a

small effect on hardware resources. Implementation-wise, the

fully parallel/pipelined approach uses significantly more

resources than the multiply-and-add or the multiplier-less

approach. The multiply-and-add approach uses slightly more

resources than the multiplier-less.

Unsurprisingly, the ANN architecture (number of layers,

neurons per layer) plays a significant role. Finally, the

weight/bias FX format does not play a significant role unless the

wordlength is modified.

D. Hardware Performance

Performance-related formulas are available in Table I (for
individual layers) and Table IV (for ANNs with real-valued
inputs).

Table XII lists the actual processing cycles for ‘test1’ and

‘mlosh’ ANNs (with real-valued inputs). For each case, the

wordlenghts for full accuracy are employed. Note that the results

from multiplier-less implementation are data dependent (we

tried with one specific sample for each case). We can see how

the multiplier-less can only be useful for very small networks.

TABLE XII. PROCESSING CYCLES FOR ANN EXAMPLES ‘TEST1’ AND ‘MLOSH’

ANN Metric
Multiply-and-

accumulate

Fully Parallel/

Pipelined

Multiplier-

less

‘test1’

Latency (1 sample) 11 12 2.65*1014

Min. # of cycles between

input samples (F)
4 1 2.637*1014

Throughput

(samples/cycle)
0.25 1 1/2.637*1014

‘mlosh’

Latency (1 sample) 214 17 4.6385*1014

Min. # of cycles between

input samples (F)
197 1 4.531*1014

Throughput 1/197 1 1/4.531*1014

As for throughput, Table XII expresses it in samples per
clock cycle. Another way to look at it is by considering a 100
MHz operating frequency. Here, the multiply-and-accumulate
architecture has a throughput of 25 Msamples per second for
‘test1’ and 0.507 Msamples for second for ‘mlosh’. For the fully
parallel/pipelined case, the throughput is 100 Msamples per
second for all cases. We do not include the multiplier-less results
as they are too low.

E. Comparison with other implementations

We note that hardware comparisons are very difficult to
carry out fairly as the test cases presented vary greatly in terms
of implementations: ANN architecture, datawidth of the
datapath, weights/bias datawidth pooling mechanism, activation
function. When comparing different works, if comparable
designs are not found, it might be preferable to compare the
method/architecture rather than raw resources.

Table XIII provides some comparisons with related works.
We include a comparable RTL design [5], and designs generated
by high-level frameworks [9],[10],[11]. We note that some RTL
details are difficult (sometimes not found) to extract.

Our proposed approach generates less overall hardware
consumption and it takes less processing cycles than the others
(for comparatively similar ANN architectures and hardware
implementation approaches). We note that other
implementations usually implement activation functions other
than ReLU: this is an area where our proposed architectures can
improve and for which there are remarkable approaches [9][19].

F. Selection of design paramters for given ANN applications

Based on our results, we provide general guidelines on the
selection of the optimal designs for given ANN applications.

First, numerical precision of the datapath does not play a
major role in the final ANN accuracy. So, we can truncate the
fractional bits in the datapath to improve resource utilization
without affecting ANN accuracy. However, the weights/bias FX
format greatly affects the numerical precision, and it should not
be truncated further.

Second, the multiplier-less implementation should be
avoided except for applications that need small ANNs (e.g.: 8-
5-3, 3-4-1). For larger ANNs, the multiply-and-accumulate
implementation should be chosen if resources are to be
optimized. If resources are not a big concern, the fully
parallel/pipelined implementation must be selected, as it allows
for output data to be used at every new clock cycle.

Third, to take advantage of multi-stage pipelining, the
number of neurons of the ANN layers should be relatively
similar, otherwise the throughput will be dominated by the
largest layer (e.g.: ‘mlosh’ ANN: 196-16-10).

Finally, for applications that require binary layers (e.g.:
ANNs with binary input data, SNNs) and the proposed binary
layer implementations are the most optimized: accumulator-
based (to save resources), fully parallel/pipelined (to maximize
throughput).

VI. CONCLUSIONS

We presented and successfully validated a set of hardware
architectures for Artificial Neural Networks, both with real-
valued inputs and with binary-valued inputs. The fixed-point
implementations can handle varied numerical ranges with
reasonable resource requirements, while providing the same
levels of ANN accuracy. Overall, the multiplier-and-accumulate
and the fully parallel/pipelined approaches are the most optimal
designs, whereas the multiplier-less architecture could only
provide acceptable results for small number of bits. These
architecture implementations can be used in varied settings: as
part of CNNs and SNNs.

