
 1

AN ARCHITECTURE FOR REAL-TIME INTERACTION BETWEEN AN

ANALOG RADAR WITH A PERSONAL COMPUTER

Daniel R. Llamocca-Obregón

llamocca.dr@pucp.edu.pe

Pedro M. Crisóstomo-Romero

crisostomo.pm@pucp.edu.pe
Grupo de Procesamiento Digital de Señales e Imágenes - Pontificia Universidad Católica del Perú

Av. Universitaria s/n Cuadra 18 - Lima 32, Perú. Telf.: +511-6262000 Anexo 4681

ABSTRACT

his work presents an architecture that acquires a set of

digitalized signals from an analog radar, performs some

processing, send packets of data through a USB interface, and

finally, by software, displays the data sent by an analog radar. In

this way, the analog radar is converted into a fully operative

digital radar at a very small cost. Since the architecture does not

require extensive hardware, it has been targeted to a CPLD, and

the maximum frequency of operation obtained is 74.23 MHz.

1. INTRODUCTION

The low-cost digitalization of analog radars effectively

transforms old fully operative analog radars into new digital ones.

In the present work, the digitalization process consists in: the

acquisition and processing of radar signals, the sending of

packets of data to a PC thru a USB interface, and the

development of a software interface in LINUX to display the

results. The hardware uses a large number of ports, thus

microcontrollers are not a good option, and a specific hardware is

preferred. Besides, the use of specific hardware allows a faster

acquisition and processing of the radar signals. The architecture

uses few hardware resources, and fits easily into a CPLD.

However, the USB interface does require extensive hardware

resources. This problem is solved by using a board provided by

ALTERA®: The MAX II Development Kit, which includes a

MAX II EPM1270F256C5 CPLD and a USB chip (FT245BM

from FTDI), with which the hardware has to interact.

 The rest of this work is organized as follows. Section 2

describes the requirements of the system. Section 3 provides a

detailed description of the architecture. Finally, conclusions and

recommendations are given.

2. REQUIREMENTS OF THE SYSTEM

Fig. 1 shows the entire system. The dotted rectangle corresponds

to the hardware described in this work.

Figure 1. Complete digitalization system

Fig. 2 shows the interface designed, which is part of the digital

system, along with its inputs and outputs:

Figure 2

The angular position or azimuth of the radar, quantized in 1024

positions, is given by the ‘Azimut’ signal (represented in BCD

with 13 bits). If ‘Cero_N’ is ‘1’, it indicates that the reference for

all the angular positions must be the geographic north, otherwise

a manual adjustment must be done to obtain the reference, and it

must be indicated via software. At each azimuth, it is possible

that one or more objects appear.

 A leading edge of ‘disp_Eco’ indicates that a new ‘Azimut’ is

present (which must be captured along with ‘Cero_N’). Until a

new leading edge of ‘disp_Eco’ occurs (after aprox. 4 ms, or it

automatically triggers after 10ms), all the objects spotted will

have the same angular position. The group of ‘Eco’ signals

(captured in the falling edge of ‘clk_ADC’, which happens at a

rate of 4 MHz) is used to identify objects: a group of ‘Eco’

signals forms an object when there are a minimum number of

contiguous ‘Eco’ samples (e.g. 5 samples) above a threshold

(which is controlled by the signals ‘up_th’ and ‘down_th’). Fig. 3

shows a pattern for 2 objects with the same angular position:

Figure 3. Pattern for 2 objects with the same Azimuth

T

Digitalization
Digital

System

LINUX Interfase

Azimut

threshold

Eco

clk_ADC

disp_Eco

W1 W2

D1

D2

H1

H2

Cero_N

INTERFACE

USB8

13Azimut

Cero_N

8Eco

disp_Eco

clk_ADC

WR

TXE

USB chip

Digital System

up_th

down_th

T
o

 P
C

 2

For every object, we must obtain the distance of the object from

the radar (D), the width of the object (W), and the intensity of the

signal that comes back from the object (H). The distance (D) is

calculated as the sample number of ‘Eco’ for which ‘Eco’ is the

largest. The width (W) will be the number of samples above the

threshold that forms an object. The intensity (H) will be the

maximum value of ‘Eco’ for a particular object. In Fig. 3, two

objects appear and their respective distances, widths and

intensities are shown.

