
ECE5736: Reconfigurable Computing (Summer 2022) Small Microprocessor (SM) Design

1 | P a g e

Small Microprocessor (SM) Design

Using AXI4-Full of ARM Cortex-A9

List of Authors (Abd Al-Rahman Al-Nounou, Hitesh Sojitra)

Electrical and Computer Engineering Department

School of Engineering and Computer Science

Oakland University, Rochester, MI

e-mails: aalnounou@oakland.edu, hzsojitra@oakland.edu

Abstract— Central Processing Unit (CPU) design is an area of

engineering that focuses on the design of a computer's CPU.

The CPU acts as the “brain” of the machine, controlling the

operations carried out by the computer. In this work, we

design an AXI4_Full interface for a small microprocessor

(SM) peripheral. The custom peripheral is integrated into an

embedded system in vivado. A software application is created

in the SDK tool that can communicate with the peripheral.

The output is mapped to external outputs on the development

board LEDs.

I. INTRODUCTION

The basic task for a CPU is to execute the instructions

contained in the programming code used to write software.

Different CPU designs can be more or less efficient than one

another. Some designs are better at addressing certain types

of problems.

A small Microprocessor (SM) Design is a simple CPU that

handles up to 4 bits of data and 3 bits of instruction to perform

operations where the instructions are provided in one clock

cycle. The data flow is wrapped with the AXI-4 Full

Peripheral and allows PS+PL integration with C coding.

The CPU consists of a Datapath and Control Unit. Datapath

includes the Register File (set of Registers) Which holds data

and memory address values during the execution of the

instruction and Arithmetic Logic Unit (ALU): A shared

operation unit that performs arithmetic (e.g., addition,

subtraction, division) and bitwise logic (e.g., AND, OR

operations).

Control Unit (CU) controls operations performed on the

Datapath and other components (e.g., Instruction memory

(IM)). It interprets and executes the instructions. Instructions

are read from a specific memory address in IM which is

provided by the Program Counter (PC) component

sequentially (one by one). The IM can store up to 16 8-bits

instructions. To execute a particular instruction, CU asserts

specific signals at certain times to control the registers, ALU,

memories, and ancillary logic.

The Instruction Decoder (ID) reads the instructions and

generates control signals to the Datapath and other

components. It is usually implemented as a combinational

circuit (single-cycle computers) or as a large Finite State

Machine (FSM) with ancillary logic (multi-cycle computers).

II. OVERVIEW

This is the Hardware Architecture with the proposed draft

Block Diagram along with the I/O mechanism.

A. General Top-level Block Diagram

B. Peripheral and FSM

Below is the peripheral and FSM architecture that has been

implemented with this project.

C. Software (PS) Component

The project implements the software application using the

SDK tool by the C code to read and write the AXI full

FIFO memory that can communicate with the peripheral.

The start word or FSM triggered word will be written

using CPU_mWriteMemory and the result will be

obtained by the CPU_mReadMemory APIs from BSP.

ECE5736: Reconfigurable Computing (Summer 2022) Small Microprocessor (SM) Design

2 | P a g e

III. METHODOLOGY

A. AXI4-Full Protocol and Interface introduction

The Advanced eXtensible Interface (AXI) is part of ARM

AMBA, a family of microcontroller buses first introduced in

1996. The first version of AXI was first included in AMBA

3.0, released in 2003. AMBA 4.0, released in 2010, includes

the second major version of AXI, AXI4.

AXI4-full removes the requirement for an address phase

altogether and allows unlimited data burst size. AXI4-full

interfaces and transfers do not have address phases and are

therefore not considered to be memory-mapped.

The AXI4-full protocol is used for applications that typically

focus on a data-centric and data-flow paradigm where the

concept of an address is not present or not required. Each

AXI4-full acts as a single unidirectional channel with a

handshaking data flow. At this lower level of operation

(compared to the memory-mapped protocol types), the

mechanism to move data between Ips is defined and efficient,

but there is no unifying address context between Ips. The

AXI4-full IP can be better optimized for performance in data

flow applications, but also tends to be more specialized

around a given application space.

AXI4-full is Hardware peripherals: 64-byte memory (or 16

32-bit word memory). Data Width: 32 bits.

B. AXI4-Full Protocol with Project Application

The AXI4-full protocol has been used with the project to

communicate to the Internal FSM to start data and instruction

processing. The AXI peripheral shall write the 32-bit data

into Input FIFO when the wren signal will be asserted.

FIFO (FIRST-IN, FIRST-OUT) based AXI4 Full design:

The FIFO is the structure that is useful to implement queues

and buffering large amounts of data.

The Synchronous FIFO: data are written/read at the same

clock rate while the Asynchronous FIFO: write and read

clocks can be different. This is an ASIC design (not an RTL)

that is useful to pass data between different clock domains.

