
Fixed-Point Calculator

Robert Kozubiak, Muris Zecevic, Cameron Renny

Electrical and Computer Engineering Department

School of Engineering and Computer Science

Oakland University, Rochester, MI

rjkozubiak@oakland.edu, mzecevic2@oakland.edu, cgrenny@oakland.edu

Abstract— The goal of this project is to create an unsigned

fixed point calculator that takes 2 input numbers with an

integer part, fractional part, or both, and perform simple

mathematical functions with them, such as addition,

multiplication, subtraction, and division. Peripherals utilized

include the

I. INTRODUCTION

This report will cover the specifics on how a fixed-point

digital calculator will operate utilizing VHDL coding and

the Nexys 4 FPGA board, the peripherals that will be

needed, and challenges encountered while in the process of

creating a functional end product.

The motivation for this project is to gain more experience

on how to write and implement algorithms, in the form of

VHDL coding, on computers with practical uses. This is a

crucially important topic, as algorithms are the building

blocks of every computer program, and this calculator will

be a sufficient introduction to how to effectively design

these algorithms. This project will reflect many of the topics

utilized in Daniel Llamocca’s course, Computer Hardware

Design, such as fixed-point arithmetic and how to

implement peripherals such as a keyboard/keypad or LCD

screen. The end-product of this project is a functional

calculator that does fixed-point arithmetic on fractional

decimal numbers by converting the numbers to binary

before operating on them.

This project utilizes around 30 unique components

throughout the entire project. The project takes usage of

Daniel Llamoca’s ‘mydebouncer’ and ‘my_genpulse_sclr’

codes for purposes of debouncing the keypad and counters

respectively. The designs for the multiply and divide

modules, although coded separately, are also designed by

Llamocca
[1]

. The project also reflects philosophy designs

found in the Hitachi HD44780U datasheet for the LCD

FSM designs
[2]

. The design also uses popular ideologies on

keypad interfaces such as one found on Astro Designs
[3]

.

The end result is a calculator interface that can perform

operations on two fixed point numbers, including a range of

numbers from 0 to 99, with two decimal values of precision.

II. METHODOLOGY

A. Input Interface

The decimal numbers will be inputted by the user with

a keyboard/keypad, and will be passed onto the Nexys-4

DDR board. The keypad should generate an 8-bit binary

value. This is done through a keypad controller. This

controller contains a FSM. In this keypad FSM, there are 16

states, one for each button. This keypad has four inputs, the

rows, and four outputs, the columns. For the first four states,

the keypad FSM turns on the leftmost column. Then, if a

button is pushed while that column is on, the FSM freezes

for as long as the key is pressed, and an 8-bit signal is

outputted. After the first four states, the column to right is

turned on for four states, and so forth. This causes a rotation

of one column being turned on every four of the sixteen

states. Again, the end result is an 8-bit signal that is unique

for every button pressed.

As mentioned, this keypad controller will produce an 8-

bit signal that will pass through what is currently a multiple

state input FSM interface, which will allow the user to input

any two two-digit numbers, be they decimal or integer

values. The FSM is designed as follows.

In State 1, the user will be able to input the first

number, Number A. First, the system will check if the

counter for A is currently equal to 2. If it is, the user will

only be able to input A, B, C, or D, which are the operation

buttons. If the counter is not equal to 2, the user will input,

along with the operation buttons, the value buttons, 0 to 9,

for the first number, A. Number A, along with Number B

are both 2-digit decimal numbers, ranging from 0 to 99,

including decimal numbers with two decimals of precision.

As mentioned, the system first checks if the user has

inputted two numerical values already. This check is done

through a counter, CounterA. If this is true and the user has

already inputted two numbers for A, the FSM only allows

the user to input an operation button. Once the operation

button is pressed, the FSM moves into the next state, which

is where the user will input number B. If the user hasn’t

inputted two number values, the user must input either input

more numbers, or an arithmetic operation. A check is also

placed to make sure a key is being pressed. If a key is being

pressed, an 8-bit signal should be sent to the FSM by the

input module, the keypad controller. This 8-bit input is then

identified by the input FSM.

