
 Pac-Man

Rated E for Everyone

Andrew Carle, Peter Isho, Zachary Platte, Rohit Timmagi

Electrical and Computer Engineering Department

School of Engineering and Computer Science

Oakland University, Rochester, MI

amcarle@oakland.edu , pdisho@oakland.edu , zdplatte@oakland.edu, rtimmagi@oakland.edu

Abstract—The purpose of this project is to reconstruct a game

similar to Pac-Man using the VGA port on the Nexys-4 Board.

Throughout this project, the methodology behind implementing

the VGA display has been immensely emphasized, in doing this

it is possible to see how placing objects on the display and

interacting with these objects is done. In a future project, it is

recommended to attempt to find a way to implement an easier

way to handle the collision with the Pac-bits to be able to add

more to the game efficiently.

I. INTRODUCTION

 Pac-Man was released in May 1980 and since that time it

has been ported to many different types of systems. This

project will run a two player Pac-Man game on an FPGA

using a keyboard, FPGA buttons, and a VGA display. The

essential aspects of the project are broken down into three

parts which include receiving an input signal from the

keyboard and buttons, utilizing that signal to move Pac-

Man, and then outputting the corresponding pixels to a

VGA display. Of course there are many more parts to this

design, but these three seem to be the most essential for

now. The working game will consist of one level with a win

or lose screen, and two players. The input from the

keyboard will move player one and the buttons will move

player two. All of this is constantly being shown on the

VGA display.

II. METHODOLOGY

A. Movement Control

 Since the game allows for two players each player is

moved with a different selection of buttons. Player two is

moved using four of the five buttons of the FPGA whereas

player one is controlled using inputs from a keyboard. Each

of the player’s characters is moved with a formula that

allows for a movement of 15 pixels per second while the

corresponding direction input is held down. There are

interactions within the game that allow a player to speed up

or cause a ghost to remain still for a short period of time.

Each of these are handled within a process triggered by the

collision between Pac-Man and the corresponding Pac-bit.

 Using a keyboard with the provided USB port on the

FPGA isn’t that difficult. Within the FPGA there is a system

that changes that USB signal into a PS/2 signal which is

much easier to handle. The only things to deal with are the

PS/2 clock and PS/2 data, where both are explained in detail

on the datasheet. The data that is coming into the FPGA will

consist of a start bit, eight data bits, a parity bit, and a stop

bit. Since each key has unique data bits it’s easy to handle

them in the system.

 The data coming from the keyboard will be what moves

Pac-Man. If the up-arrow key is clicked and the move is

allowed, Pac-Man will be moved up by a set number of

pixels. The top-level Data Path diagram from movements

can be found in Figure 1. Formulas 1-4 are the VHDL code

used to rotate the entire picture of Pac-Man right, down, up,

and left respectively so the opening is always facing the

direction he is moving. These formulas are essentially

rotating the normal image which is facing right. Normal

access of the index of any 16x16 array is found by using the

first equation. Rotating the image so that it is essentially

facing down is the second equation. The third and fourth

equations relate to facing up and left, respectively.

(16 ∗ (𝑉𝑐 − 𝑦) + (𝐻𝑐 − 𝑥)) [1]

(16 ∗ (𝐻𝑐 − 𝑥) + (𝑉𝑐 − 𝑦)) [2]

(16 ∗ (𝐻𝑐 − 𝑥) + (15 − (𝑉𝑐 − 𝑦))) [3]

(16 ∗ (𝑉𝑐 − 𝑦) + (15 − (𝐻𝑐 − 𝑥))) [4]

 These equations are necessary for accessing each objects

memory, without them there is no guarantee that the image

will be displayed correctly. This is because the memory is

sequential, and without accessing addresses, will output

whatever data is next. This would be fine if the image was

displayed, and then the rest of the VGA display was

displayed, however, this isn’t the case. The VGA outputs

pixels’ row by row, so the memory needs to be accessed at

different times. This was a big issue in the beginning of the

project, so instead of accessing memory, a yellow block was

a substitute for an image. It wasn’t until the last few days

that the images were implemented in the game.

mailto:amcarle@oakland.edu
mailto:pdisho@oakland.edu
mailto:zdplatte@oakland.edu
mailto:rtimmagi@oakland.edu

Figure 1. Controllable Movement Data Path

 Each of the ghost’s movements are controlled using

FSM’s with the diagrams being found in Figures 4 and 5.

B. Display Control

 The game is displayed using the block vga_ctrl_12b in

memory mode. The top level can be found in Figure 3. With

this implementation, the walls, Pac-bits, original ghost

locations, and the beginning placement for Pac-Man are

placed using specific pixel placements. Whenever a certain

pixel location matches a condition that was stated, the

necessary data will be placed. This allows for an easier

interaction between Pac-Man and the objects, whether they

are walls or Pac-bits. Pac-Man, along with all the other non-

wall objects were implemented using the conversion file in

MATLAB to convert the pictures to text. The text is then

read into the VHDL code to bring the original characters

into the game. Pac-Man during movement is constantly

rendering in the new location it moves to, this is the reason

that the formulas executed in the prior section are put in

place. The ghost displays are each done with an identical

process to Pac-Man.

