
Floating Point Calculator

Dylan Powell, Brandon Troppens

Electrical and Computer Engineering Department

School of Engineering and Computer Science

Oakland University, Rochester, MI

e-mails:dmpowell@oakland.edu, bjtroppens@oakland.edu

Abstract - This final project will consist of an
AXI4-Lite interface and an AXI peripheral,
that acts as a calculator, that supports the
mode selections: addition, subtraction, and
multiplication. Data will be fed into three
slave registers and calculated data will be
read through the UART terminal. An AXI
Peripheral and AXI interconnect will be
constructed such that the digital system can
interface with the programmable logic
implemented in the ARM processor within
the ZYBO Z7-10 Board.

I. Introduction

This report will discuss the inspiration, method,
and expected results of this project.
The inspiration for creating a calculator was
learning about AXI4-Lite interface architectures.
The team found it interesting to learn about AXI
peripheral architectures and how they could be
interfaced with a software application through
utilization of the ARM processor inside the Zybo
Z7-10. One of the many benefits of AXI
interconnects is the ability to interface between
hardware and software through the programmed
ARM processor within the Zynq-7000 series
PSoC. The scope of this project aims to take
advantage of the possibilities given by the
advanced extensible interface bus. The AXI

peripheral is designed to read three 32-bit
words, perform the desired operation, and
output a 32-bit word. This will then be passed
through the AXI interconnect to be processed on
the ARM processor, and the serial data will be
received and displayed on the SDK terminal via
UART.

II. Methodology

A. Digital Circuit Datapath

The method chosen to accomplish this includes
an AXI4-Lite that has 3 input slave registers, one
buffer register and one output slave register.

The 3 input slave registers are fed 2 numbers
and an operation. Once the registers have data
and are enabled, the 2 numbers and the mode
data are sent into the custom peripheral then
into the floating point calculation block. Data is
then added, subtracted, or multiplied depending
on the mode data inputted. An FSM internal to

mailto:bjtroppens@oakland.edu

the calculation block will control when
calculation is started and finished along with a
done signal to the external FSM. Data is then
sent to the buffer register. From here, data is
sent to the output register awaiting the external
FSM to enable the output slave register which is
read by the software application. The SDK
software application will then output the data
within the SDK terminal via UART.

 Below is a flow diagram of the FSM located
external to the custom peripheral (external
FSM).

The purpose of this finite state machine is to
control how data is inputted and outputted to the
slave registers. The first step has the purpose to
clear whatever data may be left over in the
output slave register. Then, steps two through
six allow the input slave registers to input data
into the floating point calculator correctly. This is
controlled by the slv_reg_wren signal, as this is
how these slave registers are enabled.

Once the FSM reaches state seven, it will check
if the internal floating point calculator FSM has
sent out a done bit. Once that is determined to
be high, then the output buffer register is
enabled.

While these FSMs can be condensed into a
single FSM, having them work in tangent
allowed for an easier time debugging the circuit.
This would provide a much more stable
calculation method, even if it is sacrificing
processing time for smaller calculations. The
consistency in terms of processing time between

different calculations was determined to be the
best approach for this circuit.

The internal portion of the floating point
calculator consists of a demultiplexer, a number
of registers, the actual calculation blocks, an
internal finite state machine controlled by a
counter, and an output multiplexer. The input
data for the two numbers are held at registers
that are only enabled depending on the intended
calculation method. Once data is inputted to
select whichever calculation method is desired,
the demultiplexer will send an output high signal
to the input of a pair of registers. These registers
then feed into the respective addition,
subtraction, or multiplication circuits. From there,
the output of the calculation circuit runs to
another multiplexer, which is also controlled by
the same input demultiplexer selection scheme.
This is where the floating point calculator circuit
outputs data to the buffer register.

B. Software Routine

This section will comprise the routine for the
software interface portion of the project. The
software routine in this application is very similar
to those that were learned in the lab portion
throughout this course. For this project, three
words are written to the input slave registers.
Next, after the input is processed, the result is
outputted to the last slave register.

After configuring the digital system, writing a
software routine that interfaces with it is critical
to ensure that the application is working as
intended. The software routine can be best
described with the pseudo code as follows:

1. Define the base address.

2. Write a 32-bit word to
slave_register_0. This is number 1.

3. Write a 32-bit word to
slave_register_1. This is number 2.

4. Write a 32-bit word to
slave_register_2. This is the operation.

5. Display the calculated value from
the output register, slave_register_3.

Steps 1-5 describe what the software application
routine is, and how it is implemented. Step 1
describes assigning a base address to the
processing system. Step 2 describes the first
input on the S_AXI_WDATA line, which
becomes the first number in the equation. Step
3 describes the second number in the equation.
Step 4 describes which function to perform on
the imputed numbers one and two. The final
step, Step 5, describes how the calculated
floating point number is read on the output slave
register. Data is also written out the
S_AXI_RDATA line.

