
ELECTRICAL AND COMPUTER ENGINEERING DEPARTMENT, OAKLAND UNIVERSITY 
ECE-5736: Reconfigurable Computing  Summer I 2022 
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Unit 3 – Special-Purpose Arithmetic Circuits and 

Techniques 
 

INTEGER/FIXED-POINT CIRCUITS 
 

ADDITION/SUBTRACTION 
 
▪ Adder/Subtractor unit for two 𝑛 −bit signed numbers. 

Notice the extra Full Adder. This takes care of the sign-extension to make sure that the circuit does not generate overflow. 
 
 
 
 
 

 
 
 
 
 
 
 

MULTI-OPERAND ADDITION 
 
ACCUMULATOR 
▪ Addition of 𝑁 𝑛 −bit numbers (signed): 

▪ Note how the required number of bits grow to 𝑛 + ⌈log2𝑁⌉ 
 
 
 
 
 
 
 
 
 
 
 
 
 
ADDER TREE 
▪ Unsigned numbers: no need to zero extend numbers, just use the carry out as the MSB of the result. 
▪ Signed numbers: at every stage, we need to sign extend the operands, so as to get the proper result. 
▪ Pipelining: Registers are used to increase the frequency of operation.  
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MULTIPLICATION 
 

UNSIGNED MULTIPLICATION 
▪ Sequential algorithm: 
 

 

 

P  0, Load A,B 

while B  0 
   if b0 = 1 then 

      P  P + A 

   end if 

   left shift A 

   right shift B 

end while 

Example: 
 
 
 
 
 
 
 
P  0, A  1111, B  1101 

b0=1  P  P + A = 1111.        A  11110, B  110 

b0=0  P  P = 1111.            A  111100, B  11 

b0=1  P  P + A = 1111 + 111100 = 1001011.       A  1111000, B  1 

b0=1  P  P + A = 1001011 + 1111000 = 11000011.  A  11110000, B  0 

 
▪ Iterative Multiplier Architecture: FSM + Datapath circuit. 

𝑠𝑐𝑙𝑟: synchronous clear. In this case, if 𝑠𝑐𝑙𝑟 =  1 and 𝐸 = 1, the register contents are initialized to 0. 

The solution is computed in at most 𝑀 + 1 cycles. 
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Example (timing diagram): 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
SIGNED MULTIPLICATION 

▪ Based on the iterative unsigned multiplier: 
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DIVISION 
 

UNSIGNED DIVISION 
▪ Unsigned division: Iterative case 

For the implementation, we follow the hand-division method. We grab bits of A one by one and compare it with the divisor. 
If the result is greater or equal than B, then we subtract B from it. On each iteration, we get one bit of 𝑄. The example 

below shows the case where 𝐴 =  10001100; 𝐵 =  1001. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

A: N=8 bits 

B: M=4 bits 

R: M=4 bits 

Intermediate subtraction 
requires M+1 bits 

Q: N=8 bits 

A  10001100, B  1001, R  00000000 

i = 7, a7 = 1: R  00001 < 1001  q7 = 0 

i = 6, a6 = 0: R  00010 < 1001  q6 = 0 

i = 5, a5 = 0: R  00100 < 1001  q5 = 0 

i = 4, a4 = 0: R  01000 < 1001  q4 = 0 

i = 3, a3 = 1: R  10001  1001  q3 = 1, R  10001 – 1001 = 01000 

i = 2, a2 = 1: R  10001  1001  q2 = 1, R  10001 – 1001 = 01000 

i = 1, a1 = 0: R  10000  1001  q1 = 1, R  10000 – 1001 = 00111 

i = 0, a0 = 0: R  01110  1001  q0 = 1, R  01110 – 1001 = 00101 

 Q  00001111, R  0101 

 
▪ An iterative architecture is depicted in the figure for A with 𝑁 bits and B with 𝑀 bits, 𝑁 ≥ 𝑀. The register 𝑅 stores the 

remainder. At every clock cycle, we either: i) shift in the next bit of A, or ii) shift in the next bit of A and subtract B.  
▪ (𝑀 + 1)-bit unsigned subtractor: We can apply 2C operation to B. If the subtraction is negative, 𝑐𝑜𝑢𝑡 =  0. If the subtraction 

is positive, 𝑐𝑜𝑢𝑡 = 1 (here, we only need to capture 𝑅 with 𝑀 bits). This determines 𝑞𝑖, which is shifted into the register A, 

which after 𝑁 cycles holds 𝑄. 
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Example (timing diagram 𝑁 = 5,𝑀 = 4). i) DA = 27, DB = 9, ii) DA = 20, DB = 7 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
SIGNED DIVISION 
▪ Based on the iterative unsigned divider 
 

✓ Signed division: In this case, we first take the absolute value of the operators A and B. Depending on the sign of these 
operators, the division result (positive) of abs(A)/abs(B) might require a sign change. 
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FLOATING POINT CIRCUITS 
 

FLOATING POINT ADDER/SUBTRACTOR 
 
▪ 𝑒1, 𝑒2: biased exponents. Note that |𝑒1 − 𝑒2| is equal to the subtraction of the unbiased exponents. 

 
▪ U_ABS_SIGN: This block computes |𝑒1 − 𝑒2|. It also generates the signal 𝑠𝑚. 

𝑒1, 𝑒2 ∈ [0, 2
𝐸 − 1] →  𝑒1 − 𝑒2 ∈ [−(2

𝐸 − 1), 2𝐸 − 1], |𝑒1 − 𝑒2| ∈ [0, 2
𝐸 − 1] . 

✓ 𝑒1 ≥ 𝑒2 → 𝑠𝑚 = 0, 𝑒𝑝 = 𝑒1, 𝑓𝑥 = 𝑓2, 𝑓𝑦 = 𝑓1, 𝑏𝑥 = 𝑏2, 𝑏𝑦 = 𝑏1 

✓ 𝑒1 < 𝑒2 → 𝑠𝑚 = 1, 𝑒𝑝 = 𝑒2, 𝑓𝑥 = 𝑓1, 𝑓𝑦 = 𝑓2, 𝑏𝑥 = 𝑏1, 𝑏𝑦 = 𝑏2 

 
▪ Denormal numbers: They occur if 𝑒1 = 0 or 𝑒2 = 0: 

✓ 𝑒1 = 0 → 𝑏1 = 0. 𝑒1 ≠ 0 → 𝑏1 = 1. ✓ 𝑒2 = 0 → 𝑏2 = 0. 𝑒2 ≠ 0 → 𝑏2 = 1. 
 

▪ SWAP blocks: In floating point addition/subtraction, we usually require alignment shift: one operator (called 𝑠𝑥) is divided 

by  2|𝑒1−𝑒2|, while the other (called 𝑠𝑦) is not divided. 

o First SWAP block: It generates 𝑠𝑥 and 𝑠𝑦 out of 𝑠1 and 𝑠2. That way we only feed 𝑠𝑥 to the barrel shifter. 

o Second SWAP block: We execute 𝐴 ± 𝐵. For proper subtraction, we must have the minuend 𝑡1 (either 𝑠1 or 
𝑠1

2|𝑒1−𝑒2|
) on 

the left hand side, and the subtrahend 𝑡2 (either 𝑠2 or 
𝑠2

2|𝑒1−𝑒2|
) on the right hand side. This blocks generates 𝑡1 and 𝑡2. 

  

 𝑠𝑚 𝑒𝑝 𝑠𝑥 𝑠𝑦 𝑡1 𝑡2 

𝑒1 ≥ 𝑒2 0 𝑒1 𝑠2 = 𝑏2. 𝑓2 𝑠1 = 𝑏1. 𝑓1 𝑠1 
𝑠2

2|𝑒1−𝑒2|
 

𝑒1 < 𝑒2 1 𝑒2 𝑠1 = 𝑏1. 𝑓1 𝑠2 = 𝑏2. 𝑓2 
𝑠1

2|𝑒1−𝑒2|
 𝑠2 

 
▪ Barrel shifter 2-i: This circuit performs alignment of 𝑠𝑥, where we always shift to the right by |𝑒1 − 𝑒2| bits. 

 
▪ SM to 2C: Sign and magnitude to 2’s complement converter. If the sign (sg1, sg2) is 0, then only a 0 is appended to the 

MSB. If the sign is 1, we get the negative number in 2C representation. Output bit-width: 𝑃 + 2 bits.  

 
▪ Main adder/subtractor: This circuit operates in 2C arithmetic. Note that we must sign-extend the (𝑃 + 2)-bit operands to 

𝑃 + 3 bits. 

Input operands  [−2𝑃+1 + 1, 2𝑃+1 − 1], Output result  [−2𝑃+2 + 2, 2𝑃+2 − 2]. 
 
▪ U_ABS block: It takes the absolute value of a number represented in 2C arithmetic. The output is provided as an unsigned 

number. The absolute value  [0, 2𝑃+2 − 2], this only requires 𝑃 + 2 bits in unsigned representation. 

 
▪ Leading Zero Detector (LZD): This circuit outputs a number that indicates the amount of shifting required to normalize 

the result of the main adder/subtractor. It is also used to adjust the exponent. This circuit is commonly implemented using 
a priority encoder. 𝑟𝑒𝑠𝑢𝑙𝑡 ∈ [−1, 𝑝]. The result is provided as a sign and magnitude. 

 
result output sign Actions 

[0, 𝑝] 𝑠ℎ ∈ [0, 𝑝] 0 
The barrel shifter needs to shift to the left by 𝑠ℎ bits. 

Exponent adder/subtractor needs to subtract 𝑠ℎ from the exponent 𝑒𝑝. 

−1 𝑠ℎ = 1 1 
The barrel shifter needs to shift to the right by 1 bit. 
Exponent adder/subtractor needs to add 1 to the exponent 𝑒𝑝. 

 

▪ Exponent adder/subtractor: The figure is not detailed. This circuit operates in 2C arithmetic; as the input operands are 
unsigned, we zero-extend to 𝐸 + 1 bits. Note that for ordinary numbers, 𝑒𝑝 ∈ [1, 2𝐸 − 2]. The (𝐸 + 1)-bit result (biased 
exponent) cannot be negative: at most, we subtract 𝑝 from 𝑒𝑝, or add 1. Thus, we use the unsigned portion: 𝐸 bits (LSBs). 

 
▪ Barrel shifter 2i: This performs normalization of the final summation. We shift to the left (from 0 to 𝑃 bits) or to the right 

(1 bit). The normalization step might incur in truncation of the LSBs. 
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▪ This circuit works for ordinary numbers. 
o 𝑁𝑎𝑁, ±∞: not considered. 

o Denormal numbers: not implemented: this would require |𝑒1 − 𝑒2| = |1 − 𝑒2|  when 𝑒1 = 0, or |𝑒1 − 1| when 𝑒2 = 0. But 

we implement 𝐴 ± 𝐵 when 𝐴 = 0,𝐵 = 0,𝐴 = 𝐵 = 0.  
If 𝐴 = 0 or 𝐵 = 0, then 𝑠𝑥 = 0 (barrel shifter input). So, the incorrect |𝑒1 − 𝑒2| does not matter; 𝑒𝑝 will also be correct. 

As for the biased exponent 𝑒, if 𝑡1 ± 𝑡2 = 0, then 𝐴 ± 𝐵 = 0, and we must make 𝑒 = 0 (we use a multiplexer here). 

o After normalization, the unbiased 𝑒 might be 2𝐸 − 1. This indicates overflow, but we would need to make 𝑓 = 0. We do 

not implement this, so overflow is not detected. 
 
▪ Typical cases: 

✓ Single Precision: E = 8, P = 23.  
✓ Double Precision: E = 8, P = 52. 
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FLOATING POINT MULTIPLIER AND DIVIDER 
 

▪ Multiplier: An unsigned multiplier is required. If we use a sequential multiplier, an FSM is required to control the dataflow. 
✓ We need to add the unbiased exponents: 𝑒𝑝 = 𝑒1 + 𝑒2. Here, a simple unsigned adder suffices. Since this operation adds 

2 × 𝑏𝑖𝑎𝑠 to 𝑒𝑝, we subtract the 𝑏𝑖𝑎𝑠 from the final adjusted exponent 𝑒𝑥. 

