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Abstract

We introduce Dual Fixed Point CORDIC, that provides a
compromise between Fixed Point and Floating Point CORDIC
hardware implementations. A fully parameterized hardware is
presented that allows for extensive exploration of the resources-
accuracy design space, from which we generate optimal (in the
multi-objective sense) realizations. We compare Fixed Point, Dual
Fixed Point, and Floating Point CORDIC units in terms of
resources and accuracy. Results show the effectiveness of Dual
Fixed Point for CORDIC implementation where the increase in
resources is largely offset by the high accuracy improvements.
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Conclusion
We presented and validated fully customized DFX CORDIC and lnx,√x,x^y
units. We extensively explored the accuracy-resources design space and
extracted the Pareto front. Comparisons between DFX, FX, and FP
CORDIC architectures demonstrate that DFX is an efficient alternative for
CORDIC implementation: DFX accuracy improvements more than make
up for the resource increase with respect to FX. Further work will focus on
the implementation of scale-free CORDIC that requires fewer iterations for
the same range of convergence, and by leveraging Partial Reconfiguration
technology to implement Dynamic Dual Fixed Point for even larger
dynamic ranges.

Setup and Design Space Exploration

The Pareto-optimal realizations for
𝑎𝑡𝑎𝑛/𝑙𝑛𝑥 allows us to only consider
optimal hardware realizations while
simultaneously satisfying accuracy and
resource constraints. For lnx, if we
want highest accuracy and fewer than
1k slices, we would pick DFX[48 43
29]. Table 3 depicts how DFX
compares to FX in terms of resources
and accuracy. For 𝑥𝑦 on average,
resources increased by 55% while
accuracy improved 61.45dB. Fig 6
shows the relative error of DFX and
two FX realizations each with the same
p0 or p1. Table 4 lists resources an
accuracy values of FP and DFX units
for 𝑒𝑥, 𝑥𝑦. The resource increase and
accuracy improvement of the FP units
over the DFX units. For 𝑥𝑦 , a 53%
resource increase yields a 108.48dB
gain in accuracy.

Figure 3. DFX Adder/subtractor.
The function 𝑥𝑦 = 𝑒𝑦 𝑙𝑛 𝑥 is
computed in two steps.
1. We first get 𝑧𝑛 =  ln 𝑥 2 ,

followed by 𝑧𝑛 × 2𝑦 = 𝑦 ln 𝑥.
2. Then, we use 𝑥𝑖𝑛 = 𝑦𝑖𝑛 =

 1 𝐴𝑛 , 𝑧𝑖𝑛 = 𝑦 ln 𝑥 ,
mode=rotation to get 𝑥𝑛 =
𝑒𝑦 ln 𝑥 = 𝑥𝑦.

The argument bounds of 𝑥𝑦 ( 𝑥, 𝑦
values for which 𝑥𝑦 converges) are
given by 𝑦 ln 𝑥 ≤ 𝜃𝑚𝑎𝑥 𝑀 .

𝑖 ≤ 0:

𝑥𝑖+1 = 𝑥𝑖 − 𝑖𝑦𝑖 1 − 2𝑖−2

𝑦𝑖+1 = 𝑦𝑖 − 𝑖𝑥𝑖 1 − 2𝑖−2

𝑧𝑖+1 = 𝑧𝑖 + 𝑖𝑖 , 𝑖 = 𝑇𝑎𝑛ℎ−1 1 − 2𝑖−2

𝑖 > 0:  
𝑥𝑖+1 = 𝑥𝑖 − 𝑖𝑦𝑖2

−𝑖 , 𝑦𝑖+1 = 𝑦𝑖 − 𝑖𝑥𝑖2
−𝑖

𝑧𝑖+1 = 𝑧𝑖 + 𝑖𝑖 , 𝑖 = 𝑇𝑎𝑛ℎ−1 2−𝑖

𝑅𝑜𝑡𝑎𝑡𝑖𝑜𝑛: 𝛿𝑖 = +1 𝑖𝑓 𝑧𝑖 < 0; −1, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
𝑉𝑒𝑐𝑡𝑜𝑟𝑖𝑛𝑔: 𝛿𝑖 = +1 𝑖𝑓 𝑥𝑖𝑦𝑖 ≥ 0; −1, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

