
A Scalable, Open-Source Architecture for Real-Time

Monitoring of Adaptive Wiring Panels

Daniel Llamocca1

University of New Mexico, Albuquerque, NM, 87131, USA

Victor Murray2

Universidad de Ingeniería & Tecnología, Lima, Peru

Yuebing Jiang3 and Marios Pattichis4

University of New Mexico, Albuquerque, New Mexico, 87131, USA

and

James Lyke5 and Keith Avery6

Air Force Research Labs, Albuquerque, NM, 87112, USA

We recently introduced the first prototype of an Adaptive Wiring Panel (AWP) which

implemented a reconfigurable switch fabric that allows dynamic routing of analog, digital,

and power signals for space system applications. In this paper, we consider a complete

redesign and re-implementation of the AWP system to address issues associated with

scalability, reliability and real-time monitoring of the switching fabric. We demonstrate the

new system using 48 cells as opposed to the 6 cells of the first AWP prototype. We make our

hardware and software systems open source and provide recommendations to support

further extensions to our system.

Nomenclature

AWP = adaptive wiring panel

CU = cell units

CMU = cell management unit

I2C = inter-integrated circuit

AWM = Adaptive Wiring Manifold

FPGA = field-programmable gate array

AFRL = Air Force Research Laboratory

VHDL = very-high-speed integrated circuits hardware description language

NP-hard = non-deterministic polynomial-time hard

GUI = graphic unit interface

1 Postdoctoral Fellow, Department of Electrical and Computer Engineering, MSC01-1100, 1 University of New Mexico,

Albuquerque, NM, 87131.
2 Professor, Department of Electrical Engineering and Automation, Universidad de Ingeniería y Technología, Av. Cascanueces

2281, Santa Anita, Lima 48, Lima, Perú.
3 Doctorate Candidate, Department of Electrical and Computer Engineering, MSC01-1100, 1 University of New Mexico,

Albuquerque, NM, 87131.
4 Professor, Department of Electrical and Computer Engineering, MSC01-1100, 1 University of New Mexico, Albuquerque, NM,

87131
5 Technical Advisor, Space Vehicles Directorate
6 Senior Engineer, Space Vehicles Directorate.

I. Introduction

N Adaptive Wiring Manifold (AWM) uses dynamic routing of signals and power for implementing spacecraft

wiring harnesses that support self-healing circuits and circuit customization. At a basic level, the AWM allows

the users to interconnect components over an Adaptive Wiring Panel (AWP) whose configuration can be

modified on demand. A first prototype of the AWP was presented in [1]. This first prototype presented a proof of

several of the basic concepts associated with the AWM. In this paper, we seek to address several significant issues

associated with scalability, real-time monitoring, and extendibility of the original prototype.

The motivation for the AWM is to provide an effective method for implementing circuits that can recover from

component and connection failures during real-time operation as well as provide support for implementing new

circuits after launch. To recognize the need for the AWM, we note that recovery during real-time operation is not

possible with standard wiring harness or the use of standard PCBs. The wiring harness will provide fixed

connections between components that cannot be altered during spaceflight. If one of the connections fails during

spaceflight, there is no recovery for a traditional wiring harness. Similarly, the use of quick-turnaround PCBs can

provide the necessary circuit components needed for a faster time to launch. However, standard PCBs cannot

recover from connection failures. Additionally, the use of triple redundancy can support recovery from single

component failure but not from connection failure. To support recovery from connection failure, we require dynamic

rerouting.

The concept of the AWM is related to the use of dynamic partial reconfiguration (DPR) with Field

Programmable Gate Arrays (FPGAs). FPGAs allow the users to employ DPR technology to implement dynamic re-

routing and re-implement digital signal components after launch (e.g., see [2]). Unfortunately, it is not possible to

extend the functionality of the FPGA by adding new hardware components to the FPGA fabric. Furthermore,

internally, the FPGA fabric does not support routing of analog signals or power.

The use of plug-and-play technologies does support some of the concepts associated with the AWM (e.g., see

[3]. After connecting a plug-and-play device, it is automatically detected and made available to the host computer

system. Furthermore, plug-and-play can provide power to the connected device. The AWM also supports automatic

component identification and power connections. AWM extends the plug-and-play technologies by allowing

arbitrary connections between components. More fundamentally, AWM provides a method for implementing

circuits while plug-and-play provides a standard method for data communications between devices.

Overall, the purpose of the adaptive wiring manifold is to manage connections between components in real-time.

To implement a circuit, the users only have to place components on an adaptive wiring panel and provide a

description of the requested connections. The AWM will then implement the circuit by routing all necessary

connections (e.g., signals, power) between components. Connection failures can be handled through dynamic re-

routing. Simply put, the AWM uses the circuit description to reconfigure the AWP to avoid faulty connections.

Assuming that we have redundant components, component failure can be addressed by removing all of the

connections to the faulty component and dynamic re-routing to re-implement the circuit from its original

description.

 In what follows, we provide some more details on the implementation of the AWM. First, we require that the

AWP should continually sense the components that are placed on it. By sensing the components, the user will not

need to re-program the AWP for each component. Furthermore, component failure can be detected through a failure

to sense the component presence. A simple graphical user interface is used to describe the circuit to be implemented.

Internally, the circuit is described by a graph data structure. To implement the circuit, a connection is mapped to a

physical route on the AWP. For each type of connection (e.g., power, digital, and analog signals), a different graph

is constructed to keep track of the different possible routes that can be used to implement the connections. The

routing is implemented sequentially by implementing one connection after the other. If the AWM cannot implement

a connection, the ordering of the connection is modified and the procedure is repeated. Continuous sensing of the

components placed on the AWP is used to detect component failures. When a failure to connect to a component is

detected, the AWM looks for the component sensed at a different physical location on the AWP. Once such a

component is found, the circuit is re-implemented using the new component.

 A first hardware implementation of the AWP discussed in [1] is shown in Fig. 1(a). To implement a circuit,

circuit components are placed on modules. Modules include SPICE descriptions of their components. The SPICE

(Simulation Program with Integrated Circuit Emphasis) descriptions are read by the AWP once the modules are

placed on the cells that make up the AWP. The cells are programmed to handle the routing and the connections by a

cell management unit. Thus, a circuit is described to the cell management unit by specifying connections between

the components.

A

 In practice, users of the AWP will only need to specify circuits in terms of connections between components.

This ideal scenario assumes that modules will be pre-built with standard components. Then, the AWP implements

the circuits by routing each one of the specified connections. Dynamic reconfigurability of the circuits was achieved

in [1] by continuously sensing the modules and re-implementing the connections. Thus, in the first prototype of the

AWP described in [1], modules can be re-arranged while maintaining the pre-specified circuit through dynamic re-

routing.

 Unfortunately, there are several fundamental limitations of the original prototype that led to its re-design whose

concept is shown in Fig. 1(b). We summarize the basic issues that motivated the complete re-design below:

 Scalability using an AWP substrate and redesigned cells: The original cell-unit arrangement depicted in Fig.

1(a) cannot be effectively serviced. To see this, note that failure of one of the central cells will require the

disassembly of a large number of cells starting from the cells connected to the faulty cell. In the redesigned

system of Fig. 1(b), all cells are connected to an AWP substrate. The cells were also redesigned so that they can

be connected to any part of the AWP substrate and be independently removed without the need to remove any

other cells. Furthermore, the cell interconnection topology can be varied without the need to connect directly to

the nearest neighbors as in Fig. 1(a).

