

Fly-Inspired Edge Detection: Architecture and Reconfigurable Embedded Implementation

OLUWAKEMI ADABONYAN, DANIEL LLAMOCCA, AND BRIAN DEAN

Electrical and Computer Engineering Department, Oakland University August 8th, 2018

OAKLAND UNIVERSITY.

Reconfigurable Computing Research Laboratory

- Introduction
- Fly-Inspired Edge Detection
- Fixed-Point Hardware Architecture
- Run-Time Reconfigurable Embedded System
- Results

Introduction

- The common housefly can perform complicated image processing tasks such as object recognition, motion detection, obstacle tracking and avoidance.
- Fly-Inspired edge detection can outperform or supplement traditional image processing systems: The integration of the unique abilities of the fly-inspired optical front-end with existing imaging technologies can produce efficient machine vision systems ranging from unmanned aerial and ground vehicles to structural monitoring.
- Large data processing requirements: Dedicated hardware implementations are desired. To optimize resources, we use fixed-point arithmetic.

Fly-Inspired Edge Detection RECRLab

Vision Sensor (Optical Front-end). Plano-convex lens (12 mm diameter and 12 mm focal length) placed above 7 photodiodes arranged in a hexagonal pattern.

- Hexagonal pattern approximates fly-eye optical arrangement.
- A single photoreceptor response to a sweeping laser beam resembles a Gaussian signal. Photoreceptors' response to an object in their Field of View (FOV) is a set of overlapping Gaussians.
- Example: Response from 3 photoreceptors to an object moving across their FOV. Overlap represents area in space where different photoreceptors FOV overlap. Motion is detected when 2 neighboring photoreceptors detect a concurrent change in response.

Fly-Inspired Edge Detection RECRLab

- Analog System: Original system fully tested*. Our work (fully digital system) is based on this system.
- Components:
 - *Biomimetic Front:* 7 photo elements in a hexagonal pattern.
 - Trans impedance: Converts current to voltage (7 signals) to match the environment.
 - *Filter*: Removes interference due to indoor lightning.
 - *Light Adaptation:* Removes effects caused by ambient light.
 - Edge Detection: Produces 11 binary signals with information about the presence, orientation, and location of an edge.

* B. K. Dean, *"Light Adaptation and Applications for a Fly Eye Vision Sensor"*, Ph.D. Dissertation, University of Wyoming, 2012.

JNIVERSI

Digital System for Fly-Inspired Edge Detection

- Optical Electrical Interface: Trans-impedance amplifier. By using ADCs, the 7 analog outputs are converted into digital signals.
- Filter and Light Adaptation Stage: Fully Pipelined and Scalable Hardware Implementation.
- Edge Detection: It extracts information from the scene for edge detection: orientation and location.

- Filter and Light Adaptation: Fully-pipelined, parameterized VHDL architecture* that uses fixed-point arithmetic:
 - Input: [B B-1]. Output/intermediate signals: [BO BQ].
 - Design Parameters: B, BO, BQ, NH (# of bits of filters' coefficients)

Fly-Inspired Edge Detection

Fly-Inspired Edge Detection: After the sensor outputs are passed through the Filter and Light Adaptation circuit, we can identify the orientation of an edge and determine its location.

• Edge Orientation:

• Based on Madsen's algorithm. 4 orientations of interest. The equations yield the magnitude of the intensity of each orientation.

Fly-inspired Edge Detection RECRLeb

• Edge Location:

For Horizontal Edge Location: 3 average light intensities are computed: upper (H_u), center (H_c), and lower (H_l). Plotted together, they produce an overlapping Gaussian profile. By carefully comparing each curve to the others, the Field of View (FOV) can be divided into 4 sections and the sensor can identify which section the edge is within: Upper FC, Lower FC, Upper NC, Lower NC.

Similarly, for the Forward Diagonal Edge and Back Diagonal Edge, we can divide the FOV into 4 sections.
 Vertical Edge: Besides Zone 1 for FC, NC, a more refined OAKLAN Zone 2 for FC, NC exists → FOV is divided into 8 sections.