REFERENCES

[1] Nielsen, M.A., Neural Networks and Deep Learning; Determination
Press: San Francisco, CA, USA, 2015.

[2] J. Misra, I. Saha, “Artificial neural networks in hardware: A survey of two
decades of progress”, Neurocomputing, vol. 74, pp. 239-255, 2010.

[3] Y. Ma, N. Suda, Y. Cao, S. Vrudhula, J. Seo, “ALAMO: FPGA
acceleration of deep learning algorithms with a modularized RTL
compiler”, Integration, the VLSI Journal, vol. 62, pp. 14-23, 2018.

[4] A. R. Ormondi, J. Rajapakse, FPGA Implementations of Neural Networks,
New York: Spring, 2006.

[5] S. Himavathi, D. Anitha, A. Muthuramalingam, “Feedforward neural
network implementation in FPGA using Layer Multiplexing for Effective
Resource Utilization”, IEEE Transactions on Neural Networks, vol. 18,
no. 3, pp. 880-888, May 2007.

[6] A. Dinu, M. Cirstea, S. Cirstea, “Direct Neural-Network Hardware-
Implementation Algorithm”, IEEE Transactions on Industrial
Electronics, vol. 47, no. 5, pp. 1845-1848, May 2020.

[7] S. Hariprasath, T.N. Prakabar, “FPGA implementation of multilayer feed
forward neural network architecture using VHDL”, in Proceedings of the
2012 International Conference on Computing, Communication and
Applications, Feb. 2012.

[8] K. Khalil, O. Eldash, B. Dey, A. Kumar, M. Bayoumi, “A Novel
Reconfigurable Hardware Architecture of Neural Network”, in
Proceedings of the IEEE 62nd International Midwest Symposium on
Circuits and Systems (MWSCAS), Dallas, TX, Aug. 2019.

[9] A. Gomperts, A. Ukil, “Development and Implementation of
Parameterized FPGA-Based General Purpose Neural Networks for
Online Applications”, IEEE Transactions on Industrial Informatics, vol.
7, no. 1, pp. 78-89, Feb. 2011.

[10] Y. Wang, J. Xu, Y. Han, H. Li, and X. Li, “DeepBurning: Automatic
generation of FPGA-based learning accelerators for the neural network
family”, in Proceedings of the 53nd ACM/EDAC/IEEE Design
Automation Conference (DAC), June 2016.

[11] N. B. Gaikwad, V. Tiwari, A. Keskar, N.C. Shivaprakash,
“Heterogeneous Sensor data Analysis Using Efficient Artificial Neural
Network on FPGA Based Edge Gateway”, KSII Transactions on Internet
and Informational Systems (TIIS), vol. 13, no. 10, pp. 4865-4885, 2019.

[12] A. Shawahna, S.M. Sait, and A. El-Maleh, “FPGA-based accelerators of
deep learning networks for learning and classification: A review”, IEEE
Access, vol. 7, pp. 7823-7859, 2019.

[13] Z. Li, A. Ren, J. Li, Q. Qiu, Y. Wang, and B. Yuan. "Dscnn: Hardware-
oriented optimization for stochastic computing based deep convolutional
neural networks”, in Proceedings of the IEEE 34th International
Conference on Computer Design (ICCD), pp. 678-681, 2016.

[14] G. Maor, X. Zeng, Z. Wang, and Y. Hu. “An FPGA implementation of
stochastic computing-based LSTM”, in Proceedings of the IEEE 37th
International Conference on Computer Design (ICCD), pp. 38-46. 2019.

[15] X. Wei, C.H. Yu, P. Zhang, Y. Chen, Y. Wang, H. Hu, Y. Liang, and J.
Cong, “Automated systolic array architecture synthesis for high
throughput CNN inference on FPGAs”, in Proceedings of the 54th Annual
Design Automation Conference, 2017.

[16] Y. Guan, H. Liang, N. Xu, W. Wang, S. Shi, X. Chen, G. Sun, W. Zhang,
and J. Cong. "FP-DNN: An automated framework for mapping deep
neural networks onto FPGAs with RTL-HLS hybrid templates", in
Proceedings fo the IEEE 25th Annual International Symposium on Field-
Programmable Custom Computing Machines (FCCM), 2017.

