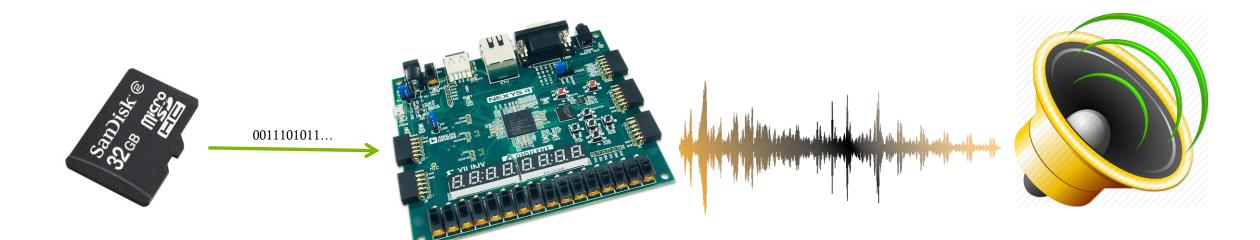
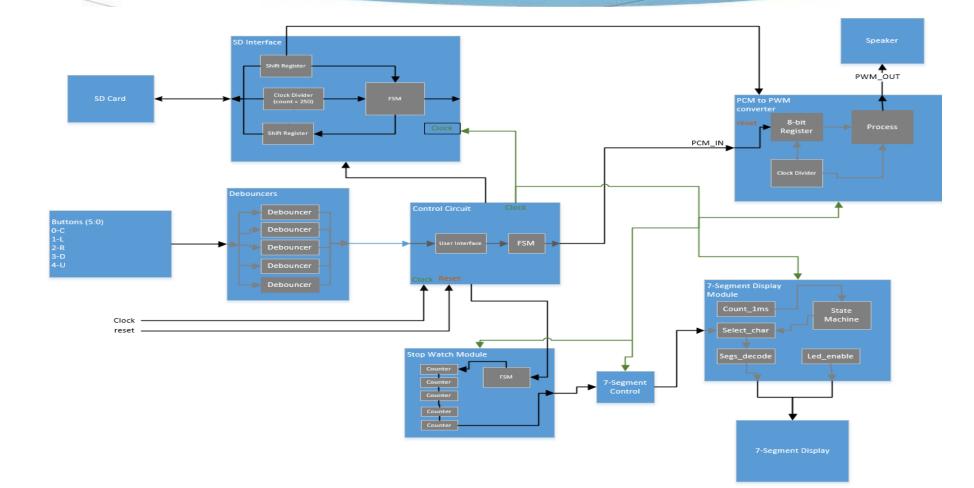
Nexys4 Audio Player

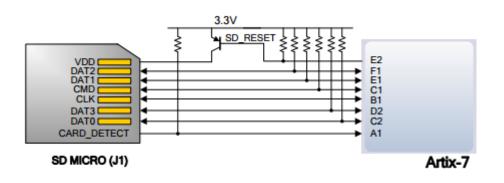

Andrew Reiff Daniel Vega Daniel French

CSE 378 Winter 2016


Contents

- Top Level Design
- Interfacing the SD card with Nexys4
- PCM vs. PWM signals
- Seven Segment Clock (Timer)
- Further Design
 Implementations

Top Level Design Architecture



Reading From SD Card

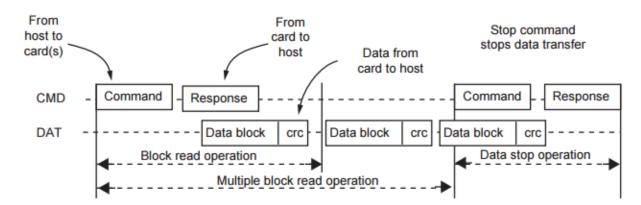
- Clock
 - 100-400MHz
- Communication Method
 - Secure Digital (SD)
 - Serial Peripheral Interface (SPI)
- Format
 - FAT16 vs FAT32
- Pinouts
 - Different for each method
 - Initialization will fail if no pullup's

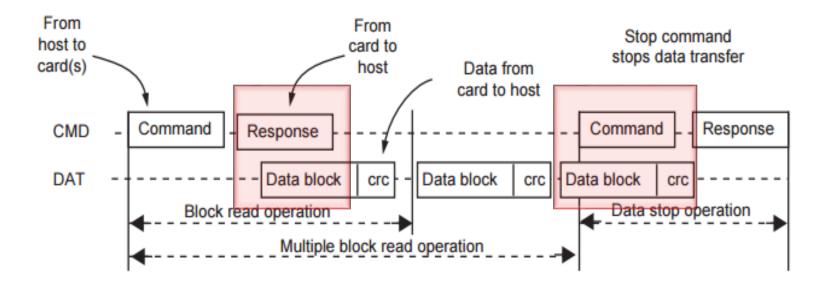
Pin	Name	Function (SD Mode)	Function (SPI Mode)
1	DAT3/CS	Data Line 3	Chip Select/Slave Select (SS)
2	CMD/DI	Command Line	Master Out Slave In (MOSI)
3	VSS1	Ground	Ground
4	VDD	Supply Voltage	Supply Voltage
5	CLK	Clock	Clock (SCK)
6	VSS2	Ground	Ground
7	DAT0/DO	Data Line 0	Master In Slave Out (MISO)
8	DAT1/IRQ	Data Line 1	Unused or IRQ
9	DAT2/NC	Data Line 2	Unused

Table 1: SD Card Pin Assignments [2].

