
Floating Point Calculater

List of Authors (Najib Dubaisi, Yupei Liang, Karam Naama, Taylor Bodenmiller)
Electrical and Computer Engineering Department

School of Engineering and Computer Science
Oakland University, Rochester, MI

e-mails: Najibdubaisi@oakland.edu, yupeiliang@oakland.edu, naama@oakland.edu,
tmbodenmiller@oakland.edu

Abstract— This project is to show how to code a
calculator using the VHDL language. With using a
keyboard connected to the Nexy’s 4 board as an
input and an LED screen to show the answer. This
project will result in a four function calculator
(Add, Subtract, Multiply and division).

I. INTRODUCTION
The IEEE-754 standard floating-point is a

technical standard for floating-point computation
developed in 1985. The most common format used
is the 32bits floating-point. 32 bits floating point
contains a sign bit, 8 bits biased exponent and 23
bits of significand.

The purpose about this project is to create a
floating-point calculator, which is the development
of customizable floating point units: Adders,
subtractors, multipliers and dividers. Since using
the options on the Nexys board as a method of
input to the calculator, a keyboard will be used as
the signed numerical input.

This report is intended to detail the design
and implementation of our floating-point
calculator. The decision of a project idea, the
planning of project, and putting the plan into action
will all be covered in this report.

II. METHODOLOGY

a. Toplevel
This project consists of many parts that are

connected together to make a calculator that will
add, subtract, multiples and divide. This module
allows for the selection to use the other modules by
using the switches on the board.

Figure 1: Overall design
b. Adder/Subtractor

 First of all, starting with building an adder and
a subtractor with using the arithmetic algebra of
adding/subtracting numbers from Unit 2 from the
class notes. Following the rules of
adding/subtracting from the notes the coding was
made to be implemented in the single precision
case inputting 23 bits of significant and 8 bits of
biased exponent [1]. Below is visual representation
of the module built. shown in figure 1.

Figure 2: addition and subtraction circuit[3]

c. Multiplier/Divider
The second part of the project was to conduct a

multiplier and a divider. With the same procedure
of following the arithmetic algebra of multiplying
and dividing numbers. With using similar parts for
connecting the adder/subtractor they were used to
build the multiplication and division circuits. You
can find the block diagrams for both multiplication
and division circuit in figures 2 and 3 respectively.

Figure 3: Multiplier circuit[2]

Multiplier: unsigned multiplier that can process
multiplication functions by control flow data
through the multiplexer, NOR gate, barrel shaft,
and Leading Zero Detector. As the both Exponent
contains bias which is 127 in decimal are added
during the first add process. The bias is needed to
be subtracted at the end of the calculate.

Divider: This module module takes in and
processes two numbers. The data is first broken up
into its proper sign, exponent, and significant bits.
By operating in 2C arithmetic the unbiased
exponents are subtracted. An unsigned iterative
divider is used to divide the significant bits with
respect to four fractional bits. The team would like
to implement eight fractional bits of precision for
future implementation. Before the actual division,
the dividend is extended by four bits. The iterative
divider then grabs individual bits of the dividend
and compares them to the divisor. If this result is

greater than the divisor, the results is subtracted
from the divisor and a “1” is added to the quotient.
A Barrelshift with shift instruction for a lead zero
detector is is then used to normalize the quotient
data. The lead Zero Detector is then used to
normalize the exponent data and the bias is then
added back to finally adjust the exponent [2].
Below is a visual representation of this.

Figure 4: Divider circuit[2]

d. Keyboard as input

Finally, downloading the code on the board, but
because of the lack of number of switches, a
computer keyboard was used to make it easier to
input numbers.

e. Counter and Multiplexer
In order to display the floating-point

number and keep updating, a counter is used in
the top level. To reach this goal, the done signal
from the keyboard is the key to make this
function come true. The counter would
increment each time after the user release the
key as the keyboard output “done” during this
process. The counter outputs “00” to mux, to
display the first input. When the user inputting
the second number, the counter counts 8 and
outputs “01” to the mux to display the second
number. The third stage is that the counter
counts 15 which means the project is able to
obtain all 64-bit floating point form A and B and
ready for outputs. In this stage, the mux treat the
stage as others and outputs the result. And the 7

segment display automatically moves into the
output state.