[17] C. Zhang, P. Li, G. Sun, Y. Guan, B. Xiao, and J. Cong. "Optimizing
FPGA-based accelerator design for deep convolutional neural networks."
in Proceedings of the 2015 ACM/SIGDA international symposium on
field-programmable gate arrays, pp. 161-170. 2015.

[18] B. Zamanlooy, M. Mirhassani, “Efficient VLSI implementation of neural
networks with hyperbolic tangent activation function”, IEEE
Transactions on VLSI systems, vol. 22, no. 1, pp. 39-48, Jan. 2014.

[19] Y. Xie et al, “A Twofold Lookup Table Architecture for Efficient
Approximation of Activation Functions”, IEEE Transactions on VLSI
systems, vol. 28, no. 12, pp. 2540-2550, Dec. 2020.

[20] C. Carranza, D. Llamocca, and M. Pattichis, “Fast and scalable
computation of the forward and inverse discrete periodic radon
transform”, IEEE Transactions on Image Processing, vol. 25, no. 1, pp.
119-133, Jan. 2016.

[21] Tavanei, A., Ghodrati, M., Kheradpisheh, S.R., Masquelier, T., Maida,
AS., “Deep Learning in Spiking Neural Networks”, Neural Networks,
2019, 111, pp. 47-63.

[22] O. Weng. "Neural Network Quantization for Efficient Inference: A
Survey.” arXiv preprint arXiv:2112.06126 (2021).

[23] M. Nagel, M. Fournarakis, R.A. Amjad, Y. Bondarenko, M. Van Baalen,
and T. Blankevoort. "A white paper on neural network quantization."
arXiv preprint arXiv:2106.08295 (2021).

[24] M. Nagel, R.A. Amjad, M. Van Baalen, C. Louizos, and T. Blankevoort.
"Up or down? adaptive rounding for post-training quantization”, in
Proceedings of the International Conference on Machine Learning, pp.
7197-7206, 2020.

[25] F. Li, B. Zhang, and B. Liu. "Ternary weight networks." arXiv preprint
arXiv:1605.04711 (2016).

[26] Y. Nahshan, B. Chmiel, C. Baskin, E. Zheltonozhskii, R. Banner, A.M.
Bronstein, and A. Mendelson. "Loss aware post-training quantization."
Machine Learning, vol. 110, no. 11 (2021): 3245-3262.

[27] L. Deng, “The MNIST database of handwritten digit images for machine
learning research [best of web]”, IEEE Signal Processing Magazine, vol.
29, pp. 141-142, 2012.

Figure 1. (a) ANN with 3 layers (𝐿 = 3). (b) First neuron (index ‘1’) in layer 𝑙 = 2. (c) Artificial neuron model. The membrane potential is a sum of products

(input activations by weights) to which a bias term is added. 𝑗 represents the neuron index in layer 𝑙. The input activations come from a previous layer (𝑙 − 1).

Figure 2. Matrix computation for membrane potentials (𝑧𝑙) in layer 𝑙. The

index 𝑘 is for the neurons in layer 𝑙 − 1, while the index 𝑗 is for the neurons

in layer 𝑙. The weight matrix 𝑤𝑙 has NO rows by NI columns, the action

potential vector 𝑎𝑙−1 has NI rows, and the bias vector 𝑏𝑙 has NO rows. The

membrane potential 𝑧𝑙 and the action potential 𝑎𝑙 have NO rows.

NO

NI

class 1

class 2

class 3

input

hidden

layer

output

layer

(a) (b)

S

...

membrane
potential

action
potential

(c)

S1

S2

resetn=0

1

0
s

k=XI-1

k  0

Eo  1

no

yes

k  k+1

E, Eo, bs  1

k  0, d_v  1

ANN
NEURON

...

...

...

ANN
NEURON

...

ANN
NEURON

...

...

FSM

E

E

E

0

XI-1

1...

s

Eo

Eo

bs

...

v

E

k

d_v

Eo

bs

Eo

bs

XI XO

bs

Figure 3. ANN Layer for real-valued inputs: Multiply-and-add architecture. The design parameters are indicated. 𝑋𝐼: number of inputs, 𝑋𝑂: number of outputs.

