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Motivation

Dynamic Reconfigurable Computing Management will enable us to 
deliver:

A dynamically self-adaptive system (by dynamic allocation of 
computational resources and dynamic frequency control) that satisfies 
time-varying Multi-variable requirements (or constraints).

Optimal hardware realizations: We want to investigate optimal 
solutions that can meet time-varying Multi-variable requirements .
For example, if the variables were Energy, Performance, and Accuracy, 
then the system should minimize energy consumption, and at the 
same time maximize performance and precision, while
satisfying the given multi-variable requirements.

Digital systems can be characterized 
by a series of  properties:

Energy, Performance, Precision, 
Resource Usage, Bandwidth, etc.

The controlling of these variables at 
run-time is defined as Dynamic 
Reconfigurable Computing 
Management.
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Motivation

Examples:

 Task 1: A video processing system is asked to deliver real time 
performance at 30 frames per second (fps) on limited battery life that 
will also need to operate for at least 10 hours. This is a multi-
objective optimization problem. If solutions are found, pick the 
system realization that delivers the highest accuracy.

 Task 2: Now, suppose that we are asked to deliver performance at 100 
frames per second (fps) at some minimum level of accuracy (60dB). In 
this case, we select the hardware realization with the lowest energy 
requirements while meeting the performance and accuracy 
constraints.

The system can then 
carry out 
independent tasks in 
time:
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Motivation
Dynamic Reconfigurable Computing Management can rely on: Dynamic 
Partial Reconfiguration and Dynamic Frequency Control on FPGAs.

Dynamic Partial Reconfiguration (DPR)

DPR technology enables the adaptation of hardware resources by 
modifying or switching off portions of the FPGA while the rest 
remains intact, continuing its operation.

A Partial Reconfiguration Region (PRR) is a region whose 
hardware configuration can be modified at run-time. 

Xilinx®  devices: the PRR is dynamically reconfigured via the 
internal c0nfiguration access port (ICAP).

Dynamic Frequency Control

Digital Clock Managers (DCMs) inside 
FPGAs provide a wide range of clock 
management features.

The Dynamic Reconfiguration Port (DRP) 
of the DCM enables dynamic control of the 
frequency and phase. We can 
dynamically adjust the frequency without 
reloading a new bitstream to the FPGA.
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General approach (1/7)
For a given system, Dynamic Reconfigurable Computing 

Management is carried in the following manner:

1) Definition of Objective Functions

2) Development of efficient cores

3) Parameterization of Hardware Cores

4) Multi-objective Pareto Optimization in the 
Multi-Variable Space

5) Dynamic management based on real-time 
multi-variable constraints



General approach (2/7)
1) Definition of objective functions:

A wide range of quantities (e.g., energy, performance, precision, 
hardware usage) can considered as the objective functions of system 
parameters. These properties may have a slightly different definition 
depending on the application:

Energy can be measured as the total energy spent during the system 
operation, or the energy spent during an operation (e.g., energy per 
video frame). In some instances, measuring Power is more useful.

Performance can be measured by: Megasamples per second, frames 
per second, Megabytes per second, etc.

Precision can be measured by: numerical representation, or 
accuracy with respect to an idealized result (e.g., PSNR).

There can be objective functions that pertain to an specific 
application. For example, in image compression, the bitrate metric 
evaluates the compression efficiency of a hardware architecture (e.g. 
JPEG processor). Or bandwidth for communication networks.



General approach (3/7)
2) Development of efficient cores: The hardware architectures should 

use techniques that:
i) Minimize the amount of computational resources (e.g. LUT-based 

approaches, Distributed Arithmetic),
ii) Exploit parallelism and pipelining so as to obtain high performance 

architectures.
iii)Make intensive use of DPR and/or take advantage of DPR.

The cores should be described using Hardware Description Language 
(HDL) at the Register Transfer Level (RTL). The best effort must be 
made so that these cores remain portable across devices and vendors.
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General approach (4/7)
3) Parameterization of hardware cores: 

Fine control of the objective functions (e.g., energy, performance, 
accuracy) is greatly helped by realistic parameterization of the hardware 
cores (e.g., I/O bit-width, number of parallel cores).

Parameterized HDL code allows us to quickly create a set of hardware 
realizations by varying the parameters. Each realization comes with 
different values for the objective functions, which we ultimately control by 
varying the hardware parameters.

