
Dual Fixed-Point Calculator

Chandra Kasimkota, Oshin Gupta, Tahmid Uddin
Electrical and Computer Engineering Department

School of Engineering and Computer Science
Oakland University, Rochester, MI

e-mails: kasimkota@oakland.edu , oshingupta@oakland.edu, tahmiduddin@oakland.edu

Abstract—In FPGA embedded systems, designers usually
have to make a compromise between numerical precision
and logical resources. For instance, floating point features a
large dynamic range at the expense of a large resource
usage. On the other hand, a fixed point requires fewer
resources, but it delivers a low dynamic range. In this
project, we will work on developing Dual Fixed-Point
Calculator to show how using Dual Fixed-Point Arithmetic
leads to higher precision by overcoming the limited dynamic
range of fixed point while at the same time not requiring as
many hardware resources as a floating point.

INTRODUCTION
Standard Numerical Representations:
Fixed and Floating point:

Floating point features a large dynamic range at the
expense of a large resource usage On the other hand fixed
point requires fewer resources, but it delivers low
dynamic range.
Dual Fixed point (DFX):

This numerical representation is a compromise between
Fixed and Floating point number systems, it overcomes
the limitations of Fixed and Floating point numbers. so
the Dual Fixed-Point calculator project will use the DFX
number system.
The DFX has the Exponent and Significand, depending
on the exponent value DFX can have two scalings num0
and num1.

In this project, Dual Fixed- Point Calculator will be
implemented which will include three hardware modules-
adder/subtractor, multiplier and divider. The goal is to
design, verify and implement four arithmetic operations –
addition, subtraction, multiplication and division.

The input will be taken through the user via SDK
Terminal and the final output will also be displayed on
terminal. To understand the concept of DFX and
implement adder/subtractor, we will be closely following
the information in the units ‘Computer Arithmetic’ and
‘Digital Design’[1][2].

The motivation for choosing this topic is to take
advantage of DFX arithmetic over fixed point and
floating-point arithmetic. Floating point (FP) and fixed
point (FX) arithmetic are the standard numerical
representations. Floating point features a large dynamic
range at the expense of a large resource usage. On the
other hand, a fixed point requires fewer resources, but it

delivers a low dynamic range. Dual fixed point (DFX)
arithmetic is an alternative representation that overcomes
the limitations of FX (it greatly improves dynamic range)
without the high resource complexity of floating point [1].

METHODOLOGY

 DFX Calculator Architecture including the HW and SW:

HARDWARE FLOW

-Input data is read from axi_wdata
-Digital systems perform processes(DFX Multiplier/DFX
Adder)
-Output data of digital systems is sent to
multiplexer(2to1)
-FSM will trigger output FIFO to read first set of data
then the next set
-Data is output on axi_rdata

mailto:kasimkota@oakland.edu
mailto:oshingupta@oakland.edu
mailto:tahmiduddin@oakland.edu

DUAL FX ADDER/SUBTRACTOR:

Figure 1 Architecture DUAL FX ADDER/SUBTRACTOR:[3]

DFX Adder/Subtractor is based on three main blocks-
pre-scalar, fixed point addition/subtraction and post-
scalar. In pre-scalar, we get rid of the exponent bits of the
two n-bit operands. This module is required to analyze the
operands and to determine in which range -po 0r p1- one
must perform addition/subtraction. In the second module,
it is determined which operation has to be performed. It
basically depends on the value of ‘addsub’, value 0
corresponds to addition and 1 corresponds to subtraction.
In the third module, which is post scalar, n-bit FX result is
converted to n-bit DFX. In some cases, there can be
overflow when the result cannot fit as a num1 in
DFX[1].For this project, reference for the DFX adder
subtractor is taken from Unit 7- Applications from the
section Dynamic dual fixed point adder[3].

DUAL FX MULTIPLIER

Figure 2 High level DUAL FX MULTIPLIER

Figure 3 Range detector + bit slicing

In DFX multiplier, signed multiplication is performed on
two operands A and B. For signed multiplication, ‘use
ieee.std_logic_signed.all’ library is included in the file.
The product of signed multiplication is then fed into
Range Detector. The range detector module is responsible
for performing bits slicing based on the possible outcomes
due to the input number representation, determining if
there is overflow, determining if the num1 candidate can
be represented as a num0 candidate and changing the sign
of the candidates if the sign signal is asserted.