If the user hasn’t inputted two values and the 8-bit input

is recognized as a number value, then a 4-bit signal,

representing the numbers 0-9, is set. This 4-bit signal is sent

to a shift register that shifts in 4 bits at a time. The output of

the shift register is 16-bits. These are 16-bit outputs because

of the shifting FSM, which lays the foundation on how to

handle decimal placements for A and B, which are

discussed further in this report. Also, the counter that is

associated with number A, CounterA, is incremented by

one. If the user input is a decimal, which is the # button on

the keypad, the system goes to State 1dec, which deals with

the decimal portion of the number. If the input is an

operation input, the system advances to State 2. Just as well,

the operator that was inputted determines a 2-bit signal that

is saved into a 2-bit register. The identification of each

operation can be seen in Figure 1.

Operation Meaning Value

A Addition 00

B Subtraction 01

C Multiplication 10

D Division 11

Figure 1 – The identification for each operation

If the input is anything other than an arithmetic

operation, the decimal input, or a number value input, then

nothing happens. Likewise, if the user has already inputted

two numbers and tries to input another number, nothing

happens. Instead, the user remains in the first state of the

FSM.

State 1dec works in a similar manner to State 1, with

one key difference. If the input is a number, the number is

added to the shift register for A, and not only CounterA, but

also CounterAdec is incremented by one. CounterAdec

serves to keep track of the number of decimal places in the

number. If the input is an operator, the system advances to

State 2, and the operator that was inputted generates the 2-

bit signal to be saved into the register with the same values

as shown above.

State 2 and 2dec are the same as State 1 and 1dec where

the number B is inputted and the same functions that were

done on number A are also done on number B, with some

differences. First, if the input is an arithmetic operation,

then nothing happens. Another difference being that if the

input is the ‘equals-sign’ input, the system moves onto state

3. This is where the input FSM ends for now, until the entire

process is finished. Once the output is given, the user can

then reset the entire project with the press of any button.

The input portion of this calculator design can be seen

in Figure 2. It is worth mentioning that this figure is only a

portion of the top file diagram used in this calculator design

project. Because so many components are utilized in this

project, it is absolutely necessary to divide the top diagram

up into smaller portions, such as the one in Figure 2.

Figure 2 – The input portion of the top file diagram

As mentioned, the shift registers each output a 16-bit

sized std_logic_vector value that represents each input, A

and B. These are BCD binary numbers, and must be

converted into binary values. This is done by the

BCDtoBinary module. This module will check the four

most significant bits of the 16-bit input. It determines what

value, again from 0-9, these four bits are. It then sets a

signal, z4, to a binary number value. Then, the program

moves on the next four significant bits, and sets z3, and so

on for z2 and z1. The output, z, is an addition of all four

signals, z4, z3, z2, and z1. So, if the 16-bit input is a

hexidecmial value of ‘9999,’ z4 is set to ‘10001100101000,’

z3 is set to ‘00001110000100,’ z2 is set to

‘00000001011010’ and z1 is set to ‘00000000001001.’ The

end result is the 14-bit sized output, z, which is a value of

‘10011100001111,’ which is the binary representation for

9999.

Because the user can only input two digits for each

number, the initial values of Number A and Number B can

be no larger than 99, which is a 7-bit binary number.

Because of this, the initial 14-bit values can be cut down to

7-bit values, leaving the user with two binary values, bTwo

and aTwo. These will be used later in the design for the

multiplication module.

One more aspect of the input FSM worth noting is that

if a valid key is pressed, the FSM actually goes into a

intersect phase. In this phase, nothing happens until 20 ms

have passed. If the key is still being pressed, then another 20

ms must pass. Otherwise, the key has been registered as

being depressed, and the FSM can continue as normal. This

is a manner of “debouncing” the incoming signal from the

keypad. Figure 2 shows part of the FSM algorithmic state

diagram for the input FSM.

Figure 3 – A portion of the input FSM. State 1dec and 2

work in similar fashion

B. Shifting Interface

As mentioned, once the numbers A and B are inputted,

the program should move into the next state, which is

properly aligning the two numbers for addition, subtraction

and division, based on how many decimal inputs were

conducted. For example, if the numbers “3.3” and “.33” are

inputted, the shift register values will be, in hexadecimal

BCD format, “0330” and “0033”. The decimal counters will

be 1 and 2, respectively. This shifting FSM will adjust these

values so that the decimal points properly align, so the new

shift register values are ‘0330’ and ‘0033.’ This is the

reasoning for the size of the 16-bit shift registers. If the shift

registers were 8-bit sized, then the project design could not

account for decimal values. With 16-bit shift registers, the

program can properly account for any decimal number

between 0 and 99.