For displaying, every

azimuth is shown along with

its objects. Fig. 4 shows 5

azimuths with its objects.

The width, intensity and

distance of each object are

proportional to W, H and D

respectively. For example,

the azimuth indicated by the

red line, along with its two

objects, represents the

pattern seen in Figure 3.

Figure 4. Displaying the results

For each object to be displayed correctly, we must send a packet

thru the USB interface, containing the azimuth (A), the distance

(D), the intensity (H) and the width (W) of every object. Recall

that there can be more than one object for the same azimuth. A

packet is sent when at least one object has been spotted or when

no object has been spotted and a new leading edge of ‘disp_Eco’

occurs. The packet contains 8 bytes, 1 byte is sent at a time, and

there is a delay of 1 us for each byte, and is shown in Fig. 5:

Figure 5. Format of a data packet sent to the USB chip

The headword ‘FE’ indicates the beginning of a frame, and there

is also a counter (C: 0 to 255), which is useful for the software to

know whether or not a frame is lost.

3. ARCHITECTURE IMPLEMENTED

 The architecture of the interface shown in Fig. 2 is depicted. All

the hardware is synchronized by a global clock signal of 66 MHz

(which is not shown). It contains two main blocks. The block

‘fsm_pri’ process all the incoming data and sent them in packets

to the second block, called ‘escr_USB’, which receives the data

from ‘fsm_pri’ and controls the timing of the signals, according

with the timing diagram of the USB chip, so it can correctly send

data to the PC.

Figure 6. Block Diagram of the architecture.

3.1 Block ‘fsm_pri’

This block process the incoming data, and send it into packets.

The internal architecture is depicted in Fig. 7. The internal

signals are read or generated by the FSM shown in the figure.

Figure 7. Internal architecture for ‘fsm_pri’

Note that ‘Cero_N’ is attached to the MSB part of the Azimuth

(A). To obtain H, each new ‘Eco’ is compared with the largest

previous value of Eco. We obtain W by counting the successive

samples of ‘Eco’ above the threshold (initially 05). To be a valid

object, W must be at least 5. To obtain D, we count the samples

and store the count that produces the maximum value of ‘Eco’ for

each object. The FSM for this block is depicted in Fig. 9.

 The sub-block ‘fsm_trama’ consists on a FSM (shown in Fig.

8) that receives A, W, D and H, and forms the packets as stated in

Fig. 5. In Fig. 8, note that there is a delay of 1 us between every

byte sent (the delay is controlled by the counter 0 � 65, note that

before sending every byte the value ‘cuenta’ must be 0).

Figure 8. FSM for ‘fsm_trama’

FE C A(LSB) A(MSB) D(LSB) D(MSB) H W

fsm_pri

USB8

WR

TXE

escr_USB

8
q

E

hab

INTERFACE

13Azimut

Cero_N

8Eco

disp_Eco

clk_ADC

up_th

down_th

sal_USB

D

E

13Azimut

Cero_N

8Eco

disp_Eco

clk_ADC

up_th

down_th

det_up

det_down

det_down

det_down

E

E E

clear

E_mayor

E_d

E

E

mayor

E

E

E

D
counterrst_co

E_co
co

counter

E_co sclr

sclr

E

E

W

E_x

8

up_dow n

sset

E

set_thresh
thresh 8

clk_ADC_pulso

cont_thresh

dato

E_reg

A_reg

H_reg

D_reg

W_reg

14

8

16

8

C

begin
begin

C

A

H

D

W

q

E

8

q

E

fsm_trama

z_cont_10ms
sclr

rst_cont_10ms
counter

z

FSM

listo

E_azim

E_d

counter

0 → 65

 q ← 0, cuenta ← 0

listo ← 0

resetn = 0
S1

S2

yes no

1 0

q ← 'FE'

E_d ← 1

inicio

cuenta=0

E

cuenta

S3

yes noq ← C,

E_d ← 1
cuenta=0

S4

yes noq ← A
LSB

E_d ← 1
cuenta=0

S5

no yes q ← AMSB

E_d ← 1
cuenta=0

S6

yes noq ← D
LSB

E_d ← 1
cuenta=0

S7

yes noq ← D
MSB

E_d ← 1
cuenta=0

S8

yes noq ← H

E_d ← 1
cuenta=0

S9

yes no
q ← W

E_d ← 1

listo ← 1

cuenta=0

S1

 3

Figure 9. FSM of ‘fsm_pri’

3.2. Block ‘escr_USB’

This block (shown in Fig. 6) generates the set of signals to

correctly communicate with the USB chip, so that the USB chip

captures the correct data to be sent to the PC.