✓ The multiplier will require 2P+2 bits. Here, we need to truncate to P+2 bits. 

 
▪ Divider: An unsigned divider is required. If we use a sequential divider, an FSM is required to control the dataflow. 

✓ We need to subtract the unbiased exponents: 𝑒𝑝 = 𝑒1 − 𝑒2. This requires us to operate in 2C arithmetic. Since this 

operation gets rid of the bias, we need to add the 𝑏𝑖𝑎𝑠 = 2𝐸−1 − 1 to the final adjusted exponent 𝑒𝑥. 
✓ The divider can include any number of extra fractional bits. We use 𝑃 fractional bits of precision. 
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DUAL FIXED-POINT CIRCUITS 
 

DFX ADDER/SUBTRACTOR 
▪ Here, we add two DFX numbers A and B with 𝑛 bits. To do this, we get rid of the exponent (E) bit, align the numbers, and 

then add two (𝑛 − 1)-bit significands in fixed point arithmetic. Then, we convert the FX result into the DFX number. 

 
PRE-SCALER 
▪ It makes sure that the input operands (Asig, Bsig) are aligned. Four possibilities exist, based on the exponents of A and B: 

𝐴𝑛−1 𝐵𝑛−1 Operation 
0 0 𝑛𝑢𝑚0 + 𝑛𝑢𝑚0. No need to align. 
0 1 𝑛𝑢𝑚0 + 𝑛𝑢𝑚1. Here, 𝑛𝑢𝑚0 is converted to 𝑛𝑢𝑚1. The 𝑝 − 𝑝1 discarded bits are saved. 
1 0 𝑛𝑢𝑚1 + 𝑛𝑢𝑚0. Here, 𝑛𝑢𝑚0 is converted to 𝑛𝑢𝑚1. The 𝑝 − 𝑝1 discarded bits are saved 
1 1 𝑛𝑢𝑚1 + 𝑛𝑢𝑚1. No need to align. 

 
▪ If they both are either 𝑛𝑢𝑚0 or 𝑛𝑢𝑚1, addition is straightforward. 

 
 

 
 
 
 
 
▪ If one is 𝑛𝑢𝑚0 and the other is 𝑛𝑢𝑚1, we have to align the fractional points to 𝑝1. This means that we convert [𝑛 − 1  𝑝 ] 

to [𝑛 − 1  𝑝1] by discarding 𝑝 − 𝑝1 fractional bits and by sign-extending the extra 𝑝 − 𝑝1 MSBs. This is not exactly the same 

as converting 𝑛𝑢𝑚0 to 𝑛𝑢𝑚1, because the 𝑛𝑢𝑚0 number fits with 𝑛 bits, though the operation is very similar. 

 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
▪ Converting from [𝑛 − 1  𝑝 ] to [𝑛 − 1  𝑝1]: This operation consists of: arithmetic shift of 𝑝 − 𝑝1 bits to the right, truncation 

of 𝑝 − 𝑝1 LSBs, while keeping the fractional point where it is. This operation is not exactly ≫ 𝑝 − 𝑝1, but it is usually 

represented as such. 
▪ Improving DFX Adder accuracy: We save the 𝑝 − 𝑝1 truncated LSBs. In the post-scaler, we might need to convert [𝑛 𝑝1] 

to [𝑛 𝑝 ]. This operation requires shifting to the left, and we can shift in the truncated LSBs. This only happens when A and 

B have different exponents. If A and B are both 𝑛𝑢𝑚0, the sum S is [𝑛  𝑝 ]: we cannot shift in any other bit. If A and B are 

both 𝑛𝑢𝑚1, the sum S is [𝑛  𝑝1], and there were never truncated LSBs to begin with.  

 
FIXED-POINT ADDITION 
▪ Once the numbers are aligned, we perform the fixed-point addition of two (𝑛 − 1)-bit FX numbers. This is done by sign-

extending the operands to 𝑛 bits; the result has 𝑛 bits with either 𝑝  or 𝑝1 fractional bits.  

▪ DFX addition: We want the result to have the same number of bits as the inputs. We can always sign-extend the MSB of the 
significand to avoid overflow, but this defeats the purpose of DFX (we better just use FX).  

▪ Overflow of FX addition: Here, we consider the overflow as if the addition were of two (𝑛 − 1) −bit numbers (with no sign-

extension), i.e., 𝑜𝑣𝑒𝑟𝑓𝑙𝑜𝑤𝑛−1 = 𝑐𝑛−1𝑐𝑛−2. We need this overflow since it tells us whether 𝑛 − 1 bits suffice for the addition 
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result. Note that the 𝑛-bit addition overflow is always zero (due to sign-extension). The FX adder performs 𝑛-bit addition (by 
sign-extending); however, note that the DFX format requires one exponent bit and 𝑛 − 1 significand bits. 

 
POST-SCALER 
▪ If at least one input is 𝑛𝑢𝑚1, then the sum S will be in [𝑛 𝑝1]. If A and B are 𝑛𝑢𝑚0, then the sum S will be [𝑛 𝑝0]. Then, we 

need to determine whether the DFX 𝑛-bit number is a 𝑛𝑢𝑚0 or 𝑛𝑢𝑚1. If the sum [𝑛 𝑝0] has 𝑜𝑣𝑒𝑟𝑓𝑙𝑜𝑤𝑛−1 = 1, then we 

convert the number to 𝑛𝑢𝑚1. If the sum [𝑛 𝑝1] has 𝑜𝑣𝑒𝑟𝑓𝑙𝑜𝑤𝑛−1 = 1, then the DFX addition requires an overflow. 

▪ From [𝑛 𝑝0] to [𝑛 𝑝1]: This is the same circuit ≫ 𝑝0 − 𝑝1 as in the pre-scaler, but here we use 𝑛 bits as input. 
▪ From [𝑛 𝑝1] to [𝑛 𝑝0]: Left shift with zero pad (or we shift in the truncated bits that we saved). 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
▪ 3-input Multiplexor: it takes three 𝑛 −bit FX inputs and outputs one (𝑛 − 1) −bit FX output (the MSB is discarded). Note 

how the saved 𝑝 − 𝑝1 bits might be used when the final summation needs to be converted to 𝑛𝑢𝑚0. 

 
▪ Range Detector 

✓ It determines whether a fixed point (FX) number [𝑛𝑖𝑛 𝑝𝑖𝑛] can be represented as a DFX 𝑛𝑢𝑚0 number with 𝑛 bits. Note 

that 𝐸𝑅𝐷 = 1 does not necessarily imply a DFX 𝑛𝑢𝑚1 number with 𝑛 bits, because it may actually need more than 𝑛 bits. 
✓ For the DFX number to be 𝑛𝑢𝑚0 with 𝑛 bits, the corresponding FX number has to be such that the 𝑛𝑖𝑛 − 𝑝𝑖𝑛 −

(𝑛 − 1 − 𝑝 ) + 1 MSBs have be all 1 or 0 (due to sign extension). This means only one of those bits is needed. 

✓ The figure assumes that: 𝑛𝑖𝑛 − 𝑝𝑖𝑛 ≥ 𝑛 − 1 − 𝑝0, 𝑝0 ≥ 𝑝𝑖𝑛. If 𝑛𝑖𝑛 − 𝑝𝑖𝑛 < 𝑛 − 1 − 𝑝0 then the FX number is a 𝑛𝑢𝑚0 
DFX number with 𝑛 bits. If 𝑝0 < 𝑝𝑖𝑛, we need to get rid of 𝑝0 − 𝑝𝑖𝑛 LSBs (we lose precision here). 

 

𝐸𝑅𝐷 = 𝑏𝑛𝑖𝑛− 𝑖𝑛−1⋯𝑏𝑛−1−  −1 + 𝑏𝑛𝑖𝑛− 𝑖𝑛−1̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ ⋯𝑏𝑛−1−  −1̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ 

 
 
 
 
 

 

 

 

 

 

 

 
▪ The range detector needs to know FX format of the input signal (sum S), which could be [𝑛 𝑝 ] or [𝑛 𝑝1]. In the DFX 

adder/subtractor, we assume the input format to be [𝑛 𝑝1]. So, what happens if the input format is [𝑛 𝑝 ]? Here, the Range 

Detector output will be invalid. This is why we need the signal 𝑓_𝑛𝑢𝑚0 which indicates whether the format of S is [𝑛 𝑝 ]. 
✓ 𝑓_𝑛𝑢𝑚0 = 0: This means that the format of S is [𝑛 𝑝 ] and that 𝐸𝑅𝐷 is invalid. Here, 𝐸 = 0. However, this does not mean 

that the number S can be represented in DFX as a 𝑛𝑢𝑚0 with 𝑛 bits (since the result of the range detector is invalid). 

We need the 𝑜𝑣𝑒𝑟𝑓𝑙𝑜𝑤𝑛−1 bit to determine that. If this bit is 1, we need to convert S to 𝑛𝑢𝑚1 to avoid DFX overflow; if 

that bit is 0 the number S is a 𝑛𝑢𝑚0. 
✓ 𝑓_𝑛𝑢𝑚0 = 1: This means that the format of S is [𝑛 𝑝1]. Here, 𝐸 = 𝐸𝑅𝐷. If 𝐸 = 0, the sum S is a 𝑛𝑢𝑚0 with 𝑛 bits. If 𝐸 =

1, the sum S might be a 𝑛𝑢𝑚1 with 𝑛 bits (we need to determine 𝑜𝑣𝑒𝑟𝑓𝑙𝑜𝑤𝑛−1 this). 

 
▪ 𝑜𝑣𝑒𝑟𝑓𝑙𝑜𝑤𝑛−1: The adder/subtractor sign-extends the inputs of width 𝑛 − 1 and the result is a 𝑛-bit number. The overflow of 

this circuit is always 0 (due to sign extension). 𝑜𝑣𝑒𝑟𝑓𝑙𝑜𝑤𝑛−1 refers to the overflow when only considering the (𝑛 − 1)-bit 

addition/subtraction. This useful signal determines whether the sum S requires more than 𝑛 − 1 bits. 

▪ Addition: We save the 𝑝 − 𝑝1 bits that are discarded in the Pre-Scaling stage. If the final result is a 𝑛𝑢𝑚0, we can bring 
back those bits to increase precision. But if the final result is 𝑛𝑢𝑚1, we lose those bits for good.  
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▪ Subtraction: We would need a drastic change in the architecture to save those 𝑝 − 𝑝1 bits discarded in the Pre-scaler. When 
𝑎  𝑠𝑢𝑏 = 1, the carry in of the FX adder/subtractor is 1, thus the 𝑝 − 𝑝1 bits of the subtrahend (even if flipped) are not 

useful. So, we do not save the 𝑝 − 𝑝1 bits in the case of subtraction. 

 
▪ Overflow (DFX Adder/Subtractor): This occurs when the sum S cannot be represented as a 𝑛𝑢𝑚1 with 𝑛 bits. One way 

to overcome this problem is to increase the DFX format to 𝑛 + 1 bits, though this is not customary as the idea of DFX 

arithmetic is to keep the same number of bits throughout the operations. 
 

▪ Control Block: 
overflowN-1 EC 𝒇_𝒏𝒖𝒎𝟎 overflow ECTRL sCTRL Comments 

0 0 0 0 0 00 
Sum S is [𝑛 𝑝 ] and no overflow with 𝑛 − 1 bits: The sum S can 
be represented in DFX as a 𝑛𝑢𝑚0 with 𝑛 bits. 

0 0 1 0 0 10 
Sum S is [𝑛 𝑝1] and 𝐸𝐶 =  0 means that the sum S can be 

represented in DFX as a 𝑛𝑢𝑚0 with 𝑛 bits. 
0 1 0 0 1 01 Impossible case: 𝐸𝐶 should be 0 if 𝑓_𝑛𝑢𝑚 = 0. 

