
Design and Implementation of a
Reconfigurable Computing Course for

efficient Hardware/Software Co-
Design in Reconfigurable Systems

DANIEL LLAMOCCA

Electrical and Computer Engineering
Department,

Oakland University

April 30th, 2016

Outline
 Motivation

 Hardware/Software Equipment

 Course Structure

 Analysis

 Outcomes

 Conclusions

Motivation

 Reconfigurable Computing: It deals with the
implementation of reconfigurable systems that
alter (often on the fly) the functionalities and
interconnection of their components to satisfy
time varying requirements.

Digital
signal/image/video

DIGITAL
SYSTEM

Digital
signal/image/video

or features

Control

Energy
Performance
Precision
Resources

...

... Parameters

IN OUT

Reconfigurable Systems

Static Dynamic

Embedded Systems

Applications: DSP, video

compression, automotive,

communicationsIn
te

rf
a
ci

n
g

Digital Logic Design Reconfigurable computing
builds on embedded design
and digital logic: hardware
units are often connected to
an embedded microprocessor
via an interface.

 This emerging area is rapidly
finding its way into many
applications: smart antennas,
image analysis, video
compression, automotive.

 ECE students take standard classes in:
 Digital logic: digital circuit fundamentals
 Embedded system design: software and peripheral control.

Hardware/Software
Equipment
 Reconfigurable Computing encompasses a large

diversity of topics:
 Hardware design: computer arithmetic, pipelining,

parallelization
 Embedded Systems: embedded interface design, embedded

software development, hardware/software codesign.
 High-level modeling: for verification (MATLAB®, Octave).

 Programmable System-on-Chip (SoC) devices: A great
platform for teaching Reconfigurable Computing concepts.
These devices include a reconfigurable fabric and a
processor system. The user can design and test embedded
systems containing both software and hardware units.
 Many common peripherals (e.g.: USB, Ethernet) are available

as libraries from the software tool.
 The user can include custom-built peripherals, which

involves digital hardware and embedded interfacing.

Hardware/Software
Equipment
 Xilinx® Zynq-7000 All-Programmable SoC: They integrate a

feature-rich dual-core ARM® CortexTM-A9 processor as
well as a reconfigurable fabric that allows for run-time
reconfiguration.

 The peripherals and the processor are interconnected via
the AXI (Advanced eXtensible Interface) bus. There are
three types: AXI4-Lite (low-speed, simple version),
memory-mapped AXI4-Full (high speed), and AXI4-Stream.

Programmable Logic
Procesing
System

A
X

I
In

te
rc

o
n

n
e

c
t

A
R
M

memory
AXI Peripheral

IP
CORE

iFIFO

in
te

rf
a
c
e

SD
card

oFIFO

C
e

n
tra

l
D

M
A

M

S

S

USB /
UART

 The figure depicts a
block diagram of an
embedded system with
common peripherals
and a custom hardware
peripheral.

Hardware/Software
Equipment
 ZYBO Board: Low cost,

entry-level embedded
software and digital circuit
development platform. It
houses a Zynq-7000 device
along with on-board
memories, video and audio
I/O, dual-role USB, Ethernet,
and SD slot.

 Course: It uses both the AXI4-Lite and the AXI4-Full 32-bit
Slave Interfaces:
 AXI4-Lite peripheral: A simple register-based interface.
 AXI4-Full peripheral: It allows for burst transfers, but needs a

custom-built interface (with FIFOs) around the hardware
core . This interface is provided to the students.

Course Structure
 Topics: These were carefully selected and grouped into six units.

Lecture notes were developed for each unit:
 Advanced topics in Computer Arithmetic: Selection of numerical

representation is vital for algorithm implementation on hardware.
We analyze numerical bounds and accuracy of: fixed point,
floating point, and the non-standard dual fixed-point arithmetic.

 Specialized arithmetic circuits and techniques: Hardware
implementation of simple and complex common arithmetic units
as well as techniques for resource-efficient implementation.

 Advanced coding in Hardware Description Language (HDL): This
unit provides details on custom-defined types, parametric coding,
and dealing with I/O files for Synthesis and Simulation.

 Pipelining and unfolding: These techniques leverage the power of
FPGAs by allowing a system to output data at every clock cycle.

 Embedded system on a System-on-Chip (SoC): Students learn to
partition into hardware and software components

 Dynamic Partial Reconfiguration: This powerful technology allows
hardware portions to be altered (or turned off) on-the-fly, while the
rest of the system is still operating.

Course Structure
 Assignments: The evaluations were organized as follows:

 Four (4) homeworks.
 Five (5) laboratories: These included tasks related to the design of

embedded systems on a Programmable SoC: hardware design,
embedded interface design, and embedded software development:

 In-class midterm exam.
 Final Project (groups of 2). Students were evaluated in their ability to

successfully partition a system into hardware and software
components to implement a reconfigurable system. They also
submitted a final report that includes their methodology and results.

