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ABSTRACT 

 

his work presents an architecture that acquires a set of 

digitalized signals from an analog radar, performs some 

processing, send packets of data through a USB interface, and 

finally, by software, displays the data sent by an analog radar. In 

this way, the analog radar is converted into a fully operative 

digital radar at a very small cost. Since the architecture does not 

require extensive hardware, it has been targeted to a CPLD, and 

the maximum frequency of operation obtained is 74.23 MHz.  

 

1. INTRODUCTION 

 

The low-cost digitalization of analog radars effectively 

transforms old fully operative analog radars into new digital ones. 

In the present work, the digitalization process consists in: the 

acquisition and processing of radar signals, the sending of 

packets of data to a PC thru a USB interface, and the 

development of a software interface in LINUX to display the 

results. The hardware uses a large number of ports, thus 

microcontrollers are not a good option, and a specific hardware is 

preferred. Besides, the use of specific hardware allows a faster 

acquisition and processing of the radar signals. The architecture 

uses few hardware resources, and fits easily into a CPLD. 

However, the USB interface does require extensive hardware 

resources. This problem is solved by using a board provided by 

ALTERA®: The MAX II Development Kit, which includes a 

MAX II EPM1270F256C5 CPLD and a USB chip (FT245BM 

from FTDI), with which the hardware has to interact. 

 The rest of this work is organized as follows. Section 2 

describes the requirements of the system. Section 3 provides a 

detailed description of the architecture. Finally, conclusions and 

recommendations are given. 

 

2.  REQUIREMENTS OF THE SYSTEM 

 

Fig. 1 shows the entire system. The dotted rectangle corresponds 

to the hardware described in this work. 

 

 

 

 

 

 

 

 

Figure 1. Complete digitalization system 

 

Fig. 2 shows the interface designed, which is part of the digital 

system, along with its inputs and outputs: 

 

 

 

 

 

 

 

 

 

Figure 2 

 

The angular position or azimuth of the radar, quantized in 1024 

positions, is given by the ‘Azimut’ signal (represented in BCD 

with 13 bits). If ‘Cero_N’ is ‘1’, it indicates that the reference for 

all the angular positions must be the geographic north, otherwise 

a manual adjustment must be done to obtain the reference, and it 

must be indicated via software. At each azimuth, it is possible 

that one or more objects appear. 

 A leading edge of ‘disp_Eco’ indicates that a new ‘Azimut’ is 

present (which must be captured along with ‘Cero_N’). Until a 

new leading edge of ‘disp_Eco’ occurs (after aprox. 4 ms, or it 

automatically triggers after 10ms), all the objects spotted will 

have the same angular position. The group of ‘Eco’ signals 

(captured in the falling edge of ‘clk_ADC’, which happens at a 

rate of 4 MHz) is used to identify objects: a group of ‘Eco’ 

signals forms an object when there are a minimum number of 

contiguous ‘Eco’ samples (e.g. 5 samples) above a threshold 

(which is controlled by the signals ‘up_th’ and ‘down_th’). Fig. 3 

shows a pattern for 2 objects with the same angular position: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3. Pattern for 2 objects with the same Azimuth 
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For every object, we must obtain the distance of the object from 

the radar (D), the width of the object (W), and the intensity of the 

signal that comes back from the object (H). The distance (D) is 

calculated as the sample number of ‘Eco’ for which ‘Eco’ is the 

largest. The width (W) will be the number of samples above the 

threshold that forms an object. The intensity (H) will be the 

maximum value of ‘Eco’ for a particular object. In Fig. 3, two 

objects appear and their respective distances, widths and 

intensities are shown.  

 

For displaying, every 

azimuth is shown along with 

its objects. Fig. 4 shows 5 

azimuths with its objects. 

The width, intensity and 

distance of each object are 

proportional to W, H and D 

respectively. For example, 

the azimuth indicated by the 

red line, along with its two 

objects, represents the 

pattern seen in Figure 3. 

 

Figure 4. Displaying the results 

 

For each object to be displayed correctly, we must send a packet 

thru the USB interface, containing the azimuth (A), the distance 

(D), the intensity (H) and the width (W) of every object. Recall 

that there can be more than one object for the same azimuth. A 

packet is sent when at least one object has been spotted or when 

no object has been spotted and a new leading edge of ‘disp_Eco’ 

occurs. The packet contains 8 bytes, 1 byte is sent at a time, and 

there is a delay of 1 us for each byte, and is shown in Fig. 5: 

 

 

Figure 5. Format of a data packet sent to the USB chip 

 

The headword ‘FE’ indicates the beginning of a frame, and there 

is also a counter (C: 0 to 255), which is useful for the software to 

know whether or not a frame is lost. 

