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Abstract - This final project will consist of an 
AXI4-Lite interface and an AXI peripheral, 
that acts as a calculator, that supports the 
mode selections: addition, subtraction, and 
multiplication.  Data will be fed into three 
slave registers and calculated data will be 
read through the UART terminal. An AXI 
Peripheral and AXI interconnect will be 
constructed such that the digital system can 
interface with the programmable logic 
implemented in the ARM processor within 
the ZYBO Z7-10 Board. 

 
I. Introduction 

This report will discuss the inspiration, method, 
and expected results of this project. 
The inspiration for creating a calculator was 
learning about AXI4-Lite interface architectures. 
The team found it interesting to learn about AXI 
peripheral architectures and how they could be 
interfaced with a software application through 
utilization of the ARM processor inside the Zybo 
Z7-10.  One of the many benefits of AXI 
interconnects is the ability to interface between 
hardware and software through the programmed 
ARM processor within the Zynq-7000 series 
PSoC. The scope of this project aims to take 
advantage of the possibilities given by the 
advanced extensible interface bus. The AXI 

peripheral is designed to read three 32-bit 
words, perform the desired operation, and 
output a 32-bit word. This will then be passed 
through the AXI interconnect to be processed on 
the ARM processor, and the serial data will be 
received and displayed on the SDK terminal via 
UART. 

II. Methodology 

A. Digital Circuit Datapath 

The method chosen to accomplish this includes 
an AXI4-Lite that has 3 input slave registers, one 
buffer register and one output slave register.  

 
The 3 input slave registers are fed 2 numbers 
and an operation.  Once the registers have data 
and are enabled, the 2 numbers and the mode 
data are sent into the custom peripheral then 
into the floating point calculation block.  Data is 
then added, subtracted, or multiplied depending 
on the mode data inputted.  An FSM internal to 
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the calculation block will control when 
calculation is started and finished along with a 
done signal to the external FSM.  Data is then 
sent to the buffer register.  From here, data is 
sent to the output register awaiting the external 
FSM to enable the output slave register which is 
read by the software application. The SDK 
software application will then output the data 
within the SDK terminal via UART. 
  
 Below is a flow diagram of the FSM located 
external to the custom peripheral (external 
FSM).  
 

 
  
The purpose of this finite state machine is to 
control how data is inputted and outputted to the 
slave registers. The first step has the purpose to 
clear whatever data may be left over in the 
output slave register. Then, steps two through 
six allow the input slave registers to input data 
into the floating point calculator correctly. This is 
controlled by the slv_reg_wren signal, as this is 
how these slave registers are enabled. 
 
Once the FSM reaches state seven, it will check 
if the internal floating point calculator FSM has 
sent out a done bit. Once that is determined to 
be high, then the output buffer register is 
enabled. 
 
While these FSMs can be condensed into a 
single FSM, having them work in tangent 
allowed for an easier time debugging the circuit. 
This would provide a much more stable 
calculation method, even if it is sacrificing 
processing time for smaller calculations. The 
consistency in terms of processing time between 

different calculations was determined to be the 
best approach for this circuit. 
 
The internal portion of the floating point 
calculator consists of a demultiplexer, a number 
of registers, the actual calculation blocks, an 
internal finite state machine controlled by a 
counter, and an output multiplexer. The input 
data for the two numbers are held at registers 
that are only enabled depending on the intended 
calculation method. Once data is inputted to 
select whichever calculation method is desired, 
the demultiplexer will send an output high signal 
to the input of a pair of registers. These registers 
then feed into the respective addition, 
subtraction, or multiplication circuits. From there, 
the output of the calculation circuit runs to 
another multiplexer, which is also controlled by 
the same input demultiplexer selection scheme. 
This is where the floating point calculator circuit 
outputs data to the buffer register.  

B. Software Routine 

This section will comprise the routine for the 
software interface portion of the project. The 
software routine in this application is very similar 
to those that were learned in the lab portion 
throughout this course. For this project, three 
words are written to the input slave registers. 
Next, after the input is processed, the result is 
outputted to the last slave register.  

After configuring the digital system, writing a 
software routine that interfaces with it is critical 
to ensure that the application is working as 
intended. The software routine can be best 
described with the pseudo code as follows: 

1.     Define the base address. 

2.     Write a 32-bit word to 
slave_register_0. This is number 1. 

3.     Write a 32-bit word to 
slave_register_1.  This is number 2. 



4.     Write a 32-bit word to 
slave_register_2.  This is the operation. 

5.     Display the calculated value from 
the output register, slave_register_3. 

Steps 1-5 describe what the software application 
routine is, and how it is implemented. Step 1 
describes assigning a base address to the 
processing system. Step 2 describes the first 
input on the S_AXI_WDATA line, which 
becomes the first number in the equation.  Step 
3 describes the second number in the equation. 
Step 4 describes which function to perform on 
the imputed numbers one and two. The final 
step, Step 5, describes how the calculated 
floating point number is read on the output slave 
register. Data is also written out the 
S_AXI_RDATA line. 

