
Reconfigurable Signed Multiplier (2C and SM) on Zynq-7000 PSoC

Hussein Alawsi, Andrew Meesseman
Electrical and Computer Engineering Department

School of Engineering and Computer Science
Oakland University, Rochester, MI

e-mails: husseinalawsi@oakland.edu, ameesseman@oakland.edu

Abstract—This project demonstrates the utilization of dynamic
partial reconfiguration on a Zynq-7000 All Programmable
System-on-Chip to switch between a 2’s complement and sign
and magnitude multiplier. The PCAP interface is used to
reconfigure the FPGA fabric on-the-fly to switch between these
two number representations. The use of a hardware generated
interrupt is implemented to control when to perform this
partial reconfiguration. The AXI4-Full protocol is used to
interface with a signed multiplication IP. The AXI4-Lite
protocol is used to interface with a GPIO IP for determining
which reconfigurable module to reconfigure the circuit with.

I. INTRODUCTION
This report will cover the process that was developed for

the experimentation and testing of this project. Vivado
2019.1 and the Xilinx SDK were used to write the VHDL
and C source code that was used to control the processing
system (PS) and FPGA fabric (PL). Results of the project
will also be discussed in detail to understand future project
viability. How these elements were created, simulated, and
tested will be further discussed below. The purpose for
creating this project is to be able to show the versatility of
partial reconfiguration in an embedded system.

II. METHODOLOGY

Fig. 1. High level PS and PL connection

The system consists of an AXI interconnect between the
PS and PL for two custom AXI slave peripherals that were
created. The first is an AXI4-Full peripheral, capable of
performing signed multiplication and producing the product
of two 8-bit inputs, which hosts the reconfigurable partition
(RP) of the system. This RP can be programmed with a
partial bitstream that allows either 2’s complement (2C) or

sign and magnitude (SM) multiplication. This IP also
generates a PL-PS (PL to PS) interrupt using a button input
(Button 0 on the Zybo Z7). This allows the PS to determine
when to perform a dynamic partial reconfiguration (DPR) of
the system. The second peripheral uses AXI4-Lite and is
able to pass along two I/O values (such as Switch 0 and
Switch 1 in this case) from the Zybo Z7 board to the PS
when needed. In the system that has been created, these two
I/O’s are being used to determine which circuit to program
to the RP during DPR.

Fig. 2. High Level Static Block Design

Fig. 2 shows a high level block diagram of the
components in the system, as created with the block design
tool in Vivado. It can be noted that the custom AXI
peripherals, the signed multiplier (mysmult_static) and the
GPIO passthrough (axiLiteGpioRead), are connected to the
PS via the AXI interconnect. This allows and handles the PS
communication with both peripherals. The value “switch_0”
is connected to a button (used to ultimately generate the
PS-PL interrupt), and “switch0_0” and “switch1_0” are
connected to switches of the Zybo board (as described in the
project constraint file).

The process of reaching this system design will be
outlined to show the steps that were taken to ensure system
functionality. These steps were followed very precisely to
ensure a working system and to minimize issues and delays.

A. Design VHDL Circuits

The first step in this project was generating all the
multiplier circuits that were going to be used (unsigned
multiplier, along with 2C logic and SM logic). There were
three main portions: the main one was the unsigned
multiplier as shown in Fig. 3 (which will be later on a part
of the static portion of the system design). Keep in mind that
this circuit is connected internally to the RP. The RP
contains the other two circuits, the reconfigurable modules
(RM), which are the 2’s complement (2C) circuit (Fig. 5)
and the sign and magnitude (SM) circuit (Fig. 6). Both
circuits are responsible for checking the signs of the input
numbers and deciding the sign of the final value, along with
generating an absolute value of the inputs for the unsigned
multiplier to be able to work with.

Fig. 3. Unsigned Multiplier Architecture

Fig. 3 shows the architecture of the unsigned multiplier
used in the system. Both the 2C and SM circuits require the
use of an unsigned multiplier in their architecture. As this is
needed for both multiplication modes, this circuit is kept in
the static portion of the circuit.

Fig. 4. Reconfigurable Modules (RM’s)

Fig. 4 shows the logic that differentiates the 2C from the

SM multipliers. Given that this is the only difference
between the two multipliers, only these components are
included in the RP of the system. The line through each of
these circuits is included to show that these circuits are
reconfigurable. Refer to Fig. 5 below to see their
implementations.

After the design and testing of each circuit alone was
completed, the circuits were then separated inside the
system into either a static or reconfigurable part as seen fit.
As stated above, the unsigned multiplier is a static
component while the 2C and SM logic circuits are
considered to be reconfigurable. A new circuit is designed
to host either the logic for 2C and SM signed multiplication
(based on a parameter in the file) because of their
reconfigurable nature. This allows for easy circuit synthesis
and mitigates problems when generating the partial
bitstreams needed for the DPR.