 Scalable module placement and sizes: In the first AWP prototype, module placement proved to be very

challenging due to the need to fully align the pre-soldered pins with the cells. The pins have been replaced by

miniature banana plugs that allow for much easier placement (including rotations) on the AWP substrate.

Furthermore, the use of the AWP substrate supports modules of different sizes (see Fig. 2). We demonstrate this

flexibility in module size using a module that is twice the size of a basic block size.

 I2C signal reliability issues: The original I2C signals could not be reliably read in the largest AWP designs

considered in this paper. This issue was addressed through the redesign of the memory reading protocol to

access a single byte at a time and the use of triple modular redundancy

 Real-time monitoring of dynamic routing at the switch level: In the first AWP prototype, it was not possible to

trace the routing to its constituent switches. We provide a GUI interface that provides real-time hardware

monitoring of the system that is accurate down to the single switching unit (e.g., relay-level).

 Open-source software and hardware system: We provide a hierarchical description of the source code (C-code

and VHDL code) for implementing the AWP software and hardware to support further research in this area.

The rest of the manuscript is organized as follows. In Section II, we present related work that was done prior to

the AWP. In Section III, we provide a description of the redesigned hardware components. Section IV presents the

revised software interface (both command-line and GUI). Recommendations for future research are given in Section

V. Concluding remarks are given in Section VI.

II. Related Work

From the lowest to the highest circuit levels, wiring remains an open problem. A number of Printed Circuit

Boards (PCBs) are placed into electronic boxes (usually involving a wiring backplane) that are connected through a

wiring harness. The construction of conventional wiring harness requires painstaking planning to identify the

physical location, quantity, and quality of the wiring network. The many individual connections of a wiring

assembly are often created manually, resulting in considerable time and expense. Only limited changes can be made

once a wiring assembly is produced. Defects in either the wiring harness or the components in a platform can be

difficult to isolate, and repairs are cumbersome undertakings. For a detailed discussion about representation,

different wiring domains, addressing wiring harness complexity, and cabling/connections options of wiring

harnesses, we refer to [1].

Wiring length distributions obey a power-law relationship as established in the empirical work of Christie [4]

and Donath [5] for PCBs and ICs. A survey of wire lengths on the TacSat-2 spacecraft suggests a wiring

distribution characteristic similar to those found on ICs. We know from this glimpse of wiring utilization that most

wiring runs are short, which makes intuitive sense, and the number of longer runs falls sharply.

Ultimately, we would like to reduce the mass of a spacecraft’s wiring harness without compromising reliability

[1]. To address these issues, AFRL introduced the Space Plug-and-Play (SPA) in [6] that is both scalable and

topology-agnostic. The size of the network can be expanded using more hubs without affecting the system function.

SPA-based systems have been developed in the laboratory, and simple SPA networks have been flown in

experimental suborbital and orbital space missions (e.g., PnPSat-1) [3]. Similar to the AWP prototype, the PnPSat-1

used a 5x5 cm pegboard-like grid and short cables are used to connect the module to the panel. The spacecraft was

then formed by assembling the panels together.

Throughout our work, we have focused on embodiments of the Plug-and-Play wiring harnesses, also called

Adaptive Wiring Manifolds. The idea of the AWM has been previously described in [7][8][9][10] and demonstrated

in [10]. Algorithms for implementing self-healing dynamically reconfigurable AWMs were reported by Thompson

and Mycroft in [11]. In this manuscript, we present the final implementation of a novel strategy for implementing

scalable AWMs through a cellular approach. Our approach helps to reduce the wiring bundle within systems.

Previous approaches were simpler than our scheme [7][8][9][10] but lacked scalability and robustness. The work by

Dehon et al. [12] allows for extensible and dynamically reconfigurable topology. Early issues associated with a Cell

implementation of the AWP were discussed in [13]. The first design that demonstrates the concept on an array of

Cell Units was presented in[14]. A first prototype using custom-made Cell Units is described in [15][1]. The present

work details the final prototype of the Adaptive Wiring Panel using 6×8=48 Cell Units.

III. The Redesign of the Adaptive Wiring Panel

In this section, we describe the redesign of the AWP in terms of the AWP substrate, the Cell Unit, and Modules.

We begin with a summary of the AWP concept.

Each Cell Unit (5x5cm) contains an array of solid-state relays controlled by an FPGA. The FPGA also handles

communication with the master unit (PC side) and neighboring Cell Units. Cell units are interconnect through

terminals located on their four sides. Terminals on the top side of each cell are used for connecting to the planar

substrate.

Modules are attached on the AWP substrate. The modules connect to the planar substrate through a number of

panel pins. The geometric configuration of the CUs, the modules’ configuration (position, orientation), and the

netlist information specifying the characteristics and pins’ location of the electrical components within the modules

are relayed to a computer that implements the Cell Management Unit (CMU), which manages global

communications and routing configuration of all CUs. Each Module communicates with a Cell Unit via I2C [16] in

order to provide information about its components and placement. The CMU communicates via I2C with each of the

Cell Units to manage the interconnections.

As shown in Fig. 1(a), the original prototype requires interconnection of the cells in a fixed grid architecture.

This requirements was removed in the new prototype depicted in Fig. 1(b) since the cells can be interconnected by

using ribbon cables that run between the cells. The new prototype supports the possibility of experimenting with

new interconnection topologies such as the omega network, delta network, and the extra stage cube described in

[17]. The implementation of other interconnection topologies will come at a relatively minimal cost since it involves

the use of ribbon cables of different lengths and adaptations of the software to support the visualization and

validation of different topologies. In other words, the current software that supports the visualization of the cells

arranged on a grid will have to be modified to support the standard conventions for interconnecting and visualizing

alternative topologies that were described in [17]. However, overall, it is important to note that this will not require a

structural re-designed of the new prototype. We mention the software modification in future work.

The AWP prototype has the ability of routing both digital and analog signals. This was accomplished by the

AWP switching fabric (array of solid-state relays). This array is mapped to an undirected graph over which we apply

routing algorithms in order to wire components.

The solid-state relays currently being used implement the exclusive pathway for analog signals. The relay

characteristics fulfill most analog application requirements (relay ON-resistance = 0.8Ω).

The previous prototype[1] implemented the AWP with six (6) Cell Units. We have made several important

modifications to the AWP. We modified the physical design of each cell unit, made changes to the way the CUs

interconnect with each other, and also added a planar substrate. The physical design of the Modules has also been

modified. We provide further details in the following subsections.

 We note that the new prototype has been used to demonstrate dynamic re-routing and plug-and-play placement

of components. The platform allows for the testing of routing algorithms and other interconnection topologies. But

as it will be clear in this section, the prototype cannot feasibly fly without addressing power consumption issues and

mechanical connection requirements. In terms of satisfying mechanical requirements for flight, we note that the

current design can follow the same approach as the one taken for PnPSat-1 described in [1]. In the PnPSat-1, the

modules were fastened to panels using bolts in standard mounting holes (a 5x5 cm pegboard-like grid is used on

PnPSat-1) with short cables connecting the module to the panel, and the panels assembled together to form a

spacecraft. Similarly, for this prototype to be flown, we can replace the ribbons by cables, and fasten the modules

and cells to the panel using bolts in standard mounting holes.

