
Nexys4 Audio Player

Andrew Reiff, Daniel French, Daniel Vega

Electrical and Computer Engineering Department

School of Engineering and Computer Science

Oakland University, Rochester, MI

E-mails: ajreiff@oakland.edu, dlfrench@oakland.edu, dgvega@oakland.edu

Abstract – The purpose of our project is to create an audio player

that will load music tracks from an SD card and play them when

the user selects the indicated song using the buttons and display

on the FPGA board. This paper will give a short introduction, go

through the methodology of how we constructed this project, go

over the research needed, and explain our results.

I. INTRODUCTION

Music is a big part of everyone’s life and there is constant

pressure in the engineering industry to improve hardware and
overall sound quality for consumers in all areas from
consumer electronics to automobiles. The motivation for this
project was to conduct in depth research as to how audio
signals are constructed and played. In order to do so, we
decided to create and audio player using the Nexsys 4 DDR
board that will allow one to import previously saved .wav files
from an SD card and put them each into a bank. From these
banks, the user would be allowed to play a single track or
potentially, given the scope of the project, be able to mix and
match audio signals and output one signal using Pulse Width
Modulation (PWM), through the AUX output on the Nexsys
4 DDR board, to an external speaker in order to hear the mixed
audio signal.

This report will cover many topics that we have learned in

our computer hardware design course. In order to incorporate
audio, we would have to have components such as state
machines, multiplexors, registers, a look up table (LUT), a
control circuit, as well as the use of the 7-segment displays on
the FPGA board. But this project covered much more material
than we went over in the course and there was a need to do
some in depth research. We had to incorporate a micro SD
card into our design. In order to do so, we had to research
many things about our Sandisk 2.0GB micro SD card such as
the pinouts, storage format, communication protocols, and the
timing of the communication. The .wav files on the SD card
were saved as an 8-bit unsigned Pulse Code-Modulation
(PCM) signal which needed to be converted to a PWM signal
in order to output through the Aux port on the Nexsys 4 board.
We had to research how to create this converter using modules
to incorporate into our top level design. Lastly, one of the last
items we had to independently research was how the PWM
signal was going to drive the speaker, in other words, how to
enable the Aux port on the board, in order to get sound.

Overall, there is much to be learned from designing this
project and we can see it having many applications in the
future such as a template for other students to continue and
improve upon our work, and even as a simple media player
for one’s home. In the reset of this report, we will go in depth
about how our design was constructed, the methodology, and
the experimental setup we did in order to test our designs.

II. METHODOLOGY

A. Top File

First, let us begin with a brief walkthrough of the program

from the user’s perspective. Once the board is programmed,

powered up, and automatically initialized, the user is

presented with a menu in which the user may use the

pushbuttons to scroll through a list of files containing sounds

or songs which can be played through the board’s audio

amplifier. Once a file is chosen, the center pushbutton will

start the playback. At the same time, a stopwatch will begin

recording how long the file has been playing. At this point

the user may pause the playback, stop the playback and return

to the menu, or wait for the file to finish and automatically

return to the menu.

The code for the program implements seven modules into

the top file. A complete list of the top file modules is as

follows: User Interface, SD Interface, Seven Segment

Control, Seven Segment Display, Stopwatch, and a digital

PCM to PWM audio converter. These seven module work

together to create the program explained above.

The central module of the system is the User Interface. It

acts as the main controlling unit as well as the top level FSM.

It acts as a control signal by sending ‘enable’ signals to the

sub modules and registers that are needed for the processes in

each state. These signals are controlled by the top level state

machine in the User Interface. The board’s hardware,

controlled by the user, sends signals to the User Interface,

which navigates through the high level states of the program.

The observable high level states are as follows: initialization,

menu navigation, play mode, pause mode, and a stop mode.

The SD Interface is designed to receive an 8 bit command

signal from the User Interface and perform a specific

operation depending on the command it receives. The design

utilizes the SPI protocol of the SD card. SPI has a slower

response than standard SD protocol, but it is much easier to

implement, which is ideal for small scale applications such as

this program.