Input data: 𝑎⃗𝑙−1 = [𝑎1
𝑙−1 𝑎2

𝑙−1 … 𝑎𝑋𝐼
𝑙−1]𝑇. Output Data: 𝑎⃗𝑙 = [𝑎1

𝑙 𝑎2
𝑙 … 𝑎𝑋𝑂

𝑙]𝑇. Weight matrix: 𝑤𝑙, bias vector: 𝑏𝑙. The FX format of the inputs, weights/biases,

and output is specified as [𝑛𝑖 𝑝𝑖], [𝑛𝑤 𝑝𝑤], and [𝑛𝑜 𝑝𝑜] respectively. The FSM ensures input data is captured in registers and then processed sequentially.

clock

resetn

E

+

ReLU

0 1

k 0 1 XI-1

sign extension
to nt bits

Eo

...

bs

ni-pi pi

nt

pw+pi

no-po po

pw+pi

nw-pw pw

+

pw+pi

00..0

nw-pw pw

Figure 4. Neuron architecture for ANN Layer in Fig. 3. Each neuron only receives row 𝒋 of the weight matrix 𝒘𝒍, as well as the element 𝒋 in the bias vector

𝒃𝒍. As there are 𝑿𝑶 neurons in a layer, 𝒋 is the index (𝒋 = 𝟏, … 𝑿𝑶).

DO0

S1

DI1

clock

state S1

s

resetn

S2 S1 S2 S2 S1 S2 S1

v

XI+1

DI0 DI2 DI3 DI4

DO1 DO2 DO3

k 0 0 1 2 3 4 0 0 1 2 3 4 0 1 2 3 4 0 0 1 2 3 4 00

Figure 5. Timing diagram for the ANN Layer in Fig. 3. 𝑋𝐼 = 5. The input data a⃗⃗l−1 is fed to the ANN Layer and the result a⃗⃗l appears on the output after

𝑋𝐼 + 1 cycles. We can feed another input sample right after it.

ANN
NEURON

...

...

...
...

...
...

ANN
NEURON

...

ANN
NEURON

...

E v

...

...

+Adder

Tree

...

pw+pi

nw-pw pw

nw + ni

ReLU

pw+pi

no-po po

clock

resetn

+1

XI XO

...
...

Figure 6. ANN Layer for real-valued inputs: Fully parallel/pipelined architecture. 𝑋𝐼: number of inputs, 𝑋𝑂: number of outputs. Input data: 𝑎⃗𝑙−1 =
[𝑎1

𝑙−1 𝑎2
𝑙−1 … 𝑎𝑋𝐼

𝑙−1]𝑇. Output Data: 𝑎⃗𝑙 = [𝑎1
𝑙 𝑎2

𝑙 … 𝑎𝑋𝑂
𝑙]𝑇. Weight matrix: 𝑤𝑙, bias vector: 𝑏𝑙. The FX format of the inputs, weights/biases, and output is

specified as [𝑛𝑖 𝑝𝑖], [𝑛𝑤 𝑝𝑤], and [𝑛𝑜 𝑝𝑜] respectively. The architecture of neuron 𝑗 (𝑗 = 1, … , 𝑋𝑂) is also shown. Each neuron only receives row 𝑗 of the

weight matrix 𝑤𝑙, as well as the element 𝑗 in the bias vector 𝑏𝑙.

S1

S2

resetn=0

1

0
s

|x|=0

k  0, t  1

no

yes

Eo  1

E, Eo, bs  1

ANN
NEURON

...

...

...

...

...

...

FSM

E

E

E

0

XI-1

1...

s
Eo

Eo

bs
as

...

v

E

k

d_v

ANN
NEURON

ANN
NEURON

|x|

Eo

bs
as

Eo

bs
as

x

t=|x| t  t+1

t  1

k=XI-1 k  k+1

no

yes

k  0, d_v  1

no

yes

as=xni-1

XI XO

bs

Figure 7. ANN Layer for real-valued inputs: Multiplier-less architecture. 𝑋𝐼: number of inputs, 𝑋𝑂: number of outputs. Input data: 𝑎⃗𝑙−1 = [𝑎1
𝑙−1 𝑎2

𝑙−1 … 𝑎𝑋𝐼
𝑙−1]𝑇.

