
Floating Point CORDIC-based Architecture for 

Powering Computation

Abstract

This work presents an architecture for powering computation in

floating point arithmetic that is based on an expanded hyperbolic

CORDIC algorithm, where the user can select the 2-D domain of

convergence that suits their application. The fully parameterized

hardware implementation allows us to explore trade-offs among

design parameters (numerical format, number of iterations),

resource usage, accuracy, and execution time. We carry out an

exhaustive design space exploration and generate Pareto-optimal

realizations in the resource-accuracy space. Our approach allows

us to select optimal hardware realizations that meet or exceed

accuracy requirements.

Key Contributions

• Design Space Exploration

• Pareto-Optimal Realizations based on accuracy and 

resource usage

• Fully customizable architecture validated on an FPGA

Joshua Mack, Sam Bellestri, Daniel Llamocca

jmack2545@email.arizona.edu sdbellestri@crimson.ua.edu

llamocca@oakland.edu

Conclusion

A fully parameterized floating point iterative architecture for 𝑥𝑦 was presented and 

thoroughly validated. Floating point arithmetic features high accuracy and large 

dynamic range at the expense of resources. The expanded CORDIC approach allows 

for customized bounds on the domain of 𝑥𝑦. We extracted the Pareto-optimal set of 

architectures from the multi-objective design space. Further work will explore other 

arithmetic representations and enhanced versions of the expanded CORDIC 

algorithm such as scale-free hyperbolic CORDIC that requires fewer iterations for 

the same region of convergence.

Setup and Design Space Exploration

This work was sponsored in part by the National Science Foundation (NSF) under award number EEC-1263133. 

CORDIC does not converge for all 

values of x and y.

If chosen values of x and y are 

bounded by the given corresponding 

curve for a chosen value of M, the 

expanded CORDIC algorithm will 

converge.

In our testing, we choose a range of 

test points evenly distributed within 

this range for M = 5.

Table 2: Execution Time (𝝁𝒔) vs N for 

𝒙𝒚 Architecture. 

The execution times in Table 2 and 

the number of slices in Figure 5 are 

for a Xilinx® Zynq-7000 XC7Z010-

1CLG400 SoC running at 125 MHz.

The Pareto front shows the optimal 

hardware profiles for our 𝑥𝑦

architecture. 

We note that 44 bits with 32 

iterations provides the highest 

accuracy at the expense of a large 

amount of resource usage. In 

addition, we consider the Pareto 

point circled in blue to have too poor 

of accuracy to be considered. 

As a result, the case of 28 bits with 

16 iterations provides the smallest 

hardware implementation that gives 

a usable architecture at the expense 

of lower accuracy. 

If we restrict to accuracy ≥ 100𝑑𝐵, 

32 bits with 20 iterations provides 

the implementation with minimum 

resources.

Figure 4 : 𝒙𝒚 Architecture - Peak Signal-to-

Noise Ratio (PSNR) vs. Number of iterations.

Function
Number of Iterations (N)

8 12 16 20 24 32 52

𝒙𝒚 0.288 0.352 0.432 0.496 0.560 0.688 1.024

Figure 3: Range of Convergence Plot for 𝒙𝒚

Figure 5: 𝒙𝒚 Resources vs. PSNR 

with Pareto Front

Figure 2 : Full Architecture of 

𝒙𝒚 Implementation.

Using CORDIC, we implement a fully 

customizable 𝑥𝑦 engine in VHDL. 

CORDIC has specific advantages in 

hardware due to its shift and add nature. 

The 𝑥𝑦 architecture executes two 

consecutive operations. 

1. Load 𝑥0 = 𝑥 + 1, 𝑦0 = 𝑥 − 1, 𝑧0 =
0 onto the CORDIC engine in 

vectoring mode, so that 𝑧𝑛 =
0.5 ln 𝑥. A floating-point shifter 

generates ln 𝑥 and a floating-point 

multiplier computes y ln 𝑥 which is 

fed back to the CORDIC engine for 

the second operation.