Fig. 5. Static and RP Implementation for Multiplier

Fig. 5 shows both the implementation of the 2C (left) and

SM (right) circuits. It may be noted that the gray portion in
each circuit is partially reconfigurable and is configured
with either the 2C or SM components as seen in Fig. 4.

The 2C circuit is the first RM. It takes the absolute values
of the inputs and sends them to the unsigned multiplier (in
the static portion of the circuit). It then generates the final
value (to 2C standards) after getting an unsigned product
back from the unsigned multiplier. This value is then loaded
into the oFIFO when the data is determined to be formatted
in 2C.

The SM circuit is the second RM and similar in many
ways to the 2C RM. It takes the absolute values of the inputs
and sends them to the unsigned multiplier (in the static
portion of the circuit). However, it then generates the final
value (to SM standards) after getting an unsigned product
back from the unsigned multiplier. This value is then loaded
into the oFIFO when the data is determined to be formatted
in SM.

B. Implementing the AXI Interfaces

After having generated the necessary HDL components
and determining their implementation, it was necessary to
create an interface that would allow these circuits to
communicate with the PS. An AXI4-Full interface was used
for the main multiplier IP as this allows the most flexibility.
Although the multiplier circuit is not pipelined and cannot
make full use of the advanced benefits of AXI4-Full, it still
allows an easier transaction to take place between the PS
and PL.

Fig. 6. Signed Multiplier AXI4-Full Implementation

Fig. 6 shows the full architecture of the signed multiplier

block. It includes an input and output interface for
AXI4-Full (along with an input and output FIFO), two
FSM’s to control communication and correct data
processing, the signed multiplier logic, and also circuitry to
generate a PL to PS interrupt. This interrupt is controlled by
a state machine that monitors the state of a debounced

button input and generates an interrupt when pushed. In
order to be cleared, the software must request to read a
value from a designated address from the peripheral. When
this happens and the interrupt FSM realizes this, the
interrupt that is going to the PS is then deasserted.

Fig. 7. High Level Application FSM

When the PS sends data to the PL to process (via the
AXI4-Full bus), this data is stored into a FIFO (iFIFO). At
this point, the peripheral has data that needs to be processed.
After the system is initialized, this FSM (Fig. 7) begins to
check if the iFIFO has data and if the output FIFO (oFIFO)
has space to store more processed data. If both of these
conditions are met, the incoming data is latched and the data
sent to the core signed multiplier (as seen in Fig. 2). When
the data has been completely processed by the internal core
of the IP, the data is put into the oFIFO and then awaits the
PS to request this data.

Fig. 8. GPIO Passthrough AXI4-Lite Implementation

In order to pass through values from switches to the PS, a
custom AXI4-Lite GPIO peripheral was created. This circuit
does not make use of any incoming data from the PS, as the
only input data that is needed is from two switch inputs.
These switch inputs are hardwired to the output register,
which the PS has access to and can thus access at any time.
As there is not much internal circuitry in this IP, there is no
architecture diagram included.

C. Software Functionality

The software that is running on the PS is responsible for a
few things in the full functional system. First, it is
responsible for sending and receiving data from the signed
multiplier IP. As the AXI4-Full implementation that is used
makes use of 32-bit data buses, the 16 LSB’s are used to
transport the two 8-bit inputs to the multiplier. The software
is also responsible for handling an interrupt (generated from
a push button and modulated by the signed multiplier IP)
from the PL which is an indication to perform a DPR.
Before doing this reconfiguration, the value of a GPIO is
checked to make a decision as to which circuit to load into
the RP. It is at this point that the GPIO passthrough IP is
interacted with and the value of a switch is polled to
determine the circuit. A logic low corresponds to the 2C
circuit and a logic high corresponds to the SM circuit.

Fig. 9. Software Application Execution

Fig. 9 shows a very high level overview of the software

that runs on the PS. It includes the initialization sequence
(driver setup, loading partial bitstreams into memory, and a
test of multiplier), the event loop, and the ISR handler.

Two other modes for the software can be achieved by
editing a preprocessor statement in the source code that will

change the software execution. One mode automatically
performs two partial reconfigurations and automatically
tests the multiplier circuit. The other mode only polls switch
values to determine when to perform a DPR and which
circuit to reconfigure to the RP.

III. EXPERIMENTAL SETUP

Testbenches were created for all circuits and IP’s to test
their functionality. Vivado 2019.1 was used to run these
simulations and the testbenches to verify the system
behavior step by step. Any errors in the circuit components
could be caught right away and removed before going
through the process of generating the partial bitstreams.