The 32-bit data will be written by SDK software using the

CPU_mWriteMemory function, the word to be written is

constant data i.e. 0xAA55FFFF, this is called the processing

start trigger word, once the internal FSM receives this word

the conversion process starts.

C. Microprocessor with instruction load control

This is a simple microprocessor where instructions are

processed in one clock cycle.

▪ Only one instruction memory. No data memory. Data can

be loaded onto the ALU on one clock cycle.

▪ Instruction Memory: Implemented as an array of registers.

When reading, the output appears as soon as the address is

ready.

▪ Instruction Decoder: the ‘stop_ID’ external signal makes

sure that the ID outputs are ‘0’ so that nothing gets updated.

▪ Note how this detailed figure fits into the Generic CPU

model.

D. FSM Control (without LED control)

Below is the internal FSM that controls the starting of the

ALU operation based on the received trigger signal from

iFIFO and also controls the oFIFO to write the processed

data to use with the Application.

ECE5736: Reconfigurable Computing (Summer 2022) Small Microprocessor (SM) Design

3 | P a g e

E. Program Execution

The following diagram shows the program execution states,

here set the L_in = 1 for a clock cycle. Then wait for 70 cycles

for the program to be written on the Instruction Memory.

Since the inputs L_ex, we_ex, and D_ex are not used with the

application then they are set to 0’s.

Now, the start is asserted to '1' for a clock cycle. The step

should be asserted to '1' during the execution of the program

(for as many cycles as needed).

F. Instruction Memory

The instruction decoder component is in charge of issuing

control signals for the proper execution of instructions. The

inputs to this circuit are the Instruction Register (IR) and the

Z flag.

The outputs are all the control signals: M1, M2, M3, M4, M5,

M6, L_R0, L_R1, and L_OP. The Function Select (FS) (the

output to the ALU) is directly generated by IR[7..5] also, if

stop_ID = 1, the following signals must be reset to ‘0’:

register enables in the Datapath (L_OP, L_R0, L_R1), and

the PC control signal M6. This is useful to pause the

execution of a program (PC and Datapath are not updated).

The following assembly program is for a counter from 2 to

13: 2,3,…, 13,2,3,…

G. Design Hierarchy

The project software has the following VHDL files that are

implemented and designed the architecture.

H. Operation: Internal VBC Component Execution

The following scope image shows the simulation result of the

base circuit (Up_VBS.vhd), it shows the correct output as per

the project architecture.

IV. SOFTWARE ARCHITECTURE AND DESIGN

The software has been designed and implemented with

Vivado 2019.1. Initially design the basic computer which can

decode the instruction as per described in the Instruction

memory section.

The Very Basic Computer (VBC) design is provided to start

with. The scope of this project is to implement AXI4-Full

interface around the VBC components. AXI interface is used

to communicate with FSM that triggers the ALU operation

within the VBC component.

The output of the VBC component is provided to the output

of the FIFO for the AXI4-Full’s interface. The output is

visible in the SDK terminal via serial communication and it

is connected to external I/Os (LEDs) on the Zybo board.

ECE5736: Reconfigurable Computing (Summer 2022) Small Microprocessor (SM) Design

4 | P a g e

A. VBC component

VBC component: This is a simple microprocessor where

instructions are processed in one clock cycle. Only one

instruction memory. No data memory. Data can be loaded

into the ALU on one clock cycle.

B. Instruction Set

Instructions are the collection of bits that instruct the compute

to perform a specific operation. Each instruction specifies i)

an operation the system is to perform, ii) the registers or

memory words where the operands are to be found and the

result is to be placed, and/or iii) which instruction to execute

next.

Instructions are usually stored in memory (RAM or ROM).

To execute the instructions sequentially, the address in

memory of the instruction is needed to be executed. The

address comes from the Program Counter (PC).

Executing an instruction means activating the necessary

sequence of microoperations in the Datapath (e.g.: add,

subtract, load, shift) and elsewhere required to perform the

operation specified by the instruction.

Instruction Set is the collection of instructions for a computer.

Instruction Set Architecture (ISA) is a thorough description

of the instruction set. Simple ISAs have three major

components: storage resources (IM, DM, Register File),

instruction formats, and instruction specifications.

Program is the List of instructions that specifies the

operations, the operands, and the sequence in which

processing is to occur. It is where the user specifies the

operations to be performed and their sequence.

The data processing performed by a computer can be altered

by specifying a new program with different instructions or by

specifying the same instructions with different data.

Instruction and Data can be stored in the same memory, in

different memories, or they might appear to come from

different memories.

The Control Unit reads an instruction from memory, decodes

and executes the instruction by issuing a sequence of one or

more microoperations (in single-cycle CPUs, only

microoperationis are performed per instruction).

V. PROJECT SETUP

A new Vivado project is created. The corresponding Zybo

board and other basic configurations are selected.

