
Design and Implementation of a
High-Performance Embedded

Course for the next-generation
workforce

DANIEL LLAMOCCA

Electrical and Computer Engineering Department,

Oakland University

March 19th, 2022.

Outline
▪ Motivation

▪ Hardware/Software Equipment

▪ Course Structure

▪ Assessment

▪ Outcomes

▪ Conclusions

Motivation
▪ Embedded Design is covered

in a typical undergraduate
curriculum in Computer
Engineering using standard
low-power microcontrollers.

Power

Performance

Low-End Embedded

Microcontrollers
(ARM Cortex-M)

Low-Cost Processors

(Intel Atom)

Powerful Processors

(Intel Core i7)

Servers

Desktops

Embedded

High Performance Scalable

Processors (Intel Xeon)

▪ Powerful embedded microprocessors can be used instead
(e.g.: Intel Atom, ARM Cortex-A9). They allow for:

▪ More opportunities for learning skills (e.g.: parallel
programming models) in high demand in industry today

▪ Focus on high-end emerging industry-relevant applications
(e.g: beamforming, multi-sensor fusion) and workloads.

▪ We present a research and educational infrastructure for
high-performance embedded programming tailored to
the needs of both our graduating students & industry.

Hardware/Software
Equipment

▪ Hardware: DE2i-150 FPGA Development Kit (provided)

▪ Full featured computer: it includes an Intel Atom N2600 + 2 GB
RAM, and an Altera FPGA (not used).

▪ Software: Ubuntu 12.04.4 version installed on the boards.

▪ Applications are written in C/C++.

▪ Application development: simple text editor or IDE (e.g.: Clion).

Course Structure
▪ Topics: These were carefully selected and grouped into seven

units. Lecture notes were developed for each unit:

▪ Embedded Multi-Core Systems: Overview of microprocessors for
embedded applications; details of the Intel® AtomTM processor.

▪ C/C++ Language Programming Fundamentals: C/C++ constructs
required to work with the parallel programming frameworks.

▪ Multi-threaded applications: Standard programming interface for
multi-threads: direct thread specification (pthreads)

▪ Multi-core applications: We cover the Intel TBB, a template for
parallel programming on multi-core processors. Computations are
broken down into tasks rather than threads.

▪ Real-Time Programming: Here, we cover some introductory topics
on real-time programing.

▪ Design & Optimization of Embedded Real-Time Systems: system
profiling and application profiling for single-core and multi-core.

▪ Applications: CNNs, Beamforming, Cylinder Pressure Est.

Course Structure
▪ Assignments: The evaluations were organized as follows:

▪ Four (4) homeworks
▪ Eight (8) laboratories: They were focused on the development of

embedded applications using the parallel frameworks.
▪ Take-home midterm exam (application implementation)
▪ Final Project (groups of 2): students implemented a scalable

application and perform extensive performance comparisons based
on app. parameters and problem sizes. This includes a final report.

Lab Description

1 Board Setup, Basic Utilities. Basic C applications (num., computation of)

2
C/C++ Programming.
Image Convolution in C. Neural Network Layer Implementation in C++ using functors.

3 pthreads: Centered moving average (window size = 7): varying # of threads

4 TBB: parallel_for. Gamma Correction applied to a grayscale image.

5 TBB: parallel_for + parallel_reduce: Neural Network Layer Implementation.

6 TBB: parallel_for + parallel_reduce: Image Histogram computation

7
TBB: parallel_pipeline. Streaming vectors. Computation time analysis with different
number of vectors and vector sizes.

8 Real-Time Programming: Handling signals and RTC configuration

Course Structure
▪ The table list the topics along with the associated assignments

Unit Topic Assignments Associated Material

1 Embedded Multi-Core Systems
Homework 1

Laboratory 1

Lecture Notes – Unit 1

Tutorial 1: Getting Started with the Hardware &

Software Platform

2
C/C++ Language Programming

Fundamentals

Homework 2

Laboratory 2

Lecture Notes – Unit 2

Tutorial 2: C/C++ Programming

3 Multi-threaded applications Laboratory 3
Lecture Notes – Unit 3

Tutorial 3, Tutorial 4: pthreads

4 Multi-core applications

Homework 3

Laboratory 4

Laboratory 5

Laboratory 6

Laboratory 7

Lecture Notes – Unit 4

Tutorial 5: Threading Building Blocks (TBB)

5 Real-Time Programming
Homework 4

Laboratory 8

Lecture Notes – Unit 5

Tutorial 6: Real-Time Programming

6
Design and Optimization of

Embedded Real-Time Systems
 Lecture Notes – Unit 6

7 Applications Lecture Notes – Unit 7

▪ Laboratory Equipment: Intel® donated 26 DE2i-150
Development Kit. The plan is to fit a laboratory room with the
equipment, but students prefer to borrow the boards.

▪ Textbook: Not required. We have enough material:

▪ Lecture Notes, Tutorials, Source Code.

