
Daniel Llamocca

Ingo Steinwart

� Objectives

� Basics of CUDA (Compute Unified Device
Architecture) Programming Model

� Parallelization of the algorithms

� Issues and performance guidelines

� Results

� Conclusions

� Expose and exploit parallelism of the following
routines:
� Support Vector Machine testing (classification)

� Support Vector Machine training

� Validation phase of SVM training� Validation phase of SVM training

� GPU implementation of the parallel algorithms.

� Obtain significant speedup improvements.

� CUDA: Computing architecture that leverages the
parallel computing engine on NVIDIA GPUs. It allows
developers to use C language.

� Parallelism is described by a grid that consist of
blocks, each block having a number of threads:

Block(0,0) Block(1,0)

Block(0,1) Block(1,1)

Grid

Thread (0,0)

Block (1,0)

Thread (1,0) Thread (2,0)

Thread (0,1) Thread (1,1) Thread (2,1)

� Grid Size and Block Size limitation:

NVIDIA GTX 295: 512 threads per block (1D, 2D, or 3D
block). 65535 blocks per grid (1D or 2D grid)

� All threads in a block run in parallel. A limited number
of blocks can be run in parallel. NVIDIA GTX 295: 30
SM (streaming multiprocessors) � up to 30 blocks SM (streaming multiprocessors) � up to 30 blocks
can execute concurrently, i.e. 30x512 = 15360 threads.

Block(0,0)

Kernel Grid

Block(1,0) Block(2,0) Block(3,0)

Block(0,1) Block(1,1) Block(2,1) Block(3,1)

Block(0,2) Block(1,2) Block(2,2) Block(3,2)

Device with 3 SMs

SM0 SM1 SM 2

Block(0,0) Block(1,0) Block(2,0)

Block(3,0) Block(0,1) Block(1,1)

Block(2,1) Block(3,1) Block(0,2)

Block(1,2) Block(2,2) Block(3,2)

� Kernel: Code executed on the GPU:
C Program Sequential Execution

Serial Code

Parallel Kernel 0

Host (CPU)

Device (GPU)

Grid 0

Block(0,0) Block(1,0) Block(2,0)

Serial Code

Parallel Kernel 1

Block(0,1) Block(1,1) Block(2,1)

Block(0,2) Block(1,2) Block(2,2)

Host (CPU)

Device (GPU)

Grid 1

Block(0,0) Block(1,0)

Block(0,1) Block(1,1)

� GPU Memory: There are 4 basic kind of memories:
� Global Memory: Non-cached and high latency memory.

It is available to all threads and is able to communicate
with CPU memory.

� Shared Memory: Faster than global memory. GTX295: � Shared Memory: Faster than global memory. GTX295:
16384 bytes of shared-memory per thread block.

� Constant Memory, Texture Memory.

� Streams: Allow CPU to GPU communication to overlap
with GPU kernel execution.

� The following function is to be computed:
() ()

SVktscoefficientrainysampledatasettrainxt

Nisampledatasettestx

datasettestixxtKyxf

kkk

i

SVk

ikkki

:1,:,:

:1,:

,,

=

=

∈∀= ∑
∈

α

α

� Parallelization: 2 Kernels:

� Compute individual summations: Each thread will
compute SPT sums of products.

� Compute final function value: Each thread will add up
the previous values to get the final function value.

kkk

� First Kernel: Each thread computes SPT sums of
products. (SPT = 4, 8, 12, …)

GX Blocks

TPB Threads

()∑
−

=

1

0

,

SPT

k

ikkk xxtKy α

G
Y

B
lo

ck
s

()







=





=

≤

GX
GY

SPTTPB

SV
GX

GYGX

gridabyprocessedsamplestestGY

blockperthreadsTPB

65535
,

*

65535*

:

512,256:

� 1st kernel output: A vector of
SV/SPT elements for every one
of the GY samples. Vectors are
stored in global memory

TPB*GX elements

G
Y

e
le

m
e

n
ts

� Second Kernel: Each thread will add up the previous
values to get the final function value for a test sample.

()

GY

blockperthreadsTPB 512,256:



� 2nd kernel output: A vector
of GY function values

B
lo

ck
s

TPB Threads

fu
n

ct
io

n
 v

a
lu

e
s

gridabyprocessedsamplestestGY

TPB

GY
NGY

:







=

N
G

Y
B

lo
ck

s

G
Y

fu
n

ct
io

n
 v

a
lu

e
s

� Since N test samples might be way larger than GY, the
2 kernels have to be run NC times. 





=

GY

N
NC

� ‘frings.lanl.gov’ machine: It contains 2 NVIDIA GTX295
boards, each one with 2 GPUs.

� Therefore, we further parallelized the algorithm by
running 4 CPU threads, each CPU thread run a GPU device
code independently. The number of test samples is divided code independently. The number of test samples is divided
in 4 chunks, each chunk is processed by a GPU device.

Kernel 0

Device 0 - Grid

Kernel 1 Kernel 2 Kernel 3

Test samples

Serial Code

Device 1 - Grid Device 2 - Grid Device 3 - Grid

� GY, GX, NGY, NC involve floor and ceil operations. Take
NC for instance: at the last run, the number of samples
processed has to be smaller than GY, otherwise there will
be wasted computation. This introduces more flow control
that impacts the overall performance.

� Call to CPU thread that enables GPU operation: There is an
overhead of 80 ms. Try to keep those calls as low as overhead of 80 ms. Try to keep those calls as low as
possible.

� Global GPU memory is not cached, thus this is the slowest
memory. In our case, shared memory was deemed
impractical and global memory was used.

� Communication between CPU memory and GPU global
memory is the slowest process. Do it when really necessary,
and transfer one big chunk instead of several small chunks.

� C10-Oct14 Dataset: 11 decision functions

Test size

S
u

p
p

o
rt

 V
ec

to
rs

815,000 50,000

1000

4 CPU
cores

1 GPU: 36.8 s 4 CPU
cores

1 GPU: 3.7 s

2 GPUs: 20.3 s 2 GPUs: 3.5 s

S
u

p
p

o
rt

 V
ec

to
rs

1000

274.6 s 19.2 s

2 GPUs: 20.3 s 2 GPUs: 3.5 s

3 GPUs: 15.3 s 3 GPUs: 4.6 s

4 GPUs: 13.2 s 4 GPUs: 6.2 s

2000

4 CPU
cores

462.5 s

1 GPU: 78.1 s 4 CPU
cores

29.6 s

1 GPU: 6.2 s

2 GPUs: 41.0 s 2 GPUs: 4.8 s

3 GPUs: 29.1 s 3 GPUs: 4.9 s

4 GPUs: 23.6 s 4 GPUs: 6.2 s

� We achieve speed-up of about 20x is large datasets. In
small datasets, the speed-up is about 6x. This suggests
that the larger the datasets, the better the speed-up
improvement.

� Consider that we are using double floating point � Consider that we are using double floating point
arithmetic (64 bits). This requires twice the amount of
registers in the GPU than in the case of single floating
point arithmetic; if the registers do not fit in the
register space, the compiler will place the ‘registers’ in
the slow global memory.