A. Adaptive Wiring Panel Substrate

In the previous prototype [1], the AWP planar substrate was formed by tiling together the top portions of a

number of Cell Units. The connection of a module to the AWP planar substrate was physically implemented by pins

on the module that connect to the sockets in the AWP planar substrate. Each Cell Unit included 15 pins and each

Module included 15 pins (5x5) or 30 pins (5x10). Due to fabrication and soldering issues, it was very difficult for

the Module to have all the pins aligned with each other: in [1], one can see that a module consisted of two Printed

Circuit Boards (PCBs) so as to improve on the alignment of the module’s pins. Even so, the connection between the

module and the AWP substrate was difficult to carry out. When we required translating or rotating a module, the

task was so cumbersome that it would take some minutes to complete.

So, our former selection of simple pins and sockets presented us with a mechanical problem. We addressed this

problem by utilizing more adept pins and sockets, the so-called miniature banana plugs and sockets. This connection

is much more robust and the plugs are not required to be soldered, which allows us to only utilize plugs when we

need to, facilitating the connection between the modules and the AWP substrate.

The second issue was related to the scalability and servicing of the AWP. The original AWP cell units could not

be easily aligned to form a substrate that would work well with the modules. These problems were strongly

exacerbated when we tried to connect modules that required connections to two or more Cell Units (e.g., for a 5x10

module, or rotated module).

In order to overcome this difficulty, we needed to discard the idea of tiling together the top portions of the Cell

Units. Instead, the AWP substrate was redesigned to be made out of only one piece (see Fig. 1(b)). In this way, we

can guarantee a seamless plugging/unplugging of modules at different rotations and re-arrangements.

The redesigned AWP substrate consists of 6x8 (30cmx40cm) Cell Units. Figure 2 depicts the new AWP

substrate with two modules (a 5x5 and a 5x10) plugged into the substrate. In Figure 2(a), each Cell Unit is shown

with three types of connectors on it: i) signal connectors (depicted as ‘×’), ii) power connectors (depicted as ‘’),

and iii) a mechanical connector (depicted as ‘’). We also include the ground connector depicted as ‘’. Figure

2(b) shows a photo of the AWP substrate.

B. Cell Unit

The Cell Unit (5x5cm), also known as the AWP Cell, is the minimum independent unit of the AWP. Fig. 3(a)

depicts the conceptual implementation of a Cell Unit with its ports for wiring resources, communication links, and

its Logic Processing Unit (LPU). The surface routing terminal is a collection of pins that connects to the planar

substrate. Fig. 3(b) depicts the I2C communication links between the CU and the CMU, between the CU and its

neighbors, and between the CU and the module attached to it. The I2C link between the CU and the CMU is shared

with all the other CUs. In what follows, we detail the important modifications to the physical design of the Cell Unit

as well as the minor modification to the LPU.

1. Modification to the Physical Design of the Cell Unit

In the previous prototype [1], the Cell Unit was physically realized with five Printed Circuit Boards (PCBs): 4

lateral boards and 1 top board. As the new planar substrate consists of only one piece, the top board is no longer

needed.

As mentioned earlier, in the original design, removing a CU from the AWP would have required removing the

surrounding CUs (as the CUs are interconnected by D15 connectors). This process can become extremely

cumbersome in larger designs since removing the surrounding CUs would usually require removing the ones

surrounding those CUs. In the new design, each cell is attached to the AWP substrate directly. Just like SPA,

connections with neighboring cells are made using ribbon cables. This allows for easy servicing of the AWP should

one or more CUs fail. Figure 4 shows a physical depiction of the Cell Unit as well as an actual photo of the Cell

Unit. Note that the 90° connector contains: i) the pins of the surface routing terminal that connect to the AWP

substrate, and ii) pins for I2C communication between the Cell Unit and a module. Similarly, the rectangular female

headers, to which the ribbon cables are connected, contain the routable wiring resources of the Cell Unit as well as

the I2C pins for communication with the neighbors.

As in the original prototype, a female D15 connector is used to implement the I2C port that allows the CU to

connect to the CMU. This I2C link is repeated throughout all CUs (each CU repeats it to all its neighbors), so that we

can make the physical connection between all the CUs and the CMU by plugging a Video Graphics Array (VGA)

cable coming from the computer to any Cell Unit. Usually, the I2C signals from the VGA port of the computer does

not provide enough power for the I2C signals to reach a CU far from the CU to which the VGA cable is connected.

We avoid this problem by including an I2C bus extender (Philips 82B715) in each I2C port inside the CU that has a

direct physical connection to the computer (CMU). The computer side (CMU) also includes this I2C bus extender.

An actual physical arrangement of these new Cell Units is displayed in Fig. 5. The Adaptive Wiring Panel is

shown in a 6x8 array configuration. Fig. 5(a) displays the AWP in operation with two modules on top of the AWP

planar substrate. Fig. 5(b) shows the corresponding GUI snapshot where all the Cell Units and modules have been

detected. Fig. 5(c) displays an upside-down view of the AWP. Note that the underneath part of the planar substrate

contains an array of female headers that allow the Cell Units to be connected to the AWP substrate. Fig. 5(d) shows

a close view of the front side and back side of the Cell Units. The components of the Cell Units (e.g., VGA

connector, FPGA, relays) can be observed.

2. Logical Processing Unit inside the Cell Unit

The Logical processing unit (LPU), that represents the configurable logic (implemented on an FPGA) inside the

CU, has been modified to allow for a more robust communication with a Module. In the original prototype [1], when

the CU received the command to read the module netlist (or datasheet), it would read the entire datasheet from the

module, and then it would relay the information in the form of: first the number of bytes, and then the actual data.

This approach, though effective, does not account for reliability issues. In the 6x8 array configuration, we found that

in some cases, the data retrieved from the module were erroneous. We initially attributed this issue to the

unreliability of the I2C communication link between the CU and the I2C memory (Atmel EEPROM AT24C08B)

inside the Module. This problem did not occur as often in the 6 Cell Unit configuration (previous prototype [1]), but

it happened frequently in the 6x8 array configuration. Thus, the problem seemed to stem from the fact that the

shared I2C bus links a large number of Cell Units (6×8 = 48) to the Cell Management Unit (CMU).

The communications problem was mitigated by modifying the Logical processing Unit so that it only reads one

byte at a time from the I2C memory inside the module. This modification allows us to develop robust software

routines for data reliability (to be discussed in Section IV). Specifically, we defined a new command (0x60) that the

CMU issues. The command is followed by the address of the I2C memory (from 0 to 255) from which we want to

read one byte. The CU then reads the byte at the specified address in the I2C memory, and finally the CU relays the

one data byte to the CMU. The Local Processing Unit is described in VHDL, and Figure 6 depicts a diagram

showing the dependency of the corresponding VHDL files.

C. Modules

The previous prototype [1] supported modules of dimensions 5x10 cm. We performed the following

modifications to the physical design of the modules:

1) To connect to the AWP substrate sockets, the modules were re-designed to use miniature banana plugs.

This allows for a more robust and flexible plugging, unplugging, and rotation of modules to the AWP.

2) We investigated the use of modules of different sizes. For our experiments, we considered two different

dimensions: 5x5 cm, and 5x10 cm. The 5x5 module contains 12 signal connectors, 3 power connections,

and one mechanical connector. The 5x10 module has 24 signal connectors, 6 power connections, and one

mechanical connector.

The I2C memory (Atmel EEPROM AT24C08B) inside the module contains the electronic datasheet (in SPICE

language) of the components that are connected on the module. The I2C memory can store up to 256 bytes of data.

To download (and read) the module’s datasheet, a direct I2C connection of the module’s mechanical connector with

the CMU is required.

