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MotivationMotivation
Digital signal, image, and video processing systems can be characterized by 

three properties:

Energy, Performance, and Accuracy (EPA).

The controlling of these variables at run-time is defined as Dynamic Energy-
Performance-Accuracy (EPA) management.

Dynamic EPA management will enable us to deliver:

�A dynamically self-adaptive system (by dynamic allocation of computational 
resources and dynamic frequency control) that satisfies time-varying EPA 
requirements.

�An Optimal resulting realization: We want to investigate optimal solutions 
that can meet dynamic EPA requirements . The system should minimize 
energy consumption, and at the same time maximize performance and 
accuracy, while satisfying the given EPA requirements.



MotivationMotivation
Dynamic Energy-Performance-Accuracy management can rely on Dynamic 
Partial Reconfiguration (DPR) and Dynamic Frequency Control on FPGAs.

Dynamic Partial Reconfiguration

DPR technology enables the adaptation of hardware resources by 
modifying or switching off portions of the FPGA while the rest 
remains intact, continuing its operation. To perform DPR, the 
Partial Reconfiguration Region (PRR) must be defined. The PRR is
dynamically reconfigured via the internal c0nfiguration access 
port (ICAP).

Dynamic Frequency Control

Digital Clock Managers (DCMs) inside 
FPGAs provide a wide range of clock 
management features.

The Dynamic Reconfiguration Port (DRP) 
of the DCM enables dynamic control of the 
frequency and phase. We can use it to 
dynamically adjust the frequency without 
reloading a new bitstream to the FPGA.
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MotivationMotivation
The system can then carry out independent tasks in time:

task 1, task 2, ….

Examples:

� Task 1: A video processing system is asked to deliver real time performance at 
30 frames per second (fps) on limited battery life that will also need to 
operate for at least 10 hours. This is a multi-objective optimization problem. 
If solutions are found, pick the system realization with the highest precision.

� Task 2: Now, suppose that we are asked to deliver performance at 100 fps at 
some minimum level of accuracy (60dB). In this case, we can select the 
hardware realization with the lowest energy requirements while meeting the 
performance and accuracy constraints.



Related workRelated work (1 of 3)
Image processing with DPR:
� DPR implementation of mean and median filters [Bhandari09], 

[Raikovich10].
� Fingerprint image processing algorithms whose stages (segmentation, 

normalization, smoothing, etc.) are multiplexed in time via DPR [Fons10].
� 3D Haar Wavelet Transform DPR implementation by dynamically 

reconfiguring a 1D HWT thrice [Afandi09].
� JPEG2000 decoder where the blocks are dynamically swapped 

[Bouchoux04]
� All these works are DPR implementations that exhibit some resemblance to 

our work. However they did not explore the EPA space.

CHREC (NSF Center for High-Performance Reconfigurable Computing):
� Acceleration of the Partial Reconfiguration Process (e.g. bitstream

rellocator, high level PR description for fast PR implementation, platform
for rapid deployment of PR embedded systems, using hard macros to 
reduce FPGA compilation time).

� Adaptive filtering, optical flow static implementations (no DPR)
� JTAG encoder/decoder (modules are swapped via DPR)
� No exploration of the EPA space via DPR.



Related workRelated work (2 of 3)
DPR Application in Dynamic Arithmetic [Vera08]:
� The use of DPR provided a low-

energy example where the use of 
dynamic dual fixed-point (DDFX)
arithmetic was shown to perform
as well as double floating point 
(FP) in a Linear Algebra example.

� DDFX maintains a performance
advantage with respect to FP when
reconfiguring once every 10000
operations or less (i.e., DDFX can
change precision 250 times per second or switch operations 150 per second.

� Arithmetic cores were measured in terms of their power, performance, and 
precision.

� A model was formulated that relates power, performance, and precision
of the dynamic arithmetic architecture. It explored the use of DPR to 
dynamically adjust performance, precision, and power consumption.