Once the system is initially finished with the input

FSM, The system then moves to the shifting FSM. This

FSM doesn’t start until the input FSM is finished, as the

first state checks to make sure the input FSM has sent its

‘done’ signal to the shifting FSM. The first actual process of

this FSM is to load the 16-bit BCD contents of Number A

and Number B onto new 16-bit shift registers. These

registers will serve as the shifted values for Number A and

Number B.

Next, the system checks the operation and the value of

both decimal counters for Number A and B, qAdec and

qBdec, to determine how to arrange and align the numbers.

If the operation is multiplication, the result’s decimal

count, qR, is (qAdec + qBdec), and the shifting FSM is

done. No shifting is needed for multiplication, as the

multiply module deals with the 7-bit non-shifted numbers

discussed earlier.

If the operation is addition/subtraction, the system

compares the values of qAdec and qBdec. If qAdec is larger

than qBdec, then qR is equal to qAdec, and Number B is

shifted by a number of zeros equal to (qAdec - qBdec). If

qBdec is larger than qAdec, then qR is equal to qBdec, and

Number A is shifted by a number of zeros equal to (qBdec -

qAdec). If they are equal, no shifting is needed, and qR is

equal to qBdec, which is equal to qAdec.

If the operation is division, then the numbers are shifted

the same way as they are if the operation is addition or

subtraction. However, qR will always be set to 0. This is

because the division module will take two numbers and give

a quotient and a remainder. Only the quotient will be

considered, so shifting is done to get the most out of the

division module in the simplest manner possible. Figure 4

shows the FSM diagram for the shifting interface.

Figure 4– The FSM diagram for the shifting interface

After the shifting FSM is finished shifting and setting

qR, then the shifting FSM is finished, for now. The shifting

FSM, much like the input FSM, can be reset once the entire

process is complete, if the user inputs any button on the

keypad afterwards. Figure 5 shows the shifting portion of

the top file diagram. Notice that some elements of Figure 2

are tied into Figure 5.

Figure 5– The shifting portion of the top file diagram

C. Arithmetic

Once the shifting FSM is initially finished, the system

will then move to the arithmetic portion of the design. This

is where the mathematical procedure is done on the

numbers, depending on what operation was chosen. A

number of procedures are done. First, the 2-bit operation

signal is sent to a two-to-four decoder with an enable. The

enable is the signal that gets sent once the shifting FSM is

finished. The representation for this decoder can be seen in

Figure 6. This will be utilized in deciding when to not only

perform the arithmetic operations, but also when to output

the result onto the LCD display.

Operation Meaning DMSA

00 Add A and B 0001

01 Subtract B from A 0010

10 Multiply A and B 0100

11 Divide B from A 1000

Figure 6 – The representation for the two-to-four decoder

There will be two signals each for both A and B. There

will be a 7-bit non-shifted signal, as mentioned will come

from the input FSM, and a 14-bit shifted signal will come

from the shifting FSM. Two of these four signals will be

used depending on what operation is being done. These

operations are done in unsigned fashion. The addition and

subtraction operations will take the shifted 14-bit inputs for

A and B, and generate a 15-bit output, to account for

overflow. The output will then be cut back down to 14 bits,

ending with the addi and subi signals. The multiplication

operation will take the two 7-bit non-shifted inputs for A

and B and generate a 14-bit output, ending with the multi

signal. The division operation will take the two 14-bit

shifted inputs and generate a 14-bit quotient and a 14-bit

remainder. Only the quotient will be considered in the

result, which is the divi signal.

The division and multiplication operations will require

a clock signal. This is one of the reasons as to why the two-

to-four decoder is utilized. The multiply and divide modules

require a starting signal to being their arithmetic processes.

The multiply module only begins when both the shifting

FSM is finished and the DMSA signal’s third most

significant bit is high. Likewise, the divide module only

begins when both the shifting FSM is finished and the

DMSA signal’s most significant bit is high.

Regardless of what operation is done, all four signals

for each operation will be 14-bit signals. These four signals

are sent to a four-to-one multiplexer with an enable. The

enable is high only when the shifting FSM is finished, and

either the first bit of the DMSA signal is high, the second bit

of the DMSA signal is high, the divide module is done, or

the multiply module is done. The selecting bits of this

multiplexer is the two-bit operation signal. This will result

in a 14-bit result binary signal, which then gets converted

back into a 16-bit BCD signal, resultBCD. This is done in a

somewhat reversed process in terms of converting the 16-bit

BCD signal to a 14-bit signal. This resultBCD signal, along

with qR from the shifting FSM, are then outputted onto the

LCD. Figure 7 shows the arithmetic portion of the top file

diagram.

