Dual Fixed-Point CORDIC Processor: Architecture and FPGA Implementation

Andres Jacoby and Daniel Llamocca

Electrical and Computer Engineering Department

Oakland University

Rochester, MI, USA

Main Contributions

- *Parameterized architecture validated on an FPGA:* The hardware, developed in fully parametric VHDL code, can be implemented on any existing technology (e.g. FPGA, Programmable SoC, ASIC).
- *Design Space Exploration:* Trade-offs among resources, accuracy, and hardware design parameters are explored. Pareto-optimal realizations are also generated.
- *Comparisons among DFX, FX, and FP architectures:* The proposed DFX CORDIC was compared with similar FX and FP realizations to assess if the resource increase as well as accuracy.

Dual Fixed-Point Representation

• An *n*-bit Dual Fixed-Point (DFX) number is composed of a (*n*-1)-bit signed significand (*X*) and an exponent bit (*E*). The exponent determines the scaling for the significand:

•
$$D = \begin{cases} num0: X.2^{-p_0}, & if E = 0 \\ num1: X.2^{-p_1}, & if E = 1 \end{cases}, p_0 > p_1$$

Hardware Architectures

- The hardware developed in this work is fully parametric VHDL, below is a list of the cores:
 - DFX Basic Units:
 - DFX Adder/subtractor
 - DFX Multiplier
 - DFX Barrel shifter
 - DFX Expanded Circular CORDIC
 - DFX Expanded Hyperbolic CORDIC
 - DFX Logarithm
 - DFX Powering

Figure 2. Expanded DFX Hyperbolic CORDIC.

Figure 3. Fully parameterized DFX Powering.

Setup and Design Space Exploration

- By varying n, p_0 , p_1 (the DFX format), we create a design space of hardware configurations for every function to be tested. This also requires careful selection of the domain of the inputs.
- Some functions were only explored for a subset of the design space; this is due to intrinsic limitations such as convergence or CORDIC algorithm, scaling factor.

Table 1.	Testing	domain	for the	CORDIC	-based	functions
----------	---------	--------	---------	--------	--------	-----------

FUNCTION	INPUT DOMAIN FOR TESTING	CORDIC MODULE	Μ
sin(x), cos(x)	$-\pi \leq x \leq \pi$	CIRCULAR: ROTATION. $z_{-M+1} = x$ $x_{-M+1} = 1/A_n, y_{-M+1} = 0$	2
atan(x)	$0 \leq x \leq 20$	CIRCULAR: VECTORING. $y_{-M+1} = x$ $x_{-M+1} = 1, z_{-M+1} = 0$	2
sinh(x), cosh(x)	$0 \leq x \leq 4$	HYPERBOLIC: ROTATION. $z_{-M} = x$, $x_{-M} = 1/A_n, y_{-M} = 0$	4
<i>e</i> ^{<i>x</i>}	$-2 \leq x \leq 2$	HYPERBOLIC: ROTATION. $z_{-M} = x$, $y_{-M} = x_{-M} = 1/A_n$	4
atanh(x)	$ x \le 0.9995$	HYPERBOLIC: VECTORING. $y_{-M} = x$ $x_{-M} = 1, z_{-M} = 0$	5
\sqrt{x}	$0 \leq x \leq 36$	HYPERBOLIC: VECTORING. $z_{-M} = 0$, $x_{-M} = x + 1/(4A_n^2)$, $y_{-M} = x - 1/(4A_n^2)$	3
$\ln(x)$	$0.0005 \leq x < 15$	HYPERBOLIC: VECTORING. $z_{-M} = 0$, $x_{-M} = x + 1$, $y_{-M} = x - 1$	5
<i>x^y</i>	$\begin{array}{c} 0.135 \leq x \leq 7.39 \\ -2 \leq y \leq 2 \end{array}$	HYPERBOLIC: VECTORING AND ROTATION	4

Results

- The Pareto-optimal realizations for *atan/lnx* allows us to only consider optimal hardware realizations while simultaneously satisfying accuracy and resource constraints.
- Table 2 depicts how DFX compares to FX in terms of resources and accuracy. For x^{y} on average, resources increased by 55% while accuracy improved 61.45dB.

Table 2. DFX vs FX. Resources and accuracy.

Fn.	FX		DFX	avg resource accuracy inc. (DFX/FX)	FP EW:24 FW: 16
x^{y}	[24 15]	[249]	[24 15 9]		
	343 115.78 dB	326 100.42dB	518 46.65 dB	55% 61.45 dB	769 7.61 dB
lnx	[24 10]	[24 20]	[24 20 10]		
	198 -34.70dB	200 28.49 dB	439 -104.61dB	120% 101.5 dB	718 -135.2dB
sinh	[24 15]	[24 10]	[24 15 10]		
	201 71.62 dB	197 -11.17 dB	399 -35.29 dB	100% 65.52 dB	605 -37.92dB

Thank You