- Edge Detection: Extract Edge Feature Set
 - Average light intensities are computed for each edge:
 - Horizontal Edge: H_u , H_l , H_c .
 - Forward Diagonal Edge: F_d , F_l , H_c . Backward Diagonal Edge: B_d , B_l , B_c .
 - Vertical Edge: left: V_l , middle left: V_{ml} , center: V_c , middle right: V_{mr} , right: V_r .
 - Horizontal Edge: Location is refined by computing:
 - $H_{ul} = H_u H_l$. If $H_{ul} < 0$, edge above the center point of the sensor' FOV.
 - $H_{uc} = H_u H_c$. If $H_{uc} < 0$, edge above center point and far from center point.
 - $H_{lc} = H_l H_c$. If $H_{lc} < 0$, edge below center point and far from center point.
 - Similar features are computed for the other edges, this results in:
 - 4 horizontal edge features: $H_d = H_{ul}$, H_{lc} , H_{uc} , $|H_d|$
 - 4 forward diagonal edge features: F_{d} , F_{lc} , F_{uc} , $|F_d|$
 - 4 backward diagonal edge features: B_d , B_{lc} , B_{uc} , $|B_d|$
 - 8 vertical edge features: V_d , V_{lc} , V_r , V_{l_m} , V_{ml_c} , V_{r_mr} , V_{mr_c} , $|V_d|$

4 edge orientation and 16 edge location signals

• *Hardware*: The average light intensities and the derived signals are implemented using simple arithmetic units: addition, Subtraction, absolute value.

• Edge Detection: Digitize

- It performs comparisons to produce 26 binary values for edge orientation and location. Inputs: orientation signals (|H_d|, |V_d|, |F_d|, |B_d|) and location signals (the other 16 signals).
 - Max.: Compares orientation signals against each other, it generates 6 signals.
 - Thresholding: sets the threshold T for detecting an edge.
 - Edge Location Information: Compares the 16 edge location signals with 0.
- Hardware: Set of signed comparators with a constant (T or 0) and with a signal.

	Maximum -	$6 \longrightarrow C_{hv} C_{hf} C_{vf}$	C _{vf} MAXIMUM			THRESHOLD		EDGE LOCATION INFO			
T→		$C_{hb} C_{vb} C_{fb}$	Comparison	Output	Comparison	Output	Comparison	Output	Comparison	Output	
$ \underset{H_{lc}}{\overset{ H_d }{\longrightarrow}} \underset{H_{uc}}{\overset{H_d}{\longrightarrow}} $	Thresholding -	$\xrightarrow{4} C_{ht} C_{vt} C_{ft} C_{bt}$	$ H_d > V_d $	$C_{hv} = 1$	$ H_d > T$	$C_{ht} = 1$	$\overline{\underline{H}}_d > 0$	$C_h = 1$	$V_d > 0$	$C_h = 1$	
			$ H_d > F_d $	$C_{hf} = 1$	$ V_d > T$	$C_{vt} = 1$	$H_{lc} > 0$	$C_{hl} = 1$	$V_{lc} > 0$	$C_{vl} = 1$	
$ V_d V_d \Longrightarrow$	Horizontal Edge	$3 \rightarrow C_h C_{hl} C_{hu}$	$ V_d > F_d $	$C_{vf} = 1$	$ F_d > T$	$C_{ft} = 1$	ਖੇ _{Huc} > 0	$C_{hu} = 1$	$V_{rc} > 0$	$C_{vr} = 1$	
$V_{lc} V_r \Longrightarrow$			$ H_d > B_d $	$C_{hb} = 1$	$ B_d > T$	$C_{bt} = 1$	$F_d > 0$	$C_{f} = 1$	$V_{l_ml} > 0$	$C_{vl_ml} = 1$	
$V_{l_ml} V_{ml_c} \xrightarrow{V_{mr}} V_{mr} \xrightarrow{V_{mr}} \xrightarrow{V_{mr}}$	Vertical Edge	$\xrightarrow{7} C_v C_{vl} C_{vr} C_{vl_ml}$	$ V_d > B_d $	$C_{vb} = 1$		ward gonal	$F_{lc} > 0$	$C_{fl} = 1$	$V_{ml_c} > 0$	$C_{vml_c} = 1$	
$ F_d F_d \longrightarrow$		ovmi_c ovr_mr ovmr_c	$ F_d > B_d $	$C_{fb} = 1$		For Diaç	$F_{uc} > 0$	$C_{fu} = 1$	$V_{r_mr} > 0$	$C_{vr_mr} = 1$	
F_{lc} F_{uc}	Location Info.	$\xrightarrow{3} C_f C_{fl} C_{fu}$			ı	ard al	$B_d > 0$	$C_{b} = 1$	$V_{mr_c} > 0$	$C_{vmr_c} = 1$	
	Backward Diagonal	$\xrightarrow{3} C_b C_{bl} C_{bu}$				ckwa	$B_{lc} > 0$	$C_{bl} = 1$		Vertical	
$B_{La} B_{La}$						Dia	$B_{uc} > 0$	$C_{bu} = 1$	OAK	LANI	
									UNIV	ERSITY.	