Figure 7(a) depicts the modules (5x5 and 5x10 dimensions) when plugged into the AWP substrate. All the

possible rotation configurations (0°, 90°, 180°, and 270°) are depicted. Note how one 5x5 module can span up to 4

Cell Units, and one 5x10 module can span up to 6 Cell Units. Fig. 7(b) shows the modules’ depiction, with the

naming conventions for the pins and the datasheets when some components are connected to the modules. Finally,

Figure 8 shows actual pictures of the 5x5 and 5x10 modules. Notice the miniature banana connectors being used.

Note that the components can be very varied: they can have more than two pins. The naming convention for a

component is <Letter><Unique number>. If there are two or more similar components (e.g., three resistors),

each one must have a unique number within all the Modules. For example, in Fig. 7(b), the two modules contain 3

resistors (R1, R2, R3), 3 LEDs (D1, D2, D3), and one battery (V1).

We note that the paper uses simple circuits consisting of batteries, resistors, and LEDs to demonstrate the basic

concepts. While this is an effective way to test the AWP hardware, it is clear that practical implementations would

require support of subsystems such as a reaction wheel, star tracker with a camera, etc. Figure 9 shows two

examples of what connections would be needed for implementing the following subsystems:

 A Star Tracker (e.g., Vixen Polarie Star Tracker) that requires 5 VDC. A camera is mounted on top of the Star

Tracker. The Star Tracker is the sole component in a module. The 5VDC source is connected to another module.

 A Reaction Wheel (e.g., MSCI MicroWheel 200). It requires 24 VDC and a RS-485 port for three control lines.

The 24 VDC source belongs to another module. The three control lines could be connected to another module

containing a microcontroller.

Note how in both cases we can easily connect/disconnect the power source from the subsystems by activating

/de-activating the solid-state relays via software.

D. AWP Power consumption

To understand power consumption issues associated with the current AWP design, we also provide an analysis

of power consumption of the AWP. First, we measured (using the ES-687 clamp meter) the idle power consumption

of the Cell Unit (when no relay is activated). Second, we activated the relays one after the other and measured the

power consumption as the number of activated relays increased. Figure 10 shows the power consumption (in mW)

of a Cell Unit as the number of activated relays increases. The idle power consumption of a Cell Unit was about 0.42

W, while the power consumption per relay was on average 85mW. This information allows the software interface to

provide real-time power estimation based on the number of active cells and number of closed relays.

The estimated power consumption of the current AWP prototype with 6×8 = 48 Cell Units is about 20.16 W,

while the maximum possible power consumption (considering all relays within the 48 Cell Units are activated) is

about 305.5W. In practice, however, we expect that the average number of relays activated per cell not to exceed 10,

resulting in the AWP drawing 60.48W in the worst case.

From these measurements, it is clear that a practical implementation would require significantly lower power

consumption. Currently, the AWP has an idle power consumption of 20.16W. Most of this power is drawn by the

FPGAs. Also, note that the miniature relays used here (Panasonic AQY221R2M1Y, size: 2.95x2.2 mm2) draw 85

mW when activated (i.e.,,they are in the ON state). Latching relays (such as the Omron G6KU-2F-Y, size:

6.5x10mm2) would reduce power consumption, as it requires 21mA@5V for 10 ms. The main problem with latching

relays however is their size. The Omron latching relay was the smallest one available and it is physically about 10

times larger as the ones we are using. This poses a problem for PCB design, as the PCBs would also have to be

much larger. By far the best solution is the use of ASICs that integrate the control logic inside the FPGA, the

processing elements, and the array of solid state relays so as to dramatically reduce the size and power consumption.

IV. Real-time Monitoring of the AWP

Real-time monitoring is handled by the Cell Management Unit (CMU). The CMU manages global

communications and routing configurations of all Cell Units on the AWP. The CMU is implemented in software on

a Linux machine.

The CMU handles: i) reading the configuration of the Cell Units and represent them as an undirected graph, ii)

reading the configuration of the Modules and their netlist specification, iii) providing the user with an interface to

specify a circuit (or circuits), iv) routing all required connections for the specified circuit(s), and v) keep the

connections that make the circuit(s) in response to a change in the configuration of the Modules and/or Cell Units

(the user can also modify or add connections). Each time the configuration of the Modules and/or Cell Units

changes, a new graph is generated, over which the routing algorithm is run again. As for the routing algorithms, we

are using the same algorithm as the one mentioned in [1].

The software routines are divided into two layers: i) a Command Line Interface that provides a complete control

of the AWP, used mainly for debugging purposes, and ii) a Graphical Unit Interface (GUI), which goes on top of the

Command Line interface, that provides a much smoother and intuitive user experience.

In this section, we describe the updates to the software routines as well as improvements made to the Graphical

User Interface (GUI).

A. Reading the datasheet from Modules

The I2C communication between the Cell Unit and the CMU was summarized using four commands [1] (Type I,

Type II, Type III, and Type IV). Specifically, the Type III command was used to read data from a Module: the

CMU issued a command to read the module datasheet (or netlist), the CU immediately read the entire datasheet from

the I2C memory of the module, and finally the CU would relay the information (first the number of bytes, then the

actual data) to the CMU. This simple approach did not account for reliability issues, as explained in Section III.B.2.

The new approach requires reading only one byte at a time from the I2C memory inside the module. This is

implemented by including a new 0x60 command within the Type IV commands (the Type III command is no

longer used). Figure 11 depicts the timing diagram along with the characteristics of this command: the CMU issues

the command word 0x60, followed by the address of the I2C memory (0 to 255) from which we want to read data

(one byte). The CU then reads the byte from the specified I2C memory address, and finally the CU relays the data

byte to the CMU.

This command 0x60 allows us to develop robust software routines for data reliability. We have modified the

software routines that manage the communication between the CU and the CMU. When writing/reading on the I2C

bus, the I2C communication link can fail and we might think that an otherwise existing CU is failing or not present.

As a result, when writing/reading on the I2C bus, we perform up to ten (10) attempts before branding that CU as

nonexistent or failing. Thus, we perform up to ten (10) attempts for each of the following operations: sending the

0x60 command, sending the address of the I2C memory, and receiving one byte of data. In addition, we issue the

0x60 command three times (i.e. we read the same byte thrice) and make sure that at least two times the same byte

was read. The datasheet in the I2C memory contains an end-of-string character (0x00) that indicates that we have

reached the last byte of information.

B. Graphical User Interface (GUI): Real-time monitoring

The GUI was developed to provide a smoother user experience when managing the Adaptive Wiring Panel

(AWP). It was developed based on the GTK+library [18].

As in [1], the GUI automatically updates what it displays when: i) the relative position of the Cell Units change,

ii) when Modules are replaced, removed, or rotated, and iii) when the components in the modules change (assuming

the datasheet inside the module has been updated).

We updated the GUI so that it now provides more information about the AWP. In addition to the Cell Array

Layer, Module Layer, and Layer, we have added the ‘Link Layer’. This layer displays the relays that are currently in

operation (i.e., closed) and the Cell Units that contain activated relays. If there are closed relays inside a Cell Unit, it

turns green. By double-clicking on the green-colored Cell Unit, the user can see the cell in detail with the status of

the relays (closed/open). The user can also see the geometric distribution of the 71 relays with respect to the Cell

Unit pins (y1-y12, z1-z3) and the pins that are distributed to the neighbors (X1-X16, U1-U3, GND). See [1] for

more information about these pins.

The GUI also provides real-time power estimation. The power estimation is based on the number of active cells,

and the number of activated relays (if any). This information is available in any of the layers.

