
A Scalable Pipelined Architecture
for Biomimetic Vision Sensors

DANIEL LLAMOCCA AND BRIAN K. DEAN

Electrical and Computer Engineering
Department,

Oakland University

September, 3rd, 2015

Outline
 Motivation

 Contributions

 Methodology

 Results

 Conclusions

Motivation
 Fly-inspired vision algorithms can outperform traditional

image processing algorithms in motion detection and in-
flight obstacle tracking and interception.
 Applications include high-speed target tracking for unmanned

aerial and ground vehicles, structural monitoring.
 Dedicated hardware implementations are desired when the

large amounts of data are to be processed in parallel.

Optical
Electrical
Interface

7

Optical
front-end

7

ADCs

Filter
Light

Adaptation

C1-7

Supporting
hardware

FLY-INSPIRED VISION SENSOR

B B

BO

1 2

3 4 5

6 7

FO1-7

L
A

O
1

-7

Vision Sensor:
 Optical front-end

 Optical electrical interface

 Analog-to-digital converters

 Supporting digital hardware
for filtering and light
adaptation.

Motivation
 Vision Sensor: Optical front-end

 Plano-convex lens (12 mm diameter and 12 mm
focal length) placed above seven photodiodes
arranged in a hexagonal pattern

 Hexagonal pattern approximates fly optical
arrangement.

 Photoreceptor response: overlapping Gaussians

Contributions
 Fully pipelined and Scalable Hardware

Implementation for the Biomimetic Sensor
 The fully-customizable fixed-point architecture allows

users to quickly modify design parameters (# of input
bits, output format, # of bits per of iterations, # of bits of
filters’ coefficients).

 Fully-pipelined architecture is achieved by unrolling the
IIR filter architecture.

 Generic VHDL code validated on an FPGA
 The fully-parameterized RTL VHDL code is not tied to a

particular device or vendor.
 Design Space Exploration

 The fully-parameterized VHDL code allows us to create
a set of different hardware profiles by varying the design
parameters. We can then explore trade-offs among
design parameters, accuracy, resources, and
execution time.

Methodology
 Block Diagram: Data path uses fixed-point representation:

 Input: [B B-1], Output/Intermediate Signals [BO BQ]
 Design Parameters: B, BO, BQ, NH (# of bits per filters’ coefficients)

60 Hz IIR
Notch Filter

BC1

BO FO1

60 Hz IIR
Notch Filter

BC2

BO FO2

60 Hz IIR
Notch Filter

BC3

BO FO3

60 Hz IIR
Notch Filter

BC4

BO FO4

60 Hz IIR
Notch Filter

BC5

BO FO5

60 Hz IIR
Notch Filter

BC6

BO FO6

60 Hz IIR
Notch Filter

BC7

BO FO7

Average Unit

BO AVG

0.159 Hz Low-Pass
DA FIR Filter

N=24,L=6,symmetricE

BO

AVG_FILT

v v

...

RL_AVG + RL_FIR

...

RL_AVG + RL_FIR

...

RL_AVG + RL_FIR

...

RL_AVG + RL_FIR

...

RL_AVG + RL_FIR

...

RL_AVG + RL_FIR

...

RL_AVG + RL_FIR

E

E

-
+

RL_FIRRL_AVG

RL_IIR

BO LAO7

-
+

BO LAO1

-
+

BO LAO2

-
+

BO LAO3

-
+

BO LAO4

-
+

BO LAO5

-
+

BO LAO6

v

v

NH

BQ

B

BO

Architecture:
7 IIR filters,
1 average unit,
1 FIR filter,
7 subtractors,
7 chain registers
(synchronization
registers that
allow for
pipelining)

𝑅𝐿_𝐴𝑉𝐺 = 𝐵𝑂 + 2 log2𝑁
𝑅𝐿_𝐹𝐼𝑅 = log2 𝐵𝑂 + 1 + log2𝑁/2𝐿 + 2
𝑅𝐿_𝐼𝐼𝑅 = 7

Methodology
 IIR Filter (60 Hz Notch filter): fs=1 KHz, 2nd order IIR filter

 Direct implementation: data dependencies prevent pipelining
 Look-ahead transformation: The 2nd order IIR filter is turned

into a 4th order IIR filter with no data dependencies.

𝐻 𝑧 =
𝑏0+𝑏1𝑧

−1+𝑏2𝑧
−2

1+𝑎1𝑧
−1+𝑎2𝑧

−2 𝐻𝑃(𝑧) =
𝑏𝑝0+𝑏𝑝1𝑧

−1+𝑏𝑝2𝑧
−2+𝑏𝑝3𝑧

−3+𝑏𝑝4𝑧
−4

1+𝑎𝑝2𝑧
−2+𝑎𝑝4𝑧

−4

 Scattered look-ahead decomposition with powers of 2:
coefficients of the 4th order IIR filter avoid instability.

