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Abstract - This project demonstrates the design and test of a 

Dual-Fixed Point calculator. The calculator functions 

implemented include addition, subtraction, multiplication, and 

division. The calculator architecture design was built and tested 

on an FPGA. An AXI interface was used to interconnect 

software and hardware to input operands and receive results. 

I. INTRODUCTION 

In computer arithmetic, there are several ways to 

represent numbers. Two of the most common are fixed-

point and floating point. Fixed-point numbers are 

represented as an n-bit number with p fractional bits, i.e. [n 

p]. One advantage of using fixed-point is the low resource 

usage on a system. They are treated as integers in any 

arithmetic operation once the fractional bits are aligned. The 

disadvantage is the dynamic range. A number can be 

represented in any given form of fixed-point but once you 

have chosen an n and p you are limited in your dynamic 

range. 

Floating point, on the other hand, has a much higher 

dynamic range than fixed-point. However, this comes with a 

compromise on resource usage. In applications where 

system resources are very lean, floating point would not be a 

good choice. 

Dual fixed-point numbers are an attempt at solving the 

disadvantages of both fixed-point and floating point. This 

method of number representation involves an exponent E 

bit, followed by a signed n-1 bit significand. The exponent 

can be either 0 to 1 indicating two possible scaling. The 

formal representation is written as [n p0 p1]. An exponent 

with value 0 indicates p0 and 1 indicates p1. This allows the 

one to represent a very large integer with less fractional bits, 

or very small numbers with many fractional bits. This 

method effectively solves the problem of fixed-point 

numbers while maintaining a low resource usage. 

This project will demonstrate the build and test of each 

component of the dual fixed-point calculator. We will show 

the design process that we followed utilizing topics learned 

in class along with testing and validation. The details of the 

AXI peripheral and software implementation will also be 

discussed. Dual fixed-point numbers hold a lot of potential 

to be useful in many different electrical engineering 

applications in today's world. This project hopes to show 

just one of those purposes. 

 

II. METHODOLOGY 

A. Adder/Subtractor 

The Adder/subtractor was designed based on the 
architecture presented in class on Dual fixed-point addition 
and subtraction [2]. To add or subtract two dual fixed point 
numbers, one must first convert the numbers to fixed-point 
form. This is done in the pre-scaler of the adder/subtractor 
architecture. The pre-scaler also aligns the fractional points 
of the numbers so that they can be added or subtracted 
properly. This may cause some bits to be truncated. However, 
we can save these truncated bits and add them on in the post-
scaler. 

Once the operands are aligned it is time to perform 
addition or subtraction. We signed extend the numbers to n 
bits so the result will have n bits with p1 or p0 fractional bits. 
This addition will not result in overflow, however we must 
take the result as an n-1 bit number which could result in 
overflow.  

The result of the addition/subtraction then feeds into 
the post-scaler component. In this part we determine which 
form num1 or num0 we will represent the fixed-point 
number. The ranged detector takes the fixed-point output in 
the same form as the input and determines what scaling it 
should be represented as. IN the case where left shifting is 
needed, we can use the truncated bits that were saved in the 
pre-scaler and shift them into the result. This will help 
maintain the accuracy of the adder. 

Another important piece of the adder/subtractor 
architecture is the control block. This block controls a 3 to 1 
multiplexor that chooses which output will be the final result. 
This block takes the overflow bit, the output of the range 
detector, and the scaling of the output number to determine 
the final result. Here, there are three possible options, keep 
the output in the same scaling after addition/subtraction, 
convert from p0 to p1, or convert from p1 to p0. 