SD Protocol

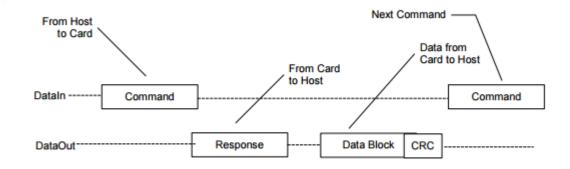
- Operation:
 - Single data line (DAT0) or four data lines (DAT0-DAT3).
 - Command is transferred serially on the CMD line.
 - Response is transferred serially on the CMD line.
 - Data is transferred in Blocks
 - Block are always followed by CRC (confirmation) bits
- Process:
 - Command (48 bits) to SD card
 - Command (CMD17)= "001000" for read
 - Argument = Data Address
 - 8 clock cycles (SD card)
 - Response (48 bits) from SD card
 - Receive .wav data packet

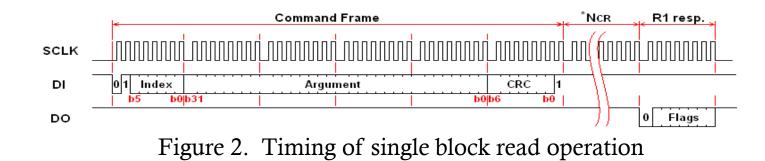



Figure 1: Multiple block read operations

0	1	bit 5bit 0	bit 31bit 0	bit 6bit 0	1
start bit	host	command	argument	CRC71	end bit

Table 1: Command and Response format


SD Protocol Timing



SPI Protocol

- Initialization
 - DI and SD = 1
 - Wait minimum 90 clock cycles
 - CMD0 = 0x00000000
 - Sent CMD1 to check status
 - Response change from Idle to ready $(0x01 \rightarrow 0x00)$
- Process
 - Send command signal (48 bits)
 - Wait 8 clock cycles for SD card to process
 - SD card sends 48-bit response
 - Command Response Time (NCR)
 - 0 to 8 bytes
 - SD card then sends data stream

Figure 1. Single block read operation

SD (Secure Digital Card) Uncertainties

- FAT32 SD card formatting
 - Where exactly is the data located within the SD card file directory?
- Timing of the .wav file message
- Was the entire length of the .wav file being received?

SD Format

•]	File	Allocation	Table	(FAT)
-----	------	------------	-------	-------

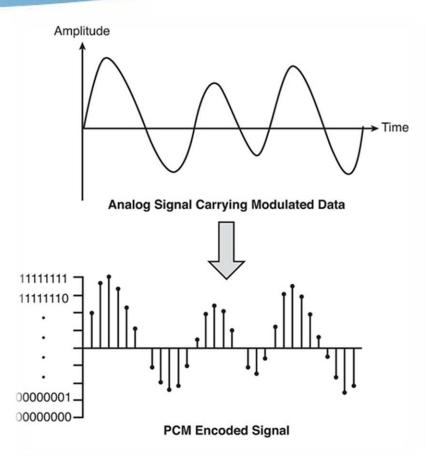
- Disk divided into clusters
- First 512 bytes is boot sector
 - Cannot be changed
 - Stores information about disk
- 4 to 64 sectors per cluster
 - Clusters determine where a file is located
- ♦ FAT16
 - Cards 128MB to 2GB
- ♦ FAT32
 - Cards 2GB to 32GB

🕪 HxD - [BLACKBERRY (I:)]

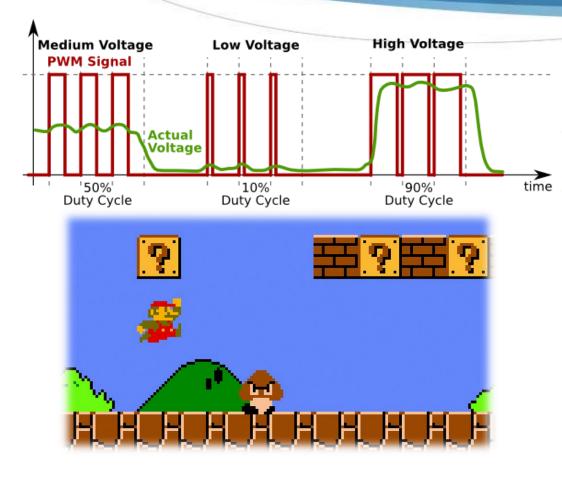
File Edit Search View Analysis Extras Window ?