III. Experimental Setup 

Once the entire circuit was constructed, the 
team had to verify the calculator was working 
correctly before interfacing it with the software 
routine. So, a test bench was created for the AXI 
interface.  The test bench essentially does the 
same thing seen in the pseudo code as seen in 
the software routine section. Data is inputted 
into the slave registers to select the numbers to 
operate with, and also the calculation operation 
is chosen, whether it be addition, subtraction, or 
multiplication.  A selection of floating point 
calculations were implemented into the 
testbench to verify that the AXI interface was 
working as intended. Below is a picture of the 
waveform produced by the test bench.  
 

 
 
This simulation displays how the input data 
S_AXI_WDATA maps to each of the three input 
slave registers. S_AXI_WDATA is seen in the 
magenta color. Once the data is captured by the 
first three slave registers, as displayed as the 
gray signals, it is processed by the Floating 
Point calculator where it is processed for 11 
processing cycles. Once this operation is 
complete, the floating point calculator will send a 
done bit out, and is seen colored in dark blue. 
This will go to the FSM for the peripheral, which 
will enable the output buffer register. Once this 
register is enabled, and the output slave register 
is enabled by the signal slv_reg_rden, data will 
be outputted from the circuit to the 
S_AXI_RDATA line, which can be seen by the 
light blue and yellow signals. 
 
One major challenge that the team had to work 
through was the SDK application not interfacing 
with the hardware as intended. The team 
noticed that the simulation worked as intended, 



however the results of the software application 
were not the same as the simulation. One such 
critical task that had to be reworked was the 
finite state machine of the floating point 
calculator peripheral. An inconsistent trigger 
signal, in combination with incorrect design 
check iterations lead to mistakes that would only 
be seen upon close inspection. Many mistakes 
such as these were explored further with 
repeated testbench simulations and analysis of 
proper signal flow. 
 
Another hurdle that the team had to work 
through was identifying normal operation from 
overflow and underflow in terms of the multiplier 
circuit. Addition, subtraction, and multiplication 
all calculate with the same number of bits on the 
input and the output, so extra bits are not 
allowed. Similarly, underflow cases have to be 
considered as well, as their representation is not 
possible out of range with the associated 
number of bits. When it came to the multiplier 
circuit, the team figured the result could not be 
implemented when cases of overflow or 
underflow were inputted.  
 
The team attempted one method where the 
adder/subtractor circuit would take the carry bits 
of the most significant bit and the most 
significant bit plus one and xored them together 
to determine if there was overflow. Another 
method that was attempted was to sign extend 
the most significant bit of both the signal ex, 
which is the output of an adder/subtractor, and 
sign extending the bias. From there, the two 
most significant bits would be analyzed to 
determine if the number was negative, or if the 
number was too big for the final output to read. 
Both methods proved to be unsuccessful when 
implemented in the multiplier circuit. With that, 
an improvement to this calculator circuit would 
be to include the detection and proper output for 
cases of overflow and underflow. 

IV. Results 

 

The calculations were first tested in the Vivado 
test bench waveforms using a test bench 
simulation file. Next the team verified the 
calculations using the UART terminal on the 
SDK software. To verify the floating point 
calculations were correct, they were compared 
with hand calculations. The hand calculations 
followed the same procedure that was used for 
Homework #4 and in Unit 1 notes.  In the end, 
the terminal displayed the same data that was 
hand calculated.  The SDK Terminal interface 
produced the following results, given the 
different input conditions: 

 
 



One major lesson that the team learned 
throughout this project was the importance of 
testbench simulations. The team constructed 
multiple testbench simulations; one for the add 
and subtract circuit, one for the multiplication 
circuit, one for the floating point calculator top 
level circuit, and also one for the AXI 
interconnect. Throughout the development of 
this project, testbenches at each step proved 
essential to the proper configurations of the 
modules. Some modules had to be tweaked 
differently than what was initially designed to 
produce desired results. There were multiple 
occurrences of having to start fresh with a 
module that does not seem to be producing the 
expected output, but the code looked correct. 
Many small errors and overlooks can result in a 
faulty circuit block that proves tough to debug. 
This is sometimes the best option, especially 
when no errors are generated through 
synthesizing the code or running simulations. 
Once acquainted with the system and how it 
should operate, being able to go through each 
signal in a testbench waveform is critical to 
ensure that everything was working as intended. 

V. Conclusions 

This project reinforced and enhanced the 
methods behind calculations using floating point 
numbers.  During the semester, the course 
required students to hand calculate, but not 
implement a calculator for floating point 
numbers. It also reinforced knowledge on how to 
make custom peripherals. With this knowledge 
leads to other possibilities of more complex and 
complicated designs. Throughout this course 
and through this project, the team learned the 
proper way to interface this custom peripheral 
with a software routine by an AXI interconnect. 
Due to time constraints and other restrictions, 
the divider calculation method could not be 
implemented.  Adding the divider portion would 
be an improvement to this circuit. 
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