 

 

 
Figure 1: Adder/Subtractor Architecture 

 

B. Multiplier 

 The multiplier architecture design was modified 
from Professor Llamocca’s Unit 1 lesson notes [1].  The 
process is as follows.  Remove the exponent bit from the 16 
bits of data forming each operand and convert the operands 
to their absolute values.  Using the bit values of Operand2 
create vectors with Operand1 bit shifted to the left 
corresponding to the bit position of Operand2.  Add all of the 
vectors formed from the previous operation.  Checking the 
sign of the original operands, decide if the resulting value 
should remain positive or needs to be converted to its 
negative representation.  This result has no fractional bits.  
Using the exponent values from the original data, determine 
how many fractional bits the resulting product contains.  
After determining the fractional bits check to see if the 
integer bits can be correctly represented by 7 or 11 bits.  
Specifically this was done by looking at the seventh integer 
bit and seeing if all leading bits were the same value.  If this 
is true then it can be determined that the integer can be 
represented by 7 bits. Extend the number using as many 
fractional bits as necessary to have 15 bits total in the end 
result.  Finally add the exponent bit to the result as the MSB. 
 

 
Figure 2: Multiplier Block Diagram 

 
 
 

C. Divider 

The divider architecture design was based around 

the method of unsigned iterative division [1]. To perform 

division on a dual fixed-point number, one must first convert 

the operands into fixed-point form. This is done by simply 

removing the exponent bit from the nth bit, leaving an n-1 bit 

signed significand. If the significand is a negative number 

then a 2’s complement operation must be performed in order 

to get two unsigned numbers. Then, we must align the 

fractional bits so that we can perform integer division. To do 

this we look at the nth-bit exponent of both operands. If the 

exponents are the same they are already aligned. If one of the 

operands is in the p1 scaling we must convert the other 

operand into the same scaling. This operation does involve 

truncating bits from the number being converted so we lose 

some accuracy. This conversion from dual fixed-point, 

signed to unsigned, and fractional bit alignment is completed 

in the pre-scaler section of the block diagram shown below. 

The final output of the pre-scaler should be two 15-

bit unsigned fixed point aligned numbers, dividend and 

divisor. Now, we have the option to add precision bits to the 

dividend to improve the precision on the output of the divider. 

The dividend in this project was tested using both 0 bits of 

precision to validate basic function, as well as 2 bits of 

precision. The two bits are added onto the end of the 15-bit 

dividend making it 17-bits. Adding precision does add cycles 

to the processing time, so in fast applications it should only 

be done if necessary. 

The unsigned integer divider was based on a design 

presented in class notes [2]. Shown in figure 3 below is the 

architecture.  

 
Figure 3: Iterative Unsigned Divider 

 

The design includes an M-bit register, with an M-bit and N-

bit left shift registers, a subtractor, and a finite-state 

machine. With operands N-bit A and M-bit B the divider 

will shift in the next bit of A or shift in A and subtract B at 

every clock cycle. The finite-state machine controls the 

inputs of all the registers to work in sequence with each 

other. After N cycles the output Q holds the result.  

The results Q contains the integer result and 

precision bits if they were added. To get the final result in 

fixed-point we slice the output based on where the fractional 

point is and align it back to the proper scaling.  In this 



 

 

design, the output of the divider is two results for the same 

number, one in p0 form and one in p1. 

The output of the unsigned integer divider feeds 

into a post-scaler circuit. This circuit first takes the unsigned 

output and inputs it into a range detector block. This block 

determines which scaling the output should fit in based on 

the size of the number. The post-scaler also performs a 2’s 

complement operation based on the signs of the input 

operands. 

 
Figure 4: Divider Block Diagram 

 

D. AXI Interface 

An AXI-Lite Interface was designed around the 

calculator IP. We chose the Lite interface because we did 

not need the capability to FIFO data into the calculator. 

Also, a calculator is traditionally used in a 1 input per 1 

output fashion which the Lite interface allowed us to do. 

The interface was designed using 3 slave registers, two on 

the input side and one on the output. Each slave register of 

the AXI can hold a maximum of 32 bits of data. Since our 

input operands are both 16 bits each, we were able to use 1 

slave register on the input to hold both operands. 

The second slave register was used to select 

between which of the calculator functions was active. We 

did this using a 4 to 1 multiplexor on the output with two 

selection bits to decide between calculator functions. We 

also used the AXI reset and clock signals primarily for the 

iterative unsigned divider which contains a finite-state 

machine that relies on these signals to function properly. 