📄 🚵 🕶 🗐	🧼 🥮 💽	• 16 ~	ANSI ~	hex 🗸 🖌	🖣 🖣 🕨 🕨 Sector	473 🖨 of 3853824
😃 BLACKBERF	RY (l:)					
Offset(h)	00 01 02	03 04 05	06 07 08 09	OA OB OC OD	OE OF	
0003B200	42 4C 41	43 4B 42	45 52 52 59	20 08 00 13	05 6D BLACKBER	RYm Sector 473
0003B210	70 3F 70	3F 00 00	26 2E 8C 48	00 00 00 00	00 00 p?p?&.	EH
0003B220	41 2E 00) 5F 00 2E	00 54 00 72	00 OF 00 7F	61 00 AT	.ra.
0003B230	73 00 68	00 65 00	73 00 00 00	00 00 FF FF	FF FF s.h.e.s.	····ÿÿÿÿ
0003B240	7E 31 20	20 20 20	20 20 54 52	41 22 00 00	00 29 ~1	TRA")
0003B250	8C 48 8C	: 48 00 00	00 29 8C 48	06 00 00 10	00 00 ŒHŒH)	EH
0003B260	4D 41 52	2 49 4F 20	20 20 57 41	56 20 10 89	B8 19 MARIO	WAV .%,.
0003B270	8C 48 8C	: 48 00 00	B8 19 8C 48	5B 00 3A EA	00 00 CEHCEH	EH[.:ê
0003B280	41 2E 00	54 00 72	00 61 00 73	00 OF 00 25	68 00 AT.r.a	.s%h.
0003B290	65 00 73	00 00 00	FF FF FF FF	00 00 FF FF	FF FF e.sÿÿ	ŸŸ••ŸŸŸŸ
0003B2A0	54 52 41	53 48 45	7E 31 20 20	20 12 00 00	00 29 TRASHE~1)
0003B2B0	8C 48 8C	: 48 00 00	00 29 8C 48	04 00 00 00	00 00 ŒHŒH)	EH
0003B2C0	42 30 00	30 00 00	00 FF FF FF	FF OF 00 21	FF FF B0.0ÿ	ÿÿÿ!ÿÿ
0003B2D0	FF FF FF	FF FF FF	FF FF FF FF	00 00 FF FF	FF FF ÿÿÿÿÿÿÿÿ	ŸŸŸŸŸŸ
0003B2E0	01 2E 00	53 00 70	00 6F 00 74	00 OF 00 21	6C 00S.p.o	.t!1.
0003B2F0	69 00 67	00 68 00	74 00 2D 00	00 00 56 00	31 00 i.g.h.t.	V.1.
					00 29 SPOTLI~1	· · · · · · · · · · · · · · · · · · ·
0003B310	8C 48 8C	: 48 00 00	00 29 8C 48	07 00 00 00	00 00 ŒHŒH)	EH
				00 OF 00 DA		
					FF FF n.t.s.d.	
					00 29 FSEVEN~1	
0003B350	8C 48 8C	: 48 00 00	00 29 8C 48	10 00 00 00	00 00 ŒHŒH)	EH
					3B 8A ÅAULT	d;Š
					00 00 .FŒH».(
					72 00 B .I.n.f	.orr.
				00 00 6E 00		
					6D 00 .S.y.s.t	
					65 00 .V.o.l.	
				20 16 00 4A		
				02 00 00 00		
					49 00 åM.A	
					FF FF Ow.a.	
				56 22 00 89		
					00 00 ŒHŒH&.	
					67 00 åa.n.a.l	-
				00 00 65 00		
00038440	E5 4E 41	4C 4F 47	/E 31 50 4E	47 20 00 80	96 1A ÅNALOG~1	PNG .€
Offset: 3B260	Block	k: 3B260-3B264		Length: 5	Readonly	Overwrite

FAT: What We Know


Based on the Boot Sector Information

- 512 bytes per sector
- 64 sectors per cluster
- 1 reserved sector
- 512 Root Directory Entries
- 3854329 Sectors in File System

