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Motivation
 Fly-inspired vision algorithms can outperform traditional 

image processing algorithms in motion detection and in-
flight obstacle tracking and interception.
 Applications include high-speed target tracking for unmanned 

aerial and ground vehicles, structural monitoring.
 Dedicated hardware implementations are desired when the 

large amounts of data are to be processed in parallel.
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Vision Sensor:
 Optical front-end

 Optical electrical interface

 Analog-to-digital converters

 Supporting digital hardware 
for filtering and light 
adaptation.



Motivation
 Vision Sensor: Optical front-end

 Plano-convex lens (12 mm diameter and 12 mm 
focal length) placed above seven photodiodes 
arranged in a hexagonal pattern

 Hexagonal pattern approximates fly optical 
arrangement.

 Photoreceptor response: overlapping Gaussians



Contributions
 Fully pipelined and Scalable Hardware 

Implementation for the Biomimetic Sensor
 The fully-customizable fixed-point architecture allows 

users to quickly modify design parameters (# of input 
bits, output format, # of bits per of iterations, # of bits of 
filters’ coefficients). 

 Fully-pipelined architecture is achieved by unrolling the 
IIR filter architecture.

 Generic VHDL code validated on an FPGA
 The fully-parameterized RTL VHDL code is not tied to a 

particular device or vendor.
 Design Space Exploration

 The fully-parameterized VHDL code allows us to create 
a set of different hardware profiles by varying the design 
parameters. We can then explore trade-offs among 
design parameters, accuracy, resources, and
execution time.



Methodology
 Block Diagram: Data path uses fixed-point representation:

 Input: [B B-1], Output/Intermediate Signals [BO BQ]
 Design Parameters: B, BO, BQ, NH (# of bits per filters’ coefficients)
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Architecture:
7 IIR filters,
1 average unit,
1 FIR filter,
7 subtractors,
7 chain registers
(synchronization 
registers that 
allow for 
pipelining)

𝑅𝐿_𝐴𝑉𝐺 = 𝐵𝑂 + 2 log2𝑁
𝑅𝐿_𝐹𝐼𝑅 = log2 𝐵𝑂 + 1 + log2𝑁/2𝐿 + 2
𝑅𝐿_𝐼𝐼𝑅 = 7



Methodology
 IIR Filter (60 Hz Notch filter): fs=1 KHz, 2nd order IIR filter

 Direct implementation: data dependencies prevent pipelining
 Look-ahead transformation: The 2nd order IIR filter is turned 

into a 4th order IIR filter with no data dependencies.
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 Scattered look-ahead decomposition with powers of 2: 
coefficients of the 4th order IIR filter avoid instability. 
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Methodology
 IIR Filter (60 Hz Notch filter): fs=1 KHz, 2nd order IIR filter

 Retiming: An actual adder tree usually includes register levels 
in order to increase the frequency of operation. 

 For example, a 3-input adder tree usually has 2 register levels. 
The delay breaks the pipeline of the previous figure.

 Retiming is used here to address this issue: the delay units that 
create y[n-2] are embedded into the two register levels of the 
adder tree.
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Methodology
 FIR Filter with Distributed 

Arithmetic
 Efficient multiplier-less 

implementation where 
coefficients are constant.

 Cut-off frequency: 0.159 Hz.
 Stopband: -41dB
 24-tap symmetric low-pass 

filter
 Fully pipelined system with I/O 

delay of RL_FIR.
 LUT input size = 6
 Coefficients format:

[NH NH-1]
 Constant coefficients loaded as 

a text file.
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Methodology
 Averaging unit

 The seven outputs FOx (x=1..7) are averaged out by this block. 
This requires a 7-input pipelined adder tree and an array divider.
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 Input format: [BO BQ]
 Output format: [BO BQ]
 I/O delay:
𝑅𝐿_𝐴𝑉𝐺 = 𝐵𝑂 + 2 log2𝑁

 The adder tree output 
requires log2𝑁 extra 
integer bits, but the divider 
gets rid of those bits, hence 
the output of the Average 
Unit only needs BO bits.

 Accuracy can always be 
increased by incrementing 
the number of fractional 
bits the divider generates.



Methodology
 Experimental Setup: 

 Input signals: seven overlapping Gaussian-shaped signals 
(close match to the angular displacement response of the 
fly’s rhabdomers). 500 samples generated per channel, 
values quantized with 8, 10, and 12 bits per sample.

 Design Space Exploration: Parameters:
 BO=16, NH =10,12,14,16, B=8,10,12, BQ=10,11,12,13,14

 Accuracy measurement: PSNR
 Test 1: FPGA and software (MATLAB) implementation uses 

the quantized input samples. This allows us to study the effect 
of the fixed-point architecture on accuracy.

 Test 2: Only FPGA uses the quantized input samples. This 
allows us to study the effect of input quantization and the 
fixed-point architecture on accuracy.

 Synthesis of VHDL code: Artix-7 XC7A100T FPGA



Results
 Input/Output Behavior

 Case: B=12, [BO BQ] = [16 14], NH=16. There is not much visual 
difference if we change the parameters.

 The output signals constitute the output of a primary signal 
path required for all image processing techniques.
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Results
 Hardware Resource Utilization

 The figure shows resources (in terms 
of 6-input LUTs and registers) for all 
the cases where [BO BQ] = [16 14]

 The effect of BQ on resources is 
negligible and it is not shown.

 For proper comparison, the DSP48E1s 
blocks were not used.
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 Execution Time
 For BO=16, N=7, L=6, the I/O delay is given by:

𝑅𝐿_𝑆𝑌𝑆 = 𝑅𝐿_𝐼𝐼𝑅 + 𝑅𝐿_𝐴𝑉𝐺 + 𝑅𝐿_𝐹𝐼𝑅 = 36 cycles
 To compute NS samples per channel, we need 36+NS cycles.
 For 100 MHz, the execution time is: 36 + 𝑁𝑆 × 10−8𝑠𝑒𝑐𝑜𝑛𝑑𝑠

 𝑇ℎ𝑟𝑜𝑢𝑔ℎ𝑝𝑢𝑡 =
108

1+  36
𝑁𝑆

𝑠𝑎𝑚𝑝𝑙𝑒𝑠 𝑝𝑒𝑟 𝑐ℎ𝑎𝑛𝑛𝑒𝑙/𝑠𝑒𝑐𝑜𝑛𝑑



Results
 Accuracy (PSNR)

 Test 1: FPGA and 
software 
implementations 
use the quantized 
input samples.

 Results only 
shown for B=12, 
as the effect of 
input bit-width 
(B) is negligible. 
NH and BQ have 
the strongest 
effect on 
accuracy. 10 11 12 13 14
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Results
 Accuracy (PSNR)

 Test 2: Only FPGA 
uses the quantized 
input samples. 

 Accuracy-resource 
trade-offs are 
indicated.

 Accuracy is heavily 
affected by B and BQ. 
NH has some effect.

 Resources are affected 
by B and NH.
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Results
 Application: Edge Detection

 Edge feature extraction:  
Gradients are computed specific 
to the orientation



Conclusions
 A scalable and fully-pipelined fixed-point architecture was

implemented and successfully validated.

 This works demonstrates the feasibility of incorporating
digital hardware into the design of largely analog
compound vision sensors.

 The next step is to implement a system with several
sensors on an FPGA that can adapt resources at run-time
based on user-generated or automatic constraints.

 Current work consist on implementing selected image
processing algorithms based on the outputs LAOx (x=1..7)
generated by the system.