Output Data: 𝑎⃗𝑙 = [𝑎1
𝑙 𝑎2

𝑙 … 𝑎𝑋𝑂
𝑙]𝑇. Weight matrix: 𝑤𝑙, bias vector: 𝑏𝑙. The FX format of the inputs, weights/biases, and output is specified as [𝑛𝑖 𝑝𝑖], [𝑛𝑤 𝑝𝑤],

and [𝑛𝑜 𝑝𝑜] respectively. The FSM orchestrates data capture in registers and the neuron output computations.

clock

resetn

E

+/-

ReLU

0 1

k 0 1 XI-1

sign extension
to nt bits

Eo

...

bs

nt

pw+pi

no-po po

pw+pi

nw-pw pw

+

pw+pi

00..0

nw-pw pw

as

nw-pw pw nw-pw pw 00..0

nw-pw pw

nw-pw pw

nw-pw pw

nw-pw pw

+

Figure 8. Neuron architecture for ANN Layer in Fig. 7. Each neuron only receives row 𝑗 of the weight matrix 𝑤𝑙, as well as the element 𝑗 in the bias vector

𝑏𝑙. As there are 𝑋𝑂 neurons in a layer, 𝑗 is the index (𝑗 = 1, … 𝑋𝑂).

TABLE I. ANN LAYER HARDWARE FOR REAL-VALUED (𝑛𝑡 = 𝑛𝑖 + 𝑛𝑤 + ⌈𝑙𝑜𝑔2(𝑋𝐼 + 1)⌉) AND BINARY-VALUED (𝑛𝑡 = 𝑛𝑤 + ⌈𝑙𝑜𝑔2(𝑋𝐼 + 1)⌉) INPUTS: FEATURES.

Architecture Latency (cycles)

Min. # of cycles
between input samples

Hardware per neuron
Largest output

FX format
Comments

R
ea

l-
v
al

u
ed

L
ay

er

Multiply-and-

accumulate
𝑋𝐼 + 1 𝑋𝐼 + 1

MUX XI-to-1, multiplier, MUX 2-to-1

𝑛𝑡-bit adder, register, and ReLU

[𝑛𝑡 𝑝𝑤 + 𝑝𝑖]

Multipliers: one

constant

operand.
Fully Parallel/

Pipelined
⌈log2(XI + 1)⌉ + 2 1

XI multipliers, adder tree (XI+1 inputs)

𝑛𝑡-bit register and ReLU

Multiplier-less ∑ |𝑎𝑘
𝑙−1|

𝑋𝐼−1

𝑘=0

+ 1 ∑ |𝑎𝑘
𝑙−1|

𝑋𝐼−1

𝑘=0

+ 1
MUX XI-to-1, MUX 2-to-1.

𝑛𝑡-bit adder/subtractor, register, ReLU
Latency is non-

deterministic

B
in

ar
y

L
ay

er
 Accumulator-

based
𝑋𝐼 + 1 𝑋𝐼 + 1

MUX XI-to-1, MUX 2-to-1.

𝑛𝑡-bit adder, register, and ReLU.
[𝑛𝑡 𝑝𝑤] No multipliers

Fully Parallel/

Pipelined
⌈log2(𝑋𝐼 + 1)⌉ + 2 1

XI MUXs 2-to-1, XI+1 input adder tree

𝑛𝑡-bit register and ReLU

S1

S2

resetn=0

1

0
s

x

k  0

1

0 Eo  1

E, Eo, bs  1

ANN
NEURON

...

...

...

...

...

FSM

E

E

E

0

XI-1

1...

s

Eo

Eo

bs

...

v

E

k

d_v

ANN
NEURON

ANN
NEURON

x

k=XI-1 k  k+1

k  0, d_v  1

no

yes

c
l
o
c
k
r
e
s
e
t
n

E

+

ReLU

0 1

k 0 1 XI-1

sign extension
to nt bits

Eo

...

bs
nt

no-po po

+

nw-pw pw

nw-pw pw

nw-pw pw

nw-pw pw

nw-pw pw

nt-pw pw

Eo

bs

Eo

bs

nw-pw pw

...

bs

nt-pw pw

XI XO

Figure 9. Binary Layer: accumulator-based architecture. 𝑋𝐼 inputs, 𝑋𝑂 outputs. Input data: 𝑎⃗𝑙−1 = [𝑎1
𝑙−1 𝑎2

𝑙−1 … 𝑎𝑋𝐼
𝑙−1]𝑇. Output Data: 𝑎⃗𝑙 = [𝑎1

𝑙 𝑎2
𝑙 … 𝑎𝑋𝑂

𝑙]𝑇.