0 1 1 0 1 00 

Sum S is [𝑛 𝑝1], 𝐸𝐶 = 1 means that S is not a 𝑛𝑢𝑚0 with 𝑛 bits. As 
there is no overflow with 𝑛 − 1 bits, the sum S can be represented 

as a 𝑛𝑢𝑚1 with 𝑛 bits. 

1 0 0 0 1 01 

Sum S is [𝑛 𝑝 ] and overflow with 𝑛 − 1 bits: The sum S needs to 
be first converted to [𝑛 𝑝1], where it can be represented as a 

𝑛𝑢𝑚1 with 𝑛 bits. 

1 0 1 0 0 10 

Impossible case: Sum S is [𝑛 𝑝1] and 𝐸𝐶 = 0 means that the sum 

S can be represented in DFX as a 𝑛𝑢𝑚0 with 𝑛 bits. So, 

𝑜𝑣𝑒𝑟𝑓𝑙𝑜𝑤𝑛−1 cannot be 1. 
1 1 0 0 1 01 Impossible case: 𝐸𝐶 should be 0 if 𝑓_𝑛𝑢𝑚 = 0. 

1 1 1 1 1 00 

Sum S is [𝑛 𝑝1], 𝐸𝐶 = 1 means that S is not a 𝑛𝑢𝑚0 with 𝑛 bits. 

As there is overflow with 𝑛 − 1 bits, the sum S cannot be 
represented as a 𝑛𝑢𝑚1 with 𝑛 bits. Thus, we have DFX overflow. 

 
Examples: n=16, p0=8, p1=4 

Operation Sum (FX) overflowN-1 Erng EC Post-Scale Answer 
01.0A + 01.0B 01.0A+01.0B = 02.15 0 0  0 No need 02.15 

800.3 + 00.CA 000.3+000.C = 000.F 0 0  1 To [𝑛 𝑝 ], append A 00.FA 
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SPECIALIZED CIRCUITS 
 

FIXED-POINT SQUARE ROOT 
 

INTEGER SQUARE ROOT – BINARY SEARCH 
▪ A common algorithm for hardware implementation is the ‘binary search’ method. There are Restoring and Non-Restoring 

versions. 𝐷 (radical): 2𝑛 bits, 𝑄 (square root): 𝑛 bits. 

Restoring Algorithm Non-Restoring Algorithm 
𝑄 ← 0 
𝑓𝑜𝑟 𝑘 = 𝑛 − 1 → 0 

𝑞𝑘 ← 1 
𝑖𝑓 𝐷 < 𝑄2 𝑡ℎ𝑒𝑛 

𝑞𝑘 ← 0 
𝑒𝑛  

𝑒𝑛  

𝑞𝑛−1 ← 1 
𝑓𝑜𝑟 𝑘 = 𝑛 − 2 → 0 

𝑖𝑓 𝐷 < 𝑄2 𝑡ℎ𝑒𝑛 
𝑄 ← 𝑄 − 2𝑘 

𝑒𝑙𝑠𝑒 
𝑄 ← 𝑄 + 2𝑘 

𝑒𝑛  
𝑒𝑛  

Example: 𝐷 =  40 =  101000,𝑄 =  000, 𝑛 = 3 
𝑘 = 2: 𝑞2 = 1 (𝑄 = 100) 

40 <  42?  𝑁𝑜 
𝑘 = 1: 𝑞1 = 1 (𝑄 = 110) 

40 <  62?  𝑁𝑜 
𝑘 = 0: 𝑞 = 1 (𝑄 = 111) 

40 <  72?  𝑌𝑒𝑠 → 𝑞 = 0 (𝑄 = 110) 
Result: 𝑄 = 110, 𝑅 = 𝐷 − 𝑄2 = 0100 

Example: 𝐷 =  40 =  101000, 𝑛 = 3 
𝑞2 = 1 (𝑄 = 100) 
𝑘 = 1: 40 <  42?  𝑁𝑜  𝑄 ← 𝑄 + 21 = 110 
𝑘 = 0: 40 <  62?  𝑁𝑜  𝑄 ← 𝑄 + 2 = 111 
 
Result: 𝑄 = 111, 𝑅 = 𝐷 − 𝑄2? The LSB of the result might 

differ from that of the restoring case. Also, the remainder 
might be incorrect when using this algorithm. 

 
Non-restoring binary search hardware implementation 
▪ For hardware implementation, we will select the non-restoring version as it is a bit simpler to implement in hardware. We 

make the following definitions: 
o 𝑎𝑘 = 2𝑘. This is the correction factor at iteration 𝑘. 
o 𝑟𝑘 = 𝑄(𝑘). Value of the square root at iteration 𝑘. 

o 𝑟𝑘
2 = 𝑄(𝑘)2 = (𝑟𝑘+1 ± 𝑎𝑘)

2 = 𝑟𝑘+1
2 ± 2𝑎𝑘𝑟𝑘+1 + 𝑎𝑘

2.  

 

 Algorithm (re-defined) 
𝑖 𝑘 𝑎𝑘 2𝑎𝑘 𝑎𝑘

2 𝑟𝑘 𝑟𝑘
2 2𝑎𝑘𝑟𝑘+1 𝑟𝑛−1 ← 2𝑛−1 

𝑓𝑜𝑟 𝑘 = 𝑛 − 2 → 0 

𝑖𝑓 𝐷 < 𝑟𝑘
2 𝑡ℎ𝑒𝑛 

𝑟𝑘 ← 𝑟𝑘+1 − 𝑎𝑘 
𝑒𝑙𝑠𝑒 

𝑟𝑘 ← 𝑟𝑘+1 + 𝑎𝑘 
𝑒𝑛  

𝑒𝑛  

0 𝑛 − 1    2𝑛−1 22𝑛−2  
1 𝑛 − 2 2𝑛−2 2𝑛−1 22𝑛−4 2𝑛−1 ± 2𝑛−2  2𝑛−1(2𝑛−1) 

2 𝑛 − 3 2𝑛−3 2𝑛−2 22𝑛−6    

… … … … …    
𝑛 − 3 2 22 23 24    
𝑛 − 2 1 21 22 22    
𝑛 − 1 0 2  21 2     
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▪ For hardware implementation, 𝑎𝑘 and 𝑟𝑘 use 𝑛 bits, while 𝑎𝑘
2 and 𝑟𝑘

2 use 2𝑛 bits. Also, 2𝑎𝑘𝑟𝑘 
use 2𝑛 bits for its representation. 

▪ The representation used here is unsigned. However, we use a 2C adder/subtractor to 
implement 𝑟𝑘 − 𝑎𝑘. Here, note that if 𝑟𝑘 ≥ 𝑎𝑘 (which is the case), there is no need to perform 

the operation in 2C using 𝑛 + 1 bits, since we won’t be using the (𝑛 + 1)-bit (which is equal 

to 0). The same is true for 𝑟𝑘
2 + 𝑎𝑘

2 − 2𝑎𝑘𝑟𝑘, where 2𝑛 bits suffice. 

▪ Comparator: 𝑟𝑚 = 1 𝑖𝑓 𝑟𝑘
2 > 𝐷, 𝑒𝑙𝑠𝑒 0. 𝑟𝑒 = 1 𝑖𝑓 𝑟𝑘

2 = 𝐷, 𝑒𝑙𝑠𝑒 0  

▪ The FSM generates  = 𝑘 + 1, because the barrel shifter multiplies by 2𝑎𝑘 = 2𝑘+1 = 2𝑗. 
▪ 𝑎𝑘 is shifted to the right by 1 bit every clock cycle, 𝑎𝑘

2 is shifted to the right by 2 bits. 

▪ The following timing diagram is for 𝑛 = 8. It also assumes that 𝑟𝑘
2 is never equal to 𝐷. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
INTEGER SQUARE ROOT – OPTIMIZED NON-RESTORING ALGORITHM 
▪ This algorithm for non-restoring square root VLSI implementation, described in A New Non-Restoring Square Root Algorithm 

and its VLSI Implementation”, Y. Li, W. Chu, 1996, has proved to outperform most hardware implementations. 
▪ A simple addition/subtraction is required based on the result bit from the previous iteration. No need for multiplexors or 

multipliers. The result of the addition/subtraction is fed via registers to the next iteration directly even if it is negative. At 
the last iteration, if the estimated remainder is positive, it is the actual remainder. Otherwise, the actual remainder is obtained 
via an extra addition operation. Since the remainder is rarely used, it is usually dismissed to reduce resource consumption. 

 
Radical: 𝐷 =  2𝑛−1 2𝑛−2 2𝑛−3 2𝑛−4… 1   
Square Root: 𝑄 = 𝑞𝑛−1𝑞𝑛−2…𝑞  
 
We define: 𝐷𝑘 =  2𝑛−1 2𝑛−2… 𝑘, 𝑘 = 0,1, … ,2𝑛 − 1  𝐷2𝑘 has 2𝑛 − 𝑘 bits. Unsigned integer. 

  𝑄𝑘 = 𝑞𝑛−1𝑞𝑛−2…𝑞𝑘, 𝑘 = 0,1, … , 𝑛 − 1  𝑄𝑘 has 𝑛 − 𝑘 bits. Unsigned integer. 

𝑅′𝑘 = 𝑟′𝑛𝑟′𝑛−1𝑟′𝑛−2…𝑟′𝑘, 𝑘 = 0,1, … , 𝑛 − 1  𝑅′𝑘 has 𝑛 − 𝑘 + 1 bits. Signed (2C) integer. 

 
𝑓𝑜𝑟 𝑘 = 𝑛 − 1  𝑜𝑤𝑛𝑡𝑜 0 
 𝑖𝑓 𝑘 = 𝑛 − 1 𝑡ℎ𝑒𝑛 

𝑅′𝑘 =  2𝑘+1 2𝑘 − 01 (𝑅′𝑛−1 =  2𝑛−1 2𝑛−2 − 01) 
𝑒𝑙𝑠𝑒 

𝑅′𝑘 = {
𝑅′𝑘+1 2𝑘+1 2𝑘 − 𝑄𝑘+101, 𝑖𝑓𝑞𝑘+1 = 1

𝑅′𝑘+1 2𝑘+1 2𝑘 + 𝑄𝑘+111, 𝑖𝑓𝑞𝑘+1 = 0
 

𝑒𝑛  

𝑞𝑘 = {
1, 𝑖𝑓 𝑅′𝑘 ≥ 0

0, 𝑖𝑓 𝑅′𝑘 < 0
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𝑅𝑒𝑚𝑎𝑖𝑛 𝑒𝑟 𝑅 = 𝑅 = {
𝑅′ , 𝑖𝑓 𝑅′ ≥ 0

𝑅′ + 𝑄101 = 𝑅′ +𝑄 1, 𝑖𝑓 𝑅′ < 0
 

 
▪ At each iteration, we compute 𝑅′𝑘 = 𝑟′𝑛𝑟′𝑛−1𝑟′𝑛−2…𝑟′𝑘 (estimated remainder). 

✓ 𝑅′𝑘: signed (2C) integer with at most 𝑛 − 𝑘 + 1 bits. 𝑄𝑘: unsigned integer with at most 𝑛 − 𝑘 bits. 

✓ 𝑅′𝑘 computation. We need: two bits from 𝐷 ( 2𝑘+1 2𝑘) and 𝑄𝑘+1 (unsigned integer with 𝑛 − 𝑘 − 1 bits). 

 Left-hand side: 𝑅′𝑘+1 2𝑘+1 2𝑘. This is a signed number with 𝑛 − 𝑘 + 2 bits (𝑅′𝑘+1 requires 𝑛 − 𝑘 bits). 
 Right-hand side: This is an unsigned integer with 𝑛 − 𝑘 + 1 bits (since 𝑄𝑘+1 is unsigned integer wit 𝑛 − 𝑘 − 1 bits). 

We zero-extend to 𝑛 − 𝑘 + 2 bits so that it is represented as a signed integer.  

 Once the result is ready, we only take the 𝑛 − 𝑘 + 1 LSBs for 𝑅′𝑘 (it can be shown that 𝑅′𝑘 only needs 𝑛 − 𝑘 + 1 bits). 

