
Simple Digital Calculator

Yuzan Xiong, Jing Wu, Zongyu Yao

Electrical and Computer Engineering Department

School of Engineering and Computer Science

Oakland University, Rochester, MI

e-mails: yxiong@oakland.edu, jingwu@oakland.edu, yao@oakland.edu

Abstract — The purpose of this project is to

implement a traditional simple digital

calculator that performs the four basic

operations; Addition, Subtraction,

Multiplication, and Division of 8 bits unsigned

numbers. Nexys4 board was used to manage

four computations, input functions and output

functions. 16 switches on the board will be the

input, and output will be displayed on the

seven-segment on the board. LEDs on the

board will be used to show the sign of results,

remainder, and process done or not. The

Digital Simple Calculator consists of three

main portions in order to achieve the goal.

First portion is the input block which will

accept inputs from the switches on the board,

then transfer to four registers to determine

what two 8 bits expressible numeric inputs are

and storage of the inputs. The second portion is

the Finite State Machine which will determine

the state of the inputs and the logic will be

responsible for the actual calculation of the

result. The third portion will be the output

portion which will take the calculated result

from the FPGA and display the results on the

seven-segment.

I. INTRODUCTION

Experimental Setup, Methodology, Results and

Conclusions of the implementation of the Simple

Digital Calculator will be discussed in this report.

The goal of this project is to construct a simple

digital calculator with four basic operations and

consists of input, computation, and output.

Definitely, an organized map of inputs, outputs,

logical portions need to be drawn in order to make

the simple calculator works properly. In the map

of logical computation portion, the calculator

cannot function properly if there is a mistake no

matter how small it is. So it does not simple as we

used in normal lives.

The scope of the project was building a simple

calculator, which can calculate signed numbers’

simple computation. Seven-segment on the board

was used to display the results of operations. The

first five seven-segment will show the result, and

the remainders will displayed on the last three

segments. Initially, group members thought it

would be interesting to design a simple calculator

by ourselves because the calculator is familiar to us.

The way to design the simple calculator requires us

to cover several topics were discussed in ECE 378,

such as decoders, registers, Finite State Machine

(FSM), and Arithmetic Logic Unit (ALU). Those

knowledge gained from the labs of ECE 378. For

example, Arithmetic Logic Unit were learned from

lab 3 to know the basic functions of ALU and how

to construct it. In lab 2, it informed the

implementation of the multiplication, and lab 4

taught us to construct the register for storing values.

The design of division feature of the Arithmetic

Logic Unit was mentioned in lab 5, and a way of

address registers and the construction of Finite

State Machines in Control Circuit were provided by

lab 6.

As it designed so far, the application of the

simple digital calculator is only as a traditional

calculator, other applications need to explore by our

own.

II. METHODOLOGY

Arithmetic Logic Unit was used in this project.

Arithmetic Logic Unite is a modular design and

contains four modules: Control Module,

Add/Subtract Module, Multiply Module and Divide

Module. This simple digital calculator can process

four basic operations between signed numbers or

unsigned numbers.

A. Control Module

The control module needs to able to control and

select on other modules by using a two-to-four

decoder.

B. Add/Subtract Module

Add/Subtract module requires to process 8-bit

signed (unsigned) numbers’ add/subtract. For a

signed number, it needs to extend the numbers to 17

bits by using the sign bit. And subtract is achieved

by 2’s complement.

C. Multiply Module

If the inputs are two unsigned numbers or two

signed number with the same sign, the result does

not change. If two signed numbers multiply and

opposite in sign, the module needs to invert the

result and then plus one.

D. Divide Module

The dividend will be expanded to 32 bits. For

example, if the dividend is 01010100, then

extend it to 0000000001010100 and assigned it

to DATA. Next, compare the DATA’s high

order’s eight digits with the divisor. If dividend

is larger, set the quotient as 1 and assign it to

the lowest digit of data. Then, let the dividend

minus divisor and DATA shifts one digit to the

left. After eight times’ repeated, high order’s

eight digits of DATA is the remainder and the

rest is the quotient.

III. EXPERIMENTAL SETUP

To verify the functioning of the project, different

hardware and software were used in the project. For

the software, Xilinx ISE 14.7, which utilized

throughout the labs to design, synthesize,

implement and program the Nexys4 Board. This

software was used to code and simulate the project.

Individual part/module was simulated on the ISE to

make sure it works. After the separately simulations

of the files, then those files were combined into a

top file. Finally, simulate the top file and to verify

the function of it.

For the hardware, Nexys4 (DDR) Board was

used to define the inputs and process the operations

of the inputs. One of the hardware was used in this

project was a PS/2 Keyboard, which was

abandoned because of some unsolved issues. The

keyboard as the input of the calculator and can

convert the decimal to 2C’ number. Some protocols

which shown in the codes cannot be understood by

our own, so the keyboard was not implemented in

the project.

Another one is the display choice, group chose

to display the results on the seven-segment and use

Leds to show the sign of results and remainder. The

first five seven-segment will display the results and

the remainders will showed on the last three seven-

segment. Led0 lighting means the calculate is done,

Led1 lighting means the sign of remainder is

negative, and Led 2 lighting means the sign of result

is negative.

With these components hooked up to the board,

and using the switches to identify the register input,

the system was able to function as predicted which

is the calculation of mathematical outputs based on

switch inputs.

IV. Results

Figure 6: The result of Multiplication

Figure 7: The result of Division

Figure 6 and Figure 7 shows the functional

simulation by using Xilinx ISE 14.7 of the

Multiplication and Division of the inputs.

In Figure 6, inputs were 9 and 21, and the

Nexys4 board made a multiply between them, get

the result 189, which was correct. In Figure 7, the

inputs are 36 and 2. 36/2 = 18, and the remainder

is 0.

The functional simulations show the coding

works are correct and it works properly.

V. CONCLUSIONS

 In conclusion, this project successfully

demonstrated a working 4 function simple 8-bit

calculator and the complexity of the very simple

operations involved in adding, subtracting,

multiplying, and dividing two 8-bit unsigned

numbers. The process requires very careful

recording of inputs and outputs, translation of

signals, and output of the results.

The main functions of the calculator function as

designed however many improvements could be

made. The calculator could make the task of

inputting data simpler so users would not be

tasked with the work required to store data in

specific registers. Also the calculator functions

could be expanded to include values that require

greater than 8 bits to represent. Finally, the data

output could be improved to allow users to see the

values they input and the output could be

translated into decimal values that are more

understandable.

VI. BLOCK DIAGRAMS

OVERALL DESIGN

FINITE STATE MACHINE