𝑅𝑜𝑡𝑎𝑡𝑖𝑜𝑛:  

𝑥𝑛 = 𝐴𝑛 𝑥𝑖𝑛𝑐𝑜𝑠ℎ𝑧𝑖𝑛 + 𝑦𝑖𝑛𝑠𝑖𝑛ℎ𝑧𝑖𝑛
𝑦𝑛 = 𝐴𝑛 𝑦𝑖𝑛𝑐𝑜𝑠ℎ𝑧𝑖𝑛 + 𝑥𝑖𝑛𝑠𝑖𝑛ℎ𝑧𝑖𝑛

𝑧𝑛 = 0

𝑉𝑒𝑐𝑡𝑜𝑟𝑖𝑛𝑔:  
𝑥𝑛 = 𝐴𝑛 𝑥𝑖𝑛

2 − 𝑦𝑖𝑛
2 , 𝑦𝑛 = 0

𝑧𝑛 = 𝑧𝑖𝑛 + 𝑡𝑎𝑛ℎ−1  𝑦𝑖𝑛 𝑥𝑖𝑛

Figure 1 : Expanded DFX Hyperbolic 

CORDIC Architecture.

Methodology and Architectures

We used the expanded CORDIC
algorithms to implement the DFX
Hyperbolic and Circular CORDICs.
The expanded hyperbolic CORDIC
is described mathematically by:

By varying 𝑛, 𝑝0, 𝑝1 (the DFX format), we
create a design space of hardware configurations
for every function to be tested. This also requires
careful selection of the domain of the inputs.
Some functions were only explored for a subset
of the design space; this is due to intrinsic
limitations such as convergence or CORDIC
algorithm, scaling factor representation,
input/output numerical representation. We
completed 249 individual tests.

Table 2 : Testing domain for the CORDIC-based functions.

Results

For our accuracy metric we used:

𝑀𝑆𝐸 =
 𝐻𝑊 𝑣𝑎𝑙𝑢𝑒−𝑖𝑑𝑒𝑎𝑙 𝑣𝑎𝑙𝑢𝑒 2

𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑠𝑎𝑚𝑝𝑙𝑒𝑠

𝑅𝑒𝑙𝑎𝑡𝑖𝑣𝑒 𝐸𝑟𝑟𝑜𝑟 =
𝐻𝑊 𝑣𝑎𝑙𝑢𝑒 −𝑖𝑑𝑒𝑎𝑙 𝑣𝑎𝑙𝑢𝑒
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FUNCTION
INPUT DOMAIN FOR

TESTING
CORDIC MODULE M

𝐬𝐢𝐧(𝐱),
𝐜𝐨𝐬(𝐱)

−𝛑 ≤ 𝐱 ≤ 𝛑
CIRCULAR: ROTATION. 𝒛−𝐌+𝟏 = 𝐱

𝒙−𝐌+𝟏 =  𝟏 𝑨𝒏, 𝒚−𝐌+𝟏 = 𝟎
2

𝐚𝐭𝐚𝐧(𝐱) 𝟎 ≤ 𝐱 ≤ 𝟐𝟎
CIRCULAR: VECTORING. 𝒚−𝐌+𝟏 = 𝐱

𝒙−𝐌+𝟏 = 𝟏, 𝒛−𝐌+𝟏 = 𝟎
2

𝐬𝐢𝐧𝐡(𝐱),
𝐜𝐨𝐬𝐡(𝐱)