✓ Once 𝑅′𝑘 is computed, we get 𝑞𝑘 (square root 𝑘th bit), thereby updating 𝑄𝑘. 
▪ 𝑘 = 0: 𝑅′  has at most 𝑛 + 1 bits, i.e., one more bit than the square root 𝑄 = 𝑄 . As for the actual remainder 𝑅, it needs at 

most 𝑛 + 1 bits as an unsigned number (one more than the square root 𝑄): 

a. 𝑅 = 𝑅′ +𝑄 1: Since 𝑅′ < 0 and 𝑄 1 ≥ 0, we sign-extend 𝑅′  and zero-extend 𝑄 1 to 𝑛 + 2 bits. The result 𝑅 is a 

positive signed (n+2)-bit number. Thus, the remainder 𝑅 is a (n+1)-bit unsigned integer (we drop the MSB which is 0). 

 
▪ Example: 𝑛 = 4: 𝐷 =  01111111, 𝑄 =  0000. Note that 𝑅′𝑘 has one more bit than 𝑄𝑘. 

𝑘 𝑅′𝑘 𝑅′𝑘 width 𝑞𝑘 𝑄𝑘 = 𝑞𝑛−1…𝑞𝑘 𝑄 

3 𝑅’3 = 01 − 01 =  00 ≥ 0 (𝑘 = 𝑛 − 1) 2 𝑞3 = 1 1 1000 

2 𝑅’2 = 𝑅’311 − 𝑄301 = 0011 − 0101 = 1110 = 110 < 0 3 𝑞2 = 0 10 1000 

1 𝑅’1 = 𝑅’211 + 𝑄211 = 11011 + 01011 = 00110 = 0110 < 0 4 𝑞1 = 1 101 1010 

0 𝑅’ = 𝑅’111 − 𝑄101 = 011011 − 010101 = 000110 = 00110 < 0 5 𝑞 = 1 1011 1011 

✓ Also: 𝑅 = 𝑅’ = 00110 (since 𝑅′ ≥ 0). 

 
Iterative Architecture 
▪ We use a register R that holds the estimated reminder 𝑅′𝑘. R and Q are initialized with 0’s. 

✓ To compute 𝑅′𝑘, we need an (n+2)-bit adder/subtractor, since on the last iteration (to compute 𝑅′ ), we use n+2 bits: 

  𝑅′ = {
𝑅′1 1  − 𝑄101, 𝑖𝑓𝑞1 = 1

𝑅′1 1  + 𝑄111, 𝑖𝑓𝑞1 = 0
. After computation, 𝑅′  only requires 𝑛 + 1 bits (the LSBs).  

✓ The (n+2)-bit result of the adder/subtractor is stored on register R. Only the 𝑛 LSBs of the register R are fed back to the 

adder/subtractor. This is because, on the last iteration, we need 𝑅′1 that requires at most 𝑛 bits. 
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Iterative Architecture - Optimized 
▪ The register R holds the estimated reminder 𝑅′𝑘. The register 𝑄 has 𝑛 bits. 

Adder/subtractor: 𝑛 + 2 bits. This is because of last iteration: 𝑅′ = {
𝑅′1 1  − 𝑄101, 𝑖𝑓𝑞1 = 1

𝑅′1 1  + 𝑄111, 𝑖𝑓𝑞1 = 0
.  

 
▪ (𝑛 + 2)-bit addition/subtraction of signed operands: 

 
 
 
 
 
 

✓ The 2 LSBs perform either 𝑥𝑦 + 11 or 𝑥𝑦 − 01, 𝑥𝑦 =  2𝑘+1 2𝑘. The operation 
yields: 𝑐𝑏𝑎, where 𝑐 is the carry-in of the next stage of the adder/subtractor, 

and 𝑏𝑎 the result of the operation.  

 Note that 𝑥𝑦 − 01 =  𝑥𝑦 + 11. So, the result 𝑐𝑏𝑎 depends only on 𝑥𝑦. 

𝑐 = 𝑥 + 𝑦, 𝑏 = 𝑥𝑦̅̅ ̅̅ ̅̅ , 𝑎 = 𝑦̅. 

 This reduces the width of the adder/subtractor by 2 bits. 
 

✓ The 𝑛 MSBs perform 𝐴 ± 𝐵 ± 𝑐: an addition or subtraction where 𝑐 is the carry-in (or borrow-in). 

 For 𝑥𝑦 + 11: 𝑐 is the carry-in to the 𝑛-bit addition. 

 For 𝑥𝑦 − 01: 𝑐 is the borrow-in to the 𝑛-bit subtraction 𝐴 − 𝐵, 𝐴 = 𝑅′𝑘+1, 𝐵 = 𝑄𝑘+1. 
 𝑐 = 0: The 𝑛 MSBs implement 𝐴 + 𝐵̅ ≡ 𝐴 − 𝐵 − 1), so this is a borrow-in. 

 𝑐 = 1: The 𝑛 MSBs implement 𝐴 + 𝐵̅ + 1 = 𝐴 − 𝐵), so this is a no borrow-in. 

 
 Thus, for the 𝑛-bit operation, we need a 𝑛-bit adder/subtractor with carry-in that treats the carry-in as active-high 

carry-in for addition and as active-low borrow-in for subtraction. This is a standard adder/subtractor with carry-in: 
 
  
 
 
 
 
 
 
 
 
 
▪ Architecture:   
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
▪ There are some small further simplifications: the register R only needs 𝑛 + 1 bits, thereby reducing the size of register R. 

Also, the MSB of 𝑄 does not need to be fed into the adder/subtractor, we can instead feed a ‘0’ (the MSB of 𝑄 is always 0, 

except in the result of the last iteration, whose MSB is not fed into Q). 
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COMPUTING MORE PRECISION BITS 
▪ If 𝑥 more precision bits are needed, we can append 2𝑥 zeros to D. This implies that we need to add 𝑥 extra bits to 𝑄. 

▪ 𝐷𝑝 = 𝐷 × 22𝑥, 𝑄𝑝 = √𝐷𝑝, 𝑄 = √𝐷 

▪ 𝐷𝑝: 2𝑛 + 2𝑥 bits, 𝑄𝑝: 𝑛 + 𝑥 bits. 𝑥: number of precision bits 

𝑄𝑝 = √𝐷𝑝 = √𝐷 × 22𝑥 = √𝐷 × 2𝑥 → 𝑄 = √𝐷 =
𝑄𝑝

2𝑥⁄  

Hardware changes – Optimized square root algorithm 
▪ Let’s define: 𝑛𝑞 = 𝑛 + 𝑥. We use 𝑄 with 𝑛𝑞 bits, R with 𝑛𝑞 + 1 bits. The adder/subtractor uses 𝑛𝑞 bits. 

▪ There is no need to increase the size of the register D. We can still use 2𝑛 bits, as ‘00’ is always shifted in (this emulates the 
2𝑥 zeros in the first 𝑥 cycles). In the FSM, C starts with 𝑛𝑞 − 1, the result is obtained after 𝑛𝑞 cycles. 

 
Example: (restoring algorithm) 

Get √𝐷 using 𝑥 = 2 precision bits. 𝐷 =  110111 = 55, 𝑛 = 3 

Then: 𝐷𝑝 =  1101110000 = 880. Then 𝑛𝑞 = 𝑛 + 𝑥 = 5 
𝑘 = 4: 𝑞4 = 1 (𝑄 = 10000). 880 <  162?  𝑁𝑜 
𝑘 = 3: 𝑞4 = 3 (𝑄 = 11000). 880 <  242?  𝑁𝑜 
𝑘 = 2: 𝑞2 = 1 (𝑄 = 11100). 880 <  282?  𝑁𝑜 
𝑘 = 1: 𝑞1 = 1 (𝑄 = 11110). 880 <  302?  𝑌𝑒𝑠 →  𝑞2 = 0 (𝑄 = 11100) 
𝑘 = 0: 𝑞 = 1 (𝑄 = 11101). 880 <  292?  𝑁𝑜 
Result: 𝑄𝑝 = 11101, 𝑅𝑝 = 𝐷𝑝 − 𝑄𝑝2 = 100111 

Final Result: 𝑄 = 111.01 = 7.25 ≈ √55 
 
 
FX SQUARE ROOT 
 
What if the input (let’s call it 𝑫𝒇) is in fixed-point format [𝟐𝒏 𝟐𝒑]? 

▪ The integer input (called 𝐷) is related to 𝐷𝑓 by: 𝐷𝑓 = 𝐷 × 2−2 . 2𝑛 = number of total bits of 𝐷𝑓. 

𝑄𝑓 = √𝐷𝑓 = √𝐷 × 2−2 = √𝐷 × 2−  

▪ So, we first compute the square root of 𝐷 (i.e., 𝐷𝑓 without the fractional point), and then we place the fractional point so 

that the number has 𝑝 fractional bits. 

 
▪ If we need extra precision bits, we only need to add 2𝑥 zeros to 𝐷. Thus 𝐷𝑝 = 𝐷 × 22𝑥. 

𝑄𝑓 = √𝐷𝑓 = √𝐷 × 2− = √𝐷𝑝 × 2−2𝑥 × 2− = √𝐷𝑝 × 2− −𝑥 

▪ Again, we first compute the square root of 𝐷𝑝, and then we place the fractional point so that the number 𝑄𝑓 has 𝑝 + 𝑥 

fractional bits. 
 
Example (restoring algorithm) 

𝐷𝑓 = 111011.1011 = 59.6875, 𝑝 = 2, 𝑛 = 5. Format [10 4]. 
𝑄𝑓 format: [𝑛 + 𝑥 𝑝 + 𝑥]. 𝑥: extra precision bits. 

 
Step 1: Get the integer D. 
  𝐷 = 1110111011 = 955 
 
Step 2: Add (optionally) 2𝑥 = 4 zeros 

  𝐷𝑝 = 11101110110000 = 15280 

 

Step 3: Get 𝑄𝑝 = √𝐷𝑝 

Then: 𝐷𝑝 =  11101110110000 = 15280. Then 𝑛𝑞 = 𝑛 + 𝑥 = 5 + 2 = 7 

𝑘 = 6: 𝑞6 = 1 (𝑄 = 1000000). 15280 <  642?  𝑁𝑜 
𝑘 = 5: 𝑞 = 1 (𝑄 = 1100000). 15280 <  962?  𝑁𝑜 
𝑘 = 4: 𝑞4 = 1 (𝑄 = 1110000). 15280 <  1122?  𝑁𝑜 

𝑘 = 3: 𝑞3 = 1 (𝑄 = 1111000). 15280 <  1202?  𝑁𝑜 

𝑘 = 2: 𝑞2 = 1 (𝑄 = 1111100). 15280 <  1242?  𝑌𝑒𝑠 → 𝑞2 = 0 (𝑄 = 1111000) 
𝑘 = 1: 𝑞1 = 1 (𝑄 = 1111010). 15280 <  1222?  𝑁𝑜 
𝑘 = 0: 𝑞 = 1 (𝑄 = 1111011). 15280 <  1232?  𝑁𝑜 

Result: 𝑄𝑝 = 1111011, 𝑅𝑝 = 𝐷𝑝 − 𝑄𝑝2 = 10010111 

Final Result (𝑝 + 𝑥 = 4): 𝑄𝑓 = 111.1011 = 7.6875 ≈ √59.6875 
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CORDIC (COORDINATE ROTATION DIGITAL COMPUTER) ALGORITHM 
 

CIRCULAR CORDIC 
▪ The original circular CORDIC algorithm is described by the following iterative equations, where 𝑖 is the index of the iteration 

(𝑖 =  0, 1, 2, 3,… , 𝑁 − 1). Depending on the mode of operation, the value of 𝛿𝑖 is either +1 or –1: 

𝑥𝑖+1 = 𝑥𝑖 + 𝑖𝑦𝑖2
−𝑖

𝑦𝑖+1 = 𝑦𝑖 − 𝑖𝑥𝑖2
−𝑖

𝑧𝑖+1 = 𝑧𝑖 + 𝑖𝑖 , 𝑖 = 𝑇𝑎𝑛−1(2−𝑖)

 
𝑅𝑜𝑡𝑎𝑡𝑖𝑜𝑛: 𝛿𝑖 = +1 𝑖𝑓 𝑧𝑖 < 0; −1, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
𝑉𝑒𝑐𝑡𝑜𝑟𝑖𝑛𝑔: 𝛿𝑖 = +1 𝑖𝑓 𝑦𝑖 ≥ 0; −1, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

 

▪ Depending on the mode of operation, the quantities X, Y and Z converge to the following values, for sufficiently large 𝑁: 

Rotation Mode Vectoring Mode 

𝑥𝑛 = 𝐴𝑛(𝑥 𝑐𝑜𝑠𝑧 − 𝑦 𝑠𝑖𝑛𝑧 )

𝑦𝑛 = 𝐴𝑛(𝑦 𝑐𝑜𝑠𝑧 + 𝑥 𝑠𝑖𝑛𝑧 )
𝑧𝑛 = 0

 
𝑥𝑛 = 𝐴𝑛√𝑥 

2 + 𝑦 
2

𝑦𝑛 = 0

𝑧𝑛 = 𝑧 + 𝑡𝑎𝑛−1(𝑦 𝑥 ⁄ )

 

𝐴𝑛 ← ∏ √1 + 2−2𝑖𝑁−1
𝑖= . For 𝑁 →∝ , 𝐴𝑛 = 1.647. The 𝑡𝑎𝑛−1 function here has a different definition (called 𝑎𝑡𝑎𝑛2), as the 

values it computes lie in the range [−180°, 180°], i.e., it indicates the quadrant where the point (𝑥 , 𝑦 ) lies. 

