
Hardware Implementation of Convolutional Neural Networks

Introduction

A Convolutional Neural Network (CNN) is a 

form of artificial intelligence primarily used for 

image recognition and, in turn, requires the 

use of high-end processing computers. This 

work explores creating custom pipelined 

hardware for the  three main stages of a 

CNN: convolution, rectification (ReLU), and 

pooling for image classification. The ultimate 

goal is to create custom hardware for all CNN 

stages in order to optimize the hardware for 

analyzing and detecting objects in images. 

VHDL is used to design the custom hardware 

components (convolution, ReLU, and 

pooling); then this hardware description is 

mapped onto a field-programmable gate 

array (FPGA). For hardware verification, the 

outputs of the implemented custom hardware 

are compared to the outputs of a floating-

point model in MATLAB. 

CNN Hardware Design

Conclusion

In this work, hardware has been 

designed for the convolution, 

ReLU, and pooling stages. The 

designs have been verified 

through simulations and 

running it on an FPGA. These 

steps have contributed to the 

creation of a fully operating 

Convolutional Neural Network 

on custom hardware.

A future goal for this project is 

to investigate the feasibility of 

designing custom hardware to 

implement the fully connected 

layer (neural network), which 

will enable the design of a 

complete hardware architecture 

for a CNN.

L. Esphanhan and C. Javier

Applied Research Experience in Electrical and Computer Engineering

ApREECE 2018

School of Engineering and Computer Science, Oakland University

Faculty Mentor: D. Llamocca

This work was sponsored in part by the National Science Foundation (NSF) under award number EEC-1659650.

Figure 2: Design Block Diagram 

The hardware description requires an enable signal and 

thirty six pixel values. Each convolution has 9 input 

pixels in a 3x3 matrix. For each 36 input pixels, it 

outputs one numeric value and a valid signal (v). 

Within the architecture, each stage of the CNN process 

is a separate component. 

The pooling stage requires four input values, so in order 

to acquire these four values a state machine keeps 

track of each 3x3 input convolution and ReLU. After all 

four pooling input registers are filled, the pooling stage 

is able to commence. 

The valid signal is turned on after the pooling stage is 

done. This signal is used in the hardware verification to 

let the FPGA know when to write the final output value 

and when to re-enable this hardware architecture again.

Tools

Software 

• Vivado Design Suite 2018.1

• MATLAB

Hardware

• ZYBO Zynq-7000 

Development Board

Figure 1: Zynq-7000 Board

ResultsConnecting the Custom 

Hardware

Figure 3: Connecting Hardware: Block Diagram

To connect the custom hardware loaded on the 

FPGA to the ZYNQ7 processing system on the 

ZYBO Zynq-7000 Development Board, an AXI 

Interconnect was modified based on the needs of the 

custom hardware (4 registers).

The outputs of the custom hardware loaded onto the FPGA were the same as the 

outputs from the MATLAB code. An example of inputs/outputs can be seen in 

Figure 5.

If completely optimized, the designed custom CNN hardware is able to, from the 

first enable to valid output, complete in 14 clock cycles.

Each input required one cycle, and from the last input to the output is 10 cycles, 

totaling 14 clock cycles. This can be seen in Figure 6.

xA1 xB2 xC3 x31 xB2 xC3

xD4 xF0 xE1 x34 x7F x7F

xD2 xC3 xB3 x7F x7F x7F

x31 xB2 xC3 x31 xB2 xC3

x34 x70 x21 xD4 xF0 xE1

x12 x03 x7F xD2 xC3 xB3

Output: x647

Figure 5: Example 6x6 Pixel Inputs

Figure 6: Minimum Clock Cycles