� No multi-objective optimization of the Power-Performance-Precision space
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Related workRelated work (3 of 3)
DPR Application for scalable DCT computation [Huang09]:
� Parameterized Discrete Cosine Transform (DCT) systolic modules (no 

Distributed Arithmetic approach suitable for FPGAs)
� The system dynamically reconfigures among Discrete Cosine Transform 

modules of different sizes (e.g., 8x8, 5x5,4x4).
� Different DCT configurations were studied in terms of power, performance, power, performance, 

and accuracyand accuracy. A configuration manager can adapt DCTs of different sizes 
based on power, performance, and accuracy power, performance, and accuracy constraints.

� Exploration of power, performance, and precision dependence on the DCT 
size. No multi-objective optimization of the EPA space.



Thesis StatementThesis Statement
This Dissertation develops a dynamic Energy-Performance-Accuracy 

management framework for Digital Signal, Image, and Video processing 
applications.

This entails:  
1. Development and parameterization of efficient and dynamically 

reconfigurable architectures for the following signal, image, and 
video processing applications:

2. Development of a Multi-objective Pareto optimization approach to 
meet global Energy-Performance-Accuracy (EPA) constraints.

3. Description of the Pareto-optimal realizations extracted from the 
EPA space: We are interested in how the architecture parameters 
generate Pareto-optimal solutions from the EPA space.

4. Dynamic EPA management to meet time-varying global EPA 
constraints. The system receives stimuli in the form of EPA constraints 
and reconfigures itself via DPR and/or dynamic frequency control to meet 
the EPA constraints.

DPR 2D FilterbankDPR 2D FIR Filter

DPR 1-D FIR FilterDPR Pixel Processor



ContributionsContributions
� Development of fully-parameterized hardware cores for signal, image, and 

video processing applications. The architectures are implemented with 
techniques that minimize the amount of computing resources and take 
advantage of Dynamic Partial Reconfiguration.

� Characterization of the optimal (in the multi-objective sense) hardware 
realizations from the EPA/PPA space for the architectures presented.

� A new framework for dynamic energy/power, performance, and accuracy 
(EPA/PPA) management based on a multi-objective optimization approach 
that guarantees low energy, high accuracy, and high performance. The 
framework is applicable to a wide array of signal, image, and video processing 
architectures.

� Development of hardware systems that support dynamic energy/power, 
performance, and accuracy management that meet real-time EPA/PPA 
constraints. On hardware, dynamic EPA/PPA management is based on the 
run-time control of hardware resources and frequency of operation.



General approach (1/5)General approach (1/5)

Steps:

1) Definition of Objective Functions

2) Development of efficient cores

3) Parameterization of Hardware Cores

4) Multi-objective Pareto Optimization in the 
EPA Space

5) Dynamic management based on real-time 
EPA constraints



General approach (2/5)General approach (2/5)
1) Definition of objective functions: Energy, performance, and accuracy 

are considered the objective functions of system parameters. These 
properties may have a slightly different definition depending on the 
application.
Energy can be measured as the total energy spent during the system 
operation, or the energy spent during an operation (e.g., energy per video 
frame). In some instances, measuring Power is more useful.
Performance can be measured by: Megasamples per second, frames per 
second, Megabytes per second, etc.
Accuracy can be measured by: numerical representation, or accuracy with 
respect to an idealized result (e.g., PSNR).

2) Development of efficient cores: The signal, image, and video processing 
architectures should use techniques that: i) minimize the amount of 
computational resources (e.g. LUT-based approaches, Distributed 
Arithmetic), and ii) make intensive use of DPR. 
The cores must be implemented in Hardware Description Language (HDL), 
so that they remain portable across FPGA devices and vendors.



General approach (3/5)General approach (3/5)

PIXEL

PROCESSOR

NC LUT values

(from text f ile)

NI NO F

NI××××NC NO××××NC

3) Parameterization of hardware cores: To achieve a fine control of 
energy, performance, and accuracy, we require realistic parameterization 
of the hardware cores (e.g., I/O bit-width, number of parallel cores).

The parameterized HDL code let us create a set of hardware realizations by 
varying the parameters. Each realization comes with different energy, 
performance, and accuracy values, which we can control by varying the 
hardware parameters.