The Seven Segment Display module receives a string and

displays it on the Nexys 4 board’s 8-digit Seven Segment

Display. It does this by sending the string through a decoding

machine that outputs eight 8-bit segment codes. The built-in

state machine cycles through each digit one at a time at 1 kHz.

The module receives its input from the Seven Segment

Control module, which outputs a string based on its

communication with the User Interface. For example, in the

‘menu navigation’ mode it will change the word it displays

whenever the user presses the left or right pushbuttons.

Once a file is selected for playback, it is pulled from the

SD card and the data stream is sent to the PCM/PWM

converter. One of the most common modulation techniques

for storing audio data in a portable storage device is Pulse

Code Modulation (PCM). However, the board’s built-in

DAC circuit requires Pulse Width Modulation (PWM), so the

data stream from the file must be converted before it is sent

to the output audio jack.

Lastly the Stopwatch was added to display how long a file

has been playing. It uses five counters to divide the rate at

which the Q values change. Four Q values are sent to the

Seven Segment Control module to display the output of the

Stopwatch.

Figure 1. Top level design

B. Clock

The project required the use of many clock signals in order
for separate components to gather the correct data for each
audio signal. We used a global 100MHz clock signal “Clock”
and each event occurred on the positive or negative edge of
this clock signal. The micro SD card, however, needed a 100-
400KHz clock so we had to use a clock divider in order to
step-down our 100MHz clock to be able to communicate
properly with the SD card.

C. State Machines

The entire program has a total of 5 different state

machines. They are found in the User Interface (main FSM),
SD Interface, Stopwatch, Seven Segment Display module,
and the Debouncers. The state machines in the Seven Segment
Display module and the Debouncers will not be discussed

since they remain constant throughout the execution and
navigation of the program. Additionally, the state machine
that controls the Stopwatch closely resembles part of the User
Interface state machine, so it will not be explained
individually either.

The state machine in the SD Interface is tightly integrated
with the central FSM in the User Interface. It is designed to
input an 8-bit instruction received from the central FSM, and
output a ‘done’ and a ‘ready’ signal to the central FSM,
depending on its state. In its post-idle state, the FSM is sending
a high ‘ready’, which communicates that the FSM is ready to
receive a new instruction. The first 2 bits of the instruction
signal are high at this point. As soon as the FSM reads that the
first 2 bits of the instruction are low, it begins its process. First
it assembles a 48-bit command to send to the SD card. This
command contains the remaining 6 bits from the original
instruction. Next it sends the command by enabling a shift
register. Next it waits for a low signal from the SD card that
signifies the beginning of a response. Once a low bit is read,
the FSM enables a second shift register to pull in the response.
The response contains information about any errors that may
have occurred. If there are no errors, the FSM continues with
its process. The remainder of the process depends on the
command that was sent, and there may be nothing more to do.
Once the process is completed, the FSM advances to its pre-
idle state and sends a high ‘done’ signal to the User Interface.
It will remain in the pre-idle state until the first 2 bits of the
instruction signal read high. Once they do, the FSM returns to
its post-idle state and outputs the ready signal.

The main state machine communicates with the SD
Interface state machine during the initialization stage and the
playback states. When it sends the 8-bit instruction, it retains
that output until it receives the ‘done’ signal. It responds
asynchronously by setting the instruction output to all ‘1’s.
(The SD Interface state machine then responds synchronously
to the high bits by returning to its post-idle state.).

Starting from power up, the main FSM instigated the
initialization of the SD card by sending two different
instructions, sending the second only after receiving the
‘done’ signal. Once initialization is complete, it advances to
the menu state and activates the Seven Segment Control
module. In this state, the FSM will cycle through the file
names when it receives a signal from the left or right
pushbuttons. A signal from the center pushbutton causes it to
advance to the pre-play state as it sends instructions to the SD
Interface. It advances to the play state once the ‘done’ signal
is received. Here, the FSM has 2 possible paths. Another
center button signal sends it to the pause state where it sets the
SD Interface enable signal low, stopping the bit stream. Here,
another center button signal will re-enable the SD Interface
and send the FSM back to the play state. In either the play or
pause state, a signal from the top button sends it to the pre-
stop state, where in sends instructions to stop the data
transmission altogether. Once the ‘done’ signal is received, it
advances to the stop state, and the automatically back to the
menu state.