X_in B

+

NH

Adder
tree

bp(0)

B

bp(1)
NH

bp(2)
NH

bp(3)

bp(4)
NH

NH

IIR FILTER

+
Adder
tree

NH
-ap(2)

NH
-ap(4)

BO

FO

w[n]

y[n-4]y[n] y[n-2]

clock

w[n] w[0] w[1] w[2] w[3] w[4] w[5] w[6] w[7] w[8] w[9]

y[n]

y[n-1]

y[n-2]

y[n-3]

y[n-4]

y[0] y[1] y[2] y[3] y[4] y[5] y[6] y[7] y[8] y[9]

y[0] y[1] y[2] y[3] y[4] y[5] y[6] y[7] y[8]

y[0] y[1] y[2] y[3] y[4] y[5] y[6] y[7]

y[0] y[1] y[2] y[3] y[4] y[5] y[6]

y[0] y[1] y[2] y[3] y[4] y[5]

y[n] = w[n] - ap(2)*y[n-2] - ap(4)*y[n-4]

Assumption: The adder tree does not have delay units

Methodology
 IIR Filter (60 Hz Notch filter): fs=1 KHz, 2nd order IIR filter

 Retiming: An actual adder tree usually includes register levels
in order to increase the frequency of operation.

 For example, a 3-input adder tree usually has 2 register levels.
The delay breaks the pipeline of the previous figure.

 Retiming is used here to address this issue: the delay units that
create y[n-2] are embedded into the two register levels of the
adder tree.

+

+

NH
-ap(4)

NH
-ap(2)

BO

FO

+

+

NH
-ap(4)

NH
-ap(2)

BO

FO

w[n]

w[n]

clock

w[n] w[0] w[1] w[2] w[3] w[4] w[5] w[6] w[7] w[8] w[9]

w[n-2]

y[n-2]

y[n-4]

w[0] w[1] w[2] w[3] w[4] w[5] w[6] w[7] w[8] w[9]

y[0] y[1] y[2] y[3] y[4] y[5] y[6] y[7]

y[0] y[1] y[2] y[3] y[4] y[5]

y[n] = w[n] - ap(2)*y[n-2] - ap(4)*y[n-4]

Assumption: The adder tree has two delay units

y[n]

-ap(2)*y[n-2] -ap(4)*y[n-4] + w[n-2]

y[n] y[0] y[1] y[2] y[3] y[4] y[5] y[6] y[7] y[8] y[9]

Methodology
 FIR Filter with Distributed

Arithmetic
 Efficient multiplier-less

implementation where
coefficients are constant.

 Cut-off frequency: 0.159 Hz.
 Stopband: -41dB
 24-tap symmetric low-pass

filter
 Fully pipelined system with I/O

delay of RL_FIR.
 LUT input size = 6
 Coefficients format:

[NH NH-1]
 Constant coefficients loaded as

a text file.

BO

0.159 Hz Low-Pass
DA FIR Filter

N=24,L=6,symmetricE

BO

v

RL_FIR

..
.

s[0]s[M-2]

s[0]:

s[L-1]:

X

x[0]

x[N-1] x[M+1]

x[M]x[M-1]x[1]

x[N-2]B

only when
N is even

B+1

E

E E E

E E E

E

sB

s0

+

Adder
tree

s[M-1]

..
.

..
.

-2B

20..
.

LUT L-to-LO

LUT L-to-LO

Filter Block 0

s[L]:

s[2L-1]:

..
.

Filter Block 1

s[M-L]:

s[M-1]:

..
.

..
.

Filter Block M/L-1

LO=NH+log2L

x[M]

x
[M

-1
]...

...

..
.

sB

s0

..
.

-2B

20..
.

LUT L-to-LO

LUT L-to-LO

..
.

sB

s0

-2B

20..
.

LUT L-to-LO

LUT L-to-LO

B+1 B+1

sB s1 s0...

sB s1 s0...

sB s1 s0...

+

+

+

Y

X Y

BO

BO

L

B

N

NH

M=N/2

Methodology
 Averaging unit

 The seven outputs FOx (x=1..7) are averaged out by this block.
This requires a 7-input pipelined adder tree and an array divider.

X(0) X(1)

+++

++

+

0

BY

+/-

Yo

ARRAY

DIVIDER

+/-

BY=BO+log2(N)

BY

log2(N+1)
N=7

+
/-

+
/-

BY

BY

BY0
BY

BO BO BO BO BO BO BO

BY BO

X(2) X(3) X(4) X(5) X(6)

v

E

B
Y

+
lo

g
2 (N

)

N

BO
AVG

BY

 Input format: [BO BQ]
 Output format: [BO BQ]
 I/O delay:
𝑅𝐿_𝐴𝑉𝐺 = 𝐵𝑂 + 2 log2𝑁

 The adder tree output
requires log2𝑁 extra
integer bits, but the divider
gets rid of those bits, hence
the output of the Average
Unit only needs BO bits.