Figure 2. VGA Control Data Path

Figure 3. VGA Control Top-level Data Path

C. Collison Handling

 Placing the pixels through memory allows for a collision

between Pac-Man’s and the Pac-bits, walls, and ghosts

based on the location of Pac-Man in comparison with each

of the objects. Every object starts at a default position, for

the non-moving objects this position is crucial in terms of

the interactions between said object and a movable object.

Each of the Pac-bits has a signal that controls whether the

bit remains on the map or not, by default this signal is set to

‘0’ and when the location of Pac-Man collides with the

location of the Pac-bit the signal is set to ‘1’ thus removing

it from the map. Once the object is removed its location

changes color to that of the background. All the Pac-bits are

handled in this manner, with the only difference between a

Pac-bit that grants the user a “power-up” and a regular one

being the location on the map.

 The power-ups use a method that is utilized throughout

the game. As soon as a collision occurs between Pac-Man

and one of the power-ups, a signal gets a ‘1’. In the case of

the speed boost, this signal will activate another signal

which will go back into the component that controls

Pac-Man’s movement. It will allow Pac-Man to move faster

for a short amount of time, around 5 seconds. This method

of sending a signal back into the component is used when

Pac-Man collides with a ghost. That collision will send a

reset signal to all movement components which resets them

to their default position.

 Since the signal that controls the Pac-bits being on the

map is Pac-Man’s location each time a ghost collides with a

Pac-bit it is ignored and the ghost continues moving. The

collision that occurs with Pac-Man and a ghost causes Pac-

Man’s location to be set back to starting position while

removing one of the lives from the upper righthand corner

of the screen. Arguably the most important collision is with

Pac-Man and the edges of the map, without this Pac-Man

would be able to “leave” the screen causing issues with the

game. To implement this the pixels along the edges of the

screen are treated as walls so that Pac-Man and the ghosts

cannot move through them.

Figure 4. Ghost 1 Movement

Figure 5. Ghost 2 Movement

III. Technical Approach

 The hardware is the Nexys-4 Artix-7 FPGA board and

the software is Xilinx Vivado. There are two ports that are

utilized: the USB input port and the VGA output port. USB

input is for the keyboard and the VGA output is for the

display. In addition to the USB input the buttons on the

Nexys-4 Artix-7 board are used to move the second player

to make the game more challenging since player two can

work with the ghosts. In order to properly communicate

with each of these ports [1] is careful studied to understand

the interactions they have with the board.

 The USB to PS/2 component is tested by simply

verifying that the LEDs on the Nexys-4 board represented

the corresponding hexadecimal number. This hexadecimal

number is then mapped to the directional controls in the

game. The VGA component was tested using a .txt file and

outputting its signal to a computer monitor. MATLAB is

used to convert the images to text files that can be read into

the VHDL code, then they are placed within the game. This

is done using the file given in class with some changes

made to it to fit the size of the images being imported to the

game.

 The reset button is used for resetting the entire game. The

internal clock of the FPGA will be used for all instructions

done in the design of this game.

IV. RESULTS

The results of testing the USB input signal were
successful. The two-bit hexadecimal number represented by
LEDs on the Nexys-4 DDR board correctly corresponded to
each key from the keyboard and buttons. The signals of the
arrow keys were unknown before this test, but now are
recorded so that the arrows may be used to control Pac-Man
movements.

The VGA tests were also successful, but with some
issues. The VGA component was capable of outputting the
correct shape and color of the .txt file on the computer
monitor. After adjusting the equation for how and where the
.txt file was to be placed on the monitor, the image became
distorted with rows, or stripes, of the color. Thoroughly
testing this further led to the images appearing in the
appropriate manner, in addition to being able to move without
the images becoming distorted.

The overall result of this game is the user being able to
control both Pac-Man and the player-controlled ghost via the
keyboard controls and button controls respectively. How Pac-
Man moves depends on the key or button the user pushes. As
Pac-Man moves he eats up the Pac-bits. The game ends when
either Pac-Man loses all his lives or if he collects all the
objects. Depending on which player wins, a corresponding
win screen is displayed.

Originally, hitting the space bar after a win screen is
shown was supposed to be implemented. The issue with that
was unknown, and there wasn’t enough time to debug it.
Rolling back to the original code allows the user to hit reset
whenever a game is complete.

CONCLUSIONS

The state machines used to control the ghosts’ movements
seem slightly complicated, however when analyzed closely
they are extremely similar which made for an easier
implementation. Things we learned would be how to code the
FPGA to be able to control Pac-Man’s movement for both
player one and player two via the keyboard and buttons and
displaying the game onto a monitor via VGA. We also better
improved our skills on how to implement state machines to
deal with various types of movement within an environment
such as video games. The complexity of the project wasn’t
extreme, but once a solution was found for a problem it
required a lot of time to complete. There was a lot of little
details that needed to be kept track of, otherwise many things
could go wrong. It was a fun project to work on.

References

[1] Digilent, Nexys4 DDR FPGA Board Reference Manual,
Rev. C, pp. 12 & 14-17, September 2014.

[2] Llamocca, D. (2017). VHDL Coding for FPGAs. Retrieved
April 22, 2017, from
http://www.secs.oakland.edu/~llamocca/VHDLforFPGAs.html