 
▪ 𝑁 iterations (𝑖 =  0, 1, 2, 3,… , 𝑁 − 1). 𝑥 , 𝑦 , 𝑧  are the initial values, and 𝑥𝑁 , 𝑦𝑁, 𝑧𝑁 are the final values. At iteration 𝑖,  𝑥𝑖+1, 

𝑦𝑖+1, 𝑧𝑖+1 are computed. Example (𝑁 = 4): 
 

𝑖 = 0 𝑥  𝑦  𝑧   = 𝑇𝑎𝑛−1(2 ) 𝛿  Iteration 0 computes 𝑥1, 𝑦1, 𝑧1 
𝑖 = 1 𝑥1 𝑦1 𝑧1 1 = 𝑇𝑎𝑛−1(2−1) 𝛿1 Iteration 1 computes 𝑥2, 𝑦2, 𝑧2 
𝑖 = 2 𝑥2 𝑦2 𝑧2 2 = 𝑇𝑎𝑛−1(2−2) 𝛿2 Iteration 2 computes 𝑥3, 𝑦3, 𝑧3 
𝑖 = 3 𝑥3 𝑦3 𝑧3 3 = 𝑇𝑎𝑛−1(2−3) 𝛿3 Iteration 3 computes 𝑥4, 𝑦4, 𝑧4 

 𝑥4 𝑦4 𝑧4   Final Values 

 
▪ With a proper choice of the initial values 𝑥 , 𝑦 , 𝑧   and the operation mode, the following functions can be directly computed: 

✓ 𝑦 = 0, 𝑥 = 1 𝐴𝑛⁄ , rotation mode → 𝑥𝑛 = 𝑐𝑜𝑠𝑧 , 𝑦𝑛 = 𝑠𝑖𝑛𝑧  
✓ 𝑧 = 0, 𝑥 = 1, vectoring mode  → 𝑧𝑛 = 𝑡𝑎𝑛−1(𝑦 ) 

✓ 𝑥 = 𝑎, 𝑦 = 𝑏, vectoring mode  → 𝑥𝑛 = 𝐴𝑛√𝑎
2 + 𝑏2. We need to post-scale the output. 

 
LINEAR CORDIC 
▪ This is an extension to the circular CORDIC. No scaling corrections are needed. (𝑖 =  1, 2, 3, …). 

𝑥𝑖+1 = 𝑥𝑖
𝑦𝑖+1 = 𝑦𝑖 − 𝑖𝑥𝑖2

−𝑖

𝑧𝑖+1 = 𝑧𝑖 + 𝑖𝑖 , 𝑖 = 2−𝑖
 

𝑅𝑜𝑡𝑎𝑡𝑖𝑜𝑛: 𝛿𝑖 = +1 𝑖𝑓 𝑧𝑖 < 0; −1, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
𝑉𝑒𝑐𝑡𝑜𝑟𝑖𝑛𝑔: 𝛿𝑖 = +1 𝑖𝑓 𝑥𝑖𝑦𝑖 ≥ 0; −1, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

 

▪ Depending on the mode of operation, the quantities X, Y and Z converge to the following values, for sufficiently large 𝑁: 

Rotation Mode Vectoring Mode 

𝑥𝑛 = 𝑥1
𝑦𝑛 = 𝑦1 + 𝑥1𝑧1
𝑧𝑛 = 0

 

𝑥𝑛 = 𝑥1
𝑦𝑛 = 0

𝑧𝑛 = 𝑧1 + 𝑦1 𝑥1⁄
 

 
▪ With a proper choice of the initial values 𝑥 , 𝑦 , 𝑧   and the operation mode, the following functions can be directly computed: 

✓ 𝑦1 = 0, rotation mode → 𝑦𝑛 = 𝑥1𝑧1 
✓ 𝑧1 = 0, vectoring mode  → 𝑧𝑛 = 𝑦1 𝑥1⁄  

 
HYPERBOLIC CORDIC 
▪ This extension to the original CORDIC equations allows for the computation of hyperbolic functions, where 𝑖 is the index of 

the iteration (𝑖 =  1, 2, 3, …). The following iterations must be repeated to guarantee convergence: 𝑖 = 4, 13, 40,… , 𝑘, 3𝑘 + 1. 
𝑥𝑖+1 = 𝑥𝑖 − 𝑖𝑥𝑖2

−𝑖

𝑦𝑖+1 = 𝑦𝑖 − 𝑖𝑥𝑖2
−𝑖

𝑧𝑖+1 = 𝑧𝑖 + 𝑖𝑖 , 𝑖 = 𝑡𝑎𝑛ℎ−1(2−𝑖)

 
𝑅𝑜𝑡𝑎𝑡𝑖𝑜𝑛: 𝛿𝑖 = +1 𝑖𝑓 𝑧𝑖 < 0; −1, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
𝑉𝑒𝑐𝑡𝑜𝑟𝑖𝑛𝑔: 𝛿𝑖 = +1 𝑖𝑓 𝑥𝑖𝑦𝑖 ≥ 0; −1, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

 

▪ Depending on the mode of operation, the quantities X, Y and Z converge to the following values, for sufficiently large 𝑁: 

Rotation Mode Vectoring Mode 

𝑥𝑛 = 𝐴𝑛(𝑥1𝑐𝑜𝑠ℎ𝑧1 + 𝑦1𝑠𝑖𝑛ℎ𝑧1)

𝑦𝑛 = 𝐴𝑛(𝑦1𝑐𝑜𝑠ℎ𝑧1 + 𝑥1𝑠𝑖𝑛ℎ𝑧1)
𝑧𝑛 = 0

 
𝑥𝑛 = 𝐴𝑛√𝑥1

2 − 𝑦1
2

𝑦𝑛 = 0

𝑧𝑛 = 𝑧1 + 𝑡𝑎𝑛ℎ−1(𝑦1 𝑥1⁄ )

 

𝐴𝑛 ← ∏ √1 − 2−2𝑖𝑁
𝑖=1  (this includes the repeated iterations 𝑖 = 4, 13, 40,…,). For 𝑁 →∝ , 𝐴𝑛 ≅ 0.8 
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▪ With a proper choice of the initial values 𝑥1, 𝑦1, 𝑧1  and the operation mode, the following functions can be directly computed: 

✓ 𝑦1 = 0, 𝑥1 = 1 𝐴𝑛⁄ , rotation mode → 𝑥𝑛 = 𝑐𝑜𝑠ℎ𝑧1, 𝑦𝑛 = 𝑠𝑖𝑛ℎ𝑧1 
✓ 𝑧1 = 0, 𝑥1 = 1, vectoring mode  → 𝑧𝑛 = 𝑡𝑎𝑛ℎ−1(𝑦1) 
✓ 𝑥1 = 𝑦1 = 1 𝐴𝑛⁄ , rotation mode → 𝑥𝑛 = 𝑦𝑛 = 𝑐𝑜𝑠ℎ𝑧1 + 𝑠𝑖𝑛ℎ𝑧1 = 𝑒𝑧1 
✓ 𝑥1 = 𝛼 + 1, 𝑦1 = 𝛼 − 1, 𝑧1 = 0, vectoring mode  → 𝑧𝑛 = 𝑡𝑎𝑛ℎ−1(𝛼 − 1 𝛼 + 1⁄ ) = (ln 𝛼) 2⁄ . 

✓ 𝑥1 = 𝛼 + 1 (4𝐴𝑛
2)⁄ , 𝑦1 = 𝛼 − 1 (4𝐴𝑛

2)⁄ , 𝑧1 = 0, vectoring mode  → 𝑥𝑛 = √𝛼 

 
RANGE OF CONVERGENCE 
▪ The basic range of convergence, obtained by a method developed by X. Hu et al, “Expanding the Range of Convergence of 

the CORDIC Algorithm”, results in: 
 

Rotation Mode: |𝑧𝑖𝑛| ≤ 𝜃𝑁 + ∑ 𝜃𝑖

𝑁

𝑖=𝑖𝑖𝑛

  Circular: 𝑖𝑖𝑛 = 0, 𝑧𝑖𝑛 = 𝑧 , 𝛼𝑖𝑛 = 𝑡𝑎𝑛−1(
𝑦 

𝑥 ⁄ ) 

 Linear: 𝑖𝑖𝑛 = 1, 𝑧𝑖𝑛 = 𝑧1, 𝛼𝑖𝑛 =
𝑦1

𝑥1⁄  

 Hyperbolic: 𝑖𝑖𝑛 = 1, 𝑧𝑖𝑛 = 𝑧1, 𝛼𝑖𝑛 = 𝑡𝑎𝑛ℎ−1(
𝑦1

𝑥1⁄ ). Note that in 

the summation, we must repeat the terms 𝑖 = 4, 13, 40,  
Vectoring Mode: |𝛼𝑖𝑛| ≤ 𝜃𝑁 + ∑ 𝜃𝑖

𝑁

𝑖=𝑖𝑖𝑛

 

 

▪ Circular: 𝜃𝑁 +∑ 𝜃𝑖
𝑁
𝑖= = 𝑡𝑎𝑛−1(2−𝑁) + ∑ 𝑡𝑎𝑛−1(2−𝑖)𝑁

𝑖= = 1.7433 (𝑁 → ∞) 

 

Rotation |𝑧 | ≤ 1.7433 (99.9°) 
Input angle 𝜖 [−99.9°, 99.9°]. Functions with 

angles outside this range can be computed by 
applying trigonometric identities. 

Vectoring |𝑡𝑎𝑛−1(
𝑦 

𝑥 ⁄ )| ≤ 1.7433 (99.9°) →  
𝑦 

𝑥 ⁄ 𝜖〈−∞,∞〉 
There are no restrictions on the ratio  

𝑦 
𝑥 ⁄ . 

However, we cannot compute the angle for 
values outside the range [−99.9°, 99.9°]. 

 
▪ Linear: 𝜃𝑁 + ∑ 𝜃𝑖

𝑁
𝑖=1 = 2−𝑁 + ∑ 2−𝑖𝑁

𝑖=1 = 1 

 

Rotation |𝑧1| ≤ 1 In both cases, there is a strict limitation on the 
input argument of the linear function (e.g. 
multiplication, division) 

Vectoring |
𝑦1

𝑥1⁄ | ≤ 1 

 

▪ Hyperbolic: 𝜃𝑁 +∑ 𝜃𝑖
𝑁
𝑖=1 = 𝑡𝑎𝑛ℎ−1(2−𝑁) + ∑ 𝑡𝑎𝑛ℎ−1(2−𝑖)𝑁

𝑖=1 = 1.182 (𝑁 → ∞) 

 

Rotation |𝑧1| ≤ 1.182 
This is the limitation imposed to the input argument 
of the hyperbolic functions. Note that the full 
domain of the functions 𝑠𝑖𝑛ℎ and 𝑐𝑜𝑠ℎ is 〈−∝,∝〉. 