Example: Parameterization of the ‘Pixel processor’ architecture:

NC (number of cores), NI (number of input bits per pixel),

NO (number of output bits per pixel), F (function to be implemented), 

LUT values (text file with LUT values)



General approach (4/5)General approach (4/5)
4) Multi-objective Pareto Optimization in the EPA Space: The Energy-

Performance-Accuracy (EPA) space is represented by a set of hardware 
realizations along with their EPA values.
An optimal hardware realization is defined as the one that minimizes energy, 
while maximizing performance and accuracy. 
We are interested in the set of optimal realizations from the EPA space. We 
want to find a subset whose EPA values cannot be improved by any other 
realization for all three (EPA). These realizations are called optimal in the 
Pareto (multi-objective) sense.
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variables, e.g., the Energy-
Accuracy space.



General approach (5/5)General approach (5/5)
5) Dynamic management based on real-time EPA constraints: Once the 

Pareto front has been extracted, we can cast optimization problems based on 
EPA constraints.
Example: We set constraints on all the three variables. The feasible set is 
represented by the golden points. We prioritize energy consumption, so our 
selected realization is the one that also minimizes energy consumption.
The previous problem could be cast as the following optimization problem:

( ) ( )

( ) fpsRiePerformanc

dBRiAccuracy
:tosubject

RiEnergy

Ri

min

30

50

≥

≥

Circled point: Realization 
from the feasible set that 
minimizes energy 
consumption.

If we ignore one variable 
(say, performance), we 
have a 2D optimization 
problem.

-Performance-Accuracy

c
o
n
s
tr

a
in

ts

E
n
e
rg

y

E
n
e
rg

y

-Accuracy

constraints



Digital signal, image, and video processing Digital signal, image, and video processing 
applicationsapplications

The following systems are discussed:

� Pixel Processor and Dynamic EPA Management

� 1D FIR Filter

� 2D Separable FIR Filter/ Filterbank & Dynamic 
EPA Management for the 2D FIR Filter



General Implementation Details General Implementation Details 
Embedded FPGA system that supports Dynamic Partial Reconfiguration 
and Dynamic Frequency Control:
Pareto-optimal point: Represented by <<bitstreambitstream, frequency of operation>, frequency of operation>
It is a hardware realization that becomes active in the FPGA via Dynamic 
Partial Reconfiguration (DPR) and/or Dynamic Frequency Control. 

System receives an EPA constraint:
� It looks for a solution in the Pareto-optimal set: <bitsream*, freq*>
� It reconfigures FPGA dynamic region and /or frequency of operation, so as to 
meet the EPA constraint.
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Pixel Processor (1/9)Pixel Processor (1/9)
� Single-pixel operations (e.g., 

gamma correction, Huffman 
encoding, histogram 
equalization, contrast stretching) 
can be dynamically swapped. 
Parameter F modifies the 
function. 

� In addition to dynamically 
modifying the input-output 
function, we might want to 
change:

� Input pixel bitwidth (NI)

� Output pixel bitwidth (NO),

� Number of parallel processing 
elements (NC)
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Pixel Processor (2/9)Pixel Processor (2/9)
� LUT-based architecture: LUT4 (Virtex-4). LUT6 (Virtex-5, Virtex-6)

Up to LUT8-to-1 can be implemented efficiently with Xilinx primitives.

For LUT inputs > 8, a recursive implementation is employed.
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Pixel Processor (3/9)Pixel Processor (3/9)

� Embedded System: We create a PLB slave burst interface around the pixel 
processor core. The figure shows a PRR with NC=4, NI=NO=8.

� The system dynamically reconfigures: NC, NI, NO, FUNCTION, under the 
following constraints: NI×NC≤32, and NO×NC ≤ 32

� Five ‘clkfx’ frequencies allowed: 100.00, 66.66, 50.0, 40.00, and 33.33 MHz.

� FIFOs are required to properly isolate different clock regions (PLB clock= 
100 MHz and ‘clkfx’)
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Pixel Processor (4/9)Pixel Processor (4/9)

� Experimental Setup: The Pixel 
Processor is tested under 3 different 
scenarios. Performance and energy are 
measured for the IP core. 

� Test images: 8-bit ‘lena’, 12-bit ‘oilp’

� Scenario A (implemented on the 
embedded system): 32-bit I/O 
constrained cases. 5 frequencies 
considered. Parameter NC not 
independent.

� Scenario B: 8/12-bit fixed input pixel 
cases. 5 frequencies considered.