Weight matrix: 𝑤𝑙, bias vector: 𝑏𝑙. The FX format of the weights/biases and output is specified as [𝑛𝑤 𝑝𝑤], and [𝑛𝑜 𝑝𝑜] respectively. The FSM orchestrates

data capture in registers and the neuron output computations. The architecture of neuron 𝑗 (𝑗 = 1, … , 𝑋𝑂) is also shown. Each neuron only receives row 𝑗 of the

weight matrix 𝑤𝑙, as well as the element 𝑗 in the bias vector 𝑏𝑙.

ANN
NEURON

...

...

...

...

...

ANN
NEURON

...

ANN
NEURON

...

E v

...

...

+Adder

Tree

...

nw-pw pw

ReLU

pw

no-po po

clock

resetn

+1

0 1

0 1

0 1

0

0

0

XI XO

...
...

Figure 10. Binary Layer: Fully parallel/pipelined architecture. 𝑋𝐼 inputs, 𝑋𝑂 outputs. Input data: 𝑎⃗𝑙−1 = [𝑎1
𝑙−1 𝑎2

𝑙−1 … 𝑎𝑋𝐼
𝑙−1]𝑇. Output Data: 𝑎⃗𝑙 =

[𝑎1
𝑙 𝑎2

𝑙 … 𝑎𝑋𝑂
𝑙]𝑇. Weight matrix: 𝑤𝑙, bias vector: 𝑏𝑙. The FX format of the weights/biases and output is specified as [𝑛𝑤 𝑝𝑤], and [𝑛𝑜 𝑝𝑜] respectively. The

architecture of neuron 𝑗 (𝑗 = 1, … , 𝑋𝑂) is also shown. Each neuron only receives row 𝑗 of the weight matrix 𝑤𝑙, as well as the element 𝑗 in the bias vector 𝑏𝑙.

Figure 11. ANN with 𝐿 layers. I/Os are indicated for every Layer. Layer 0 refers to input data. 𝑋𝐼𝑙 = 𝑋𝑂𝑙−1 for 𝑙 = 1, … , 𝐿 − 1. The parameter ‘name’ specifies

the weight matrix and bias vector for every layer. The parameter ‘type’ has three choices: ‘multiply-and-add’, ‘fully parallel/pipelined’, ‘multiplier-less’.

L
A
Y
E
R
 1...

s

L
A
Y
E
R
 2...

L
A
Y
E
R
 3...

...

...

...

... L
A
Y
E
R
 L

-1...

...

... v
(E)

L
A
Y
E
R
 0

Figure 12. ANN ‘test1’. (a) ANN structure, 𝐿 = 4 layers. (b) Bit-width (and FX format for full accuracy) per layer. Size of I/Os is depicted. (c)

Weights and biases for every layer (𝑙 ≥ 1).

L1 L2 L3

w
e
ig

h
ts

L
A
Y
E
R
 1

s

L
A
Y
E
R
 2

L
A
Y
E
R
 3

v

3

2 3

3

3

1

12
3

1

b
ia

s

[26 4]

[36 6]

[16 2]
[6 0]

(a) (b) (c)

6

6

Figure 13. ANN ‘mlosh’. (a) ANN structure, 𝐿 = 3 layers. (b) Bit-width (and FX format for full accuracy) per layer. Size of I/Os is depicted. (c)

Weights and biases for every layer (𝑙 ≥ 1).

Figure 14. ‘test1’ ANN: multiply-and-add approach. (a) Layers as stages along with their processing delays. An input sample is fed when the

corresponding ‘s’ signal is asserted. (b) Pipelined approach that illustrates why 𝐹 = 𝑚𝑎𝑥(3,4,4) = 4.

Stage 1 Stage 2 Stage 3Input Output

s0 v0 s1 v1 s2
v2

XI1+1=3 XI2+1=4 XI3+1=4

Stage
(Layer)

Processing
Delay (cycles)

start
signal

valid
signal

of
inputs

of
outputs

s0 v0 XI1=2 XO1=3XI1+1=31

s1 v1 XI2=3 XO2=3XI2+1=42

s2 v2 XI3=3 XO3=1XI3+1=43

(a)

1 2 3

3T

4T

4T 4T

1 2 3

1 2 3

1 2 34T

4T

(b)

L1 L2

w
e
ig

h
ts

L
A
Y
E
R
 1

s

L
A
Y
E
R
 2

v

16

196
16

196

196 16
b
ia

s

[38 14][25 7]

......

