A Support Vector Machine
Implementation on NVIDIA
Graphic Processing Units

Daniel Llamocca
Ingo Steinwart




Outline

Objectives

Basics of CUDA (Compute Unified Device
Architecture) Programming Model

Parallelization of the algorithms
[ssues and performance guidelines
Results

Conclusions




Objectives

Expose and exploit parallelism of the following
routines:
Support Vector Machine testing (classification)
Support Vector Machine training
Validation phase of SVM training

GPU implementation of the parallel algorithms.
Obtain significant speedup improvements.




Basics of CUDA Programming Model

CUDA: Computing architecture that leverages the
parallel computing engine on NVIDIA GPUs. It allows
developers to use C language.

Parallelism is described by a grid that consist of
blocks, each block having a number of threads:




Basics of CUDA Programming Model

Grid Size and Block Size limitation:

NVIDIA GTX 295: 512 threads per block (1D, 2D, or 3D
block). 65535 blocks per grid (1D or 2D grid)

All threads in a block run in parallel. A limited number
of blocks can be run in parallel. NVIDIA GTX 295: 30

SM (streaming multiprocessors) = up to 30 blocks
can execute concurrently, i.e. 30x512 = 15360 threads.




Basics of CUDA Programming Model

Kernel: Code executed on the GPU:




Basics of CUDA Programming Model

GPU Memory: There are 4 basic kind of memories:

Global Memory: Non-cached and high latency memory.
It is available to all threads and is able to communicate
with CPU memory.

Shared Memory: Faster than global memory. GTX295:
16384 bytes of shared-memory per thread block.

Constant Memory, Texture Memory.

Streams: Allow CPU to GPU communication to overlap
with GPU kernel execution.




Parallelization of the algorithms
SVM testing

The following function is to be computed:

Parallelization: 2 Kernels:

Compute individual summations: Each thread will
compute SPT sums of products.

Compute final function value: Each thread will add up
the previous values to get the final function value.




Parallelization of the algorithms
SVM testing

First Kernel: Each thread computes SPT sums of
products. (SPT =4, 8, 12, ...)

e

1%t kernel output: A vector of
SV/SPT elements for every one
of the GY samples. Vectors are
stored in global memory




Parallelization of the algorithms
SVM testing

Second Kernel: Each thread will add up the previous
values to get the final function value for a test sample.

g 2"d kernel output: A vector
of GY function values

Since N test samples might be way larger than GY, the
2 kernels have to be run NC times.




Parallelization of the algorithms
SVM testing

‘frings.lanl.gov’ machine: It contains 2 NVIDIA GTX295
boards, each one with 2 GPUs.

Therefore, we further parallelized the algorithm by
running 4 CPU threads, each CPU thread run a GPU device
code independently. The number of test samples is divided
in 4 chunks, each chunk is processed by a GPU device.




[ssues and Performance Guidelines

GY, GX, NGY, NC involve floor and ceil operations. Take
NC for instance: at the last run, the number of samples
Erocessed has to be smaller than GY, otherwise there will

e wasted computation. This introduces more flow control
that impacts the overall performance.

Call to CPU thread that enables GPU operation: There is an
overhead of 8o ms. Try to keep those calls as low as
possible.

Global GPU memory is not cached, thus this is the slowest
memory. In our case, shared memory was deemed
impractical and global memory was used.

Communication between CPU memorﬁ and GPU global
memory is the slowest process. Do it when really necessary,
and transfer one big chunk instead of several small chunks.




Results

C10-Oct14 Dataset: 11 decision functions

50,000

0
=
o
L)
O
=
B
T
o
o
o
3
N

4 CPU
cores

274.6 s

4 CPU
cores

462.5s

815,000
1 GPU:

2 GPUs:
3 GPUs:

4 GPUs:

1 GPU:

2 GPUs:
3 GPUs:
4 GPUs:

36.8s
20.3S
15.3 S

13.2 8

78.1S
41.0 S
20.18

23.6 s

4 CPU
cores

19.2 S

4 CPU
cores

20.6 s

1 GPU:
2 GPUs:
3 GPUs:

4 GPUs:

1 GPU:
2 GPUs:
3 GPUs:

4 GPUs:

378
358
4.6 s
6.2's
6.2's

4.8

6.28




Conclusions

We achieve speed-up of about 20x is large datasets. In
small datasets, the speed-up is about 6x. This suggests
that the larger the datasets, the better the speed-up
improvement.

Consider that we are using double floating point
arithmetic (64 bits). This requires twice the amount of
registers in the GPU than in the case of single floating
point arithmetic; if the registers do not fit in the
register space, the compiler will place the ‘registers’ in
the slow global memory.