Shown in the diagram below is the AXI peripheral 

architecture.  

 

 
Figure 5: AXI Lite Block Diagram 

E. Software 

The software component of the project was 

designed using Vivado SDK in C programming language. It 

was designed to simply write to the slave registers of the 

AXI peripheral and then read the results of the calculator of 

the output slave register. This effectively demonstrated the 

interface between hardware and software using the Zybo 

board. 

 The figure below shows the full block diagram of 

the Zynq processing system as it is connected to the 

calculator utilizing the AXI-Lite interface. This design step 

is crucial to allowing us to use the software program to 

interface with the calculator. During this design step we 

setup a base address for writing and reading data to the 

Zybo board memory. 

This base address is used in the c program to write 

the operands and the calculator function selection bits.  

 

 
Figure 6: Design Block Diagram 

III. EXPERIMENTAL SETUP 

During the design process, each component of the 
calculator was individually tested before it was integrated 
into the final product. This was done primarily using Vivado. 
A test bench was written to simulate input signals and read 
outputs on each component. The purpose of this was to 
validate that each component worked properly as a stand-
alone device and to understand how each one operated. 

We also tested the AXI-Lite interface including the 
full calculator design before it was interfaced with the 
software. This was done only after we validated that each 
component worked on its own. 

Without these crucial steps, it would have been 
much more difficult to troubleshoot later down the design 
process when we began combining the components into the 
fully finished product. Lastly, once the entire design was 
connected, we used Vivado SDK to write inputs and read 
outputs from the calculator. 

IV. RESULTS 

A.  Adder/Subtractor 
 The adder/subtractor as a complete component was 
taken from Unit 7: Dynamic Dual Fixed-Point Adder with 
interrupt-based reconfiguration (ZYBO Z7-10).  Various 
additions and subtractions were used to test the functionality 
of this component.  Special attention was given to mixed 
exponent values in order to test the robustness of the adder 
and subtractor in handling DFX numbers.  Two numbers of 
particular interest are x3200 (Dec 50) and x8260 (Dec 100).  
3200 is a num0 in the [16 8 4] DFX format while 8260 is 
num1. 



 

 

 
Figure 7: Adder/Subtractor results 

 
B.  Multiplier 
 The multiplier was tested in a similar fashion to the 
adder/subtractor.  Multiple operands were used to check the 
full functionality of the component.  Num0 and Num1 DFX 
numbers were considered as well as mixed sign operands.  
The latter is of special interest in order to determine that the 
sign2unsign component conversions were being performed 
correctly. 
 The multiplier test benching did take some 
significant debugging. This was a bit of a surprise because 
the project was functioning at the SDK level even before the 
test bench was fully developed.  The failure was that when 
reading the result data from the calculator the data was 
showing up in the test bench as undefined.  After careful 
inspection, it was found that the component, myMultiAdder, 
contained variables that were not initialized.  This undefined 
data resulted in an undefined result being shown at the test 
bench level. 
 

 
Figure 8: Multiplier Simple results 

 

 
Figure 9: Multiplier Negative results 

 
C.  Divider 

Shown in the figures below are the testbench results 
of the divider IP. The divider was tested using different 
combinations of operands in terms of scaling value and sign. 
This was done to test that not only the division was working 
properly but that the pre-scaler, range detection, and 2’s 
complement circuits were also functioning. The divider takes 
N+1 cycles to complete a division operation. So in the 
testbench, after two operands were written the E signal would 
go high which triggers the divider circuitry. After N+1 cycles 
the result Q is available. 

Figure 10 shows the dividend 4 and divisor 1 in n0 
and n1 scaling, respectively. We see the correct result 2. This 
demonstrates that the pre-scaler circuit converted the divisor 
2 into n1 form before completing the division. 
 

 
Figure 10: Dividend 4 (n0) Divisor 2 (n1) 

 
Figure 11 shows the dividend -30 and divisor 2 in 

n0 and n1 scaling, respectively. We see the correct answer 
output, -15. This demonstrates that the 2’s complement 
operation worked as it should by detecting a negative operand 
and complementing the output. 