Figure 2. 7-Seg State Machine Figure 3. Timer display state machine

D. External Storage (SD Card)

The first thing we had to do for this project in terms of
research was to figure out how to access the micro SD card
from the Nexys 4 board. This was going to prove to be the
most difficult step. We figured out that Secure Digital (SD)
cards have two modes of communication, Secure Digital
Protocol and Serial Peripheral Interface (SPI) protocol. In
order to communicate with the SD card, we could need to
figure out which of the two modes would suite our needs the
best.

First step was to determine the pin outs for each mode,
which can be seen in table 1 below. From reading the user
manual for the Nexys 4 DDR board from Digelent, we were
able to find the diagram in figure 21 that depicts how we need
to connect the micro SD card to the appropriate ports on the
board. Fortunately, the board already comes with the
connections pre-made and with internal pull-up resistors.
Without the pull-up resistors, the SD card would not be able
to initialize or send data. Our specific micro SD card was
made by SanDisk and had a capacity of 2 GB. From the
datasheet, we found that it could be powered by 2.7v to 3.6v.
The Nexys board powers the SD card with 3.3v that should be
perfect.

1) SD Protocol

Based on our research, utilizing the SD protocol method
would allow us to send data from one to up to four data lines
(DAT0-DAT4) as seen in table 1. First, we would have to send
a command to the SD card and wait for a response. Both the
command and the response are transferred serially on the
Command (CMD) line on pin 2. Also, both the command and
response utilize the same format, but not all bits are needed
for each response. The format for these blocks of data is
shown below in figure 5. The command and response data
blocks are comprised of 48 bits were the first bit is a logic low
start bit which will tell either the SD card or the Nexys 4 board
when to start reading since the last bit will be set to logic high
and will keep the line active high until another packet is to be
read. The second bit indicates which device, whether the
master or slave, is talking on the line. Logic high indicates that
the board is sending a command to the SD card, which a logic
low indicates that the SD card is sending a response back to
the board. The next 6 bits after the host bit indicates the
command that we want to execute, whether it is reading,
writing, deleting, etc. This section is only necessary when
sending a command and can be ignored when receiving a
response from the SD card. The next 32 bits dictate the
argument of the message which specifies the data address in
the SD card which we want to begin reading from or writing
to. And lastly, the 7 bits before the end bit which is specified
as CRC7 in the figure below, are used by the SD card to tell
the board the status of the SD card and/or whether the
command was successfully received. This section can be
ignored when sending a command.

 Figure 4. process diagram for SD mode.

Figure 5. Command and Response format

One thing that we noticed from our research about using

SD mode is that data is transferred both on the rising and
falling edges of the clock signal. As shown in figure 4, this

means that we would have to incorporate in our code a method
from filtering out the data block that would be received from
the SD since it will begin to send data part way through
sending a response on the command line.

2) SPI Protocol

Now, using the SPI communication method was very

similar to the SD protocol. However, in order to use SPI, first,

one would have to set the DI and SD pins high and wait a

minimum of 90 clock cycles before sending command CMD0

in order to initialize the card into SPI mode. After sending

this command, one would have to wait a few clock cycles (not

specified in documentation) and then send command CMD1

in order to check the status of the card. By sending CMD1,

we would then get a response from the SD card check the

CRC bits (7 down to 1), which would tell us whether the

board was still in “Idle” mode (0x01) or in “ready” mode

(0x00). As seen in figure 6 below, this protocol, after getting

through the initialization process, is more straightforward as

we would only be sending and receiving data on the rising

clock edges. After sending the commands through the DataIN

line, we would then get a response back through the

DataOUT line with no overlap in the clock signals as when

using the SD mode protocol. Using this communication

method, we would only need to use the chip select (CS), data

in (DI), data out (DO), and clock pins which are pins 1, 2, 7,

and 5 respectively as shown previously in table 1.