Vectoring |𝑡𝑎𝑛ℎ−1(
𝑦1

𝑥1⁄ )| ≤ 1.182 →  |
𝑦1

𝑥1⁄ | ≤ 0.807 
This is the limitation imposed to the ratio of the 
input arguments of the hyperbolic functions. Note 
that the domain of 𝑡𝑎𝑛ℎ−1 is 〈−1,1〉.  

 
EXPANDED CORDIC ALGORITHM 
▪ The limited range of convergence of the original CORDIC algorithm can be expanded by including iterations with negative 

indices. We describe the expanded circular and hyperbolic CORDIC algorithms, and the functions that we will implement. 
 

EXPANDED CIRCULAR CORDIC 

∀𝑖: {

𝑥𝑖+1 = 𝑥𝑖 + 𝑖𝑦𝑖2
−𝑖

𝑦𝑖+1 = 𝑦𝑖 − 𝑖𝑥𝑖2
−𝑖

𝑧𝑖+1 = 𝑧𝑖 + 𝑖𝑖 , 𝑖 = 𝑇𝑎𝑛−1(2−𝑖)

 
𝑅𝑜𝑡𝑎𝑡𝑖𝑜𝑛: 𝛿𝑖 = +1 𝑖𝑓 𝑧𝑖 < 0; −1, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
𝑉𝑒𝑐𝑡𝑜𝑟𝑖𝑛𝑔: 𝛿𝑖 = +1 𝑖𝑓 𝑦𝑖 ≥ 0; −1, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

 
▪ There are 𝑀 negative iterations (𝑖 = −𝑀,… ,−1) and 𝑁 positive iterations ( 𝑖 = 0,1,… , 𝑁 − 1). For sufficiently large 𝑁, the 

values of 𝑥𝑛 , 𝑦𝑛, 𝑧𝑛 converge to: 

Rotation Mode Vectoring Mode 

𝑥𝑛 = 𝐴𝑛(𝑥𝑖𝑛𝑐𝑜𝑠𝑧𝑖𝑛 − 𝑦𝑖𝑛𝑠𝑖𝑛𝑧𝑖𝑛)

𝑦𝑛 = 𝐴𝑛(𝑦𝑖𝑛𝑐𝑜𝑠𝑧𝑖𝑛 + 𝑥𝑖𝑛𝑠𝑖𝑛𝑧𝑖𝑛)
𝑧𝑛 = 0

 
𝑥𝑛 = 𝐴𝑛√𝑥𝑖𝑛

2 + 𝑦𝑖𝑛
2 ,     𝑦𝑛 = 0

𝑧𝑛 = 𝑧𝑖𝑛 + 𝑡𝑎𝑛−1(𝑦𝑖𝑛 𝑥𝑖𝑛⁄ )

 

𝐴𝑛 = ∏ √1 + 2−2𝑖𝑁−1
𝑖=−𝑀 . Here, the value of 𝑀 affects 𝐴𝑛. 

 
▪ We can cover the entire domain of 𝑐𝑜𝑠/𝑠𝑖𝑛 and range of 𝑡𝑎𝑛−1 with 𝜃𝑚𝑎𝑥(𝑀) = 𝜋, i.e. 𝑀 = 2.  
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▪ 𝑁 +𝑀 iterations (𝑖 = −𝑀,−𝑀 + 1,… , 0, 1, 2, 3,… , 𝑁 − 1). 𝑥−𝑀, 𝑦−𝑀 , 𝑧−𝑀 are the initial values, and 𝑥𝑁, 𝑦𝑁, 𝑧𝑁 are the final 
values. At iteration 𝑖,  𝑥𝑖+1, 𝑦𝑖+1, 𝑧𝑖+1 are computed. Example (𝑀 = 2,𝑁 = 4): 

 
𝑖 = −2 𝑥−2 𝑦−2 𝑧−2 −2 = 𝑇𝑎𝑛−1(22) 𝛿−1 Iteration -2 computes 𝑥−1, 𝑦−1, 𝑧−1 
𝑖 = −1 𝑥−1 𝑦−1 𝑧−1 −1 = 𝑇𝑎𝑛−1(21) 𝛿−2 Iteration -1 computes 𝑥 , 𝑦 , 𝑧  
𝑖 = 0 𝑥  𝑦  𝑧   = 𝑇𝑎𝑛−1(2 ) 𝛿  Iteration 0 computes 𝑥1, 𝑦1, 𝑧1 
𝑖 = 1 𝑥1 𝑦1 𝑧1 1 = 𝑇𝑎𝑛−1(2−1) 𝛿1 Iteration 1 computes 𝑥2, 𝑦2, 𝑧2 
𝑖 = 2 𝑥2 𝑦2 𝑧2 2 = 𝑇𝑎𝑛−1(2−2) 𝛿2 Iteration 2 computes 𝑥3, 𝑦3, 𝑧3 
𝑖 = 3 𝑥3 𝑦3 𝑧3 3 = 𝑇𝑎𝑛−1(2−3) 𝛿3 Iteration 3 computes 𝑥4, 𝑦4, 𝑧4 

 𝑥4 𝑦4 𝑧4   Final Values 

 
▪ Special Expanded Circular CORDIC: Alternatively, we can repeat the iteration 𝑖 = 0 two more times (𝑖 = 0,0,0,1,2, , … , 𝑁 −

1) in order to get 𝜃𝑚𝑎𝑥(𝑀) = 𝜋. This method optimizes hardware resources. 

✓ 𝐴𝑛 = (1 + 2 )∏ √1 + 2−2𝑖𝑁−1
𝑖= . For 𝑁 →∝ , 𝐴𝑛 = 3.2935 

✓ 𝑁 + 2 iterations (𝑖 = 0,0,0, 1, 2, 3, … , 𝑁 − 1). 𝑥 , 𝑦 , 𝑧 : initial values, and 𝑥𝑁 , 𝑦𝑁, 𝑧𝑁 are the final values. Example (𝑁 = 4): 
 

𝑖 = 0 𝑥  𝑦  𝑧   = 𝑇𝑎𝑛−1(2 ) 𝛿  Iteration 0 computes 𝑥 , 𝑦 , 𝑧  𝑥 , 𝑦 , 𝑧  is updated 

𝑖 = 0 𝑥  𝑦  𝑧   = 𝑇𝑎𝑛−1(2 ) 𝛿  Iteration 0 computes 𝑥 , 𝑦 , 𝑧  𝑥 , 𝑦 , 𝑧  is updated 

𝑖 = 0 𝑥  𝑦  𝑧   = 𝑇𝑎𝑛−1(2 ) 𝛿  Iteration 0 computes 𝑥1, 𝑦1, 𝑧1  

𝑖 = 1 𝑥1 𝑦1 𝑧1 1 = 𝑇𝑎𝑛−1(2−1) 𝛿1 Iteration 1 computes 𝑥2, 𝑦2, 𝑧2  

𝑖 = 2 𝑥2 𝑦2 𝑧2 2 = 𝑇𝑎𝑛−1(2−2) 𝛿2 Iteration 2 computes 𝑥3, 𝑦3, 𝑧3  

𝑖 = 3 𝑥3 𝑦3 𝑧3 3 = 𝑇𝑎𝑛−1(2−3) 𝛿3 Iteration 3 computes 𝑥4, 𝑦4, 𝑧4  

 𝑥4 𝑦4 𝑧4   Final Values  

 

EXPANDED HYPERBOLIC CORDIC 
▪ This extension to the original CORDIC equations allows for the computation of hyperbolic functions, where 𝑖 is the index of 

the iteration (𝑖 =  1, 2, 3, …). The following iterations must be repeated to guarantee convergence: 𝑖 = 4, 13, 40,… , 𝑘, 3𝑘 + 1. 

𝑖 ≤ 0: {

𝑥𝑖+1 = 𝑥𝑖 − 𝑖𝑦𝑖(1 − 2𝑖−2)

𝑦𝑖+1 = 𝑦𝑖 − 𝑖𝑥𝑖(1 − 2𝑖−2)

𝑧𝑖+1 = 𝑧𝑖 + 𝑖𝑖 , 𝑖 = 𝑇𝑎𝑛ℎ−1(1 − 2𝑖−2)

 

𝑖 > 0: {

𝑥𝑖+1 = 𝑥𝑖 − 𝑖𝑦𝑖2
−𝑖

𝑦𝑖+1 = 𝑦𝑖 − 𝑖𝑥𝑖2
−𝑖

𝑧𝑖+1 = 𝑧𝑖 + 𝑖𝑖 ,𝑖 = 𝑇𝑎𝑛ℎ−1(2−𝑖)

 

𝑅𝑜𝑡𝑎𝑡𝑖𝑜𝑛: 𝛿𝑖 = +1 𝑖𝑓 𝑧𝑖 < 0; −1, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
𝑉𝑒𝑐𝑡𝑜𝑟𝑖𝑛𝑔: 𝛿𝑖 = +1 𝑖𝑓 𝑥𝑖𝑦𝑖 ≥ 0; −1, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

 
▪ There are 𝑀 + 1 negative iterations (𝑖 = −𝑀,… ,−1,0) and 𝑁 positive iterations ( 𝑖 = 1,2,… , 𝑁), with repeated iterations 

4, 13, 40,… , 𝑘, 3𝑘 + 1 to guarantee convergence. For sufficiently large 𝑁, the values of 𝑥𝑛 , 𝑦𝑛 , 𝑧𝑛 converge to: 

Rotation Mode Vectoring Mode 

𝑥𝑛 = 𝐴𝑛(𝑥𝑖𝑛𝑐𝑜𝑠ℎ𝑧𝑖𝑛 + 𝑦𝑖𝑛𝑠𝑖𝑛ℎ𝑧𝑖𝑛)

𝑦𝑛 = 𝐴𝑛(𝑦𝑖𝑛𝑐𝑜𝑠ℎ𝑧𝑖𝑛 + 𝑥𝑖𝑛𝑠𝑖𝑛ℎ𝑧𝑖𝑛)
𝑧𝑛 = 0

 
𝑥𝑛 = 𝐴𝑛√𝑥𝑖𝑛

2 − 𝑦𝑖𝑛
2 ,     𝑦𝑛 = 0

𝑧𝑛 = 𝑧𝑖𝑛 + 𝑡𝑎𝑛ℎ−1(𝑦𝑖𝑛 𝑥𝑖𝑛⁄ )

 

𝐴𝑛 = (∏ √1 − (1 − 2𝑖−2)2 
𝑖=−𝑀 )∏ √1 − 2−2𝑖𝑁

𝑖=1 . Here, the value of 𝑀 affects 𝐴𝑛. 