 
Figure 11: Dividend -30 (n0) Divisor 2 (n1) 

 
Figure 12 shows the dividend -9 and divisor -3 both 

in n0 scaling. We see the correct answer 3. This demonstrates 
the pre-scaler circuit correctly identifying the two operands 
having the same scaling and also performing the 2’s 
complement operation before division due to both operands 
being negative. 

 



 

 

Figure 12: Dividend -9 (n0) Divisor -3 (n0) 
 

Figure 13 below shows the dividend 7.5 and divisor 
2.5 both in n0 scaling. This test demonstrates two operands 
that have fractional bits. 

 
Figure 13: Dividend 7.5 (n0) and 2.5 (n0) 

 
D. Full Design 
 The Adder/Subtractor, Multiplier, and Divider were 
integrated into a larger Calculator IP.  The Adder/Subtractor 
and Multiplier performed as expected on the test bench.  
Unfortunately the Divider results, once fully integrated into 
the calculator, were not correct.  The Adder/Subtractor and 
Multiplier required no additional inputs besides standard AXI 
inputs, namely the AXI clock and slave registers.  The 
Divider also required an enable bit for an embedded state 
machine.  This enable bit was never fully included into the 
calculator resulting in incorrect results.   
 

 
Figure 14: Implemented Division results 

  
The end goal for this project was to input data from 

an external source and read the result.  For this the Vivado 
SDK was used.  A basic C program was used that wrote data 
to the slave registers and read the result. In testing, the SDK 
performed the same as the test bench. It was discovered in the 
SDK tests; however, that if the divider component was run 
twice in a row, the second set of results would be as expected.  

V. CONCLUSIONS 

The main take away from this project was to show just 
one purpose of using Dual Fixed-Point numbers in an 
electrical engineering application. We demonstrated a 
calculator capable of four different basic arithmetic 
functions. We used the Dual Fixed-Point format of [16 8 4], 
however since we designed the project components as 
generic, this could be implemented with any format.  

We were also able to demonstrate the advantages 
that dual fixed-point has over floating point and fixed-point. 
Being more resource efficient and having comparable 
dynamic range to floating point. There are, however, some 
potential opportunities for improvement to this project. One 
example is the circuit doesn’t validate the inputs of the user. 
Meaning, it doesn’t detect that the user actually inputted a 
number in [16 8 4] dual fixed-point format. This would then 
cause the result to be incorrect. 

Another potential improvement would be handling 
overflow. This circuit doesn’t detect and appropriately flag 
an overflow so if two operands were inputted that resulted in 
an overflow there would be incorrect results. The circuit also 
only accepts two inputs at a time since it is an AXI Lite 
interface. If there was a need to pipeline data and results, then 
the AXI interface would need to be redesigned to a FIFO full 
interface. 

There were a variety of implementation issues 
involved in this project.  The first design had mode select 
decided by switch inputs directly to the calculator IP.  This 
was a particularly pleasing implementation because it 
showed how changes to the physical hardware would result 
in different results when the software was run.  Unfortunately 
while integrating the adder/subtractor into the calculator it 
forced one of the switch signals to become a generic clock.  
Much time was spent trying to resolve this failure but in the 
end the design was changed to take two additional data bits 
to decide on the mode selection and scrap the switch inputs.  
All was not lost; however, because this incorporated a second 
slave register for the data read and overall this achieved the 
same level of complexity. 

One area of improvement would be in the overall 
design of the multiplier.  The multiplier was designed with an 
approach best described as a C-programming approach. The 
VHDL is written in a very linear fashion using components 
as if they were functions.  Processes are used to control the 
flow of logic and maintain this systematically linear 
approach. This is very different from the intention of VHDL. 
Incorporating better component logic into the design and 
eliminating some of the pseudo C implementation would 
likely make the project much more efficient from a resource 
perspective. 

Overall, this project effectively demonstrates a 
hardware and software implementation on an FPGA device 
with hardware design based around using Dual Fixed-point 
numbers and showing their potential use in everyday 
engineering applications. 
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