� Scenario C: Fixed-frequency 
constrained implementation. Fixed 
frequency (100 MHz).

Scenario A

Scenario B

Scenario C



Pixel Processor (5/9)Pixel Processor (5/9)
� Resource scalability: Use of Virtex-4 XC4VFX60 FPGA device (25280 

Slices) to account for the largest pixel processor realizations. The cases 
listed in Scenario C are considered (frequency does not vary resources).

� Resource consumption (a function of NI, NO, and NC) grows exponentially 
with NI, linearly with NC and NO. In the figure, the results are clearly 
clustered for NI and NC.

� For NI>10 the resource requirements become suboptimal.
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Pixel Processor (6/9)Pixel Processor (6/9)

� Multi-objective optimization of the EPA/PPA space: 

� Gamma correction function (γ=0.5). Power is presented for Scenarios A 
and B, and energy per frame for Scenario C.

� Scenario A: 12-bit image (NI:12�5). Pareto points cover a wide range of the 
PPA space (43%) � the approach is effective in generating varied Pareto 
points.
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Pixel Processor (7/9)Pixel Processor (7/9)

� Multi-objective optimization of the PPA space: 

� Scenario B: 8-bit input image (NI=8 fixed). Pareto points are clustered as a 
function of NO. A similar trend occurs with NC. (not shown)

� Left side shows how power and performance depend on frequency
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Pixel Processor (8/9)Pixel Processor (8/9)

� Multi-objective optimization of the EPA space: 

� Scenario C: 12-bit input image (NI:12�9), fixed frequency = 100 MHz. 

� Performance clusters are defined in terms of the number of cores (NC)

� Energy clusters are defined in terms of the input pixel bitwidth (NI)
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Pixel Processor (9/9)Pixel Processor (9/9)
� Dynamic EPA management: We show an 

example on 2D (ignoring performance) with 
time-varying constraints:

1. Require accuracy≥80dB and Energy ≤160uJ.

2. Minimize energy subject to Accuracy ≥ 100dB

3. Maximize Accuracy.

4. Minimize Energy consumption.
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1D FIR Filter (1/3)1D FIR Filter (1/3)
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� Efficient implementation of a 
1D FIR Filter via DPR:  Dynamic 
Partial Reconfiguration turns the 
fixed-coefficient DA filter into a 
variable-coefficient DA filter, at 
the expense of partial 
reconfiguration time overhead.

� Parameterization of the VHDL-
coded FIR filter core:
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� LUT-based architecture for the Distributed Arithmetic 
Implementation:
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� Filter Block Implementation ����

� Two implementations:

1) Coefficient-only reconfiguration: 
Only the coefficient values can be 
dynamically modified (PRR is made 
of the set of LUTs)

2) FullFull--filter reconfigurationfilter reconfiguration: It allows 
the run-time modification of all 
parameters.

� Performance dependence as the 
reconfiguration rate increases was 
shown.
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* This work was published in the 2009 * This work was published in the 2009 
International Journal of Reconfigurable International Journal of Reconfigurable 
ComputingComputing
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2D Separable Filter Implementation:

� Separable FIR filters allow for efficient 
implementations by means of two 1D 
FIR Filters.

� The reconfiguration rate is constant 
(twice per frame).

� Cyclic Dynamic reconfiguration of two 
1-D filters (usually full-filter 
reconfiguration):

- Implement row filter

- Replace by column filter

- Implement column filter

- Replace by row filter

…
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ROW COL

COL

tr2 tc2

ROW COL
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Processing
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5 Go to Step 1 to process a new  frame
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* A comparison of this 2D FIR Filter and a * A comparison of this 2D FIR Filter and a 
GPU implementation for different number of GPU implementation for different number of 
coefficients was published 2011 IEEE Field coefficients was published 2011 IEEE Field 
Programmable Logic Conference (FPLProgrammable Logic Conference (FPL’’2011)2011)
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2D Separable Filterbank Implementation:

Simple modifications to 2-D filter implementation:

� Reconfigure with the next 2-D filter and re-process frame

� When all filters have been applied, move to the next-frame and back to 
the first 2-D filter
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P
ro

c
e

s
s
in

g
 o

f 
1

 f
ra

m
e

* This work was published in the in the 2010 * This work was published in the in the 2010 
IEEE Southwest Symposium on Image Analysis IEEE Southwest Symposium on Image Analysis 
and Interpretation (SSIAI 2010)and Interpretation (SSIAI 2010)
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� Embedded System: We create a FSL interface around the FIR filter core. 