Course Structure
▪ Accompanying Tutorial: A total of 8 step-by-step tutorials were

developed. Each ones includes pdf notes and source code:

1. Getting Started with the Hardware and Software Platform: DE2i-250
Dev. Kit and Ubuntu Linux: installation, setup, examples.

2. C/C++: 2D Convolution in C, neuron implementation in C+.

3. Pthreads: Basic examples, 2D convolution, dot product (mutex)

4. Pthreads: Matrix multiplication

5. TBB – parallel_for. Basic examples: element-wise vector ops, 3-element
moving average, grayscale morphological ops.

6. TBB – parallel_reduce. Examples: array accumulation, computation of
, dot product, maximum out of each row in a matrix, add a group of
vectors element-wise.

7. TBB – parallel_pipeline. Modulus of two vectors, sum of squared
values in a vector, processing incoming vectors,

8. Real-Time Programming. Handling signals (setup, catch),
configure and test the Real-Time Clock.

Course Structure
▪ Online material: The material is freely available at the

Reconfigurable Computing Research Laboratory website at
Oakland University.

▪ Class: (click to show some samples) *Update: ECE4772

▪ Lecture notes for the seven units

▪ Four homeworks with solutions

▪ Midterm Exam

▪ Final project guidelines along with students’ final reports and
presentations.

▪ Eight laboratory experiments

▪ Tutorial: (click to show some samples)

▪ Eight step-by-step tutorials: pdf notes, source code.

▪ We are exploring other venues to deploy the material:
seminar series and summer workshops.

https://www.secs.oakland.edu/~llamocca/Fall2021_ece4900.html
https://www.secs.oakland.edu/~llamocca/emb_intel.html

Assessment
 Learning outcomes include competence in topics, proficiency in multi-

threading/multi-core programming, and oral/written presentation.
Student Learning Outcomes Activities

Describe the generalized architecture of the Intel Atom® microprocessor.
Laboratory 1

Homework 1

Implement software applications with C/C++ on Ubuntu Linux.
Laboratory 2

Homework 2

Implement real-time embedded applications on Ubuntu Linux.
Laboratory 8

Homework 4

Design and implement multi-threaded software applications.
Laboratory 3

Midterm Exam

Design and implement multi-core applications to enable parallelism and pipelining.

Laboratory 4,5,6,7

Homework 3

Midterm Exam

Design applications that utilize the computer resources in a scalable fashion
Laboratory 7

Final Project

Work in a team environment to design a real-time multi-threaded embedded

application and communicate the results in a written report and an oral presentation.
Final Project

 Two main reasons were identified that improve student

engagement, learning outcomes, and student success:

 Multi-threaded/multi-core: The class builds upon students’ prior
knowledge on uP and lets them explore parallelization strategies.

 Opportunities for research in state-of-the-art topics:
task-based specification via TBB.

Outcomes
 Student Projects: Students developed the applications using

TBB/pthreads, and performed time comparisons based on
application parameters and sizes.

 Grayscale Image Morphology: Implementation of Dilation, Erosion,
Opening, Closing, Boundary Extraction.

 Matrix Multiplication: Implementation of the Strassen Algorithm.

 Convolutional Neural Network: 2 convolutional layers (6 @ 24x24,
24 @ 8x8, 3 fully connected layers (384, 128, 10).

 A* Search Algorithm: A GUI was included that showed in real-time
how the algorithm calculates the optimal path.

 Thermal Analysis: Finding and evaluation of heat sources in thermal
imaging. Proper use of parallel pipelines.

 Maldelbrot: This implementation also included the use SIMD
instructions, resulting in high speedups (~15X). Given the successful
results of including SIMD, we plan to include SIMD as part of the
course topics in future implementations.

Outcomes
 Student Survey: At the end of the semester, students completed an

anonymous survey. This is a selection of the questions asked.
 Q1: The instructor did a good job of making the objectives of the course

clear to me.
 Q2: The instructor stimulated and deepened my interest in the subject.
 Q3: The instructor motivated me to do my best work.
 Q4: Value of the laboratory component of the course.
 Q5: Overall rating of this course as a learning experience.

 For each of the questions (Q1-Q5), all students provided the same
ratings, and thus the avg. rating for each question was identical:

 Fall 2020: 5 students, 3 responses. Average Rating (Q1 –Q5): 4.7/5.0

 Fall 2021. 5 students, 4 responses. Average Rating (Q1-Q5): 5.0/5.0.

 Students rated their experience very highly, though the number of
responses is small. Students also provided comments:

 They were excited about the contents and material, and very
engaged with the lab. experiments. An undergrad said they
wanted to pursue this area of research in their masters’.

Conclusions

 We presented results and outcomes from the implementation
of a course in high performance embedded programming.

 The covered material (freely available) was successful in terms
of student engagement and learning outcomes. Students
rated their overall experience highly.

 There is room for improvement: we plan to add more topics
(virtualization, SIMD, onetbb).

 The proposed course complements the OU CE program by
offering training and research opportunities to undergraduate
students in the latest embedded technology.

 Due to the small number of students, most students worked
on their own, which did not facilitate team building. We
expect this issue to be resolved with increased enrollment in
the coming semesters.