 The inputs are: ‘D’, of 8 bits, and ‘E’, which indicates that the

input on ‘D’ is valid and must be sent to the USB chip. Fig. 10

shows the timing diagram of the write cycle of the USB chip [2].

The input signal to the USB chip is ‘TXE’ and the output signals

sent to the USB chip are ‘WR’ and ‘USB’.

 The block ‘escr_USB’ will read the signal ‘TXE’, and will

generate the signal ‘WR’. It will also generate the signals ‘hab’

and ‘sal_USB’ that are the input signals of the tri-state buffer,

which will generate the signal ‘USB’.

Figure 10. Timing diagram of the USB chip

The following is the strategy to design the FSM that implements

the timing diagram of the USB chip:

a) Wait until TXE = ‘0’.

b) If TXE = ‘0’, then we have to set WR = ‘1’ and put the Valid

Data on the Bus (hab = ‘1’ and sal_USB D)

c) Wait 60 ns (approx. 4 clock cycles) and then set WR = ‘0’.

d) Wait 15 ns (approx. 1 clock cycle) and retire the Valid Data

from the bus (hab = ‘0’).

e) Wait until TXE = ‘1’.

f) Return to step ‘a’.

Figure 11 shows the FSM that corresponds to the block

‘escr_USB’. Note that the FSM considers the signal ‘E’: only if

‘E’ is asserted, the FSM put a valid data on the bus. Also, Note

that the output ‘sal_USB’ is registered and takes the value of ‘D’

whenever the signal ‘ED’ is asserted.

Figure 11. FSM for the ‘escr_USB’ block

 thresh ← 05, clear ← 0, cont_10ms ← 0

E_azim ← 1, begin ← 1, E_reg ← 1, co ← 0

resetn = 0
S1

S2

1

0
z

z clk_ADC_pulso
0

E_x ← 1, co ← co + 1

1

S3

0

dato > thresh qx

W ← W + 1

clear ← 1
0no

W > 5 qx ← 1

dato > mayor

0

1

yes

yes

no

mayor ← dato

D ← co

yes

z

no

S4

cont_10ms ← 0

E_azim ←1

1

listo

C=255

1

0

C ← C + 1
no

C ← 0
yes

begin ← 1, qx ← 0, E_reg ← 1,

 co ← 0, clear ← 1

1

Valid DataUSB [7..0}

WR

TXE

60ns 15ns

USB8

WR

TXE

escr_USB

8

hab

sal_USB

D

E

 WRq ← 0, E_WRq ← 1

C ← 0

WRq ← 1, E_WRq ← 1

ED ← 1, hab ← 1

resetn = 0S1

S2

1

1
TXE

hab ← 1

C = 4 C ← C + 1

hab ← 1

S3

hab ← 0

S4

0

E

E_WRq

WRq
WR

E
ED

D

sal_USB

8

E

0

0

yes

WRq ← 0, E_WRq ← 1, C ← 0

no

TXE
1

 4

3.3. Results of CPLD implementation

Table 1 shows the resource effort and maximum frequency of the

iterative architecture that implements the ln function.

LE fmax MHz) CPLD:

MAX II EPM1270F256C5 348 74.23

Table 1. Final Results

4. CONCLUSIONS

• The digitalization of an analog radar has proved to be

amenable for our CPLD implementation, as the clock rate

and resource effort indicates.

• The large number of pins and the need of a USB interfase

make it very difficult to use a microprocessor. The USB chip

provided by the MAXII Development Kit makes it very easy

to communicate the CPLD with the PC.

5. REFERENCES

[1] Brown & Vranesic. Fundamentals of Digital Logic with

VHDL Design, McGraw Hill, 2000

[2] FT245BM USB FIFO (USB - Parallel) I.C. data sheet,

Future Technology Devices (www.ftdichip.com), 2005.

[3] ALTERA CORPORATION, “MAXII Development

Board Data Sheet”, October 2004.

