
Towards an Embedded System 
Curricula for the next-generation 

workforce

DANIYAH ALASWAD DANIEL LLAMOCCA, BYRON

GILLESPIE

Electrical and Computer Engineering Department,

Oakland University

March 23rd, 2019



Outline

▪ Introduction

▪ Development

▪ Proposed Embedded Curriculum

▪ Implementation Stage



Introduction
▪ Embedded Design is covered in a typical undergraduate 

curriculum in Computer Engineering using standard low-
power microcontrollers.

▪ Powerful embedded microprocessors can be used instead 
(e.g.: Intel Atom, ARM Cortex-A9). They allow for i) a wider 
range of opportunities for learning skills in high demand in 
industry today, and ii) focus on high-end emerging industry-
relevant applications and workloads.

▪ We propose a high-end embedded curriculum tailored to 
the needs of both our graduating students and industry. The 
goal is to train the next-generation workforce with the latest 
embedded technology using current industry-relevant 
applications.



Development
▪ Plan: develop and implement an embedded curriculum that 

meets the needs of the next-generation of graduating 
students entering the workforce.

▪ Platform: Intel Atom®. The focus in on emerging industry-
relevant applications and workloads that push the envelope 
of computing.

Power

Performance

Low-End Embedded
Microcontrollers
(ARM Cortex-M)

Low-Cost Processors
(Intel Atom)

Powerful Processors
(Intel Core i7)

Servers

Desktops

Embedded

High Performance Scalable Processors
(Intel Xeon)

Proposed OU

Embedded Curriculum



Development
▪ The Intel® Hardware and Software Curriculum is organized 

into five main topics, of which we focus on two:
▪ Hardware/Software: Real-Time Programming, Endian Neutral 

Programming, Multi-Core/Multi-Threading, Firmware, Virtualization

▪ Applications Environments: Security and Secure Applications, Power 
Aware Applications, Networking Applications, Embedded Software 
Development and Debug Tools, Reliability and Serviceability, Safety and 
Certification.

▪ Gap Analysis: The Comp. Engineering (CE)undergraduate 
curriculum at Oakland University has a strong emphasis in 
Embedded Systems and Digital Design. Still, some topics 
listed in the Intel® HW/SW Curriculum were not covered: 
▪ Not covered: Firmware, Virtualization, Power Aware Applications, 

Networking Applications

▪ Partially covered: Real-Time Programming, Endian Neutral Programming, 
Multi-Core/Multi-Threading, Security and Secure Applications,
Reliability and Serviceability.



Proposed Embedded Curriculum
▪ Topics already covered by the OU CE curriculum were not included.

▪ Though we would like to cover all these topics, when deploying the 
curriculum, we will start by covering the most important ones.

H
a

rd
w

a
re

/
S

o
ft

w
a

re

Real Time 

Programming

Hard Real-Time, Soft-Real Time Interrupts: Sources, ISRs, Latency

Run to completion/Pre-Emption Direct Memory Access Controllers

Real-Time Operating System Application: Digital Display for Auto Navigation

Multi-Core/Multi-

Threading

Elements of Parallel programming and multi-

threading

Data/Task Parallelism
Inter-process communication and thread synchronization
Re-Entrant and Thread Safe Programming

NUMA Programming Programming with threading APIs

Threading Building Blocks, OpenMP Software development tools for multi-threading

Debugging and testing multi-threaded applications, common parallel prog. problems

Applications: Image filtering, beamforming for smart antennas, multi-sensor fusion

Virtualization
Hypervisors PCI-SIG I/O Virtualization (IOV)

CPU, Memory, Network, I/O, virtualization Device emulation, Interrupt Delivery

Application: Dual operation: navigation system and back seat displays

Endian Neutral 

Programming

Code Portability, Compile Time Controls Data Transfer, Data Types

Byte Swap Macros, Network Byte Ordering Data Storage and Shared Memory

Firmware
System Initialization – Boot loaders/BIOS Microcode

Firmware and Driver Development Application Programming Interface (API)

A
p

p
li

c
a

ti
o

n
s
 E

n
v
ir

o
n

m
e

n
ts

Networking 

Applications

Network Stack/OSI Model, TCP/IP protocol: IPv4, IPv6 Bluetooth

Wireless 3G/4G technologies Ethernet/IEEE 802.x specifications

Embedded SW Dev. 

and Debug Tools

Open source vs proprietary tools Assemblers/compilers/linkers. Single Stepping

Debuggers, JTAG debug. Software Profiling + code coverage tools Virtual Memory Mapping

Security and Secure 

Applications

Internet Protocol Security (IPSec) Private and Public-key encryption

Secure Sockets Layer (SSL). Security Algorithms (DES, AES, etc) Open Source implementations (Open SSL)

Reliability & 

Serviceability, Safety 

and Certification

ECC protection, CRC checksums Partitioning/domaining of computer components

Lock-step to perform master-checker Computer clustering capability

Avoid single point of failures Virtual machines

Hot swapping of components Failover capability

Power Aware 

Applications

Dynamic Power Management (DPM) Dynamic Voltage/Frequency Scaling (DVS)

Profile of application over memory banks Shutting down unused peripherals



Implementation
The activities leading to the implementation and deployment 
of the Embedded curriculum are listed as follows:

▪ Basic Command of the Hardware and Software Tools
▪ Yocto Linux and the Development Board (Terasic DE2i-150 Dev. Kit). A 

tutorial is has been developed.