Figure 7– The arithmetic portion of the top file

diagram

D. LCD Module

When the arithmetic is done, the result will be outputted

to the user thorough an LCD screen connected to the Nexys

4 DDR board. The result is displayed on the LCD once the

arithmetic procedure ends, but the LCD, or rather, the LCD

FSM controlling the LCD, also communicates with the

input FSM and outputs according to what the user is

inputting. For instance, when inputting Number A, the LCD

outputs “Enter A.” Likewise, when inputting Number B, the

LCD outputs “Enter B.” Finally, the LCD outputs the result,

including the result number and the decimal point exactly

where it should be placed. This is done due to the LCD only

outputting one character at a time.

The result is four characters long. Before each character

is outputted to the LCD, the LCD FSM checks if it is

appropriate to output the decimal number. This is done by

checking qR and comparing it to how many numbers have

been outputted to the LCD. If it’s appropriate to put the

decimal point onto the LCD, the LCD FSM outputs the

decimal point, then moves on to outputting the rest of the

result.

For example, if the result is supposed to be “34.56,” the

resultBCD is, in hex, “3456” and the decimal counter, qR, is

2. The LCD FSM outputs ‘3,’ then ‘4,’ then determines that

the decimal point is to be put down, and then it finishes

outputting the number.

The LCD FSM starts by first initializing the LCD. This is

done by first powering on the LCD, then waiting 15 ms. The

LCD takes in 8 bits of data, along with an enable bit and an

RS bit, that tells the LCD if an instruction is being sent or if

data is being sent. After the 15 ms of waiting, then a low

signal is sent to the RS port, along with the instruction

setting interface length, the Function set instruction. After

4.1 ms, the same Function set instruction is sent again. After

100 us, the same instruction is sent again. Then, the same

instruction is sent a final time. Then, the clear display

instruction is sent, and the FSM waits for 1.5 ms. Then, the

LCD FSM turns the display on, and sets the entry mode.

After the initialization, the LCD FSM can then write data

onto the LCD. As mentioned, this is done character by

character, the data sent is an 8-bit signal that is decoded into

a character that is outputted onto the LCD.

 After the LCD outputs the result, the process is

technically done. Once the LCD FSM is done, a signal is

sent to the Input FSM that allows it to recognize a single

input. When the user presses any key, the system will return

to the first state of the input FSM. Likewise, the input FSM

sends signals that result every other FSM and component in

the system, and the process begins all over again. Figure 8

shows the LCD part of the top diagram.

Figure 8– The LCD portion of the top file diagram

III. EXPERIMENTAL SETUP

The hardware used for this project is the FPGA board

known as the Nexys 4 Artix-7. The FPGA has Pmod ports

that will allow for the keypad and LCD display to be

connected. Some simulations have also been taken to

describe further how some of the FSMs function. Note that,

given some FSMs have a rather long wait time, not all

simulations can be easily taken. For most of these

simulations, time should not be taken account of, as

counters have most likely been edited heavily.

Figure 9 shows the timing simulation conducted on the

InputFSM, and shows the outputs related to the first state,

inputting Number A. Here, the blue signals are the inputs

generated from the keypad. The yellow signals show the

output signals related to Number A, including the enable for

the counter that keeps track of how many digits have been

inputted, those being EA, zA and qA, along with the 4-bit

signal sent to the 4-bit shift register and the shift register’s

enable signal, aInput and EAcc.

Here, it can be seen that “48,” in hex, is first sent to the

FSM, immediately sending the FSM to the decimal phase of

inputting Number A. Then, a ‘1’ and a ‘9’ are inputted from

the ‘keypad,’ thus maximizing the number of inputs that can

be made to Number A, as noted by zA, which goes high

when that limit is reached. Finally, an operation signal is

sent to the FSM, sending the FSM to the state where

Number B is inputted. Also note the intersecting states that

occur when an input is made, and that the FSM only leaves

those states when the key input is set to low, thus

‘depressing’ the key on the keypad.

Figure 9 – A simulation done for the input FSM

Figure 10 shows a simulation for the shifting FSM. Here,

the signals related to Number A are in blue, the signals

related to Number B are in yellow, and the output signals

are in purple. Here, A is equal to 0.09, and B is equal to 99.