GUI snapshots of the available layers are shown in Figure 2. A snapshot of the Cell Array Layer (6x8) is shown

in Figure 5(b). Figure 12 shows a snapshot of the Module Array layer where four (4) Modules with different

orientations/sizes are plugged into the AWP substrate. We indicate the mechanical connector of each Module. Power

estimation is also displayed for 48 Cell Units with no closed relays.

Figure 13 shows a snapshot of the Circuit Layer, where we have specified and created a circuit that consists of

one battery, two LEDs, and two resistors (the battery powers two LEDs). Note that the circuit, as depicted in the

Circuit Layer, is a bit difficult to read. For clarity purposes, we have also added a view of the circuit on the left side

of Figure 13. The circuit requires 16 closed relays, and as such the estimated power has increased.

As for the Link Layer, Figure 14 displays the AWP Cell Array where Cell Units with activated relays are green-

colored. By double-clicking on a Cell Unit, we can see the geometric distribution of the 71 relays within the Cell

Units, and more importantly the relays that are activated. Figure 15 shows a snapshot of the internals of a Cell Unit

with the 71 relays and the Cell Unit pins. The activated relays are depicted as solid red.

C. Open-source Interface

To support further research in this area, we provide an open-source implementation of the interface (GPL

license). For the Command-line Interface , we provide a summary of the code structure and main functions in the

Appendix. The password-protected code (available upon request) can be found at: www.ivpcl.org/AWPcode.zip.

V. Recommendations for Future Work

In this section, we provide a list of recommendations for future work on the AWP. We believe that this list will

contribute to the wider adoption of the AWP:

 Database of typical circuits: The overhead associated with the AWP can only be justified for large-scale

circuits. We used very simple circuits to demonstrate the concepts here. Ideally, we would to test the

system on a library of typical circuits (e.g., navigation, communication circuitry, payload, see [1]).

 Dynamic routing algorithms: The current algorithm is based on a heuristic that uses the shortest path

algorithm to route each connection. The search start with an initial ordering of the connections. If a solution

http://www.ivpcl.org/AWPcode.zip

is not found, the search restarts from a different initial ordering. The process is repeated until a solution is

found. With the 6x8 AWP prototype, we found that the routing algorithms do not perform well when the

number of connections is greater than 10. This is to be expected since the routing problem is known to be

nondeterministic polynomial-time hard (NP-hard). Dynamic routing would be best performed using a

Steiner forest algorithm as described in [19].

 Distributed management approach: For the next generation of the AWP, it will be a good idea not to

require the current external Cell Management Unit (CMU) for routing purposes. In a distributed

management approach, routing decisions could be made locally. This would also make the routing

computation to be fault-tolerant.

 Exclusive connectivity pathway for digital signals: the AWP solid-state relays can switch at 5 KHz at

most, rendering the AWP unsuitable for a large variety of digital applications. Thus, for digital signals,

instead of using a relay array, we can simply use an FPGA fabric for routing the connections.

 Incorporation of signals of different nature: This idea extends the original AWP concept to a more

universal solution, where the switch fabric includes power, optical, and RF signals. This will allow the

network to perform in different scenarios and might potentially provide a universal solution for

interconnection in aerospace systems.

 Miniaturization: It is important to investigate the feasibility of the integration of the control logic inside

the FPGA, the processing element, and the array of solid-state relays (we will be looking for latching

relays) in a single die. This miniaturization effort can dramatically reduce the size and power consumption

of a Cell Unit. It will provide more space within the Cell Unit to include various types of connections, such

as optical and RF.

 Mechanical connections: The current use of a motherboard-daughterboard approach will have to be

modified for flight. We recommend the use of an approach similar to the one taken for PnPSat-1 described

in [1] and summarized in Section III.

 Testing of other interconnection topologies: The redesigned AWP prototype allows the consideration of

different interconnection topologies (e.g., omega network, delta network). In terms of hardware, no further

modifications are needed for supporting new topologies. However, the software will need to be modified to

support visualization and validation of the new topologies.

 Reliability of electronics under Single Event Effects (SEEs): To prepare the system for flight, we will

need to address the possibility of SEEs on the FPGAs and the solid-state relays. Here, we note that a

common technique to mitigate the effects of SEEs on FPGA is the use of Triple-Modular Redundancy

(TMR), but this incurs in increased area and power requirements. This problem is addressed in [2], where

the authors presented a framework (for FPGAs) for reconfigurable fault tolerance that allows for dynamic

adjustment of a system's level of redundancy and fault mitigation based on the varying radiation incurred at

different orbital positions. As for the solid-state relays, the use of radiation-hardened relays can be of great

help here (e.g., IR’s RDHA701CD10A2N), although they come at a steep price. Finally, as the Cells of the

AWP are made of many other components beside the FPGA and the relays, it is recommended to have

some kind of shielding.

 Robustness: Prior to implementing connections in hardware, it is important to perform basic testing that

avoids damaging the circuits. For instance, user-specified connections that can potentially short battery

terminals should be detected and not allowed. The SPICE format of the circuit allows for SPICE simulation

that detects damaging connections. In addition, components can notify the system of possible failures

detected through self-testing.

VI. Conclusions

We have described the final prototype of the Adaptive Wiring Panel (6x8 = 48 Cells) that can interconnect (in

principle) arbitrary electronic components together using a large reconfigurable mesh. The adaptive wiring concept

can be thought as an extension of the ideas on FPGA routing. The power and utility of the AWP will likely become

evident with even larger scale systems. The technology implications for fully adaptive wiring systems are potentially

profound. Systems can be constructed more quickly, they can be more resilient, and can have more flexibility. The

design challenges include making the pieces (Modules, Cell Units) ‘smart’, including synthesis tools to manage the

complexity of the dynamic wiring.

A complete redesign of the original AWP prototype (6 cells) had to be made in order to develop an effective

system with 48 Cell Units. The redesigned system included the use of I2C power extenders, robust software routines

for data reliability, the use of new miniature banana plugs and sockets, the introduction of a single AWP substrate,

physical re-design of the Cell Unit, and re-design of the physical connections among Cell neighbors. We also

introduce real-time monitoring tools for measuring power consumption and visualizing dynamic routing down the

single switch (relay) level. The redesigned prototype of the Adaptive Wiring Panel can act as a test-bed for

improving the routing algorithms, communication reliability, mechanical issues. In addition, it opens the door to

new ideas about scaling the architecture, power management, miniaturization, autonomous reconfigurable

interconnect cells, incorporation of more computing power within the Cell Units, etc.

As mentioned in [1], we believe that there is benefit in extending our implementation concepts to three

dimensions. Overall, we hope that our research will contribute to concept of a universal reconfigurable switching

network that supports dynamic routing of different types of signals.

Appendix

In this Appendix, we provide a succinct description of all the software routine and function that make up the

Command Line Interface of the Adaptive Wiring Panel. We begin with the basic concepts (cell array, graph, module

array) that will be used for describing the AWP software routine:

 Cell Unit (CU): Minimum independent unit of the AWP that contains wiring resources (relays, connections

to neighbors) and an FPGA. The FPGA controls: i) the I2C communications of the CU with the CU’s

neighbors and the CMU, ii) the relays.

 Grid: Array of Cell Units whose arrangement is mechanically modifiable by the user. In the software

routine, it is represented by the structure M.

 Graph: It is the representation of the wiring mesh that includes the wiring resources within each active Cell

Unit. Each CU contains the vertices z1-z3,y1-y12,x1-x16, and u1-u4 (u4=GND). The 71 relays

(considered edges) connect the vertices (look the arrangement in Fig. 15). The combination of all the

vertices and edges for all Cell Units makes up the graph. In the software routine, it is represented by the

structure G.