 
▪ As 𝑀 increases, the range of convergence [−𝜃𝑚𝑎𝑥(𝑀), 𝜃𝑚𝑎𝑥(𝑀)] can be greatly enlarged. However, this comes at the expense 

of a larger resource consumption. 
𝑀 𝑐𝑜𝑠ℎ𝑥, 𝑠𝑖𝑛ℎ𝑥, 𝑒𝑥  ln 𝑥 

𝐵𝑎𝑠𝑖𝑐 𝐶𝑂𝑅𝐷𝐼𝐶 [−1.11820, 1.11820] (0, 9.35958] 

0 [−2.09113, 2.09113] (0, 65.51375] 

1 [−3.44515, 3.44515] (0, 982.69618] 

2 [−5.16215, 5, 16215] (0, 3.04640 × 104] 

3 [−7.23371, 7.23371] (0, 1.91920 × 106] 

4 [−9.65581, 9.65581] (0, 2.43742 × 10 ] 

5 [−12.42644, 12.42644] (0, 6.21539 × 101 ] 

6 [−15.54462, 15,54462] (0,3.17604 × 1013] 

7 [−19.00987, 19.00987] (0, 3.24910 × 1016] 

8 [−22.82194, 22.82194] (0, 6.65097 × 1019] 

9 [−26.98070, 26,98070] (0, 2.72357 × 1023] 

10 [−31.48609, 31.48609] (0, 2.23085 × 102 ] 

 

COMPUTATION OF TRIGONOMETIC AND HYPERBOLIC FUNCTIONS 
▪ The 𝑐𝑜𝑠/𝑠𝑖𝑛/𝑡𝑎𝑛−1 (circular) and 𝑐𝑜𝑠ℎ/𝑠𝑖𝑛ℎ/𝑒𝑥/𝑡𝑎𝑛ℎ−1 (hyperbolic) functions can be directly computed by proper selection 

of the operation mode and the initial values 𝑥𝑖𝑛  = 𝑥−𝑀 , 𝑦𝑖𝑛  = 𝑦−𝑀 , 𝑧𝑖𝑛  = 𝑧−𝑀. 
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✓ For 𝑒𝛼 = 𝑐𝑜𝑠ℎ𝛼 + 𝑠𝑖𝑛ℎ𝛼, we need 𝑥𝑖𝑛 = 𝑦𝑖𝑛 = 1 𝐴𝑛⁄ , 𝑧𝑖𝑛 = 0, mode=rotation. 
 

▪ The functions √𝑥, 𝑙𝑛𝑥, and 𝑥𝑦 can be computed with the hyperbolic CORDIC: 

✓ For √𝑥, we use 𝑥𝑖𝑛 = 𝑥 + 1 (4𝐴𝑛
2)⁄ , 𝑦𝑖𝑛 = 𝑥 − 1 (4𝐴𝑛

2)⁄ , 𝑧𝑖𝑛 = 0, mode=vectoring. 

✓ For 𝑙𝑛𝑥 = 2𝑡𝑎𝑛ℎ−1(𝑥 − 1 𝑥 + 1⁄ ), we use 𝑥𝑖𝑛 = 𝑥 + 1, 𝑦𝑖𝑛 = 𝑥 − 1, 𝑧𝑖𝑛 = 0, mode=vectoring. A product by 2 is needed. 

 
▪ Powering: 𝑥𝑦 = 𝑒𝑦 𝑙𝑛 𝑥. We first get 𝑧𝑛 = (ln 𝑥) 2⁄ , followed by 𝑧𝑛 × 2𝑦 = 𝑦 ln 𝑥. Then, we use 𝑥𝑖𝑛 = 𝑦𝑖𝑛 = 1 𝐴𝑛⁄ , 𝑧𝑖𝑛 = 𝑦 ln 𝑥, 

mode=rotation to get 𝑥𝑛 = 𝑒𝑦 ln𝑥 = 𝑥𝑦. 

✓ Argument bounds of 𝑥𝑦 ((𝑥, 𝑦) values for which 𝑥𝑦 converges): |𝑦 ln 𝑥| ≤ 𝜃𝑚𝑎𝑥(𝑀). 
 
▪ The parameter 𝑀 controls the range of convergence: [−𝜃𝑚𝑎𝑥(𝑀), 𝜃𝑚𝑎𝑥(𝑀)]. 

✓ [−𝜃𝑚𝑎𝑥(𝑀), 𝜃𝑚𝑎𝑥(𝑀)]: This is the bound on the domain of 𝑐𝑜𝑠/𝑠𝑖𝑛/𝑐𝑜𝑠ℎ/𝑠𝑖𝑛ℎ/𝑒𝑥 and the range of 𝑡𝑎𝑛−1, 𝑡𝑎𝑛ℎ−1. 

✓ The domain of 𝑙𝑛𝑥 is bounded by (0, 𝑒𝜃𝑚𝑎𝑥(𝑀)×2]. 

✓ The domain of √𝑥 is bounded by (0,
1

4𝐴𝑛
2 (

1+𝑡𝑎𝑛ℎ(𝜃𝑚𝑎𝑥)

1−𝑡𝑎𝑛ℎ(𝜃𝑚𝑎𝑥)
)].  

▪ As 𝑀 increases, the argument bounds of 𝑐𝑜𝑠ℎ, 𝑠𝑖𝑛ℎ, 𝑒𝑥, 𝑡𝑎𝑛ℎ−1, √𝑥, 𝑙𝑛𝑥 and 𝑥𝑦 are greatly enlarged. 

 
ITERATIVE FX ARCHITECTURE (BASIC CORDIC) 
▪ The architectures shown here are such that the inputs and outputs have an identical bit width. We can reach an optimal 

number of iterations by noticing the iteration at which 𝑖 = 𝑇𝑎𝑛−1(2−𝑖) is equal to zero due to the given fixed-point format. 

𝑛:  input/output bit width 

  𝑛𝑔: additional guard bits 
  𝑛𝑟: 𝑛𝑟 =  𝑛𝑔 +  𝑛 : bit width of the internal registers and operators 

  𝑁: # of iterations (𝑖 =  0,1,… ,𝑁 − 1 for circular CORDIC, 𝑖 =  1,… , 𝑁 for linear/hyperbolic CORDIC) 

 
▪ 𝑥𝑖 , 𝑦𝑖 , 𝑧𝑖: make sure you can represent input, intermediate, and final values. For fractional bits, a common rule of thumb is 

“If 𝑛 bits is the desired output precision, the internal registers should have ⌈log2 n⌉ additional guard bits at the LSB position”. 

In general, perform a through software simulation for a given number of iterations and find out the format required for 
proper representation of 𝑥𝑖 , 𝑦𝑖 , 𝑧𝑖. 

 
Circular CORDIC 
▪ The figure depicts the architecture that implements the circular CORDIC equations in an iterative fashion. The LUT (look-up 

table) stores the elementary angles 𝑖 = 𝑇𝑎𝑛−1(2−𝑖). The process begins when a start signal is asserted. After 𝑁 clock cycles 

(i.e., 𝑁 iterations), the result is obtained in the registers X, Y and Z, and a new process can be started. 

▪ The state machine controls the load of the registers, the data that passes onto the multiplexers, the add/subtract decision 
for the adder/subtractors, and the count given to the barrel shifters and LUT. 
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Hyperbolic CORDIC 

▪ Here the LUT holds the 𝑖 = 𝑡𝑎𝑛ℎ−1(2−𝑖)  values for 𝑖 = 1,2,… , 𝑁. The FSM is more complex as it has to account for the 

repeated iterations. After 𝑁 − 1 + 𝑣 (𝑣: # of repeated iterations) clock cycles, the result is obtained in the registers X, Y and 

Z, and a new process can be started. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
Linear CORDIC 
▪ Here the LUT holds the 𝑖 = 2−𝑖   values with 𝑖 = 1,2, … , 𝑁. After 𝑁 − 1 clock cycles, the result is obtained in the registers X, 

Y and Z, and a new process can be started. Note that we do not need an adder for 𝑥𝑖. 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
▪ Note that these architectures do not specify the numerical format we are using. We are free to use any format we desire 

(e.g.: fixed point, dual fixed point, floating point). The adders, barrel shifters, and LUT will change depending on the desired 
format. If an arithmetic unit requires more than one cycle to process its date, the FSM needs to account for this. 
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Example: FX Basic Circular CORDIC architecture. Format [16 14] 
▪ 𝑛𝑔 = 4 guard bits. They improve accuracy, as the barrel shifters will get rid of many LSBs. 

▪ mode = 0 → Rotation. mode = 1 → Vectoring. 

▪ LUT: It holds the angles represented in [16 14] (signed) from 𝑖 = 0 (𝑇𝑎𝑛−1(2 )) to 𝑖 = 𝑁 − 1 (𝑇𝑎𝑛−1(2−(𝑁−1)). 

▪ Format [16 14] applied to the LUT angles: We found that the optimal number of iterations is 𝑁 = 14, since 𝑇𝑎𝑛−1(2−1 )  =
𝑇𝑎𝑛−1(2−14) = 0. If we use 𝑁 >  14, Z will remain constant, and X, Y will update for a few more iterations (this depends on 

the guard bits). In the figure, we use 4 bits to represent the count from 0 to N-1. 
▪ The format [16 14] was selected for X, Y, Z based on software simulations: 

✓ Rotation: Getting 𝑠𝑖𝑛(𝑧 ) and 𝑐𝑜𝑠(𝑧 ): 
 Inputs: 𝑥 = 𝑦 = 1 𝐴𝑛⁄ ,  𝑧 ∈ [−𝜋 2⁄ , 𝜋 2⁄ ] 

 Outputs: 𝑥𝑁 , 𝑦𝑁 ∈ [−√2, √2], 𝑧𝑁 = 0. Note: some intermediate values can be larger than outputs. 

✓ Vectoring: getting 𝑎𝑡𝑎𝑛2(1, 𝑦 ) = 𝑎𝑡𝑎𝑛2(𝑦 1⁄ ) 
 Inputs: 𝑥 = 1, 𝑧 = 0,  𝑦 ∈ [−0.6,0.6] 
 Outputs: 𝑥𝑁 ∈ [0,1.92], 𝑧𝑁 ∈ [−0.5404,0.5404] 𝑦𝑁 = 0. Note: some intermediate values can be larger than outputs 
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▪ Timing Diagram (N=14): 
✓ Input data: 𝑥𝑖𝑛 = 𝑥 , 𝑦𝑖𝑛 = 𝑦 , 𝑧𝑖𝑛 = 𝑧 . 
✓ Output data: 𝑥𝑜𝑢𝑡 = 𝑥14, 𝑦𝑜𝑢𝑡 = 𝑦14, 𝑧𝑜𝑢𝑡 = 𝑧14. 
✓ Counter goes from 0 to 13. Once input data is loaded, circuit needs N=14 cycles to produce the result 
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SPECIAL TECHNIQUES 
 

LUT (LOOK UP TABLE) APPROACH 
▪ In computer architecture, whenever a function is to be evaluated, we usually implement the algorithm that computes that 

function on hardware (e.g. 𝑠𝑞𝑟𝑡, 𝑙𝑛, 𝑒𝑥𝑝). We can always take advantage of the specific properties of the algorithm to optimize 

both speed and resource utilization. 
▪ Another option is not to compute the function values, but rather to store the values themselves in a LUT (ROM-like 

architecture). In this case, the value is taken directly from the memory rather than computed. For certain scenarios and 
under certain constraints, this idea can lead to more efficient architectures (both in speed and resource consumption). 

▪ In a LUT, the LUT contents are hardwired. A 4-to-1 LUT can be seen as a ROM with 16 addresses, each address holding one 
bit. It can also be seen as a multiplexor with fixed inputs. A 4-to-1 LUT can implement any 4-input logic function. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

LARGER LUTS  
▪ 𝑁𝐼 − 𝑡𝑜 − 𝑁𝑂 LUT: 𝑁𝐼 input bits, 𝑁𝑂 output bits. This circuit can be thought of as a ROM with 2𝑁𝐼 addresses, each address 

holding 𝑁𝑂 bits. 

▪ A larger LUT can be built by building a circuit that allows for more LUT positions. 
▪ Efficient method: A larger LUT can also be built by combining LUTs with multiplexers as shown in the figure. We can build a 

𝑁𝐼 − 𝑡𝑜 − 1 LUT with this method. 

▪ We can build a 𝑁𝐼 − 𝑡𝑜 − 𝑁𝑂 LUT using 𝑁𝑂 𝑁𝐼 − 𝑡𝑜 − 1 LUTs.  

 
 

 

 

 

 

 

 

 

 

 
▪ You can implement any function using any desired format (e.g.: integer, fixed-point, dual fixed-point, floating point): 

𝑦 =  𝑓(𝑥), where 𝑦 is represented with 𝑁𝑂 bits, and 𝑥 with 𝑁𝐼 bits. 