So, qA is higher than qB. Therefore, qR is set to qA, which

is 2. Next, B has to be shifted in order for A and B to

properly align, hence why B is shifted to “9900,” while A

remains “0009.”

Figure 10– A simulation done for the shifting FSM

Figure 11 shows a simulation for the LCDTop FSM

module. This is where the LCD sends instruction and data

signals. The red signals are inputs that are sent to the LCD.

As mentioned earlier, RS represents if an instruction is

being sent or if data is being sent. Note that for every state,

enable is turned on for a short period of time. This is

because LCDTop FSM is also tied to an inputLCD FSM

that controls when the enable is turned to a high signal. In

that FSM, enable is set to high for a brief period of time,

which allows the data from the 8-bit db port to be sent. Also

note that the LCD has to initialize and set itself up before it

writes data. It accomplishes all of its instruction commands

before sending data. Also note that some initialization

phases require waiting after sending the signal. This is,

while not seen in the simulation, especially the case with the

‘clear display’ instruction, which as mentioned, requires

roughly 1.5 ms for that instruction to complete before any

other instructions or data can be sent.

Figure 11 – A simulation done for the LCDTop FSM

IV. RESULTS

This project is programmed onto the Nexys-4 DDR

FPGA board. An Arduino 4x4 matrix serves as the keypad,

and a 1602A LCD display is utilized. These two

components are wired to the Pmod ports on the board.

The biggest hurdle to cross was by far getting the input

interface to work. At first, a USB keypad was utilized

instead of the 4x4 matrix. However, that proved to be too

problematic to use, as the USB keypad would stop

functioning sporadically. The USB keypad was then

replaced with the Arduino keypad. At first, there were

several issues getting the desired signal, and debouncing the

signal proved to be rather problematic. However, all issues

with the Arduino keypad have been, for the most part,

straightened out. There are still glitches every now and then

with the keypad, but that is more than likely due to user

input than anything else. The keypad is now generally

outputting the desired signals consistently.

The LCD interface was also a huge hurdle to pass

through. At first, the calculator was, although intended to be

designed for the LCD, instead designed with the seven-

segment displays and LEDs on the FPGA board in mind.

The biggest hurdle for the LCD was getting an

understanding the datasheet behind it, or rather, Hitachi’s

HD44780U datasheet. However, once an understanding was

made, the LCD was successfully integrated into the design.

The LCD is powered by an Arduino Uno, but the Arduino

Uno serves no other purpose. Additionally, the seven-

segment display and LED signals, although not discussed at

all in this report, remain on the project. Every four bits of

the resultBCD signal gets sent to one of the seven-segment

displays. Also, the rightmost LEDs on the board show the

value for qR. Finally, the leftmost LEDs on the board show

the operation value. The end result, regardless, is the proper

result with the proper decimal count for the result. The only

exception to this is when Number A is subtracted by a

Number B that is larger than Number A, in which the result

is 9999, when it should be a negative number. The entire

calculator composition can be seen in Figure 12.

Figure 12 – The digital calculator

The user will, as mentioned heavily in this report, be able

to input two digits for Number A, an operation, and two

digits for Number B. In return, the user will receive the

proper answer to the calculation made. Afterwards, the user

can press any button to do another input.

V. CONCLUSION

This project, although heavily complex, provides a very

solid infrastructure for a digital fixed point calculator.

Although limited by only allowing two numerical inputs per

number, this design provides an efficient and reasonable

basis for a calculator system that can accomplish simplistic

mathematical operations such as addition, subtraction,

multiplication and division. This project should serve as a

reasonable design and philosophy behind designing and

developing a decimal point calculator system.

VI. BIBLIOGRAPHY

[1] Llamocca, Daniel. "VHDL Coding for FPGAs."

Reconfigurable Computing Research Laboratory.

N.p., n.d. Web. 16 Apr. 2017.

<http://www.secs.oakland.edu/~llamocca/VHDLfo

rFPGAs.html>.

[2] HD44780U (LCD-II) (n.d.): n. pag. Hitachi. Web.

<https://www.sparkfun.com/datasheets/LCD/HD44

780.pdf>.

[3] Designs, Astro. "Keypad Scanner." Astro Designs. N.p.,

05 Oct. 2015. Web. 16 Apr. 2017. <http://astro-

designs.com/pixi_example_no2.html>.