 Module Array: Array of Modules whose arrangement can be modified by the user. The modules are attached

on top of Cell Units. In software, the module array is represented by Module_List.

 Cell-level circuit: Set of connected pairs (represented by structure Circ) or to be connected (represented by

structure C) at the Cell-level, i.e. each node (or pin) is represented by <node_name>-<cell ID>. The

available node names are: z1-z3,y1-y12 (pins at the surface routing terminal of the CU).

 Module-level circuit: Set of connected pairs (represented by the structure Module_List->circuitry)

at the Module-level, i.e., each node (or pin) is represented by its name and the Cell Unit to which the

Module is connected to: <node_name>-<cell ID>. The available node names are: Z1-Z3, Y1-Y12

for 5x5 modules, and Z1-Z3, Y1-Y12, V1-V12, W1-W3 for 5x10 modules. Note that a node like Y1 on

the module might not be the same as the node y1 in the Cell Unit, as the Module might be rotated.

The Command-line Interface manages the AWP Prototype shown in Figure 5(a). We now provide a description

of the available commands. Table 1 lists the commands available when we type mytest_i2c -interface.

Table 1. List of commands of the Command Line Interface accessible when typing mytest_i2c -interface
$ mytest_i2c -interface

AWP>> generate_grid Creates a connected grid of Cell Units (based on the detected CUs). Fig. 5(b) shows the GUI

visualization of a grid with 6x8 Cell Units.

AWP>> connect A B Connects two nodes at the Cell Level. Node format: <node_name>-<cell ID>. Example:

AWP>> connect y1-03 y2-1E. Connects node y1 of Cell 03 with node y2 of Cell 1E.

AWP>> unconnect circuit Opens the currently closed relays and regenerated the Grid.

AWP>> unconnect_all Opens all relays and regenerates the Grid. Useful after the program execution stops unexpectedly,

and the currently closed relays are unknown.

AWP>> print circuit Prints the set of connected pairs

AWP>> print grid Prints the current Grid in text-format (unlike that of Fig. 5(b))

AWP>> print graph Prints the list of nodes with their respective neighbors

AWP>> exit Exits interface.

AWP>> modules Enters a sub-interface that allows the issuing of commands at the Module Level, i.e., connections

are set by using the Modules’ name pins.

 AWP(module level)>> read modules For each module: It reads the module size, orientation, components,
and the cell to which the module is attached to. Then, it maps the

module pins to the corresponding cell pins.

 AWP(module level)>> set_circuit Specification of the Module-Level circuit (set of connection pairs).

Format of a connection pair:
>> ComponentA pinx ComponentB piny

A pin of Component A connects to a pin of Component B (in some

cases B can be A). Example:
Enter pair >> R1 y1 R2 z3

 (Pin y1 of component R1 connects to Pin z3 of component R2)
Enter pair >> C1 y1 R1 y2

Enter pair >> exit

 AWP(module level)>> connect once This instruction attempts to connect the circuit specified in the
‘set_circuit’ instruction. After the connections are made, the user

returns control of the interface.

 AWP(module level)>> connect loop The instruction attempts to connect the circuit specified in the

‘set_circuit’ instruction. After the connections are made, the interface
enters an infinite loop, in which the program routinely reads the Cell

Grid and Module Array looking for changes. If there are changes and if

the circuit’s components still exist, the software re-routes the paths to
make the circuit connections for new Cell and Module configuration.

By pressing a key, the user can always exit the loop.

 AWP(module level)>> print circuit Prints Module-Level circuit

 AWP(module level)>> unconnect_circuit Disconnects current circuit

 AWP(module level)>> exit Exits Module Level

Table 2 lists the two commands available when we type mytest_i2c -interface_2. This interface is a little

different from the one of Table 1. It immediately enters an infinite loop in which the user can always set, modify, or

add circuit connections.

Table 2. List of commands of the Command Line Interface accessible when typing mytest_i2c -interface_2
AWP>> go It enters a loop that repeatedly reads the status and updates the displaying of the Cell Grid and Module Array.

At every iteration, the user can press a key and then typing:

AWP>> set sets a new circuit,

AWP>> add adds connections to the current circuit, and

AWP>> mod deletes connections of the current circuit.

AWP>> exit Exits interface

Table 3 lists a series of commands that allow the user to write/read information to/from the I2C memory (Atmel

EEPROM AT24C08B) inside a Module. The information consists of: module type (5x5 or 5x10), and a Spice-

formatted list of components inside a Module. In addition, the use of these commands require a direct connection of

the I2C pins of the Module Board to the VGA cable that connects to the D15 connector in the computer (CMU).

Table 3 Command-Line Interface commands for writing/reading the I2C memory inside a Module
mytest_i2c -write_AT {Spice Datasheet #} It writes a Module datasheet to a I2C memory. No more than 256

characters can be written. The spice datasheets are provided in a text

file named: I2Cprom-{number}.txt.

Example of text file: 5x10 modules, 4 components
5x10

R3 V1 V2 330

D3 V8 W3 HLMP-C100

D4 Y11 Y8 HLMP-C100

 V2 W1 W2 6v

mytest_i2c -read_AT It reads the Module datasheet from a I2C memory. This is useful to

verify the state of the I2C memory inside a Module.

Table 4 lists a series of commands that can be used for debugging purposes. Note that the parameter cell ID

is the identification number (hexadecimal) of a Cell Unit. They go from 2 to 127 (0x02-0x7F).

Table 4. Command-Line Interface commands for debugging purposes
my_test_i2c <cell ID> -relays -{off,on} Opens (off) or closes (on) the 71 relays of the given Cell Unit (Cell ID)

my_test_i2c -relays {off,on} Opens (off) or closes (on) all relays of every Cell Unit.

my_test_i2c -scan It scan all Cell Units (0x02-0x7F) and lists whether each Cell Unit

exists.

my_test_i2c <cell ID> -neighbors Get the neighbors’ IDs (if any) of the given Cell Unit (Cell ID). When

a neighbor is not present, its ID is 0x01.

my_test-i2c -grid It creates a Cell Grid

my_test_i2c -m <cell ID> It reads and displays the Module information of the Module attached (if

any) to the given Cell Unit (Cell ID)

my_test_i2c <cell ID> -relay <relay #>

 -{open,closed,status>

Open, close, or get status of a specific relay in a Cell Unit

<relay #>: decimal number from 1 to 71.

Examples:

mytest_i2c AB -relay 64 –open % Opens relay 64 from

 cell 0xAB

mytest_i2c 0C -relay 12 –closed % Closes relay 12 from

 cell 0x0C

mytest_i2c 10 -relay 32 –status % Returns status of

 relay 32 of cell 0x10

Table 5 lists three commands for low-level debugging purposes. These commands handle the basic I2C

communication between a computer and a Cell Unit (I2C peripheral). The user can write/read a byte to/from a given

I2C peripheral. The peripheral can be either the FPGA inside the Cell Unit or the I2C memory inside the Module

(provided there is direct connection between the Module Board and the Computer). The parameter data is an

hexadecimal number (0x00-0xFF). The parameter cellID is the identification number (hexadecimal) of a Cell

Unit (0x00-0x7F). The value cellID=0x00 is special: when writing, the I2C command is broadcast to all Cell

Units; when reading, the routine grabs data from the first Cell Unit that responds. The value CellID=0x01 is not

allowed as it means inexistent Cell Unit (only used when reading neighbors of a Cell Unit)

Table 5. Commands for low-level debug
mydebug_i2c -w <cell ID> <data> It writes a byte of data on a Cell Unit (Cell ID).