The full-filter reconfiguration core is considered since it let us vary all the 
filter parameters, thereby allowing the creation of a large EPA space.

� FSL interface: We included this interface inside the PRR, so that we 
dynamically modify the I/O bitwidth.

� DPR control block: disables the PRR outputs during reconfiguration and 
resets the flip flops of the PRR after each partial reconfiguration.

� Each 2D filter realization is represented by 2 bitstreams.
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Experimental Setup: The FIR core is fully parameterized. The table 

describes the combination of parameters we utilize that creates the Energy-
Performance-Precision (EPA) space.

� Performance (fps) and energy are measured for the IP core. 

� Test image: 8-bit ‘lena’ (VGA, CIF, QCIF frame sizes).

� Three different Gaussian filters:
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Multi-objective optimization of the EPA space: 
Results for the 3 filters and 3 image sizes: The highest accuracy is achieved 
by increasing the number of coefficients (N), the coefficient bitwidth (NH), 
and with 16 output bits (OB). Frame size increases energy per frame. Thus, we 
present Pareto-optimal results independently of the frame size.

HA: highest accuracy realization from the Pareto front
LE: lowest energy realization from the Pareto front.
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Multi-objective optimization of the EPA space: 

Results for the 3 filters and CIF frame size: We show the Pareto-optimal 
realizations as a function of N, NH, and OB.

Low-pass Gaussian Filter, σx=σy=1.5:
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Multi-objective optimization of the EPA space
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Multi-objective optimization of the Energy-Accuracy space: 
Performance results are over 100 fps (VGA), and 300 fps (CIF). Overall, for a 

fixed frame size, performance does not vary significantly. Thus, it makes 
sense to restrict our attention to the Energy-Accuracy Space

Results for the 3 filters and CIF frame size: We show the Pareto-optimal 
realizations as a function of N (number of coefficients).
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Dynamic EPA Management (1st example): Applied on the Pareto front of 
the DoG filter (see table). Video sequence: ‘foreman’.

Time-varying sequence of constraints:
1. Require Accuracy ≥ 45dB and Energy ≤ 0.3mJ

2. Minimize Accuracy subject to Energy ≤ 0.3mJ 

3. Minimize Energy per frame consumption

4. Minimize Energy subject to Accuracy ≥ 65 dB

5. Maximize Accuracy
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Dynamic EPA Management (2nd example):
Suppose that the video output will be streamed 
through a communications channel. Here, it 
makes sense to impose real-time EPA 
constraints based on the Group Of Pictures 
(GOP). The GOP describes the prediction 
relationships between frame types (MPEG-1 
recommendation):

* To be * To be 
submitted to submitted to 
IEEE IEEE 
Transactions Transactions 
on Image on Image 
ProcessingProcessing
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The GOP can now be defined for different videos.
It makes sense to impose the following accuracy constraints:
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ConclusionsConclusions
� A framework was presented for the generation of optimal realizations (in 

the multi-0bjective sense) from the Energy-Performance-Accuracy space. 
The framework allows for dynamic EPA management for digital signal, 
image, and video processing applications.

� Dynamic EPA management is based on Dynamic Partial Reconfiguration 
(DPR) and Dynamic Frequency Control to deliver performance with 
limited hardware resources and relatively low energy consumption.

� The framework was tested on a Pixel Processor architecture and a 2D FIR 
Filtering system. Dynamic EPA management was demonstrated on two
standard video sequences.

� The results suggest that the general framework can be applied to a 
variety of digital signal, image, and video processing systems. The 
framework can be greatly improved by the automatic generation of time-
varying constraints (e.g., detection of a scene triggers a requirement for 
increased accuracy, a scene remaining still triggers a requirement for a 
decrease in energy consumption)

� Ultimately, this framework will lead to exciting new methods that allow 
for systems to only switch between architectures that are optimal in the 
multi-objective sense.
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