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Abstract— Central Processing Unit (CPU) design is an area of 

engineering that focuses on the design of a computer's CPU. 

The CPU acts as the “brain” of the machine, controlling the 

operations carried out by the computer. In this work, we 

design an AXI4_Full interface for a small microprocessor 

(SM) peripheral. The custom peripheral is integrated into an 

embedded system in vivado. A software application is created 

in the SDK tool that can communicate with the peripheral. 

The output is mapped to external outputs on the development 

board LEDs. 

I. INTRODUCTION 
 

The basic task for a CPU is to execute the instructions 

contained in the programming code used to write software. 

Different CPU designs can be more or less efficient than one 

another. Some designs are better at addressing certain types 

of problems. 

A small Microprocessor (SM) Design is a simple CPU that 

handles up to 4 bits of data and 3 bits of instruction to perform 

operations where the instructions are provided in one clock 

cycle. The data flow is wrapped with the AXI-4 Full 

Peripheral and allows PS+PL integration with C coding.  

The CPU consists of a Datapath and Control Unit. Datapath 

includes the Register File (set of Registers) Which holds data 

and memory address values during the execution of the 

instruction and Arithmetic Logic Unit (ALU): A shared 

operation unit that performs arithmetic (e.g., addition, 

subtraction, division) and bitwise logic (e.g., AND, OR 

operations).  

 

Control Unit (CU) controls operations performed on the 

Datapath and other components (e.g., Instruction memory 

(IM)). It interprets and executes the instructions. Instructions 

are read from a specific memory address in IM which is 

provided by the Program Counter (PC) component 

sequentially (one by one). The IM can store up to 16 8-bits 

instructions. To execute a particular instruction, CU asserts 

specific signals at certain times to control the registers, ALU, 

memories, and ancillary logic.  

 

The Instruction Decoder (ID) reads the instructions and 

generates control signals to the Datapath and other 

components. It is usually implemented as a combinational 

circuit (single-cycle computers) or as a large Finite State 

Machine (FSM) with ancillary logic (multi-cycle computers).  

II. OVERVIEW 

This is the Hardware Architecture with the proposed draft 

Block Diagram along with the I/O mechanism. 

A. General Top-level Block Diagram 

 

 

B. Peripheral and FSM 

Below is the peripheral and FSM architecture that has been 

implemented with this project. 

 

 

C. Software (PS) Component  

 

The project implements the software application using the 

SDK tool by the C code to read and write the AXI full 

FIFO memory that can communicate with the peripheral. 

The start word or FSM triggered word will be written 

using CPU_mWriteMemory and the result will be 

obtained by the CPU_mReadMemory APIs from BSP.  
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III. METHODOLOGY 

 

A. AXI4-Full Protocol and Interface introduction  

 

The Advanced eXtensible Interface (AXI) is part of ARM 

AMBA, a family of microcontroller buses first introduced in 

1996. The first version of AXI was first included in AMBA 

3.0, released in 2003. AMBA 4.0, released in 2010, includes 

the second major version of AXI, AXI4. 

AXI4-full removes the requirement for an address phase 

altogether and allows unlimited data burst size. AXI4-full 

interfaces and transfers do not have address phases and are 

therefore not considered to be memory-mapped. 

The AXI4-full protocol is used for applications that typically 

focus on a data-centric and data-flow paradigm where the 

concept of an address is not present or not required. Each 

AXI4-full acts as a single unidirectional channel with a 

handshaking data flow. At this lower level of operation 

(compared to the memory-mapped protocol types), the 

mechanism to move data between Ips is defined and efficient, 

but there is no unifying address context between Ips. The 

AXI4-full IP can be better optimized for performance in data 

flow applications, but also tends to be more specialized 

around a given application space. 

AXI4-full is Hardware peripherals: 64-byte memory (or 16 

32-bit word memory). Data Width: 32 bits.  

 

B. AXI4-Full Protocol with Project Application  

  

The AXI4-full protocol has been used with the project to 

communicate to the Internal FSM to start data and instruction 

processing. The AXI peripheral shall write the 32-bit data 

into Input FIFO when the wren signal will be asserted. 

FIFO (FIRST-IN, FIRST-OUT) based AXI4 Full design:  

The FIFO is the structure that is useful to implement queues 

and buffering large amounts of data.  

 

 
 

The Synchronous FIFO: data are written/read at the same 

clock rate while the Asynchronous FIFO: write and read 

clocks can be different. This is an ASIC design (not an RTL) 

that is useful to pass data between different clock domains. 

 

The 32-bit data will be written by SDK software using the 

CPU_mWriteMemory function, the word to be written is 

constant data i.e. 0xAA55FFFF, this is called the processing 

start trigger word, once the internal FSM receives this word 

the conversion process starts. 