Example: Parameterization of the ‘Pixel processor’ architecture:

NC (number of cores), NI (number of input bits per pixel),

NO (number of output bits per pixel), F (function to be implemented), 

LUT values (text file with LUT values)

PIXEL

PROCESSOR

NC LUT values
(from text file)

NI NO F

NINC NONC



General approach (5/7)
4) Multi-objective Optimization in the Multi-Variable Space: 

The Energy-Performance-
Accuracy space is shown along 
with the Pareto- optimal
points.
In some cases, we may want to 
explore a space of just 2 
variables, e.g., the Energy-
Accuracy space.

Multi-variable space: Represented by a set 
of hardware realizations along with their 
objective function values. We create it by 
varying the system parameters.
Optimality: A hardware realization is 
defined to be optimal in the  multi-
objective (Pareto)  sense if it is not 
possible to improve on all criteria without 
deteriorating in at least one of them. Objective 1
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General approach (6/7)
5) Dynamic management based on real-time multi-variable constraints:

Once the Pareto front has been extracted, we can cast optimization problems 
based on multi-variable constraints.  We will use the Energy-Performance-
Accuracy Space to explain this idea.
Example: We are given constraints on the 3 variables. The feasible set is then 
represented by the golden points. We prioritize energy consumption, so we 
select the realization from the feasible set that also minimizes energy 
consumption. This can be cast as the following optimization problem:
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If we ignore one variable 
(say, performance), we 
have a 2D optimization 
problem.



General approach (7/7)
5) Dynamic management based on real-time multi-variable 

constraints: Now, we are given time-varying simultaneous 
constraints: different set of constraints are applied at different 
moments in time.
The system receives stimuli in the form of multi-variable constraints 
and reconfigures itself via DPR and/or Dynamic Frequency Control to 
meet the multi-variable constraints. The figure shows examples with 3 
and 2 simultaneous constraints.
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Implementation Details (1/2)
Embedded FPGA system that supports Dynamic Partial Reconfiguration 
and Dynamic Frequency Control:
Pareto-optimal point: Represented by <bitstream, frequency of operation>
- Hardware realization that becomes active in the FPGA via Dynamic Partial 
Reconfiguration (DPR) and/or Dynamic Frequency Control. 
If the system receives a multi-variable constraint:
 It looks for a solution in the Pareto-optimal set: <bitstream*, freq*>
 It reconfigures the FPGA dynamic region(s) and /or frequency of operation, so 
as to meet the multi-variable constraints.
Example (one Dynamic Region): The PRM (Partial Reconfigurable Module) 
is a hardware core that performs an specific task and that can be modified at 
run-time.
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Implementation Details (2/2) 
A Pareto point is  represented by ‘k’ bistreams and the frequency of operation if:
 The system has ‘k’ dynamic regions. The requested operation requires the 

dynamic regions to have a unique combination of bitstreams.
 The system has one dynamic region, but the requested operation requires 

reconfiguring the dynamic region ‘k’ times.
Generalization: A Pareto point is represented by:

<bitstream1, bitstream2, …, bitstreamk, frequency of operation>
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Digital signal, image, and video 
processing applications

The following systems are discussed:

 Pixel Processor and Dynamic PPA/EPA 
Management

 2D Separable FIR Filter Dynamic EPA 
Management.



Pixel Processor (1/4)
 LUT-based architecture.

 Single-pixel operations (e.g., 
gamma correction, Huffman 
encoding, histogram 
equalization, contrast stretching) 
can be dynamically swapped. 
Parameter F modifies the 
function. 

 In addition to dynamically 
modifying the input-output 
function, we allow for the 
modification of:

 Input pixel bitwidth (NI)

 Output pixel bitwidth (NO),

 Number of parallel processing 
elements (NC)

t1t2t3

Input Frame

Inv. Gamma correction

gamma = 2

Contrast Stretching

alpha = 2, m = 0.5

Gamma correction

gamma = 0.5

Module 3 Module 2 Module 1

FPGA

PRR

PIXEL

PROCESSOR

NC LUT values

(from text f ile)

NI NO F

NINC NONC

* VHDL IP core available at:

dllamocca.org



Pixel Processor (2/4)
 Embedded System: 
 One Dynamic Region. Pareto point represented by: <bitstream, frequency>.
 Pixel processor interface: PLB (Processor Local Bus) slave burst interface. The 

figure shows a PRR with NC=4, NI=NO=8.
 The system dynamically reconfigures: NC, NI, NO, FUNCTION, under the 

following constraints: NINC32, and NONC  32 (because of the 32-bit PLB)
 Five ‘clkfx’ frequencies allowed: 100.00, 66.66, 50.0, 40.00, and 33.33 MHz.
 FIFOs required to properly isolate different clock regions (PLB clk= 100 MHz and 

‘clkfx’).
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Pixel Processor (3/4)

Multi-objective optimization of the Power-Performance-Accuracy space:

 Function:  log(1 + I) + Full Histogram stretching. Image: Lena (VGA: 640x480).