The code for ALU, IM, DM, and Instruction Load Control

blocks is already designed. We instantiate these components

and set up the corresponding generic parameters.

The FSM and the AXI full peripheral around the circuit are

designed to communicate outside the world, the VHDL code

is written for the given circuit. Then, the circuit is synthesized

to clear syntax errors.

The VHDL testbench is written to simulate the circuit. The

simulation providing input and timing parameters is run as is

shown belwo.

Another Vivado project is created to develop IP for the VBC

component. The default language is made sure to be VHDL

so that the system wrapper and template files are created in

VHDL.

A. Create Block Design in Vivado

A Block Design is created and instantiated the Zynq PS and

the project IP (mySMfull) AXI4_Full peripheral. The Block

Automation and Connection Automation are run.

There is a .xdc file required to be added to create external

I/Os for LED outputs and make them external ports.

Then, the VHDL wrapper is created (Sources Window →

right-click on the top-level system design → Create HDL

Wrapper)

Synthesize, implement, and generate the bitstream.

Below is the IP design circuit implemented using the Vivado

2019.1

External output LEDs are connected to LED_0[0, 3].

ECE5736: Reconfigurable Computing (Summer 2022) Small Microprocessor (SM) Design

5 | P a g e

VI. TESTBENCH SETUP

For this project, AXI4_Full testbench have been used to test

the project design and the architecture. AXI4_full peripheral

uses the FIFO concept in which the input FIFO will read the

input data from the user input or the SDK.

The input data 0xAA55FFFF is provided to the FSM. The

FSM triggers the CPU operation with ALU and starts

counting provided counter sequences as is shown in the

below simulation scope.

The counter counts value from 0x04 to 0x0B and repeats the

same sequence if the state machine is triggered again.

For this project, the LEDs are used as external output

interfaces, the counter which is generated by the CPU is

displayed on the LEDs of the Zybo board.

To make LEDs visible on the board, the original state

machine is modified to add approximately a 0.8-second delay

after each output so that human eyes can see the LEDs

blinking.

VII. RESULT

The final state machine is used to simulate the AXI interface

with LED outputs enabled.

Here are the figures that represent the full counter sequence

after providing the Input (0xAA55FFFF) from the test bench

to the end of the counter.

Trigger point and counter start counting.

Counter 0 & 4,

Counter 5 & 6,

Counter 7,8 & 9,

ECE5736: Reconfigurable Computing (Summer 2022) Small Microprocessor (SM) Design

6 | P a g e

Counter 9, A & B.

A. Project Experiment with SDK and External LEDs

The SDK project is created to write the C code that is used to
provide input trigger to internal FSM. The
CPU_mWriteMemory function is used to write data into the
AXI bus and the result is obtained by the
CPU_mReadMemory APIs from BSP.

Once the program and SDK are compiled, the ZYBO Board
is connected to the USB port of the computer and downloaded
the bitstream on the PL: Xilinx Tools → Program FPGA

Then, the SDK Terminal is connected to the proper COM port.
The project created is selected from the SDK. Right-click and
select Run As → Launch on Hardware (GDB).

After that the Zybo board is ready to test and verify the

project implementation.

Below are the output from the SDK and the LEDs from the

board which are running in parallel.

The complete project demo shows the actual counter

incrementing and blinking LEDs according to the counter

value displayed in SDK Terminal.

Programmed Zybo Board with LED outputs,

We are able to accomplish the planned architecture and

design for this project. The project outcome matches the

required performance of the initially planned and expected

result.

VIII. CONCLUSIONS

A Small microprocessor is designed to implement an

AXI4_Full peripheral. A specific signal word is used to

trigger the state machine to start fetching the instructions

from the instruction memory to provide a one-by-one

counting sequence from 0x04 to 0x0B. The same count can

be repeated if the state machine is triggered again. External

outputs on the Zybo board are used to provide the result.

All over, this project is great learning from the class materials

and also provides the platform to grow our skills in related

filed within industries. Many industries are using these same

tools and methodologies to develop actual industrial products

hence we believe that this project work is very useful to learn

about real-world technology.

A. Feature work and expansion

This design could be expanded into a more complex processor
with a stack to allow for less reading and writing between the
software and hardware. Also, The instruction set could be
expanded from a 3-bit to a 4-bit or higher set depending on the
required project complexity.
The software can be used with more than two processors. In
addition, we can add the reconfigurable partition to the ALU
to allow multiple configuration switches at run time.

IX. REFERENCES

[1] Dr. Daniel Llamocca “Reconfigurable Computing Research
Laboratory (RECRLab), Electrical and Computer Engineering
Department, Oakland University”

[2] Dr. Daniel Llamocca, ECE5736: Reconfigurable Computing
“http://www.secs.oakland.edu/~llamocca/Summer2021_ece5736.html

http://dllamocca.org/
http://dllamocca.org/