Stage Counter Counter
output

Display

Input A 0-7 00 A
Input B 8-14 01 B
Output S 15 Others S

Figure 5: Counter Table
f. Pulse Generator

In this project, we incorporated a pulse generator
into our keyboard control. The job of our pulse
generator is simply to divide the clock from 100
Mhz, which is standard for this type of FPGA
board, into one second intervals.

h. ASCII to Bianry Look Up Table
As the keyboard outputs 9 bits during each cycle
and outputs ASCII code and only 0 to 9 and A
to F are needed in this process. Thus, a look up
table is needed to convert the ASCII code to the
actually binary value.

Figure 6: Data flow and LUT

i. Top Level Design
A top- level design is put together to

combine all of the components into one file in
the Xilinx software. In this part of the project,
our team had to disable the keyboard input and
individually test each component to make sure
they were operating as designed.

III. EXPERIMENTAL SETUP
The team was challenged with taking the actual

input from the key board and simulation results

from that. Instead, individual testbench were made
to test each component. They proved to worked
efficiently and were then implemented to the top
level design and tested on the board for accuracy.
A test bench was also made to test the operation of
the keyboard PS/2 control block. After verification
of this module working properly it was then
implemented to the board and the remaining bugs
were worked out. After each individual component
was verified working properly the team combined
the modules into the toplevel design previously
mentioned.

a. Hardware
NEXYS 4 DDR Artix- 7 FPGA board:

VHDL code from Xilinx software was uploaded
to this board. Required.

NEXYS 4 DDR Artix- 7 FPGA board
included the USB to ps-2 converter. A normal
USB keyboard is required.

b. Software
As required for ECE378, our team used the

Xilinx Vivado software program. In this
program, we coded using a language called
VHDL. This is the language the class was
taught throughout the duration of the course,
and is the only feasible language to use at this
point to complete this project. The blueprint
coding for our components, found on Dr.
Llamocca’s website, were written in VHDL.

IV. RESULTS
This floating point calculated exactly as

designed. The keyboard entry proved to work
efficient as input to the arithmetic components and
the resulting values matched as expected. Below is
simulation wave forms for each of the arithmetic
components showing their functionality. The inputs
used are denoted as “a” and “b”, the output is
denoted as “b”.

Figure 7: Add(addsub=0)/subtract(addsub=1) result

Figure 8: Multiplier Result

Figure 9: Divider Result

There was also success in LED functionality with
regard to Key board input. The program successful
input the proper hex values from user input from the
keyboard and displayed the results within the
LED’s found on the FPGA. This also proved
successful after arithmetic computation as well.

Figure 10: LED’s properly display input values

V. CONCLUSION
This project successfully demonstrated the

working of floating point number arithmetic
through a functional VHDL software design
implemented on a NEXYS FPGA while using a
PS/2 keyboard as the input data source. The team
built upon their knowledge of floating point
arithmetic. While designing and building this
project the team learned how to take and test the
functionality of individual components and then the
proper design of a control system to bring it all
together. After successful completion overall
understanding of 2C arithmetic, the needs for bit

alignment shifts for accurate representation, and
general code/hardware debugging skills were
improved. There are improvements to the actual
project the team would like to have implemented.
This includes adding more fractional bits of
precision to the divider component. Converting the
output hex value to the appropriate floating point
representation and displaying it on a LCD or
external monitor.

VI. REFERENCES
[1] Daniel Llamocca, Notes-Unit2, “Computer Arithmetic”, Winter
2017.
[2] Daniel Llamocca, Notes-Unit6, “Special-Purpose Arithmetic
Circuits and Techniques”, Winter 2017
[3] Daniel Llamocca, “Laboratory 3”, Winter 2017