2. Load 𝑥0 = 𝑦0 = 1/𝐴𝑛 and 𝑧0=
𝑦 ln 𝑥 onto the CORDIC engine in 

rotation mode so that

𝑦𝑛 = 𝑒𝑦 ln 𝑥 = 𝑥𝑦.

𝐹𝑜𝑟 𝑖 ≤ 0:

𝑋𝑖+1 = 𝑋𝑖 + 𝛿𝑖𝑌𝑖 1 − 2𝑖−2

𝑌𝑖+1 = 𝑌𝑖 + 𝛿𝑖𝑋𝑖 1 − 2𝑖−2

𝑍𝑖+1 = 𝑍𝑖 − 𝛿𝑖𝑡𝑎𝑛ℎ
−1 1 − 2𝑖−2

𝐹𝑜𝑟 𝑖 > 0:
𝑋𝑖+1 = 𝑋𝑖 + 𝛿𝑖𝑌𝑖2

−𝑖

𝑌𝑖+1 = 𝑌𝑖 + 𝛿𝑖𝑋𝑖2
−𝑖

𝑍𝑖+1 = 𝑍𝑖 − 𝛿𝑖𝑡𝑎𝑛ℎ
−1(2−𝑖) 

𝑅𝑜𝑡𝑎𝑡𝑖𝑜𝑛: 𝛿𝑖 = −1 𝑖𝑓 𝑧𝑖 < 0,
+1 𝑒𝑙𝑠𝑒

𝑉𝑒𝑐𝑡𝑜𝑟𝑖𝑛𝑔: 𝛿𝑖 = −1 𝑖𝑓 𝑥𝑖𝑦𝑖 ≥ 0,
+1 𝑒𝑙𝑠𝑒

Figure 1 : Expanded Hyperbolic 

CORDIC Architecture.

Methodology and Architectures

Hyperbolic CORDIC provides two 

modes of operation (rotation and 

vectoring) that allow for the direct 

computation of cosh 𝑥, sinh 𝑥, 

tanh−1 𝑥, and 𝑒𝑥. By combining the 

identities ln 𝑥 = 2 tanh−1
𝑥−1

𝑥+1
and 

𝑥𝑦 = 𝑒𝑦 ln 𝑥 , we can calculate 𝑥𝑦.

The expanded hyperbolic CORDIC 

algorithm is given by:

A complete design 

space exploration was 

performed by varying 

parameters such as 

number representation 

and number of 

iterations. The floating 

point formats tested are 

listed to the left. Each 

given format was tested 

with M = 5, and N from 

8, 12, …, 52.

B EW FW Min Max Dyn. Range

16 6 9 9.313 × 10−10 4.291 × 109 373 dB

20 6 13 9.313 × 10−10 4.295 × 109 373 dB

24 7 16 2.168 × 10−19 1.845 × 1019 759 dB

28 7 20 2.168 × 10−19 1.845 × 1019 759 dB

32 8 23 1.175 × 10−38 3.403 × 1038 1529 dB

36 9 26 3.455 × 10−77 1.158 × 1077 3071 dB

40 9 30 3.455 × 10−77 1.158 × 1077 3071 dB

44 9 34 3.455 × 10−77 1.158 × 1077 3071 dB

48 10 37 2.983 × 10−154 1.341 × 10154 6153 dB

52 10 41 2.983 × 10−154 1.341 × 10154 6153 dB

56 11 44 2.225 × 10−308 1.798 × 10308 12318 dB

60 11 48 2.225 × 10−308 1.798 × 10308 12318 dB

64 11 52 2.225 × 10−308 1.798 × 10308 12318 dB

Table 1 : Floating Point Formats Tested

Results

For our accuracy metric, we use PSNR, defined as 𝑃𝑆𝑁𝑅 𝑑𝐵 = 10 log10
𝑚𝑎𝑥𝑣𝑎𝑙2

𝑀𝑆𝐸

mailto:jmack2545@email.arizona.edu
mailto:sdbellestri@crimson.ua.edu
mailto:llamocca@oakland.edu