Example: mydebug_i2c -w 02 FA % Writes 0xFA on Cell Unit 0x02

mydebug_i2c -r <cell ID> It reads a byte of data from a Cell Unit (Cell ID)

Example: mydebug_i2c -r 03 % Reads a byte of data from Cell Unit 0x03

mydebug_i2c -s It runs a scan of all Cell Units (0x02-0x7F) and lists whether each Cell Unit exists.

Table 6 shows the file structure of the AWP Command-Line Interface. A Makefile file takes care of the

configuration for the gcc compiler. Two executables are obtained: ‘mydebug_i2c’, and ‘mytest_i2c’.

Table 6. File structure of the AWP Command-Line Interface.

Files Description of files
mytest_i2c.c Main file that provides access to all features of the Command-Line Interface

 i2c.h
Header file that lists the low-level functions for I2C communication with the

CMU (Computer)

 i2c-linux.c Low-level functions for I2C communication with a Computer.

 my_i2c_commands.h Basic routines for I2C communication of the AWP.

 user_interface_functions.h
High-level routines that implement common user commands (generate grid,

disconnect, connect circuit)

 module_level_functions.h High-level routines for the management of the Module Array.

 grid_creation_functions.h High-level routines for the management of the Cell Grid (or Cell Array)

 shortest_path_functions.h
Routines that deal with an undirected graph: add/delete vertices from a

graph, get vertex value, implement the shortest path algorithm..

 priority_queue_functions.h
Routines that implement a minimum priority queue. These functions are

required for the implementation of the shortest path algorithm.

 my_i2c_macros.h
Advanced routines for AWP management (scan neighbors, scan cells,

connect graph, interface enabling)
mydebug_i2c.c Main file that provides access to low-level functions for debugging.

i2c.h

i2c-linux.c

my_i2c_commands.h

References

[1] V. Murray, D. Llamocca, J. Lyke, K. Avery, Y. Jiang and M. Pattichis, “Cell-Based Architecture for Adaptive Wiring

Panels: A First Prototype,” AIAA Journal of Aerospace Information Systems, vol. 10, no. 4, pp. 187-208, 2013.

[2] A. Jacobs, G. Cieslewski, A. D. George, A. Gordon-Ros and H. Lam, “Reconfigurable Fault Tolerance: A Comprehensive

Framework for Reliable and Adaptive FPGA-Based Space Computing,” ACM Transactions on Reconfigurable Technology

and Systems, vol. 5, no. 4, p. 30, 2012.

[3] D. Fronterhouse and J. Lyke, “Plug-and-Play Satellite,” in International SpaceWire Conference, Dundee, Scotland, UK,

Sept. 2007.

[4] P. Christie and D. Stroobandt, “The Interpretation and Application of Rent's Rule,” IEEE Transactions on Very Large Scale

Integration (VLSI) Systems, vol. 8, no. 6, pp. 639-648, December 2000.

[5] W. Donath, “Placement and average interconnection lengths of computer logic,” IEEE Transactions on Circuits and

Systems, vol. 26, no. 4, pp. 272-277, April 1979.

[6] J. Lyke, “Plug-and-Play as an enabler for Future Systems,” in AIAA Space Conference, Anaheim, CA, Sept. 2010.

[7] J. Lyke, “Bringing the Vision of Plug-and-Play to High-Performance Computing on Orbit,” in Thirteenth Annual Workshop

on High Performance Embedded Computing, Lexington, MA, Sept. 2009.

[8] J. Lyke, “Space Plug-and-Play Avionics (SPA): A Three-Year Progress Report,” in AIAA Infotech Conference, Rornert

Park, CA, May 2007.

[9] J. Lyke, D. Fronterhouse, D. Lanza and T. Byers, “A Plug-and-Play concept for spacecraft,” in Military and Aerospace

Programmable Logic Devices (MAPLD), Washington, D.C., Sept. 2005.

[10] W. Wilson, J. Lyke and G. Forman, “MEMS-Based Reconfigurable Manifold,” in Military and Aerospace Programmable

Logic Devices (MAPLD), Washington, D.C., Sept. 2005.

[11] S. Thompson and A. Mycroft, “Self-Healing Reconfigurable Manifolds,” in Designing Correct Circuits (DCC'06), Vienna,

Austria, March 2006.

[12] A. DeHon, R. Huang and J. Wawrzynek, “Hardware-assisted Fast Routing,” in IEEE Symposium on Field-Programmable

Custom Computing Machines, Napa, CA, April 2002.

[13] V. Murray, G. Feucht, J. Lyke, M. Pattichis and J. Plusquellic, “Cell-Based Architecture for Reconfigurable Wiring

Manifolds,” in Infotech@Aerospace Conference, Atlanta, GA, April 2010.

[14] V. Murray, D. Llamocca, Y. Jiang, J. Lyke, M. Pattichis, S. Achramowicz and K. Avery, “Adaptive Wiring Panels using

Cell-Based Architectures: A First Approach,” in Reconfigurable Systems DCT Workshop, Albuquerque, Nov. 2010.

[15] V. Murray, D. Llamocca, Y. Jiang, M. Pattichis, J. Lyke, S. Achramowicz and K. Avery, “Cell-Based architecture for

Adaptive Wiring Panels: A First Approach,” in AIAA Reinventing Space Conference, Los Angeles, CA, May 2011.

[16] Philips, “The I2C Bus Specification,” Philips Semiconductors, 2000.

[17] G. I. Adams, D. Agrawal and H. Siegel, “A Survey and Comparison of Fault-Tolerant Multistage Interconnection

Networks,” Computer, vol. 20, no. 6, pp. 14-27, June 1987.

[18] A. Krause, Foundations of GTK+ Development, Berkeley, CA: Apress, 2007.

[19] M. Feldman, G. Kortsarz and Z. Nutov, “Improved Approximating Algorithms for Directed Steiner Forest,” Journal of

Computer and System Sciences, vol. 78, no. 1, pp. 279-292, January 2012.

Figure 1. (a) Original Adaptive Wiring Panel (AWP) concept [1]. (b) Adaptive Wiring Panel (AWP) concept with a fixed planar substrate

on top of the Cells. Each Cell contains adaptive wiring resources for the modules. Each Cell also contains interconnection resources for the

neighboring Cells.

Cell Management
Unit (CMU)

Unplaced module

Scalable adaptive
wiring panelPlaced modules

Cells

Unplaced module

Placed modules

Cells

Cell

Fixed planar
substrate

Cell

Scalable adaptive
wiring panel

Cell Management
Unit (CMU)

b)a)

Figure 2. AWP planar substrate. a) Concept using 48 cells in a 6x8 configuration. Two modules are shown in green. b) Picture of the actual

AWP substrate. Note how the modules are connected to the AWP planar substrate, and how one LED is lit.

0 5 30cm

0

5

40

cm

a) b)

Figure 4. Cell Unit. a) Conceptual Implementation. b) Photo that shows the connections (ribbon cables) to the neighboring Cell Units and the

connection (90° header) to the AWP Planar Substrate.