- Edge Detection: *Edge Logic (11 output bits)*
 - It determines: edge presence (E), orientation (H,V,F,B), and location (UR, FC1, FC2). Far from Center: Zone 1 (H,V,F,B). Zone 2 (only V).
 - UR: Upper/Right. It determines whether an edge is on the upper or lower half. Vertical edge: right or left half. $LL = \overline{UR}$: Lower/Left.
 - Location can be refined:
 - FC1: Far from Center Zone 1. NC1: Near from Center Zone 1 = $\overline{FC_1}$
 - Only for Vertical Edge: FC₂: Far from Center Zone 2, $NC_2 = \overline{FC_2}$.

- For real-time hardware validation, the Edge Detector was placed in a Run-Time Reconfigurable embedded system.
- It was implemented on a Programmable System-on-Chip that integrates:
 - Processing System (PS): dualcore ARM[®] processor and common peripherals
 - Programmable Logic (PL): runtime reconfigurable fabric (FPGA).
- The PS feeds data to/extracts data from our Edge Detector via an AXI4-Full Interface.

- Target device: Xilinx[®] XC7020
 Zynq-7000 All Programmable
 SoC.
- It was tested on a ZED Development Board.
- AXI Pressure Estimator Peripheral: It includes our design. It is located in the PL, and it runs at 50 MHz.

- Fly-Inspired Edge Detector Peripheral: our design + a 32-bit AXI4-Full Slave Interface (2 FIFOs, control, and extra logic).
- With this configuration, we feed the data sets and then retrieve the results via the AXI4-Full Interface.

Results

• Experimental Setup: 11000 sets of seven samples

- 2 Hardware configurations: Fixed-point formats [18 14] and [16 12].
- To illustrate hardware accuracy, we multiplied the binary values by a constant and added an offset to emulate analog values. Hardware verification: via hardware simulation and real-time embedded testing. *Metric used*: relative error: (HW-MATLAB)/MATLAB

• We show results for Horizontal Edge Detector (Bit H). Note OAKLAN that the curves are pretty close. This occurs for all the bits.

- Hardware resources: (only hardware core)
 - [18 14] design: 19264 LUTs, 48393 FFs, 79 DSPs.
 - [16 12] design: 16157 LUTs, 32987 FFs, 79 DSPs.
- Reconfigurable Partition (RP):
 - RP size: 88×150 Slices (device: Zynq-7000). Partial bitstream size: 3285 KB.
 - By loading partial bitstreams, the designs [18 14] and [16 12] can be swapped at run-time in order to adjust accuracy and power consumption.
 - [16 12] design: 36% of the LUTs and FFs available in the RP
 - [18 14] design: 52% of the LUTs and 58% of FFs available in the RP.
 - Reconfiguration speed (PCAP): 128 MB/s. Reconfiguration Time: 25.66 ms.

Execution Time:

- Hardware Processing cycles: 8 + 2(BO+14).
 Operating frequency: 50 MHz.
 - [18 14]: Output data computed in 72 cycles.
 - [16 12]: Output data computed in 68 cycles.
- Embedded System Processing Time: It includes reading the entire input data set (11000 samples), processing them, and storing the output results on the SD card.
 - [18 14]: It takes 33.7 ms.
 - [16 12]: It takes 30.1 ms.

Conclusions

- A hardware design was completed for fly-inspired edge detection. Verification was carried out via time-accurate simulation.
- The hardware design was placed in a reconfigurable embedded system. Real-time testing was carried out using *11000* sets of data. The system correctly detected the edges, their orientation and location at a fast enough rate to keep up with scene changes.
- The run-time alterable embedded system was successfully tested with 2 configurations that vary in their numerical representation. This allows for a trade-off between power and accuracy.

