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� Expose and exploit parallelism of the following 
routines:
� Support Vector Machine testing (classification)

� Support Vector Machine training

� Validation phase of SVM training� Validation phase of SVM training

� GPU implementation of the parallel algorithms.

� Obtain significant speedup improvements.



� CUDA: Computing architecture that leverages the 
parallel computing engine on NVIDIA GPUs. It allows 
developers to use C language.

� Parallelism is described by a grid that consist of 
blocks, each block having a number of threads:
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� Grid Size and Block Size limitation:

NVIDIA GTX 295:  512 threads per block (1D, 2D, or 3D 
block). 65535 blocks per grid (1D or 2D grid)

� All threads in a block run in parallel. A limited number 
of blocks can be run in parallel. NVIDIA GTX 295: 30
SM (streaming multiprocessors) � up to 30 blocks SM (streaming multiprocessors) � up to 30 blocks 
can execute concurrently, i.e. 30x512 = 15360 threads.
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� Kernel: Code executed on the GPU:
C Program Sequential Execution
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� GPU Memory: There are 4 basic kind of memories:
� Global Memory: Non-cached and high latency memory. 

It is available to all threads and is able to communicate 
with CPU memory.

� Shared Memory: Faster than global memory. GTX295: � Shared Memory: Faster than global memory. GTX295: 
16384 bytes of shared-memory per thread block.

� Constant Memory, Texture Memory.

� Streams: Allow CPU to GPU communication to overlap 
with GPU kernel execution.



� The following function is to be computed:
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� Parallelization: 2 Kernels:

� Compute individual summations: Each thread will 
compute SPT sums of products.

� Compute final function value: Each thread will add up 
the previous values to get the final function value.
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� First Kernel: Each thread computes SPT sums of 
products. (SPT = 4, 8, 12, …)
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� 1st kernel output: A vector  of 
SV/SPT elements for every one 
of the GY samples. Vectors are 
stored in global memory
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� Second Kernel: Each thread will add up the previous 
values to get the final function value for a test sample.
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� 2nd kernel output: A vector 
of GY function values
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� Since N test samples might be way larger than GY, the 
2 kernels have to be run NC times. 
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� ‘frings.lanl.gov’ machine: It contains 2 NVIDIA GTX295 
boards, each one with 2 GPUs. 

� Therefore, we further parallelized the  algorithm by 
running 4 CPU threads, each CPU thread run a GPU device 
code independently. The number of test samples is divided code independently. The number of test samples is divided 
in 4 chunks, each chunk is processed by a GPU device.
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� GY, GX, NGY, NC involve floor and ceil operations. Take 
NC for instance: at the last run, the number of samples 
processed has to be smaller than GY, otherwise there will 
be wasted computation. This introduces more flow control 
that impacts the overall performance.

� Call to CPU thread that enables GPU operation: There is an 
overhead of 80 ms. Try to keep those calls as low as overhead of 80 ms. Try to keep those calls as low as 
possible.

� Global GPU memory is not cached, thus this is the slowest 
memory. In our case, shared memory was deemed 
impractical and global memory was used.

� Communication between CPU memory and GPU global 
memory is the slowest process. Do it when really necessary, 
and transfer one big chunk instead of several small chunks.



� C10-Oct14 Dataset: 11 decision functions
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� We achieve speed-up of about 20x is large datasets. In 
small datasets, the speed-up is about 6x. This suggests 
that the larger the datasets, the better the speed-up 
improvement.

� Consider that we are using double floating point � Consider that we are using double floating point 
arithmetic (64 bits). This requires twice the amount of 
registers in the GPU than in the case of single floating 
point arithmetic; if the registers do not fit in the 
register space, the compiler will place the ‘registers’ in 
the slow global memory.