Cell
Management

Unit
(I2C Master)

Cell Unit
(I2C slave)LPU

Cell-Module
I2C ports

Surface
routing

terminal

Routable
wiring

resources

I2C port
Relays control

lines

Cell Unit - CMU
I2C port

EAST EDGE

NORTH EDGE
W

E
S

T
 E

D
G

E

SOUTH EDGE

To North Neighbor

To South Neighbor

To East
Neighbor

To West
Neighbor

Shared I2C Bus

I2C link

I2C link

I2
C

 li
n

k

I2
C

 li
n

k

4

Module at 0
Module at 90

Module at 180
Module at 270

4 I2C links

a) b)

Figure 3. Architecture of the Cell Unit. a) Conceptual implementation. LPU stands for Local Processing Unit within the Cell Unit. b) I2C links

for the Cell Unit and CMU.

R
E

L
A

Y
S

FPGA

90º connector
from Cell to

Substrate
TO NORTH

TO EAST

TO WEST

TO SOUTH

TO NORTH

TO SOUTH

TO EAST

TO WEST

a) b)

TO CMU
(computer)

90º connector
from Cell to

Substrate

a)

c)

b)

d)

Figure 5. AWP Final Prototype. a) Prototype in operation: view of the panel with 6x8 Cell Units beneath and 2 modules on top. b) GUI snapshot

showing the 6x8 AWP with two modules connected to it. c) Upside-down view of the AWP. d) Close view of a Cell Unit: Back side and Front side.

Relay: Panasonic AQY221R2M1Y, FPGA: Xilinx Spartan-3 XC3S200.

controller_slave
(controller_slave.vhd)

myNewReset
(softReset.vhd)

loadAddress
(registering_inputs.vhd)

AddressInput
(registering_inputs.vhd)

N_PC
(cell_slave_PC.vhd)

i2c_slave_MAP
(i2c_slave.vhd)

catch_north
(catch_data.vhd)

N_north
(cell_slave.vhd)

catch_south
(catch_data.vhd)

N_south
(cell_master.vhd)

master_i2c
(main_master.vhd)

i2c_slave_MAP
(i2c_slave_internal.vhd)

N_west
(cell_master.vhd)

catch_west
(catch_data.vhd)

N_east
(cell_slave.vhd)

catch_east
(catch_data.vhd)

master_i2c
(main_master.vhd)

i2c_slave_MAP
(i2c_slave_internal.vhd)

detecting_relays_and_sending_IDs
(main.vhd) (ucf_test_board_relays.ucf)

relays_map
(read_write_relay.vhd)

reading_module_map
(reading_module.vhd)

send_IDs_block
(send_IDs.vhd)

detect_map
(detect_type.vhd)

dual_memory
(dual_mem.xco)

reading_0
(main_master.vhd)

det_type
(commands_mem.xco)

reading_90
(main_master.vhd)

reading_180
(main_master.vhd)

reading_270
(main_master.vhd)

Figure 6. Dependency diagram of the hardware blocks (described in VHDL) that make up the Local Processing Unit within each Cell Unit.

Figure 7. AWP modules. a) 5x5 and 5x10 modules in all orientations (0°, 90°, 180°, and 270°). b) 5x5 and 5x10 modules with components and

their respective datasheets. Note the naming convention for the pins (Y1-Y12, Z1-Z3, V1-V12, W1-W3).

Y1 Y2 Y3 Y4

Z1 Y5 Z2 Y6

Y7 Y8

Y9

Y10

Y11
Z3

Y12

V1 V2 V3 V4

W1 V5 W2 V6

V7 V8 V9 V10

V11 W3 V12

D3

R3

V1

5x10 Module

Y1 Y2 Y3 Y4

Z1 Y5 Z2 Y6

Y7 Y8 Y9 Y10

Y11
Z3 Y12

R1

R2

D2
D1

5x5 Module

Spice datasheet:

V1 Z1 Z2 6v

R3 Y9 Y10 330

D3 Z3 Y12 HLMP-C100

Spice datasheet:

R1 Y5 Y8 330

D1 Y11 Z3 HLMP-C100

R2 Y4 Y6 330

D2 Y10 Y12 HLMP-C100

Mechanical
Connector

(16 pins)

0

90

90

0

2
7
0

2
7
0

1
8
0

1
8
0

a) b)

Figure 8. Modules of size 5x5 and 5x10. Top photo: View of the modules at an angle. Bottom photo: Top view of the modules

Figure 9. Examples of practical sub-systems that can be supported as independent Modules. a) Star Tracker (Vixen Polarie Star Tracker). b)

A Reaction Wheel (MSCI MicroWheel 200).

Y1 Y2 Y3 Y4

Z1 Y5 Z2 Y6

Y7 Y8 Y9 Y10

Y11 Z3 Y12

V1 = 5VDC

Y1 Y2 Y3 Y4

Z1 Y5 Z2 Y6

Y7 Y8 Y9 Y10

Y11 Z3 Y12

Y1 Y2 Y3 Y4

Z1 Y5 Z2 Y6

Y7 Y8 Y9 Y10

Y11 Z3 Y12

Y1 Y2 Y3 Y4

Z1 Y5 Z2 Y6

Y7 Y8 Y9 Y10

Y11 Z3 Y12

V2 = 24 VDC

a) b)

Figure 10. Power consumption of a Cell Unit of the AWP. As expected, the power increase is quasi linear. The idle power consumption is

about 0.42 W. Each activated relay adds about 85mW.

0 10 20 30 40 50 60 70 80
0

1000

2000

3000

4000

5000

6000

7000

X: 71

Y: 6365

P
o
w

e
r(

m
W

)

Number of relays activated

Pow er consumption on a Cell Unit

X: 30

Y: 2930

X: 0

Y: 420

~85mW

Figure 11. Update to the Type IV command. The 0x60 command is added. a) Timing Diagram. b) Characteristics of data to be transferred

for the 0x60 command as well as for the 0x5B command.

Address
(7 bits)

A

C

K

Command
(8 bits)

S W
A

C

K
S

Address
(7 bits)

A

C

K

Data
(8 bits)

S W
A

C

K
S

Address
(7 bits)

A

C

K
S R

A

C

K
S

First part: send command Second Part: Send Data Third part: Receive Data

7 6 5 4 3 2 1 0

The number of the relay
whose status will be read

One bit suffices to represent the relay status
Thus, 0xFF means 'closed', and '0x00' means 'open'.

0x5B Read Relay

Status

Command/Bits Explanation

Data
a)

b)

The address of the datasheet
memory (0-255) is specified

The specified address contains one byte that is
relayed to the CMU. Max. memory size: 256

0x60 Read datasheet

word

0

I2C Data
(8 bits)

Figure 12. GUI Module Layer displaying the status of the AWP. Two modules of 5x5cm and two

modules of 5x10cm are shown with different orientations.

5x5 Module
Rotation: 180

Mechanical
connector

5x5 Module
Rotation: 90

5x10 Module
Rotation: 270

5x10 Module
Rotation: 0

Power
estimation

R1

D1

V1

R2

D2

Easier view of the
Circuit being defined

Actual GUI view

Power
estimation

Figure 13. Circuit Layer of the GUI. The circuit on the right is what the GUI actually displays. The circuit on the left is

shown for clarity purposes. The circuit requires 16 relays to be activated (as reflected in the top left corner)

Power
estimation

Figure 14. Link Layer of the AWP. The 4 Cell Units in green indicate that they contain activated relays that implement the circuit of

Fig. 13.

Power
estimation

Figure 15. Internal view of Cell Unit 0x62. The highlighted rectangles in red indicate activated relays (closed). Note that for a Cell Unit,

the 71 relays are used to make connections among the pins that go into the planar substrate (y1-y12, z1-z3). The pins x1-x16, u1-u3, and

GND are pins that go to the Cell Unit neighbors (North, South, East, West), these pins are useful because they can find more routing

resources in other Cell Units.