𝟎 ≤ 𝐱 ≤ 𝟒
HYPERBOLIC: ROTATION. 𝒛−𝑴 = 𝐱, 

𝒙−𝑴 =  𝟏 𝑨𝒏, 𝒚−𝑴 = 𝟎
4

𝒆𝒙 −𝟐 ≤ 𝐱 ≤ 𝟐
HYPERBOLIC: ROTATION. 𝒛−𝑴 = 𝐱,

𝒚−𝑴 = 𝒙−𝑴 =  𝟏 𝑨𝒏
4

𝐚𝐭𝐚𝐧𝐡(𝐱) 𝒙 ≤ 𝟎. 𝟗𝟗𝟗𝟓
HYPERBOLIC: VECTORING. 𝒚−𝑴 = 𝐱

𝒙−𝑴 = 𝟏, 𝒛−𝑴 = 𝟎
5

𝒙 𝟎 ≤ 𝐱 ≤ 𝟑𝟔
HYPERBOLIC: VECTORING. 𝒛−𝑴 = 𝟎,

𝒙−𝑴= 𝐱 +  𝟏 𝟒𝑨𝒏
𝟐 ,

𝒚−𝑴= 𝐱 −  𝟏 𝟒𝑨𝒏
𝟐

3

𝐥𝐧 𝒙 𝟎. 𝟎𝟎𝟎𝟓 ≤ 𝐱 < 𝟏𝟓
HYPERBOLIC: VECTORING. 𝒛−𝑴 = 𝟎,

𝒙−𝑴= 𝐱 + 𝟏, 𝒚−𝑴= 𝐱 − 𝟏
5

𝒙𝒚
𝟎. 𝟏𝟑𝟓 ≤ 𝐱 ≤ 𝟕. 𝟑𝟗

−𝟐 ≤ 𝐲 ≤ 𝟐
HYPERBOLIC: VECTORING AND

ROTATION
4

Fn. FX DFX
avg resource 
accuracy inc.

(DFX/FX)

FP EW:24
FW: 16

𝒙𝒚

[24 15] [24 9] [24 15 9]

343
115.78 dB

326
100.42dB

518
46.65 dB

55%
61.45 dB

769
7.61 dB

𝐥𝐧𝐱

[24 10] [24 20] [24 20 10]

198
-34.70dB

200
28.49 dB

439
-104.61dB

120%
101.5 dB

718
-135.2dB

𝐬𝐢𝐧𝐡

[24 15] [24 10] [24 15 10]

201
71.62 dB

197
-11.17 dB

399
-35.29 dB

100%
65.52 dB

605
-37.92dB

An n-bit Dual Fixed-Point (DFX)
number is composed of a (n-1)-bit
signed significand (X) and an
exponent bit (E). The exponent
determines the scaling for the
significand:

𝐷 =  
𝑛𝑢𝑚0: 𝑋. 2−𝑝0 , 𝑖𝑓 𝐸 = 0

𝑛𝑢𝑚1: 𝑋. 2−𝑝1 , 𝑖𝑓 𝐸 = 1
, 𝑝0 > 𝑝1 Figure 2 :DFX number and range of values.
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Figure 4. Fully parameterized DFX 

Powering.

DFX adder/subtractor architecture
includes a pre-scaler, an FX
adder/subtractor, and a post-scaler.
The pre-scaler aligns the DFX
input operands so they can be
added in FX arithmetic. In the
post-scaler, the range detector
determines whether the result is a
𝑛𝑢𝑚0 or 𝑛𝑢𝑚1; we then select the
proper result and set the exponent
bit.

DFX formats used DFX 
format
s for 𝑥𝑦

𝐬𝐢𝐧, 𝐜𝐨𝐬 𝐚𝐭𝐚𝐧 𝐬𝐢𝐧𝐡, 𝐜𝐨𝐬𝐡 𝐞𝐱, 𝐱 𝐚𝐭𝐚𝐧𝐡, 𝐥𝐧
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Table 1 DFX Formats used 

in the experimental setup.

Function FP DFX
Increase in 

resources and 
accuracy (FP/DFX)

𝑥𝑦

EW: 24, FW: 
16

[24 12 5]

776 / 76.12 
dB

506 / 184.6dB 53% / 108.48dB

𝑒𝑥
Single 

Precision
[32 27 12]

782 / 29.1 dB 559 / 71.85dB 40% /42.75dB

Table 3 : DFX vs FX. Resources 

and accuracy.

Figure 5 : Accuracy-Resources 

design space for atan/sin/cos/lnx.

Figure 6 : Accuracy comparison 

between 24-bit FX and DFX.Table 4 : DFX vs FP. Resources and accuracy.
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