C. Microprocessor with instruction load control 

 

This is a simple microprocessor where instructions are 

processed in one clock cycle. 

▪ Only one instruction memory. No data memory. Data can 

be loaded onto the ALU on one clock cycle. 

▪ Instruction Memory: Implemented as an array of registers. 

When reading, the output appears as soon as the address is 

ready. 

▪ Instruction Decoder: the ‘stop_ID’ external signal makes 

sure that the ID outputs are ‘0’ so that nothing gets updated. 

▪ Note how this detailed figure fits into the Generic CPU 

model. 

 

 
 

D. FSM Control (without LED control) 

 

Below is the internal FSM that controls the starting of the 

ALU operation based on the received trigger signal from 

iFIFO and also controls the oFIFO to write the processed 

data to use with the Application. 
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E. Program Execution 

 

The following diagram shows the program execution states, 

here set the L_in = 1 for a clock cycle. Then wait for 70 cycles 

for the program to be written on the Instruction Memory. 

 

Since the inputs L_ex, we_ex, and D_ex are not used with the 

application then they are set to 0’s. 

 

Now, the start is asserted to '1' for a clock cycle. The step 

should be asserted to '1' during the execution of the program 

(for as many cycles as needed). 

 

 
 

F. Instruction Memory 

 

The instruction decoder component is in charge of issuing 

control signals for the proper execution of instructions. The 

inputs to this circuit are the Instruction Register (IR) and the 

Z flag.  

The outputs are all the control signals: M1, M2, M3, M4, M5, 

M6, L_R0, L_R1, and L_OP. The Function Select (FS) (the 

output to the ALU) is directly generated by IR[7..5] also, if 

stop_ID = 1, the following signals must be reset to ‘0’: 

register enables in the Datapath (L_OP, L_R0, L_R1), and 

the PC control signal M6. This is useful to pause the 

execution of a program (PC and Datapath are not updated). 

 

The following assembly program is for a counter from 2 to 

13: 2,3,…, 13,2,3,… 

 

 

G. Design Hierarchy 

 

The project software has the following VHDL files that are 

implemented and designed the architecture. 

 

 
 

H. Operation: Internal VBC Component Execution 

 

The following scope image shows the simulation result of the 

base circuit (Up_VBS.vhd), it shows the correct output as per 

the project architecture. 

 

 
 

IV. SOFTWARE ARCHITECTURE AND DESIGN 

The software has been designed and implemented with 

Vivado 2019.1. Initially design the basic computer which can 

decode the instruction as per described in the Instruction 

memory section. 

 

The Very Basic Computer (VBC) design is provided to start 

with. The scope of this project is to implement AXI4-Full 

interface around the VBC components. AXI interface is used 

to communicate with FSM that triggers the ALU operation 

within the VBC component. 

 

The output of the VBC component is provided to the output 

of the FIFO for the AXI4-Full’s interface. The output is 

visible in the SDK terminal via serial communication and it 

is connected to external I/Os (LEDs) on the Zybo board. 
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A. VBC component  

VBC component: This is a simple microprocessor where 

instructions are processed in one clock cycle. Only one 

instruction memory. No data memory. Data can be loaded 

into the ALU on one clock cycle. 

 

 
 

B. Instruction Set 

 

Instructions are the collection of bits that instruct the compute 

to perform a specific operation. Each instruction specifies i) 

an operation the system is to perform, ii) the registers or 

memory words where the operands are to be found and the 

result is to be placed, and/or iii) which instruction to execute 

next. 

 

Instructions are usually stored in memory (RAM or ROM). 

To execute the instructions sequentially, the address in 

memory of the instruction is needed to be executed. The 

address comes from the Program Counter (PC). 

 

Executing an instruction means activating the necessary 

sequence of microoperations in the Datapath (e.g.: add, 

subtract, load, shift) and elsewhere required to perform the 

operation specified by the instruction. 

 

Instruction Set is the collection of instructions for a computer. 

Instruction Set Architecture (ISA) is a thorough description 

of the instruction set. Simple ISAs have three major 

components: storage resources (IM, DM, Register File), 

instruction formats, and instruction specifications. 

 

Program is the List of instructions that specifies the 

operations, the operands, and the sequence in which 

processing is to occur. It is where the user specifies the 

operations to be performed and their sequence. 

 

The data processing performed by a computer can be altered 

by specifying a new program with different instructions or by 

specifying the same instructions with different data. 

Instruction and Data can be stored in the same memory, in 

different memories, or they might appear to come from 

different memories. 

The Control Unit reads an instruction from memory, decodes 

and executes the instruction by issuing a sequence of one or 

more microoperations (in single-cycle CPUs, only 

microoperationis are performed per instruction). 

V. PROJECT SETUP 

A new Vivado project is created. The corresponding Zybo 

board and other basic configurations are selected. 