 

3. ARCHITECTURE IMPLEMENTED 

 

 The architecture of the interface shown in Fig. 2 is depicted. All 

the hardware is synchronized by a global clock signal of 66 MHz 

(which is not shown). It contains two main blocks. The block 

‘fsm_pri’ process all the incoming data and sent them in packets 

to the second block, called ‘escr_USB’, which receives the data 

from ‘fsm_pri’ and controls the timing of the signals, according 

with the timing diagram of the USB chip, so it can correctly send 

data to the PC. 

 

 

 

 

 

 

 

 

 

Figure 6. Block Diagram of the architecture. 

3.1 Block ‘fsm_pri’ 

This block process the incoming data, and send it into packets. 

The internal architecture is depicted in Fig. 7. The internal 

signals are read or generated by the FSM shown in the figure. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7. Internal architecture for ‘fsm_pri’ 

 

Note that ‘Cero_N’ is attached to the MSB part of the Azimuth 

(A). To obtain H, each new ‘Eco’ is compared with the largest 

previous value of Eco. We obtain W by counting the successive 

samples of ‘Eco’ above the threshold (initially 05). To be a valid 

object, W must be at least 5. To obtain D, we count the samples 

and store the count that produces the maximum value of ‘Eco’ for 

each object. The FSM for this block is depicted in Fig. 9. 

  The sub-block ‘fsm_trama’ consists on a FSM (shown in Fig. 

8) that receives A, W, D and H, and forms the packets as stated in 

Fig. 5. In Fig. 8, note that there is a delay of 1 us between every 

byte sent (the delay is controlled by the counter 0 � 65, note that 

before sending every byte the value ‘cuenta’ must be 0). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 8. FSM for ‘fsm_trama’ 
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Figure 9. FSM of ‘fsm_pri’ 

 

3.2. Block ‘escr_USB’ 

This block (shown in Fig. 6) generates the set of signals to 

correctly communicate with the USB chip, so that the USB chip 

captures the correct data to be sent to the PC. 

  The inputs are: ‘D’, of 8 bits, and ‘E’, which indicates that the 

input on ‘D’ is valid and must be sent to the USB chip. Fig. 10 

shows the timing diagram of the write cycle of the USB chip [2]. 

The input signal to the USB chip is ‘TXE’ and the output signals 

sent to the USB chip are ‘WR’ and ‘USB’. 

  The block ‘escr_USB’ will read the signal ‘TXE’, and will 

generate the signal ‘WR’. It will also generate the signals ‘hab’ 

and ‘sal_USB’ that are the input signals of the tri-state buffer, 

which will generate the signal ‘USB’. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 10. Timing diagram of the USB chip 

 

The following is the strategy to design the FSM that implements 

the timing diagram of the USB chip: 

 

a) Wait until TXE = ‘0’. 

b) If TXE = ‘0’, then we have to set WR = ‘1’ and put the Valid 

Data on the Bus (hab = ‘1’ and sal_USB  D) 

c) Wait 60 ns (approx. 4 clock cycles) and then set WR = ‘0’. 

d) Wait 15 ns (approx. 1 clock cycle) and retire the Valid Data 

from the bus (hab = ‘0’). 

e) Wait until TXE = ‘1’. 

f) Return to step ‘a’. 

 

Figure 11 shows the FSM that corresponds to the block 

‘escr_USB’. Note that the FSM considers the signal ‘E’: only if 

‘E’ is asserted, the FSM put a valid data on the bus. Also, Note 

that the output ‘sal_USB’ is registered and takes the value of ‘D’ 

whenever the signal ‘ED’ is asserted. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 11.  FSM for the ‘escr_USB’ block 
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3.3. Results of CPLD implementation 

Table 1 shows the resource effort and maximum frequency of the 

iterative architecture that implements the ln function. 

 

LE fmax MHz) CPLD: 

MAX II EPM1270F256C5 348 74.23 

Table 1. Final Results 

 

4. CONCLUSIONS 

 

• The digitalization of an analog radar has proved to be 

amenable for our CPLD implementation, as the clock rate 

and resource effort indicates. 

• The large number of pins and the need of a USB interfase 

make it very difficult to use a microprocessor. The USB chip 

provided by the MAXII Development Kit makes it very easy 

to communicate the CPLD with the PC. 
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