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Motivation

Fly-inspired vision algorithms can outperform traditional
image processing algorithms in motion detection and in-
flight obstacle tracking and interception.

= Applications include high-speed target tracking for unmanned
aerial and ground vehicles, structural monitoring.

Dedicated hardware implementations are desired when the
large amounts of data are to be processed in parallel.
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Motivation

= Vision Sensor: Optical front-end

= Plano-convex lens (12 mm diameter and 12 mm
focal length) placed above seven photodiodes
arranged in a hexagonal pattern

= Hexagonal pattern approximates fly optical 4

arrangement.
= Photoreceptor response: overlapping Gaussians \i‘
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Contributions

Fully pipelined and Scalable Hardware
Implementation for the Biomimetic Sensor

= The fully-customizable fixed-point architecture allows
users to quickly modify design parameters (# of input
bits, output format, # of bits per of iterations, # of bits of
filters’ coefficients).

= Fully-pipelined architecture is achieved by unrolling the
IR filter architecture.

Generic VHDL code validated on an FPGA

= The full?/—parameterized RTL VHDL code is not tied to a
particular device or vendor.

Design Space Exploration

= The fully-parameterized VHDL code allows us to create
a set of different hardware profiles by varying the design
parameters. We can then explore trade-offs among
design parameters, accuracy, resources, and R —
execution time. UNIVERSITY.




Methodology

Block Diagram: Data path uses fixed-point representation:
Input: [B B-1], Output/Intermediate Signals [BO BQ]
Design Parameters: B, BO, BQ, NH (# of bits per filters’ coefficients)
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Methodology S KE

IIR Filter (60 Hz Notch filter): fs=1 KHz, 2™ order IIR filter

= Direct implementation: data dependencies prevent pipelining

= Look-ahead transformation: The 2™ order IIR filter is turned
into a 4" order HRﬁlter with no data dependencies.
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IIR Filter (60 Hz Notch filter): fs=1 KHz, 2™ order IIR filter

= Retiming: An actual adder tree usually includes register levels
in order to increase the frequency of operation.

= For example, a lg-input adder tree usually has 2 register levels.
The delay breaks the pipeline of the previous figure.

= Retiming is used here to address this issue: the delay units that
create y[n-2] are embedded into the two register levels of the

adder tree. win)
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Methodology

FIR Filter with Distributed
Arithmetic

= Efficient multiplier-less
implementation where
coefficients are constant.

= Cut-off frequency: o.159 Hz.
= Stopband: -41dB

= 24-tap symmetric low-pass

filter

= Fully pipelined system with I/O
delay of RL_FIR.

= LUT input size = 6

= Coefficients format:
[NH NH-1]

= Constant coefficients loaded as
a text file.
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Methodology

Averaging unit
= The seven outputs FOx (x=1..7) are averaged out by this block.

This requires a 7-input pipelined adder tree and an array divider.
X(0) X(1)  X(2)  X@3) X4) X(5) X(6) E

Input format: [BO BQ] o} 8o} B0} 8ol BQ} B8O} B |
Output format: [BO BQ] al

¥ vV VvV Vv v ¥
I/0O delay: ey A v A v I
RL_AVG = BO + 2[log, N] ' ' | 3
The adder tree output T Y 2
requires [log, N| extra | | -
integer bits, but the divider . ;
gets rid of those bits, hence \ T 4
the output of the Average 0 Yo
Unit only needs BO bits. B% By | =
Accuracy can always be E—E——
increased by incrementing ., | BY-80+iog,(1L—B%>F
the number of fractional | oy gy, | e

bits the divider generates.
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Methodology

Experimental Setup:

= Input signals: seven overlapping Gaussian-shaped signals
(close match to the angular displacement response of the
fly’s rhabdomers). 500 samples generated per channel,
values quantized with 8, 10, and 12 bits per sample.

= Design Space Exploration: Parameters:
- BO=16, NH =10,12,14,16, B=8,10,12, BQ=10,11,12,13,14

= Accuracy measurement: PSNR

- Test 1: FPGA and software (MATLAB) implementation uses
the quantized input samples. This allows us to study the effect
of the fixed-point architecture on accuracy.

- Test 2: Only FPGA uses the quantized input samples. This
allows us to study the effect of input quantization and the
fixed-point architecture on accuracy.

= Synthesis of VHDL code: Artix-7 XC7Ai100T FPGA

OAKLAND
UNIVERSITY.




Results

Input/Output Behavior
= Case: B=12, [BO BQ] = [16 14], NH=16. There is not much visual

Normalized Output Voltage

1.2« =
¢, G,
1 B C3 Cs c4 C7 Cs
\JW‘\W ““u‘u‘wu “HNU\
\ N A A )
(@)
=
o
>
5
o
5
o
e
(O]
N
©
S
o
Z
-0.2

0.2 0.4 0.6 0.8 1
Normalized Target Location

(@)

-0.2

-0.4

-0.6 ¢

difference lf we change the parameters.

= The output signals constitute the output of a primary signal
path required for all image processing techniques.
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Results

Hardware Resource Utilization

= The figure shows resources (in terms
of 6-input LUTs and registers) for all
the cases where [BO BQ] = [16 14]

= The effect of BQ on resources is
negligible and it is not shown.

= For proper comparison, the DSP48F1s
blocks were not used.

Execution Time
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v
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3500

4000 4500 5000 5500 6000
LUTs

= For BO=16, N=7, L=6, the I/O delay is given by:
RL_SYS = RL_IIR + RL_AVG + RL_FIR = 36 cycles
= To compute NS samples per channel, we need 36+NS cycles.
= For 100 MHz, the execution time is: (36 + NS) X 10~ 8seconds

108

1+3¢/ns

= Throughput =

samples per channel/second
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Results

Accuracy (PSNR) .

= Test 1: FPGA and s+ NH=10

software oo * N2 .

implementations NH=14

use the quantized « NH=16

input samples. 85 - .

J ;

= Results only X 80 - :

shown for B=12, 2 :

as the effect of 25
input bit-width ‘
(B) is negligible.
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accuracy. 1 11 Blé 13 14
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Accuracy (PSNR)

= Test 2: Only FPGA 5
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Results

Application: Edge Detection

= Edge feature extraction:

Gradients are computed specific

to the orientation

Extract Edge Feature Set
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Conclusions

A scalable and fully-pipelined fixed-point architecture was
implemented and successfully validated.

This works demonstrates the feasibility of incorporating
digital hardware into the design of largely analog
compound vision sensors.

The next step is to implement a system with several
sensors on an FPGA that can adapt resources at run-time
based on user-generated or automatic constraints.

Current work consist on implementing selected image
processing algorithms based on the outputs LAOx (x=1..7)
generated by the system.
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