 8-bit input image (NI=8 fixed). Pareto points are clustered as a function of NO (# 
of output bits). A similar trend occurs with NC (# of cores) (not shown)

 Left side shows how power and performance depend on frequency.
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Pixel Processor (4/4)
 Dynamic Energy-Performance-Accuracy management: We show two 

examples on 2D (ignoring performance) with time-varying constraints:

Video sequence:

foreman (CIF: 352x288)

Function: 

Gamma correction:

I,  = 1/0.45

Video sequence:

missamerica(QCIF: 176x144)

Function:

Nonlinear contrast 

Stretching:  1/(1 + m/I),

m = 0.5, =2

* Published in IEEE 
Transactions on Circuits

and Systems for Video 
Technology
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2D Separable FIR Filter (1/7)
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time overhead.

 Parameterization of the VHDL-
coded FIR filter core:

Distributed Arithmetic (DA) 
approach is more efficient since 
it is a LUT-based approach that 
turns the multiplications into 
shifts and adds. But it requires 
the coefficients to be constant.

1D FIR Filter implementation

* VHDL IP core available at:

dllamocca.org



2D Separable FIR Filter (2/7)

2D Separable Filter Implementation:

 Separable FIR filters allow for efficient 
implementations by means of two 1D 
FIR Filters.

 The reconfiguration rate is constant 
(twice per frame).

 Cyclic Dynamic reconfiguration of two 
1-D filters (usually full-filter 
reconfiguration):

- Implement row filter

- Replace by column filter

- Implement column filter

- Replace by row filter

…

DPR

tr1 tc1
FPGA

ROW COL

COL

tr2 tc2

ROW COL

1 Frame is streamed

Processed row -by-row  frame is streamed

2

3

4

Replacing row  filter by column filter via DPR

Replacing column filter by row  filter via DPR

ROW

DPR
ROWCOL

Processing

frame 1

Processing

frame 2

5 Go to Step 1 to process a new  frame

ROW PRR

row  filter

col f ilter

COL

* A comparison of this 2D FIR Filter and a 
GPU implementation for different number of 
coefficients was published 2011 IEEE Field 
Programmable Logic Conference (FPL’2011)



2D Separable FIR Filter (3/7)
 Embedded System:
 PLB Interface: The interface is inside the PRR (Partial Reconfigurable 

Region), so that we can dynamically modify the I/O bitwidth.
 Each 2D filter realization is represented by 2 bitstreams (1 dynamic region)
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2D Separable FIR Filter (4/7)
Multi-objective optimization of the Energy-Performance-Accuracy space: 

2D Filter Parameters: N (# of coefficients),
NH (# of bits per coefficients), OB (# of bits per output pixel), 

Results: 
Low-pass Gaussian Filter, x=y=1.5 (symmetric coefficients).
Image: Lena (CIF: 352x288).
HA: highest-accuracy. HP: highest-performance,
LE: lowest energy -pi
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2D Separable FIR Filter (5/7)
Multi-objective optimization of the EPA space
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2D Separable FIR Filter (6/7)
Dynamic EPA Management (1st example): Applied on the Pareto front of the 
DoG filter .
Video: foreman’(CIF: 352x288)

Dynamic management based
on user constraints:
Time-Varying constraints are 
Provided at run-time by the user

Dynamic management based
on output frames:
Metric: Percentage change (T) of
the filter output (between
consecutive frames). Large scenes
are associated with large values of T

Right side: State diagram.
Low accuracy: no significant
variation in T.
Medium accuracy:  some variation in T.
High accuracy: large variation in T.

Left side: Detection of 
Scene changes, especially
Frames 185 to 191.

* to appear in ACM Transactions on
Reconfigurable Technology
and Systems
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2D Separable Complex FIR Filter (7/7)
Here, the input image 
is complex and the 
filter coefficients are 
complex. These types 
of filters are very 
useful in AM-FM 
decompositions for 
image analysis 
applications.
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avg=58.78

std=0.3348
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avg=93.47

std=0.0631  avg=98.22
std=0.0578

frame #  190

frame #  280frame #  120

frame #  30

Results: Gabor complex filter, video sequence: news (CIF: 352x288),.
* Published in 2012 IEEE International Conference on Field Programmable Logic and Applications

2D Gabor at 45 



Research Areas (1/5)
RECONFIGURABLE COMPUTING:

Run-Time Reconfigurable Architectures under Time-Varying 
Constraints

 Automatic  generation of time-varying constraints. 
 Self-aware Computing and Self-adaptive techniques.
 Design Space Exploration for large multi-objective spaces.

