
Dual Fixed-Point
Calculator
GABRIEL RAMIREZ | AUSTIN NOLEN

ECE 5736

SUMMER 2021

DFX Overview
Dual fixed point is an alternative way of representing a fixed-point number

It utilizes two scalings n0 and n1 that greatly increase the dynamic range compared to FX

Uses less resources compare to floating point

Written in format [n p0 p1] where

p0 > p1

Project Overview
Dual Fixed-point calculator with Adder, subtractor, multiplier, divider

AXI Lite peripheral built around calculator and programmed onto Zybo board

Using selection switches on Zybo board to select between calculator functions

Input two 16-bit DFX operands in [16 8 4] format and receive 16-bit DFX output result based on
selected calculator function

SW_in(1,0)

32

SLV_REG_0

32

myCalculator_IP

16

SLV_REG_1

S_AXI_RDATA

32
operands result

AXI_LITE interface

Hierarchy:

myCalculator_IP
dfx_addsub
mymultiplier
mydivider

S_AXI_WDATA

modeSelect
LEDs_out(3 downto 0)modeOutput

Block Diagram

myMultiplier

16

myCalculatorIP

Operands(31 downto 16)

16
Operands(15 downto 0)

A

B

16

myCalculatorIP

Result

mysign2unsign

|A|

|B|

Multiply
positional bits
(Not a
component)

If
A(n)
Then
B with n bits
left shift

ma(15)
vectors

myMultiAdder

Find 2s
complement

Add all the
vectors

30

15

15

mysign2unsign

Find 2s
complement
Keep if
operands were
mixed signs
Discard if
operands were
same signs

myfx2dfx

Take 30 bit fx
input and
convert to 16
bit dfx

30 30

2

Exponents
from A and B
for fractional
bits.

mysign2unsign
Generates the 2s compliment of whatever you put in.

Used to take absolute value of negative inputs

Multiply positional bits
If A(n) Then B with n bits left shift. Keeps several vectors for processing.

Example

1111
x 10101

1111
111100

11110000

Mymultiadder
uses an array of fulladd components to add all of the vectors obtained previously

Myfx2dfx
converts the fx result of multiplying the two operands into the final dfx [16 8 4] result

Looks at the two exponent bits to determine if the multiplied result has 8, 12 or 16 fractional bits.
After determining how many integer bits, it checks to see if this can be shown with 7 integer bits for a num0. (To do this we check to see that all bits downto the seventh

integer bit are the same as the seventh integer bit.)
If so we take the 7 integer bits with 8 fractional bits and truncate the rest.
If not, we take 11 integer bits with 4 fractional bits and truncate the rest.
We then add in the exponent dependent on num0 or num1.

Vectors

DFX Division Procedure
1. Convert from DFX-FX

2. Perform 2c if negative

3. Align fractional points to get integers

4. Perform Unsigned integer division

5. Place fractional point

6. Use range detector to determine if n0 or n1

7. Perform 2c if needed

8. Convert to DFX based on output of range detector

Dividend

Divisor

Clock

reset

Pre-scaler

Iterative
Unsigned
Divider +
Bit slice

Range Detect

Q_n0

Q_n1

0
 1

E select

Final Result

E

Clock reset E

A

B

Dividend

Divisor

myDFXDividerIP

0
 1

0
 1

2c

2c

&n0

&n1

Sign chg

DFX Divider Block Diagram

Unsigned Iterative Divider Architecture

Divider Test
Dividend = 4 (n0) Divisor = 2 (n1)

Dividend = -30 (n0) Divisor = 2 (n1)

Divider Test
Dividend = -9 (n0) Divisor = -3 (n0)

Dividend = 7.5 (n0) Divisor = 2.5 (n0)

DFX Add/Subtract

Issues
The first design used switch inputs for mode selection. This conflicted with the adder/subtractor IP.
The solution was to remove the switch inputs and use a second slave register write for the mode
select.

The test bench was not providing outputs when checking the axi rdata. This was found to be caused
by variables that were not initialized. It’s worth noting that in implementation the variables were
grounded so this did not interfere with SDK trials and was only noticed in the testbench.

Two variables had multiple assignments which prevented implementation.

The initial design had a mux controlling the inputs to the calculator functions. If the addition mode
was selected than the mux would zero out the inputs as they were fed to subtraction, multiplication
and division. This design was scrapped for a dmux that would take results from all functions and
based on mode selection choose which to send out on the axi data bus. This does mean however
that all functions are running even when only one function can be requested at a time.

Limitations
Iterative circuit

Only two operands

Does not validate inputs – An invalid num1 could be sent which would give inaccurate results.

Does not validate results – Two valid inputs could result in an overflow. This would be ignored
and inaccurate results would be provided.

3200,3200

Num1 8640

8640, 32000 = Addition

Read Asserted

1 = Subtraction

3200

Read Asserted

1FFF,0200

Read Asserted

2 = Multiply

3FFE

2 = Multiply0100,0200

0200

Read Asserted

0300,0300

Read Asserted

0900

***Here only slave_reg0 address
was written too. Previous operation
of multiplication was retained in
slave_reg1.

Read Asserted

2000,0200 Subtraction

3200,3200

Read Asserted

Addition

8640

8640,3200 Subtraction

3200

Read Asserted

0200,6F2C Multiplication

5E58

Read Asserted

6F2C = -16.828125
5E58 = -33.65625

0800,0200

0400

Shift
operations
occurring

0800,0200

1F00 7F00