 

The code for ALU, IM, DM, and Instruction Load Control 

blocks is already designed. We instantiate these components 

and set up the corresponding generic parameters. 

 

The FSM and the AXI full peripheral around the circuit are 

designed to communicate outside the world, the VHDL code 

is written for the given circuit. Then, the circuit is synthesized 

to clear syntax errors. 

 

The VHDL testbench is written to simulate the circuit. The 

simulation providing input and timing parameters is run as is 

shown belwo. 

 

Another Vivado project is created to develop IP for the VBC 

component. The default language is made sure to be VHDL 

so that the system wrapper and template files are created in 

VHDL. 

 

A. Create Block Design in Vivado 

 

A Block Design is created and instantiated the Zynq PS and 

the project IP (mySMfull) AXI4_Full peripheral. The Block 

Automation and Connection Automation are run. 

 

There is a .xdc file required to be added to create external 

I/Os for LED outputs and make them external ports. 

 

Then, the VHDL wrapper is created (Sources Window → 

right-click on the top-level system design → Create HDL 

Wrapper) 

 

Synthesize, implement, and generate the bitstream. 

 

Below is the IP design circuit implemented using the Vivado 

2019.1 

 

External output LEDs are connected to LED_0[0, 3]. 
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VI. TESTBENCH SETUP 

 

For this project, AXI4_Full testbench have been used to test 

the project design and the architecture. AXI4_full peripheral 

uses the FIFO concept in which the input FIFO will read the 

input data from the user input or the SDK. 

 

The input data 0xAA55FFFF is provided to the FSM. The 

FSM triggers the CPU operation with ALU and starts 

counting provided counter sequences as is shown in the 

below simulation scope. 

 

The counter counts value from 0x04 to 0x0B and repeats the 

same sequence if the state machine is triggered again.  

 

 
 

For this project, the LEDs are used as external output 

interfaces, the counter which is generated by the CPU is 

displayed on the LEDs of the Zybo board. 

 

To make LEDs visible on the board, the original state 

machine is modified to add approximately a 0.8-second delay 

after each output so that human eyes can see the LEDs 

blinking.  

 

 
 

VII. RESULT 

 

The final state machine is used to simulate the AXI interface 

with LED outputs enabled. 

 

Here are the figures that represent the full counter sequence 

after providing the Input (0xAA55FFFF) from the test bench 

to the end of the counter. 

 

Trigger point and counter start counting. 

 

 
 

Counter 0 & 4, 

 
 

Counter 5 & 6, 

 
 

Counter 7,8 & 9, 
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Counter 9, A & B. 

 

 
 

A. Project Experiment with SDK and External LEDs 

 
The SDK project is created to write the C code that is used to 
provide input trigger to internal FSM. The 
CPU_mWriteMemory function is used to write data into the 
AXI bus and the result is obtained by the 
CPU_mReadMemory APIs from BSP. 
 
Once the program and SDK are compiled, the ZYBO Board 
is connected to the USB port of the computer and downloaded 
the bitstream on the PL: Xilinx Tools → Program FPGA 
 
Then, the SDK Terminal is connected to the proper COM port. 
The project created is selected from the SDK. Right-click and 
select Run As → Launch on Hardware (GDB). 

 

After that the Zybo board is ready to test and verify the 

project implementation. 

 

Below are the output from the SDK and the LEDs from the 

board which are running in parallel.  

 

The complete project demo shows the actual counter 

incrementing and blinking LEDs according to the counter 

value displayed in SDK Terminal. 

 

 

 

 

Programmed Zybo Board with LED outputs, 

 

 
 

 

We are able to accomplish the planned architecture and 

design for this project. The project outcome matches the 

required performance of the initially planned and expected 

result.  

VIII. CONCLUSIONS  

A Small microprocessor is designed to implement an 

AXI4_Full peripheral. A specific signal word is used to 

trigger the state machine to start fetching the instructions 

from the instruction memory to provide a one-by-one 

counting sequence from 0x04 to 0x0B. The same count can 

be repeated if the state machine is triggered again. External 

outputs on the Zybo board are used to provide the result. 

 

All over, this project is great learning from the class materials 

and also provides the platform to grow our skills in related 

filed within industries. Many industries are using these same 

tools and methodologies to develop actual industrial products 

hence we believe that this project work is very useful to learn 

about real-world technology. 

A. Feature work and expansion 

 
This design could be expanded into a more complex processor 
with a stack to allow for less reading and writing between the 
software and hardware. Also, The instruction set could be 
expanded from a 3-bit to a 4-bit or higher set depending on the 
required project complexity. 
The software can be used with more than two processors. In 
addition, we can add the reconfigurable partition to the ALU 
to allow multiple configuration switches at run time. 
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