Advanced Topics on Computer Architecture
 Fully-pipelined architectures for: Signal, Image, and Video 

Processing: Discrete Cosine Transforms, 1D/2D Filterbanks.
 Non-standard numerical representations: Trade-offs between double 

floating point precision and fixed-point precision.
 Specialized architectures for CORDIC (trigonometric, linear, and 

hyperbolic functions), square root, fast division, multiplication. Use 
of non-standard numerical representations. 

 LUT-based design



Research Areas (2/5)
Example: Radon Transform:

• 7x7 Radon Transform core. Presented in SSIAI’2014 and ICIP’2014 
conferences
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Research Areas (3/5)
 Example: HEVC (High Efficiency Video Coding Standard)
 HEVC Intra Prediction Core: Presented in the SSIAI’2014 conference. 
 The HEVC Intra prediction core computes the following modes: Angular (33), 

planar (1), and DC (1).
 Current work: Implementation of HEVC Transform, Scaling, and 

Quantization.
 Future work: Self-reconfigurable hardware implementation of HEVC Encoder

Sullivan, G., et al, "Overview of the High Efficiency Video Coding (HEVC) Standard", IEEE TCSVT, V.22, No. 12, Dec. 2012



Research Areas (4/5)
FPGA-based Embedded Systems
 Applications: automotive, networking, bioengineering, software-

defined radio, communications, video compression, video filtering.
 Software-Hardware Co-Design.
 Dealing with different processors: ARM, MicroBlaze (Xilinx), Nios

(Altera), OpenRISC (Open-source).
 Development of embedded interfaces for a variety of buses: 

Advanced eXtensible Interface (AXI, Xilinx), Avalon switch fabric 
(ALTERA), Wishbone (open source), etc.

 External communication interfaces (SpaceWire, CAN, Ethernet).
 Current work: Open-Source embedded system that supports DPR 

via Wishbone.

Run-Time Reconfiguration on FPGAs
 Objective: Develop high-speed dynamic reconfiguration controllers:
 Support for standard buses: AXI, Wishbone.
 Hardware and software techniques the provide dramatic increases 

in reconfiguration speed.
 Dynamic Frequency Control on FGPAs



Research Areas (5/5)
Specialized techniques on FPGAs
 Low Power techniques
 Advanced coding mechanism for efficient parameterization using 

VHDL and Verilog HDL.
 Test-bench generation
 Crossing clock domains

GPU PROGRAMMING:
High performance implementation of Digital Signal, Image, and 

Video Processing Algorithms.
Integration with multi-threaded implementations on CPUs
Comparisons with FPGA implementations.

EMBEDDED SYSTEMS
Microcontroller-based System
Efficient architectures for embedded interfaces
Embedded design using System-on-Chip that incorporates analog, 

programmable logic, memory, and microcontroller (e.g. Cypress 
devices)



Teaching Plans
ECE378: Digital Logic and Microprocessor Design 

(Winter 2015)
 Digital System Design
 Microprocessor Design in VHDL
 Digital Synthesis with VHDL
 Parameterized VHDL coding

ECE495/595: Reconfigurable Computing (Fall 2015)
 Hardware/Software co-design on FPGAs
 Self-Reconfigurable systems: Partial Reconfiguration
 Advanced topics in Computer Arithmetic
 Applications in:
 Digital Signal, Image, and Video Processing
 Communication interfaces (SpaceWire, CAN, 

Ethernet)

Reconfigurable Systems

Static Dynamic

Embedded Systems

Applications: DSP, 

automotive, 

communicationsIn
te

rf
a
ci

n
g

Digital Logic Design



Conclusions
 A framework was presented for Dynamic Management of

Optimization of Run-Time Reconfigurable Architectures. The
examples presented (Pixel Processor, 2D FIR Filter) were
successfully tested on several standard video sequences.

 The results suggest that the general framework can be
applied to a variety of digital systems. This framework will
lead to exciting new methods. As an example, consider the
automatic generation of time-varying constraints. For
example: detection of a scene triggers a requirement for
increased accuracy, a scene remaining still triggers a
requirement for a decrease in energy consumption.

 The presented work opens up new exciting
interdisciplinary research opportunities (e.g.:
automotive applications, design space exploration,
automatic constraints generation, pervasive healthcare
applications, low power applications).


