
Implementation of Hyperbolic CORDIC with AXI Full Interface

Sagar Vaidya

Electrical and Computer Engineering Department

School of Engineering and Computer Science

Oakland University, Rochester, MI

e-mail: sagarvaidya@oakland.edu

Abstract — CORDIC stands for COORDINATE ROTATION

DIGITAL COMPUTER. There are three basic CORDIC

algorithms including Circular CORDIC, Linear CORDIC,

Hyperbolic CORDIC.

Hyperbolic CORDIC is used to compute hyperbolic functions in

efficient and fast way.

I. INTRODUCTION

The hyperbolic CORDIC algorithm allows computation of
hyperbolic functions. Basic hyperbolic CORDIC algorithm is
a fixed-point architecture with an expanded range of
convergence, and a scale-free fixed-point hardware.

It can be used in powering architecture generally that takes
high cost of computation where FPGAs can be a solution if
designed efficiently.

This project report will mainly focus on design of a hyperbolic
CORDIC design and verification.

II. METHODOLOGY

A. This report presents hardware design for the

hyperbolic CORDIC algorithm with simple range of

convergence.

B. The reference of Circular CORDIC is used from the

course tutorials and extended it to implement hyperbolic

functions.

This is extension to the original CORDIC equations that
allows for the computation of hyperbolic functions, where 𝑖 is
the index of the iteration (𝑖 = 1, 2, 3, …). The following
iterations must be repeated to guarantee convergence: 𝑖 = 4,
13, 40, … , 𝑘, 3𝑘 + 1.

Depending on the mode of operation, the quantities X, Y

and Z converge to the following values, for sufficiently large
𝑁:

III. EXPERIMENTAL SETUP

With a proper choice of the initial values 𝑥1, 𝑦1, 𝑧1 and
the operation mode, the above functions can be directly
computed.

IV. RANGE OF CONVERGENCE

The basic range of convergence, obtained by a method
developed by X. Hu et al, “Expanding the Range of
Convergence of the CORDIC Algorithm”, results in:

V. HARDWARE BLOCK DIAGRAM

Here the LUT holds the 𝑖 = 𝑡𝑎𝑛ℎ −1 (2 −𝑖) values for 𝑖 =
1,2, … , 𝑁.

The FSM is more complex as it has to account for the
repeated iterations. After 𝑁 − 1 + 𝑣 (𝑣: # of repeated iterations)
clock cycles, the result is obtained in the registers X, Y and Z,
and a new process can be started.

V. CONTROL DIAGRAM

The control diagram above depicts mode selection of the

hyperbolic CORDIC based on assignment of input data in the
word.

Vectoring and Rotating modes are selected based on MUX
inputs.

VIII. FSM

This is the state machine representation of the Hyperbolic

CORDIC.

This FSM implements 16 iterations starting from 1st (not

0th).
Important part of this FSM is that it has to repeat iterations

4 and 13 as per the hyperbolic CORDIC algorithm. Hence, i =
4 and i = 13 conditions repeat the state S2 and S3 respectively.
When i becomes 15, it goes back to state S1.

X. Few other differences

- Adder/Subtractor Logic
Circular CORDIC implementation is as below –

Hyperbolic CORDIC implementation is as below –

This shows the difference between add/sub selector bit ‘di’

for x, y, z.

- Look-up Table (LUT)

This is the LUT used for hyperbolic CORDIC that has
16 (0r 15) iterations of tanh outputs.

V. GENERATION OF AXI FULL INTERFACE AND INTEGRATION

AXI Full interface is generated as per the course tutorial by

generating AXI full IP and repackaging it.

This IP is then used in creation of block design for

hyperbolic CORDIC and generating VHDL source.

It is then synthesized, implemented and generated bitstream.

V. CONTROL DIAGRAM

This is the block design that is generated in Vivado project

by importing AXI interface IP generated (mycordicfull) and
Zybo board.

V. SOFTWARE ROUTINE

Software routine is implemented in SDK to verify the

functionality of the design on Zybo board.
Steps involved are as below –
- Initialize base address based on AXI base address
- Write first set of input data using AXI interface

write API defined in the design
- This includes writing 2 words sequentially
- Add a small delay to process the data

- Read 2 words using AXI interface read API defined
in the design

- Repeat these steps for additional sets of inputs and
outputs

- Build the SDK, connect the board and run on the
hardware to see the output in serial console

V. SIMULATION OF AXI FULL INTERFACE

Generated AXI interface is then simulated in Vivado by
adding the testbench for simulation that uses AXI

read/write
APIs on the input/output dataset.
Below if the result of AXI simulation.
- Read 2 words using AXI interface read API defined

in the design
- Repeat these steps for additional sets of inputs and

outputs
- Build the SDK, connect the board and run on the

hardware to see the output in serial console

V. DATA SET

This is the dataset that is simulated in below output
of the simulation.

Generated AXI interface is then simulated in Vivado by
adding the testbench for simulation that uses AXI

read/write
APIs on the input/output dataset.

Below if the result of AXI simulation.

Rotating mode dataset 1:

Rotating mode dataset 2:

Vectoring mode dataset 1:

Vectoring mode dataset 2:

On running the test program in SDK, below output is

displayed in the serial console of the hardware –

This verifies that the output of the hardware hyperbolic

CORDIC design and the calculated output in the above dataset
match with very little deviation.

V. CONCLUSION

Designing a hyperbolic CORDIC hardware

software interface needs good mathematics and electronics

knowledge.

These mathematical operators and its VHDL

implementation is useful in different applications, such as

computing (x^y) powering formulae, sinh, cosh, tanh of the

given angles, logarithmic computations and many more.

Components implemented in VHDL are generic

and

can be adapted easily to any application listed but not

limited to the above ones.

V. REFERENCES

[1] Digital Library - Arithmetic Cores (oakland.edu)

[2]

 https://moodle.oakland.edu/pluginfile.php/7667929

/mod_resource/content/5/Notes%20-%20Unit%203.pdf

[3] Circular CORDIC implementation with AXI Full

interface from Lab 3 assignment

https://www.secs.oakland.edu/~llamocca/arithcores.html
https://moodle.oakland.edu/pluginfile.php/7667929/mod_resource/content/5/Notes%20-%20Unit%203.pdf
https://moodle.oakland.edu/pluginfile.php/7667929/mod_resource/content/5/Notes%20-%20Unit%203.pdf