...

[9 0]

...

196
16

10

10

10

10

(a) (b) (c)

TABLE IV. LATENCY OF ANN HARDWARE (REAL-VALUED INPUTS). TO FEED DATA ONTO THE ANNS, A PIPELINED APPROACH IS USED.
Architecture Latency (cycles) Min. # of cycles between input samples Comments

Multiply-and-

accumulate
∑(𝑋𝐼𝑙 + 1)

𝐿−1

𝑙=1

𝐹 = 𝑚𝑎𝑥(𝑝1, 𝑝2, … , 𝑝𝐿−1),

𝑝𝑙 = 𝑋𝐼𝑙 + 1
Multipliers: one

constant operand.
Fully Parallel/

Pipelined
∑(⌈log2(𝑋𝐼𝑙 + 1)⌉ + 2)

𝐿−1

𝑙=1

 1

Multiplier-less ∑ (∑ |𝑎𝑘
𝑙−1|

𝑋𝐼𝑙−1

𝑘=0

+ 1)

𝐿−1

𝑙=1

𝐹 = 𝑚𝑎𝑥(𝑝1, 𝑝2, … , 𝑝𝐿−1),

𝑝𝑙 = ∑ |𝑎𝑘
𝑙−1|

𝑋𝐼𝑙−1

𝑘=0

+ 1

Latency is non-
deterministic

TABLE XIII. COMPARISON OF DIFFERENT ANN ARCHITECTURES. VIRTEX-4: 4-INPUT LUTS, 18X18-BIT DSP MULTIPLIERS. VIRTEX-6, VIRTEX-7, ZYNQ-7000: 6-

INPUT LUTS 25X18-BIT DSP MULTIPLIERS.

 Proposed Gomperts et al. [9] Himavathi et al. [5] Wang et al. [10] Gaikwad et al. [11]

Architecture

Multiply-

and-
accumulate

Fully parallel/

pipelined

Multiplier-

less

Multiply-and-

accumulate

Multiply-and-

accumulate
Fully parallel

Multiply-and-

accumulate

Activation

Function
ReLU

sigmoid: LUT with

interpolation
sigmoid/ReLU ReLU sigmoid

Numerical

format

Fixed Point

(variable, grows with the datapath)

Fixed Point
 (3 fractional bits,

variable for activation

function)

Fixed Point

[29 16]
Fixed Point

Fixed-Point

8-bit precision

ANN
196-16-10

[9 0]: input data, [32 8] output data
10-3-1 8-5-5-3 4-layer 5-4-2

Device and

frequency

Artix-7 XC7A100T

@ 100 MHz
Virtex-5 XCVSX50T

XCV400

@ 73 MHz

Zynq-7045 @ 100

MHz

Artix-7 XC7A35T

@ 10 MHz

FPGA

Resources

2978 FFs

3372 LUTs
10 DSPs

76255 FFs
74314

LUTs

115 DSPs

3014 FFs

2561 LUTs

2243 FFs

8043 LUTs
246 DSP48E1s

2863 Slices

(~5600 LUTs, 5600
FFs)

3621 LUTs

2532 FFs

1295 FFs

3244 LUTs
79 DSPs

Processing

cycles
214 cycles 17 cycles

4.61014

cycles
- 186 cycles - 31 us (~310 cycles)

Notes self-contained VHDL design
Hardware generated

by high-level platform

Only largest layer is

implemented (and

reused)

Hardware

generated by high-

level platform.

Hardware generated

by Xilinx SysGen

clock

s0

v0

s1

v1

XI2+1=4

s2

v2

XI3+1=4XI1+1=3

First Sample

Figure 15. ‘test1’ ANN: multiply-and-add approach. Timing diagram that illustrates how we can feed data every 𝐹 = 4 cycles. Note how we

can assert the ‘s’ signal of Layer 1 (𝑠0) every 𝐹 = 4 clock cycles. The behavior of the ‘s’ and ‘v’ signals for every layer is depicted.