 Accuracy can always be
increased by incrementing
the number of fractional
bits the divider generates.

Methodology
 Experimental Setup:

 Input signals: seven overlapping Gaussian-shaped signals
(close match to the angular displacement response of the
fly’s rhabdomers). 500 samples generated per channel,
values quantized with 8, 10, and 12 bits per sample.

 Design Space Exploration: Parameters:
 BO=16, NH =10,12,14,16, B=8,10,12, BQ=10,11,12,13,14

 Accuracy measurement: PSNR
 Test 1: FPGA and software (MATLAB) implementation uses

the quantized input samples. This allows us to study the effect
of the fixed-point architecture on accuracy.

 Test 2: Only FPGA uses the quantized input samples. This
allows us to study the effect of input quantization and the
fixed-point architecture on accuracy.

 Synthesis of VHDL code: Artix-7 XC7A100T FPGA

Results
 Input/Output Behavior

 Case: B=12, [BO BQ] = [16 14], NH=16. There is not much visual
difference if we change the parameters.

 The output signals constitute the output of a primary signal
path required for all image processing techniques.

0 0.2 0.4 0.6 0.8 1
-0.2

0

0.2

0.4

0.6

0.8

1

1.2

Normalized Target Location

N
o
rm

a
liz

e
d
 O

u
tp

u
t
V

o
lta

g
e

0 0.2 0.4 0.6 0.8 1
-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

Normalized Target Location

N
o
rm

a
liz

e
d
 O

u
tp

u
t
V

o
lta

g
e

C1

C6
C3

C4 C5

C2

C7

LAO1

LAO6LAO3 LAO4

LAO5

LAO2
LAO7

(a) (b)

Results
 Hardware Resource Utilization

 The figure shows resources (in terms
of 6-input LUTs and registers) for all
the cases where [BO BQ] = [16 14]

 The effect of BQ on resources is
negligible and it is not shown.

 For proper comparison, the DSP48E1s
blocks were not used.

3500 4000 4500 5000 5500 6000

6000

8000

10000

12000

14000

LUTs

R
e
g
is

te
rs

B=8

B=10

B=12

NH=10

NH=12

NH=14

NH=16

 Execution Time
 For BO=16, N=7, L=6, the I/O delay is given by:

𝑅𝐿_𝑆𝑌𝑆 = 𝑅𝐿_𝐼𝐼𝑅 + 𝑅𝐿_𝐴𝑉𝐺 + 𝑅𝐿_𝐹𝐼𝑅 = 36 cycles
 To compute NS samples per channel, we need 36+NS cycles.
 For 100 MHz, the execution time is: 36 + 𝑁𝑆 × 10−8𝑠𝑒𝑐𝑜𝑛𝑑𝑠

 𝑇ℎ𝑟𝑜𝑢𝑔ℎ𝑝𝑢𝑡 =
108

1+ 36
𝑁𝑆

𝑠𝑎𝑚𝑝𝑙𝑒𝑠 𝑝𝑒𝑟 𝑐ℎ𝑎𝑛𝑛𝑒𝑙/𝑠𝑒𝑐𝑜𝑛𝑑

Results
 Accuracy (PSNR)

 Test 1: FPGA and
software
implementations
use the quantized
input samples.

 Results only
shown for B=12,
as the effect of
input bit-width
(B) is negligible.
NH and BQ have
the strongest
effect on
accuracy. 10 11 12 13 14

65

70

75

80

85

90

95

BQ

P
S

N
R

(d
B

)

NH=10

NH=12

NH=14

NH=16

Results
 Accuracy (PSNR)

 Test 2: Only FPGA
uses the quantized
input samples.

 Accuracy-resource
trade-offs are
indicated.

 Accuracy is heavily
affected by B and BQ.
NH has some effect.

 Resources are affected
by B and NH.

3500 4000 4500 5000 5500 6000

55

60

65

70

75

80

85

Slices

P
S

N
R

(d
B

)

NH

N
H

=
1

0

N
H

=
1
0

N
H

=
1

0 BQ
BQ

BQ

N
H

=
1

4

1
0
...1

4

10

11

12

13
14

N
H

=
1

6

N
H

=
1

2

N
H

=
1
6

Results
 Application: Edge Detection

 Edge feature extraction:
Gradients are computed specific
to the orientation

Conclusions
 A scalable and fully-pipelined fixed-point architecture was

implemented and successfully validated.

 This works demonstrates the feasibility of incorporating
digital hardware into the design of largely analog
compound vision sensors.

 The next step is to implement a system with several
sensors on an FPGA that can adapt resources at run-time
based on user-generated or automatic constraints.

 Current work consist on implementing selected image
processing algorithms based on the outputs LAOx (x=1..7)
generated by the system.