 The table lists the topics along with the associated assignments:
homeworks (HW), laboratories (LAB)

Course Structure
 Laboratory assignments are organized as follows:

 Online Material: This entire material is freely available at the
Reconfigurable Computing website at Oakland University:
 Lecture notes for the six units.
 Four homeworks with solutions
 Final project guidelines with students’ final reports and presentations.
 Five laboratories
 Five tutorials on embedded system design with Vivado and

SDK. This includes and software/hardware examples.

Analysis
 Practices: The work in Wieman et al, “The Teaching Practices

Inventory: A New Tool for Characterizing College and University
Teaching in Mathematics and Science”, provides a comprehensive
list of practices that support student learning and teacher
effectiveness. This course implemented the following:
 Knowledge organization: The class includes a detailed syllabus

listing student learning outcomes, grading scheme, schedule of
assignments, laboratory materials, final project guidelines, and
online material.

 Motivation: The course featured the design of real-world
applications combining both software and hardware
components, discussed state-of-the-art topics, and provided
research opportunities.

 Practice: The class includes homework assignments, student
demonstration of working systems in laboratory assignments
and final project, oral presentation of the final project, and final
report preparation.

 Group Learning: The class relies heavily on team-based
laboratory assignments and final project.

Analysis
 Impact of Learning: Learning outcomes include competence

in topics, embedded design proficiency, and oral/ written
presentation. We list them with the associated class activities:

 Two main reasons have been identified that improve student
engagement, learning outcomes, and student success:
 Hardware/software co-design: Student engagement improved by

integrating custom hardware and embedded software routines.
Students have been learning these topics throughout college.

 Opportunities for research in state-of-the-art topics: Cutting edge
topics were included: non-standard computer arithmetic,
dynamic partial reconfiguration, AXI interfacing.

Outcomes
 Student Projects:

 Hardware for powering function (𝑥𝑦): Developed for both single
and double precision. For hardware validation, a software routine
controls an AXI4-Full interface and a SD card peripheral.

 Development of Dual Fixed Point Arithmetic Units: Addition,
subtraction, multiplication, and division were designed. Hardware
validation: embedded software routine with a AXI4-Lite interface.

 Hyperbolic CORDIC in Dual Fixed Point Arithmetic: Architecture
for hyperbolic functions using non-standard arithmetic that
provide trade-off between floating and fixed point arithmetic.

 Architectures for floating point units: Addition, subtraction, and
multiplication units were designed. An AXI4-Lite interface was
included for hardware validation using a software routine.

 Image filtering and RGB-to-grayscale conversion: These two
hardware components were independently developed and tested
using an AXI4-Lite interface and embedded software.

 Graphics Processing units on an FPGA: Design of a small GPU
architecture for matrix multiplication, division, and a line drawing
algorithm. An AXI4-Lite interface configures the hardware, while a
Master AXI4-Full interface sends video frames to a DDR
memory for display.

Outcomes
 Student Survey: 11/13 students completed an end-of-semester

anonymous survey. This is a selection of the questions:

Number of students

Average

Unsatisfactory/Poor

Good

Excellent

1 2 3 4 6 8 9

Q
1

Q
2

Q
3

Q
4

Q
5

 Q1: The instructor did a good
job of making the objectives
of the course clear to me.

 Q2: The instructor
stimulated and deepened my
interest in the subject.

 Q3: The instructor motivated
me to do my best work.

 Q4: Value of the laboratory
component of the course.

 Q5: Overall rating of this
course as a learning
experience.

 We show how students rated each question (Q1-Q5) and
the number of students that gave a specific rating.

Outcomes
 Course Implementation Challenges: To design dedicated

architectures and then incorporate them into an embedded system,
students need to learn: computer arithmetic, specialized arithmetic
circuits, and resource-efficient and high performance techniques.

 Several students commented that they would have preferred to
integrate the microprocessor and hardware earlier in the semester
instead of focusing on theoretical topics. This can be addressed by
a complete overhaul of the course structure so students can start
working with embedded systems after the 3rd week of class.

 Most students successfully displayed their results using a serial
interface (laboratory and final project). To improve student
engagement, a series of tutorials must be included on how to work
with other audio and visual interfaces.

 Dynamic Partial Reconfiguration was introduced, but not included
in the assignments. The lack of a Graphical User Interface in the
Vivado 2015 software hindered our efforts (the intricate procedure
could only be taught in command-line mode). Extra effort
must be put on the step-by-step tutorials and examples.

Conclusions
 We presented a course structure, results and analysis

from the implementation of a course in reconfigurable
computing using hardware/software co-design for
embedded systems.

 Results are encouraging: improved student engagement,
availability of open-source material, and opportunities
for research in state-of-the-art topics.

 Students successfully completed the assignments and
final projects, and they highly rated their overall course
learning experience. Based on student feedback and
instructor experience, several improvements are listed
that will be addressed in future implementations of this
course: the freely available class material and embedded
design tutorials will be updated on a regular basis.

