
Parallel Implementations of
Computer Neural Networks

Introduction
Convolutional Networks can be used to classify digital images

through a series of mathematical calculations in successive layers.
Given the large amount of computations and the large input
datasets, this is a suitable candidate for exploiting parallelism. We
explore the use of Intel Threading Building Blocks (TBB) for efficient
multi-threading implementations with the goal of speeding up
processing time. We investigate i) the optimal combination of TBB
functions in order to speed up the CNN computations, and ii) the
circumstances under which certain combination of TBB functions
are better than others (e.g.: CNN architecture, input size). We
provide speed-up results that were collected by running our
implementations on a variety of computers.

Results

\

Figure 3A) Figure 3B)

Figure 3C) Figure 3D)

Figures 3A, 3B, 3C, and 3D represent the testing data from
the FCN. Compared to the sequential code, here we see
speedups across the board with parallel_for, but slowdowns
from both parallel_reduce as well as parallel_reduce +
parallel_for. parallel_for saw speedups from 2.00x on the
Embedded Kit to 7.24x on Desktop 2. parallel_reduce saw
slowdowns ranging from 10.99x on Desktop 2 to 77.47x on the
Laptop. This reduction in speed is because the dot product
calculations were simple, and the overhead to utilize
parallel_reduce was greater than the potential speedups.
Parallel_reduce + parallel_for saw slowdowns ranging from
3.34x on Desktop 2 to 44.05x on the Laptop.

Figure 4A) Figure 4B)

Figure 4C) Figure 4D)

Figures 4A, 4B, 4C, and 4D represent the testing data from
the CNN. Similar to the FCN, compared to the sequential code
we see a speedup with parallel_for, and slowdowns with
parallel_reduce and parallel_reduce + parallel_for. parallel_for
saw speedups from 1.85x on Desktop 1 to 2.28x on Desktop 2.
parallel_reduce saw slowdowns ranging from 3.10x on the
Embedded Kit to 12.56x on Desktop 2. Here again the
slowdowns are due to the dot product calculations being too
simple of a workload to properly utilize parallel_reduce.
parallel_reduce + parallel_for saw slowdowns ranging from
1.64x on Desktop 2 to 2.71x on Desktop 1.

Design

Figure 1) (Image from: https://towardsdatascience.com/a-comprehensive-guide-to-convolutional-neural-networks-the-eli5-way-3bd2b1164a53)

Parallelization was applied with TBB (Thread Building Blocks). It
allows multiple tasks to run concurrently. We applied TBB to both the
FCN and the CNN, which required some modification of the original
C++ sequential code.

Figure 2) (Image from: Intel Corporation)

The TBB algorithm parallel_for divides a collection of iterations
into tasks, which can then run at the same time.

The TBB algorithm parallel_reduce splits a collection into multiple
subranges, the constraint being, however, that the applied operation
is associative.

In both the FCN and CNN, parallel_for was applied where
accuracy was not affected, and parallel_reduce was applied to a dot
product computation.

The FCN and CNN sequential and parallel code were tested on 4
separate machines:

● An Altera DE2i 150 with an Intel Atom N2600 (2 cores/4 threads),
labelled Embedded Kit.

● A Dell XPS 13 with an Intel i7-8550u (4 cores/8 threads), labelled
Laptop.

● A desktop with an AMD Ryzen 3 3100 (4 cores/8 threads), labelled
Desktop 1.

● A desktop with an AMD Ryzen 9 5950x (16 cores/32 threads),
labelled Desktop 2.

Conclusion
The parallel_for algorithm in FCN and CNN resulted in overall speedup.

The parallel_reduce algorithm in both the FCN and CNN resulted in an overall slowdown.

The combination of parallel_for and parallel_reduce in both the FCN and CNN also slowed down execution time, however not as much as parallel_reduce
alone.

Speedup of execution time would assist in applications such as AI or vehicle image processing.

This program was supported by the National Science Foundation Grant No EEC-1659650. Additional support was provided by the School of
Engineering and Computer Science at Oakland University.

Images processed
through a Convolutional
Neural Network (Figure 1)
go through the
Convolutional Layers and
the Fully Connected Layers
(FCN).

Figure 2 depicts how
parallelization is achieved
through dividing tasks. TBB
algorithms were
implemented to both the
FCN and CNN.

Jacob Nelson (jacobnelson2018@gmail.com)
Shrutee Rakshit (shruteerakshit@oakland.edu)

ApREECE 2021
Faculty Mentor: Daniel Llamocca

https://towardsdatascience.com/a-comprehensive-guide-to-convolutional-neural-networks-the-eli5-way-3bd2b1164a53