▪ Basic software applications. A tutorial has been completed.

▪ Development of Sample Applications and Documentation
▪ Multi-threading: matrix multiplication, 2-D convolution, Convolutional 

Neural Networks (in progress). A set of tutorials have been completed.

▪ Virtualization, Real-Time Programming and Multi-Core (in progress)

▪ Others (not yet started).

▪ Deployment of the curriculum: *not all the topics in the 
proposed Embedded Curriculum will be covered.

▪ Proposed Venues: Seminar Series, Summer Workshop, Elective Course.

▪ It was decided to start with an Elective course once all the sample 
applications have been tested and documented.



Implementation
Elective Course: Here, we list some tentative features of this 
senior-level elective course. 

▪ Structure: 4 homeworks, 6 laboratory experiments, 1 
Midterm Exam, and 1 Final Project.

▪ List of topics to cover: 

▪ Classic Topics: real-time programming, multi-core/multi-thread 
computing, virtualization, and endian neutral programming.

▪ Scale concept of systems (from embedded microcontrollers to 
supercomputers), pushing the envelope of computing.

▪ Special emphasis: emergency applications and workloads that 
are industry-relevant.

▪ Set of Tutorials on the Development Tools (next slide).

▪ Plan to: i) fit a room with equipment (15-20 boards), ii) 
ensure that the teaching materials can be re-purposed for a 
different Intel microprocessor and/or Dev. Board.



Implementation
Tutorial Structure: In the table, items shaded in green are completed

sections (software routines tested, tutorials developed). Shaded in purple: 
currently in progress.

Getting Started

▪ Getting Started with the DE2i-250 Development Kit and Yocto Linux: accessing features 

of the system, editing text files.

▪ First Example in C: code editing and compilation

▪ Conditional statements, loops

▪ Arrays, pointers, functions. Use of makefiles

▪ Dynamic memory allocation

Multi-threads/ 

multi-core M
u

lt
i-

th
re

ad
s

▪ pthreads: Basic Example.

▪ Matrix multiplication. Performance comparison with non-threaded case.

▪ 2D Convolution. Performance comparison with non-threaded case.

Industry-relevant 

applications

▪ Convolutional Neural Networks

▪ Sensor Fusion

▪ Adaptive Beamforming

▪ Image Filtering: Spatial and Radon-based 2D Convolution

▪ Threading Building Blocks (TBB)

▪ OpenMP

▪ NUMA Programming

Real-Time 

Programming

▪ Real-Time Operating System (RTOS)

▪ Interrupt: Sources, ISRs, Latency

▪ Direct Memory Access

Virtualization

▪ Hypervisors

▪ CPU virtualization

▪ Memory virtualization

▪ I/O Virtualization



Implementation
Tutorials: Most of the material developed still needs to go 
through more rigorous formatting and finishing touches.

 At this point, we have three complete step-by-step tutorials. 
These tutorials include all the software files:

 Introduction to Hardware and Software Tools and C 
Programming: Basics of the Development Kit, Yocto Linux, C 
code basics (arrays, loops, pointers, functions), and 
compilation.

 Multi-threading for Matrix Multiplication: Customizable multi-
threaded application. Performance comparisons with a non-
threaded version is included.

 Multi-threading for 2D Convolution: Customizable multi-
threaded application for image convolution. Performance 
comparisons with a non-threaded version is included.



Implementation
Timeline: This is organized into 9 tasks, indicated which ones 
will be completed for each quarter. The project started Fall 2018

2018-2019 2019-2020 2020-2021

Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4

1. Gap Analysis

2. Sample Applications – Set I:
Multi-threading, Virtualization, Real-Time 
Programming, Multi-Core

3. Sample Applications – Set II:
Firmware, Networking, Security.

4. Documentation

5. Course Design: Tutorials – Set I

6. Course Design: Materials for topics in 
Sample Application Set I

7. Course Deployment

8. Objective Outcomes: data collection

9. Teaching Material Development for Set I



Conclusions

 A new embedded curriculum has been presented tailored to 
high-performance embedded microprocessor

 This was accomplished by assessing the gaps in the 
undergraduate curriculum and by targeting industry 
applications in the local area.

 We have laid out a development plan (tutorials, course 
design) and work is currently underway.

 The proposed curriculum is meant to complement the OU CE 
program by offering training and research opportunities to 
undergraduate students in the latest embedded technology.