III. Experimental Setup

Once the entire circuit was constructed, the
team had to verify the calculator was working
correctly before interfacing it with the software
routine. So, a test bench was created for the AXI
interface. The test bench essentially does the
same thing seen in the pseudo code as seen in
the software routine section. Data is inputted
into the slave registers to select the numbers to
operate with, and also the calculation operation
is chosen, whether it be addition, subtraction, or
multiplication. A selection of floating point
calculations were implemented into the
testbench to verify that the AXI interface was
working as intended. Below is a picture of the
waveform produced by the test bench.

This simulation displays how the input data
S_AXI_WDATA maps to each of the three input
slave registers. S_AXI_WDATA is seen in the
magenta color. Once the data is captured by the
first three slave registers, as displayed as the
gray signals, it is processed by the Floating
Point calculator where it is processed for 11
processing cycles. Once this operation is
complete, the floating point calculator will send a
done bit out, and is seen colored in dark blue.
This will go to the FSM for the peripheral, which
will enable the output buffer register. Once this
register is enabled, and the output slave register
is enabled by the signal slv_reg_rden, data will
be outputted from the circuit to the
S_AXI_RDATA line, which can be seen by the
light blue and yellow signals.

One major challenge that the team had to work
through was the SDK application not interfacing
with the hardware as intended. The team
noticed that the simulation worked as intended,

however the results of the software application
were not the same as the simulation. One such
critical task that had to be reworked was the
finite state machine of the floating point
calculator peripheral. An inconsistent trigger
signal, in combination with incorrect design
check iterations lead to mistakes that would only
be seen upon close inspection. Many mistakes
such as these were explored further with
repeated testbench simulations and analysis of
proper signal flow.

Another hurdle that the team had to work
through was identifying normal operation from
overflow and underflow in terms of the multiplier
circuit. Addition, subtraction, and multiplication
all calculate with the same number of bits on the
input and the output, so extra bits are not
allowed. Similarly, underflow cases have to be
considered as well, as their representation is not
possible out of range with the associated
number of bits. When it came to the multiplier
circuit, the team figured the result could not be
implemented when cases of overflow or
underflow were inputted.

The team attempted one method where the
adder/subtractor circuit would take the carry bits
of the most significant bit and the most
significant bit plus one and xored them together
to determine if there was overflow. Another
method that was attempted was to sign extend
the most significant bit of both the signal ex,
which is the output of an adder/subtractor, and
sign extending the bias. From there, the two
most significant bits would be analyzed to
determine if the number was negative, or if the
number was too big for the final output to read.
Both methods proved to be unsuccessful when
implemented in the multiplier circuit. With that,
an improvement to this calculator circuit would
be to include the detection and proper output for
cases of overflow and underflow.

IV. Results

The calculations were first tested in the Vivado
test bench waveforms using a test bench
simulation file. Next the team verified the
calculations using the UART terminal on the
SDK software. To verify the floating point
calculations were correct, they were compared
with hand calculations. The hand calculations
followed the same procedure that was used for
Homework #4 and in Unit 1 notes. In the end,
the terminal displayed the same data that was
hand calculated. The SDK Terminal interface
produced the following results, given the
different input conditions:

One major lesson that the team learned
throughout this project was the importance of
testbench simulations. The team constructed
multiple testbench simulations; one for the add
and subtract circuit, one for the multiplication
circuit, one for the floating point calculator top
level circuit, and also one for the AXI
interconnect. Throughout the development of
this project, testbenches at each step proved
essential to the proper configurations of the
modules. Some modules had to be tweaked
differently than what was initially designed to
produce desired results. There were multiple
occurrences of having to start fresh with a
module that does not seem to be producing the
expected output, but the code looked correct.
Many small errors and overlooks can result in a
faulty circuit block that proves tough to debug.
This is sometimes the best option, especially
when no errors are generated through
synthesizing the code or running simulations.
Once acquainted with the system and how it
should operate, being able to go through each
signal in a testbench waveform is critical to
ensure that everything was working as intended.

V. Conclusions

This project reinforced and enhanced the
methods behind calculations using floating point
numbers. During the semester, the course
required students to hand calculate, but not
implement a calculator for floating point
numbers. It also reinforced knowledge on how to
make custom peripherals. With this knowledge
leads to other possibilities of more complex and
complicated designs. Throughout this course
and through this project, the team learned the
proper way to interface this custom peripheral
with a software routine by an AXI interconnect.
Due to time constraints and other restrictions,
the divider calculation method could not be
implemented. Adding the divider portion would
be an improvement to this circuit.

VI. References

[1] Llamocca, Daniel. “Unit 1 - Computer
Arithmetic “. ECE-5736 Reconfigurable Computing.
N.p., n.d. Web. 8 June 2020.

[2] Llamocca, Daniel. “Unit 5 - Embedded
Systems in PSoC “. ECE-5736 Reconfigurable
Computing. N.p., n.d. Web. 8 June 2020.