TESTBENCH SIMULATIONS

Input A = FA2A ; Input B = 0A0E

Input A= A004, Input B= B1C3

Input A= BEEF, Input B=FADE

VERIFICATION OF PERIPHERAL
Manual:

Input A= BEEF, Input B= FADE

Matlab:

SYSTEM OVERVIEW

Figure 4 System Diagram

The output of the IFIFO (DI) consists of the two inputs (A
& B) for which operations will be conducted on. The
inputs will then feed into the digital system operation
circuits and then the outputs will be allocated on the 2 to 1
multiplexor. The FSM will control when the OFIFO
should read: first, the OFIFO will read the first set of data
of the mux, once that is complete, it will then read the
second set of data.

In the FSM below, once the input data is ready, it will be
read and after calculations are performed, the output data
will be sent to the multiplexer. At State 3, the output of
the multiplexer will be read by DO, and then at State 4,
the second set of data from the multiplexer will be ready
by DO.

Figure 5 FSM

SOFTWARE FLOW

Overview
For the software portion of this project, the user inputs A
& B in the code, for which then the various calculations
will be presented. The results will then be printed in the
SDK Terminal.

Software Application

1.) Take User for input of A & B.

2.) Send inputs as a dataset to AXI Interface.

3.) Read output from AXI Interface.

4.) Parse the data according to each operation.

5.) Determine if there is overflow.

6.) Print results to User.

Analysis of Code

In the above code, we have four sections: User Input
Data, AXI Write Data, AXI Read Data, and Printing
Solutions.
For the User Input, the User will need to enter two inputs
of 2 bytes each into one word.

e.g. If Input A is “FA2A” and Input B is
“C1C3”, then the input entry should be “0xFA2AC1C3”.
In AXI Write Data & AXI Read Data, the data sent to the
AXI peripheral and the output is received, where then the
32 bit output is parsed into the sum, difference, product,
and overflow (allocations of each bit can be seen in the
System Diagram).
Lastly in Printing Solutions, the results are printed to the
user in the SDK terminal. A check is conducted to see if
the overflow bits are set for either adder or subtractor. If
so, the result for the respective operation will display
“overflow”

The code is primarily based on the AXI Full Interface
examples (e.g. AXI4 Full: Pipelined 2D Convolution).

SDK Terminal Results
Input and Output of no overflow

Input and Output of adder overflow

Input and Output of subtractor overflow

CONCLUSION
When user writing two 16 bit numbers into an address,
DFX calculator process the data for addition/subtraction
and multiplication and display results over the serial
COM port

Challenges
-Multiplier:
Implementing range detector for different combinations of
operands(num0xnum0, num0xnum1 and num1xnum1).

Bit slicing concept execution.

Next Steps
-Adding the Divider Circuit: This would need for the
creation of the digital system for the divider, as well as a
larger multiplexer to account for another set of output
data.

-Adding User Inputs: Initially, the system was to take user
inputs from SDK Terminal but due to time constraints and
setup issues, this was not able to be implemented.
The following code was put together:
Xil_printf(“Enter 16 bit hex Input A \n”)
unsigned char inputA;
inputA = XUartLite_RecvByte(BASEADDRESS);
//reading the data
Xil_printf(“Enter 16bit hex Input B \n”)
unsigned char inputB;
inputB = XUartLite_RecvByte(BASEADDRESS+1*4);
//reading the data

-Adding on-the-fly reconfiguration of P0 & P1: This
would allow the user to set the variables. The effort will
require adding a reconfigurable portion.

REFERENCES:

[1]Daniel Llamocca, “Notes – Unit 1” in ECE-5736:
Reconfigurable Computing. ECE Department, Oakland
University.

[2]Daniel Llamocca, “Notes – Unit 2” in ECE-5736:
Reconfigurable Computing. ECE Department, Oakland
University

[3]Daniel Llamocca, “Notes – Unit 7” in ECE-5736:
Reconfigurable Computing. ECE Department, Oakland
University.

[4]Daniel Llamocca, “Notes – Unit 5” in ECE-5736:
Reconfigurable Computing. ECE Department, Oakland
University.

[5]Daniel Llamocca, “Notes – Unit 3” in ECE-5736:
Reconfigurable Computing. ECE Department, Oakland
University.

