
Reconfigurable Instruction Set

Thomas Filarski, Kristi Stefa

Electrical and Computer Engineering Department

School of Engineering and Computer Science

Oakland University, Rochester, MI

e-mails: tfilarski@oakland.edu, kstefa@oakland.edu
Abstract— A simple processor that has a reconfigurable

instruction and data set, where the outputs are read into

software.

1. INTRODUCTION

This project will be designed to run a simple CPU that
will take a set of 32-bit data and use this data to compute
different tasks. This data will be split into three different
sections, the instructions, which will be 3-bits, the data,
which will be 16-bits, and a single bit that will instruct the
hardware to load the data onto the output FIFO. The
remaining 12-bits will be unused for this project. The data
will be stored in a LUT which can be reconfigured to hold
different 32-bit data which may contain different data and/or
instructions.

2. ALLOCATION OF TASKS

A. Software routine

This will enable the CPU to start its computations. After
the CPU has completed running the set of instructions, the
software will then read the results of the instruction set. Once
the first instruction set is complete a new set of instructions
will be loaded onto the FPGA and then the previous output
data will be run. The software will read the results again. The
input structure would be similar to Assembly, where the
instructions incorporate control bits and 16 or 8 bits of data.
The instructions can be written into the test code or a stack
can be created in a text file for a long list of procedures.

Pseudo Code

program start
 initialize data
 for n to m

write data xₙ

 .

 .

write data xₙ

read data yₙ

 .

 .

 read data yₙ

 reconfigure hardware

 for n to m

write data yₙ

 .

 .

write data yₙ

read data zₙ

 .

 .

 read data zₙ

B. Hardware Routine

 This portion will consist of the AXI interface, input and

output FIFOs, and the reconfigurable module. The AXI

interface will communicate with the software portion of the

design through a set of FIFOs that will control the incoming

and outgoing signals. This will be done with an FSM that

will keep track of the full and empty signals from the input

and output FIFOs respectively.

 The reconfigurable module will consist of a simple

CPU and an FSM. The FSM, shown in Figure 2, that is

contained within the RP has 3 states, the first checks to see

if the input is empty, if it is then it will move to the second

state. Here it will check to see if the input is empty and if

the output is full for the input FIFO and output FIFO

respectively. If these are both not true then it will move to

the third state while setting the signal ‘E’ high, which is sent

to the decoder within the CPU, and allowing the CPU to

read data by setting ‘rden’ to 1. In the third phase it will

check if the software wants the data to be loaded onto the

output FIFO, if it does not then it will go back to the second

phase, if it does then it will enable the data to be written to

the output FIFO then move to the second state.

 The reconfigurable portion will change the instructions

within the CPU. These instructions are listed below in two

separate sets and show which signals are set by each

instruction. The full architecture will be available in both

configurations but the operations will change as seen in the

instruction table below.

Table 1: The sets of instructions

3. HARDWARE DESIGN ARCHITECTURE

Figure 1(a): Top level AXI design (b) Internal RM design

The reconfigurable portion would consist of the

ALU and its inherent operations as well as the instructions
inside the decoder and the FSM shown in Figure 1. This will
allow two different modes of operations based on what kind
of operations are required. The modular component will be
the architecture of the processor, with variations in its design
structure, register mapping, signal routing, and encoded

ALU. This allows for different modes of operation and a
flexible design depending on the operations that are required.

Figure 2: FSM in the RP

The AXI peripheral will provide the means for

interfacing with the hardware through the software routine.
AXI-Full + FIFOs will be the configuration used and it will
surround the RM and a custom FSM. The AXI components
will mirror previous projects and edits will come internal to
the peripheral and RM. The RM contains some interface logic
with the FSM to handle states, resets after DRP, and
data_ready when the operations are ready. The FIFOs will
hold the instructions and data similar to a stack and then the
process will be loaded when the hardware is prepared. The
output will be stored on the oFIFO and read for comparison
of results.

4. EXPERIMENTAL SETUP

The experiment and results were focused around using a
set list of instructions and data inputs to get a list of expected
results. These one cycle operations would include loads,
adds/subtracts, and bit operations to create intermediate
results that will be stored on the FIFOs. These FIFOs are read
by the C code and displayed on the console for verification.
A function was created to test each configuration for the set
functions and processes as well as save the values between
each stage so that the flow is continuous. This allows one set

of inputs to be transformed by both sets of instructions and
modules before an output is reached. The individual modules
are simulated in Vivado for their waveforms and the C code
is tested through the serial monitor.

The test scenario for the first processor was to take in the
inputs 0x03E8 and 0x07D0 and perform the following
operations :

 LOAD 1
 LOAD 2

ADD 1&2
 DECREMENT
 SHIFT LEFT

These operations can be seen in the C code below and the

final read of the data value.

Figure 2: Config 1 Operations

The test scenario for configuration two used a similar

code flow and the following operations:
 LOAD 1
 NOT 1
 ONES 1
 PASSTHROUGH

Figure 3: Config 2 Operations

5. RESULTS

The results were verified through the serial monitor at
every step and provided the correct results for the operations
used. The operations were detailed in the Setup section and
the results can be seen below

Figure 4: Data results after operations

The operations were verified with the expected values and

the serial print out above. The only issues came with handling
the transfer from one config to another though the PS and the
implementation of accumulator commands. Implementing
the accumulation operations would require some additional
logic in the FSM and decoder to accommodate a 2 cycle
operation. Other than these instructions, the full set was
verified

CONCLUSIONS

The original goal of creating a reconfigurable simple
processor was achieved and it has proven its utility. The
ability to switch between instruction sets and architectures
can be expanded to more than 2 modules and allow for a wide
variety of uses. Future work would include the
implementation of the accumulation operations and more
complex operations to be done by the CPU. Other work
would be the inclusion of a second RP so that two multi-
purpose CPUs could interface with each other and have
expanded reconfiguration.

	1. Introduction
	2. Allocation of Tasks
	A. Software routine
	B. Hardware Routine

	3. Hardware Design Architecture
	4. Experimental Setup
	5. Results
	Conclusions