In order to debug any issues in the software, it was
possible to use the SDK terminal to communicate with the
PS and determine what the software was executing. This
was a later step and was only done once the hardware had
been fully simulated and was verified to work after
extensive testbench simulation.

IV. RESULTS

The results obtained show that the system functioned as
intended. All components and functionalities including
partial reconfiguration, signed multiplication processing, PL
to PS interrupt and interrupt handling (by software), along
with switch reading work as intended. This allows for
everything to come together and function. The two other
software modes mentioned previously function as intended
as well, although not being used.

In order to verify results (both during implementation and
testing), it was necessary to generate input values and their
corresponding output values for each circuit. These were
used both throughout the simulation and verification process
of hardware as well as during system testing when testing
software and DPR functionality.

TABLE 1. INPUT AND OUTPUT VALUES OF CORRESPONDING RM’S

Table 1 shows the sample inputs that were used for both
testbench testing of the individual circuits and the values
that were used by software when testing the system on the

Zybo Z7 board. The outputs correspond to the product of the
input, but are in their respective number formats.

Fig. 10. 2C AXI Burst Simulation Results

Fig. 11. SM AXI Burst Simulation Results

Fig. 10 and 11 both show a testbench simulation of an
AXI master sending a burst of the three inputs as seen in
Table 1 (although the last two inputs cannot be seen in the
simulation window at this zoom). Following processing in
each of the two circuits, the outputs are then loaded into the
oFIFO and read again by the master. The values loaded into
the oFIFO after being processed were compared with the
output values in Table 1 and verified.

Fig. 12. Actual Demo Results

Fig. 12 shows a working version of the full system. First,

the two partial bitstreams (mult_sm.bin and mult_2c.bin) are
loaded into memory on the PS. A test of the multiplier is
done and the event loop is then reached. Following this, the
system waits for an interrupt to which it will then check the
value of a switch through the GPIO IP and choose which
partial bitstream to configure, following a test of the circuit
after DPR. Fig. 12 shows this interrupt occurring twice, both
times with the switch having different values (thus causing
the two different bitstreams to be loaded each time).

CONCLUSIONS

Reconfigurable computing is a very good approach that
can be used for many applications to reduce the cost by
reducing hardware needs and providing a reconfigurable and
flexible system. In this project, it was possible to build a
reconfigurable system that performs signed multiplication in
two ways (2C and SM) for two 8-bit inputs. Partial
Reconfiguration along with the abilities of the Zynq-7000

chip and AXI allow for a very advanced system to be
created. There are many applications beyond this that could
host very advanced circuits (and thus very advanced RM’s).
Although the reconfigurable part of this circuit is rather
simple, the most important part is showcasing the DPR
functionality and the extensive capabilities that it allows.
Aside from this, the use of a PL to PS interrupt is showcased
as this gives even more flexibility in systems when needed.

As all necessary and wanted functionalities were
achieved for this project, it is hard to come to a conclusion
on any improvements to its functionality. One improvement
could be changing up the interrupt clearing mechanism in
the hardware. Although it functions, it is rather rudimentary
at this point and a much more clean, efficient way could be
developed to do this. Another improvement that could be
made, if another system with more RM’s was needed could
be to parameterize the GPIO passthrough IP to allow more
than just two I/O’s to be polled by the software. Anywhere
up to 32 I/O’s (due to the 32-bit data bus used for this AXI
implementation) could be used if this IP were changed to
allow this.

This project posed many obstacles due to the current state
of the world and the COVID-19 pandemic. Through a good
system of communication and working on all items as
needed, it was possible to finish without complications in
the allotted amount of time. Advanced knowledge in DPR
and the AXI protocol were developed through designing this
system. Other knowledge attained includes the ability to
work together remotely on a team, along with designing and
validating a system through rigorous testing. Through all of
the skills that were required to develop and consistent work,
it was possible to finish the system and meet all
requirements.

REFERENCES
[1] https://www.xilinx.com/support/documentation/sw_manuals/xilinx20

19_1/ug909-vivado-partial-reconfiguration.pdf
[2] https://www.xilinx.com/support/documentation/sw_manuals/xilinx20

17_1/ug947-vivado-partial-reconfiguration-tutorial.pdf
[3] D. Llamocca, “Reconfigurable Computing” Oakland

University. 2020.

https://www.xilinx.com/support/documentation/sw_manuals/xilinx2019_1/ug909-vivado-partial-reconfiguration.pdf
https://www.xilinx.com/support/documentation/sw_manuals/xilinx2019_1/ug909-vivado-partial-reconfiguration.pdf
https://www.xilinx.com/support/documentation/sw_manuals/xilinx2017_1/ug947-vivado-partial-reconfiguration-tutorial.pdf
https://www.xilinx.com/support/documentation/sw_manuals/xilinx2017_1/ug947-vivado-partial-reconfiguration-tutorial.pdf