Figure 6. Single block read operation (SPI protocol)

3) Storage Format (FAT16)

The last thing we needed to know from our SD card was

how the information was stored on it. SD cards use a File

Allocation Table (FAT) format to store data in different

locations on the card. In order to send the SD card a

command, we would need to fill the argument section by

finding the location on the SD card where our audio tracks

are being stored. File Allocation Tables divide the disk

storage in to clusters where different cards have a different

number of sectors per cluster. Our card had about 64 sectors

per cluster and the first 512 bytes of our card indicate the boot

sector that tells us all the relevant information pertaining to

our specific SD card; this information is permanent and

cannot be changed. According to our boot sector we were

able to find out that the disk we were using had the ability to

have about 236 separate entries. The card immediately makes

two copies of these entries and stores them in different

locations so that if one were to get deleted the files were

backed up. Due to this duality feature, the FAT on our disk

was located in two locations pertaining to what is called the

“offset.” The offset is a way for users to address specific

bytes within the card and our FAT’s were located at offsets

512 and 121,344 and each were roughly 236 sectors long.

These FAT were a way to find where our files were located

by reading the individual clusters. Once a cluster was located,

it gave an offset address that could be directly referenced to

find where a file was located on the disk. Once located we

were able to use the offset address in our argument sent to the

SD card to directly load the file from the memory of the chip.

III. EXPERIMENTAL SETUP

To set up and test our project, first we had to set up our SD
card in the FAT16 format. We then found an audio file using
a sound from the classic video game Super Mario Bro’s. To
use this file with our hardware we had to convert it to an 8-bit
PCM file using a program called Audacity. Once the file was
converted we loaded the file on the chip and had to use a Hex
Dump of the FAT-16 format of the card to find the offset at
which our sound was located. We then would be able to call
to that address using SPI protocol on the board and load the
signal in 8 bits at a time. Figuring out the SPI protocol was
where we were stumped however due to the timing constraints
necessary for proper functionality. After determining that this
process worked, we would load multiple sound files into the
SD card and complete the code for the final presentation.

IV. RESULTS

Due to the complexity of the SD interface modules and

actually getting the timing correct for reading from the SD
card to the board, we were not able to get a fully functional
project. We tested most of the modules in a simulation to make
sure they were working. Our presentation demonstrated the
overall functionality of our project and how the user will
interface with the board to select the tracks. It also showed a
fully functional timer system that activated when the user
played, stopped, and reset the system. Overall, this project still
has a short way to go but can always be improved upon.

CONCLUSIONS

Interfacing with a micro SD card to the FPGA board

proved to be a very difficult task. This was a time consuming
process as there was much research to be done since this
material was never presented in our course. Not only did we
learn the basics behind how an SD card works, the file
allocation system, communication protocols, and process
flow, but we also have a much greater knowledge of how this
interaction in VHDL.

There are a few issues/bugs to be worked out. As seen in
our functional simulation. We need to make sure we are
capturing all the data being transmitted from the SD card so
that we try to minimize the error in sound quality. Also, we
have to find a way to improve our PCM to PWM code in order

to get the most accurate conversion and there is minimal loss
in sound quality.

There are any improvements that we would like to make
for this project in the future. Our group would like to turn this
audio player into a “beat” mixer. Essentially, we would like to
be able to store multiple beats/sounds into ROM on the Nexys
board and then be able to overlap and loop them so that we
can create music just like music producers do in actually
music production labs.

REFERENCES

[1] SandDisk Corporation. (2003). SandDisk Secure Digital Card: Product

Manual. Version 1.9. Document No. 80-13-00169.

[2] SD Card Association. http://sdcard.org/.

[3] Digilent Inc. (2014). Nexys4 DDR FPGA Board Reference Manual.
Revision C. Document No. 502-292.

[4] “How to use MMC/SDC”. Website. February 18, 2013. http://elm-
chan.org/docs/mmc/mmc_e.html. Accessed April 4, 2016.

http://elm-chan.org/docs/mmc/mmc_e.html
http://elm-chan.org/docs/mmc/mmc_e.html