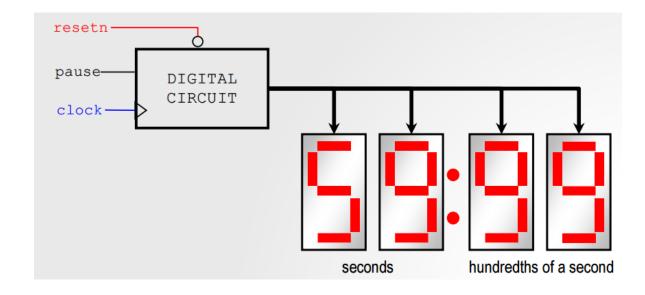

- 2 FAT copies
- 236 Sectors per FAT
- ♦ FAT #1
 - Offset: 512 121343
- FAT #2
 - Offset: 121344 242175
- Total Cluster Size: 32,768 bytes

PCM (Pulse Code Modulation)

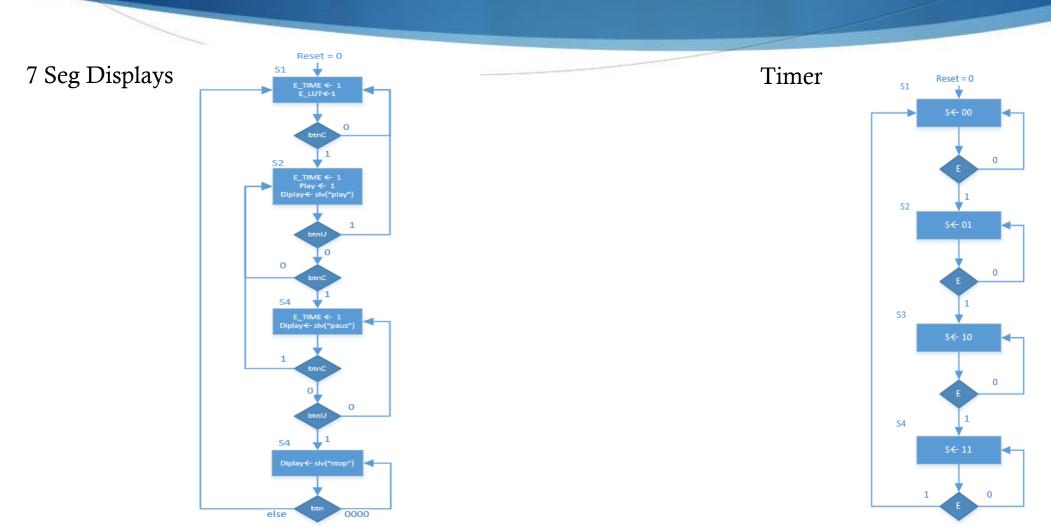
- Method used to digitally represent a sampled Analog Signal
- Amplitude of the signal is sampled at regular intervals
 - Standard form of digital audio in computers, compact discs, etc.
- Each Amplitude or step is "quantized" to the nearest value in a set of digital steps

PWM (Pulse Width Modulation)

- Modulation technique used to encode a message in a pulsing signal
- Used to control the power supplied to electrical devices
- PWM has been used to play back a crude version of a PCM signal
 - Speakers driven by two voltage levels, 0V and 5V
 - A mono audio output can be obtained by carefully timing the pulses and relying on the speakers physical filtering properties
 - Sound output is typically very low quality
 - Generally used in soundtracks of many classic video games

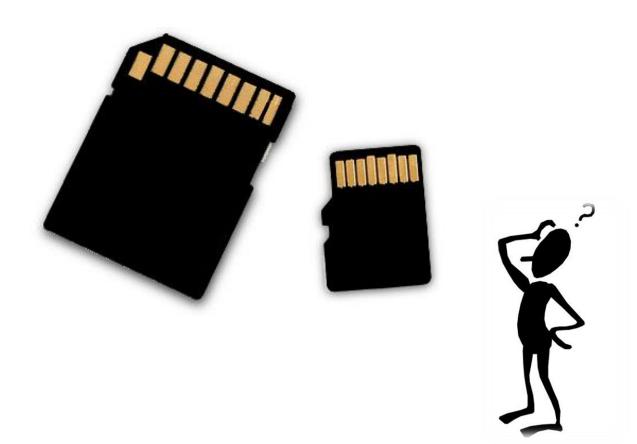

PCM to PWM

- PCM samples are taken at a regular clock interval
 - These signals represent a value between 0 and 255
- Using a clock we can convert these values into the appropriate duty cycles
- These duty cycles are converted to the duration at which the pulses are output in the PWM signal
- These varying pulse widths are what determine the voltage output which in turn creates the sound output from the speaker



Timer (Seven Segment Display)

- Interfaced to keep track of the total time for which each sound plays
- Starts counting when the SD PCM data transfers
- Uses the PCM output of the Microprocessor unit to know when to stop based on the output
- First 4 displays used for name of track
- Last 4 displays used for timer



Display FSM's

Further Design Applications

- Interfacing the SD card with the appropriate and understanding the overall file structure will lead to many different applications including:
 - Loading multiple tracks
 - Saving recorded tracks
 - Looping multiple sounds
 - Audio Amplification