 
▪ The amount of resources increases linearly with the number of output bits (NO). However, the amount of resources grow 

exponentially with the number of input bits (NO).  Thus, this approach is only efficient for small input data sizes (≤ 12 in 

modern FPGAs). 
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DISTRIBUTED ARITHMETIC 
▪ This is a useful technique to implement inner product when one of the vectors is constant: 

𝑦 = ∑ ℎ[𝑘]𝑥[𝑘]

𝑁−1

𝑘= 

 

▪ If the coefficients ℎ[𝑘] are known a priori, then the partial product term ℎ[𝑘]𝑥[𝑘] becomes a multiplication with a constant. 

The Distributed Arithmetic Technique takes advantage of this fact: 

𝑦 = ∑ ℎ[𝑘]𝑥[𝑘]

𝑁−1

𝑘= 

=  ℎ[0]𝑥[0] + ℎ[1]𝑥[1] + ℎ[2]𝑥[2] +⋯+ ℎ[𝑁 − 1]𝑥[𝑁 − 1] 

 
DISTRIBUTED ARITHMETIC – UNSIGNED INTEGER NUMBERS 
▪ Each 𝑥[𝑘] value is an unsigned number with 𝐵 bits: 𝑥[𝑘] = 𝑥𝐵−1[𝑘]𝑥𝐵−1[𝑘] … 𝑥 [𝑘] 

𝑥[𝑘] = ∑𝑥𝑏[𝑘] × 2
𝑏

𝐵−1

𝑏= 

, 𝑥𝑏[𝑘] ∈ {0,1} 

where 𝑥𝑏[𝑘] denotes the bth bit of 𝑥[𝑘] (with 𝐵 bits). Then: 

𝑦 = ∑ ℎ[𝑘]𝑥[𝑘]

𝑁−1

𝑘= 

= ∑ (ℎ[𝑘]∑ 𝑥𝑏[𝑘] × 2
𝑏

𝐵−1

𝑏= 

)

𝑁−1

𝑘= 

 

 
𝑦 = ℎ[0](𝑥𝐵−1[0]2

𝐵−1 + 𝑥𝐵−2[0]2
𝐵−2 +⋯+ 𝑥 [0]2

 ) + 
        ℎ[1](𝑥𝐵−1[1]2

𝐵−1 + 𝑥𝐵−2[1]2
𝐵−2 +⋯+ 𝑥 [1]2

 ) + 
        … + 
        ℎ[𝑁 − 1](𝑥𝐵−1[𝑁 − 1]2𝐵−1 + 𝑥𝐵−2[𝑁 − 1]2𝐵−2 +⋯+ 𝑥 [𝑁 − 1]2 ) + 

 
▪ The summation can be rewritten as follows: 

𝑦 = (ℎ[0]𝑥𝐵−1[0] + ℎ[1]𝑥𝐵−1[1] +⋯+ ℎ[𝑁 − 1]𝑥𝐵−1[𝑁 − 1]) × 2𝐵−1 +  
        (ℎ[0]𝑥𝐵−2[0] + ℎ[1]𝑥𝐵−2[1] +⋯+ ℎ[𝑁 − 1]𝑥𝐵−2[𝑁 − 1]) × 2𝐵−2 + 
         … + 
        (ℎ[0]𝑥 [0] + ℎ[1]𝑥 [1] +⋯+ ℎ[𝑁 − 1]𝑥 [𝑁 − 1]) × 2  

𝑦 = ∑(2𝑏 × ∑ ℎ[𝑘]𝑥𝑏[𝑘]

𝑁−1

𝑘= 

) =

𝐵−1

𝑏= 

∑(2𝑏 × 𝑓(ℎ⃗ , 𝑥 𝑏))

𝐵−1

𝑏= 

 

𝑓(ℎ⃗ , 𝑥 𝑏) = ∑ ℎ[𝑘]𝑥𝑏[𝑘]

𝑁−1

𝑘= 

, ℎ⃗ = [ ℎ[0] ℎ[1]…ℎ[𝑁 − 1]], 𝑥 𝑏 = [ 𝑥𝑏[0] 𝑥𝑏[1]… 𝑥𝑏[𝑁 − 1] ]  

 

▪ Preferred implementation of 𝑓(ℎ⃗ , 𝑥 𝑏): A 2𝑁-word LUT preprogrammed to accept 

an 𝑁-bit input vector 𝑥 𝑏 and output 𝑓(ℎ⃗ , 𝑥 𝑏).  

▪ To get 𝑦, each 𝑓(ℎ⃗ , 𝑥 𝑏) is weighted by 2𝑏 and all the resulting values are added 

up.  
 
DISTRIBUTED ARITHMETIC – SIGNED INTEGER NUMBERS 
▪ Each 𝑥[𝑘] value is an signed number with 𝐵 + 1 bits: 𝑥[𝑘] = 𝑥𝐵[𝑘]𝑥𝐵−1[𝑘]𝑥𝐵−1[𝑘]… 𝑥 [𝑘] 

𝑥[𝑘] = −2𝐵𝑥𝐵[𝑘] + ∑𝑥𝑏[𝑘] × 2𝑏
𝐵−1

𝑏= 

, 𝑥𝑏[𝑘] ∈ {0,1} 

where 𝑥𝑏[𝑘] denotes the bth bit of 𝑥[𝑘] (with 𝐵 + 1 bits). Then: 

𝑦 = ∑ ℎ[𝑘]𝑥[𝑘]

𝑁−1

𝑘= 

= ∑ (ℎ[𝑘] × (−2𝐵𝑥𝐵[𝑘] +∑ 𝑥𝑏[𝑘] × 2
𝑏

𝐵−1

𝑏= 

))

𝑁−1

𝑘= 

 

Using a similar procedure as in the unsigned case, the inner product can be rewritten as: 

𝑦 = −2𝐵 × ∑ ℎ[𝑘]𝑥𝐵[𝑘]

𝑁−1

𝑘= 

+∑(2𝑏 × ∑ ℎ[𝑘]𝑥𝑏[𝑘]

𝑁−1

𝑘= 

) =

𝐵−1

𝑏= 

−2𝐵 × 𝑓(ℎ⃗ , 𝑥 𝐵) +∑ (2𝑏 × 𝑓(ℎ⃗ , 𝑥 𝑏))

𝐵−1

𝑏= 

 

𝑓(ℎ⃗ , 𝑥 𝑏) = ∑ ℎ[𝑘]𝑥𝑏[𝑘]

𝑁−1

𝑘= 

, ℎ⃗ = [ ℎ[0] ℎ[1]…ℎ[𝑁 − 1]], 𝑥 𝑏 = [ 𝑥𝑏[0] 𝑥𝑏[1]… 𝑥𝑏[𝑁 − 1] ] 

▪ Preferred implementation of 𝑓(ℎ⃗ , 𝑥 𝑏): A 2𝑁-word LUT preprogrammed to accept an 𝑁-bit input vector 𝑥 𝑏 and output 𝑓(ℎ⃗ , 𝑥 𝑏).  

To get 𝑦, each 𝑓(ℎ⃗ , 𝑥 𝑏) is weighted by 2𝑏 and all of the resulting values are added up. Note that when 𝑏 = 𝐵, we change 

the sign of the operand. Alternatively, we can modify the LUT for 𝑏 = 𝐵, so that it outputs −𝑓(ℎ⃗ , 𝑥 𝐵). To get 𝑦, each 𝑓(ℎ⃗ , 𝑥 𝑏) 

is weighted by 2𝑏 and all of the resulting values are added up. 

HARDWARE IMPLEMENTATION 

LUT
N-to-NO

N NO
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i) Iterative Implementation: We make use of a shift-

adder as shown in the figure. 
- The vector 𝑥 𝑏 , 𝑏 = 0,1,…𝐵 is fed into the 2𝑁-

word LUT at each clock cycle. 
- Instead of shifting each intermediate output 

value 𝑓(ℎ⃗ , 𝑥 𝑏) by 𝑏 bits (which demands an 

expensive barrel shifter), it is more appropiate 
to shift the accumulator content itself in each 
iteration one bit to the right. 

- The adder unit includes a add/sub control so 

that when 𝑏 = 𝐵, it will subtract the 𝑓(ℎ⃗ , 𝑥 𝐵) 

from the current result. 
- This shift-adder implementation requires the 

use of 𝑁 shift registers of 𝐵 + 1 length. 

- Notice that for 𝐵 = 1, we have:  𝑓(ℎ⃗ , 𝑥  ) × 2
−1 − 𝑓(ℎ⃗ , 𝑥 1). For 𝐵 = 2, we have 𝑓(ℎ⃗ , 𝑥  ) × 2

−2 + 𝑓(ℎ⃗ , 𝑥 1) × 2
−1 − 𝑓(ℎ⃗ , 𝑥 2).  

For 𝐵 = 2, we adjust the result at the end by multiplying everything by 22: 𝑓(ℎ⃗ , 𝑥  ) + 𝑓(ℎ⃗ , 𝑥 1) × 2
1 − 𝑓(ℎ⃗ , 𝑥 2) × 2

2. This 

requires no extra hardware. 
- A simpler option is to input the vector 𝑥 𝑏 starting from 𝑏 = 𝐵, 𝐵 − 1,… , 0. 

 
ii) Fully parallel implementation: We use an array of 2𝑁 

word LUTs as shown in the figure. 
- There are no shift registers here. 
- Each of the vectors 𝑥 𝑏 is fed to a 2𝑁-word LUT. As a 

result, we use 𝐵 + 1 2𝑁-word LUTs. 

- The output of each 2𝑁-word LUT is multiplied by its 

correspondent 2𝑏. 

- To account for the negative sign in 𝑓(ℎ⃗ , 𝑥 𝐵), we 

multiply it by −2𝐵. Another option is to modify the LUT 

so that when 𝑏 = 𝐵 it outputs − 𝑓(ℎ⃗ , 𝑥 𝐵). 

- All the LUT outputs are weighted by 2𝑏 and added into 

a final result.  
 

MODIFIED DA IMPLEMENTATION 
▪ The LUT implementation becomes prohibitively expensive when 𝑁 is large 

(if N = 32 → the LUT has 232 words = 4G words!!!). A solution is to divide 
the inner product into inner product with 𝐿 terms, i.e. we have 𝑁 𝐿⁄  inner 

products of 𝐿 terms, as follows: 

𝑦 = ∑ℎ[𝑘]𝑥[𝑘]

𝐿−1

𝑘= 

+ ∑ ℎ[𝑘]𝑥[𝑘]

2𝐿−1

𝑘=𝐿

+ ∑ ℎ[𝑘]𝑥[𝑘]

3𝐿−1

𝑘=2𝐿

+⋯+ ∑ ℎ[𝑘]𝑥[𝑘]

𝑁−1

𝑘=(
𝑁

𝐿
−1)𝐿

 

▪ Each of the 𝑁 𝐿⁄  summations is transformed to DA form, and then computed in parallel. Finally, we add up all the resulting 

LN  values. With this in mind, we reformulate the 2 basic implementations: 

 
i) Iterative Implementation: Here we use 𝑁 𝐿⁄  2𝐿-word LUTs. A vector 𝑥 𝑏 (0 ≤ 𝑏 ≤ 𝐵) is fed into the LUT at each clock cycle. 

All LUTs outputs are accumulated; the final result goes through a shift-adder unit. The table illustrates the resource savings. 

Iterative DA implementation LUT Size Total space required 

No division in filter blocks 2𝑁 words 2𝑁 words 

Division into LN  filter blocks 2𝐿 words 2𝐿 × (𝑁 𝐿⁄ ) words 

As an example, consider 𝑁 =  32, 𝐿 =  4. Then the original DA uses 232 = 4𝐺 𝑤𝑜𝑟 𝑠, while the Modified DA uses 24 ×
32

4
=

128 𝑤𝑜𝑟 𝑠. This is a vast improvement at the expense of one extra adder tree. 

 
ii) Fully Parallel Implementation: The output of each of the 𝑁 𝐿⁄  filter blocks is computed as in the case of Figure 6. The only 

diference is that the 𝑥 𝑏 vectors are of 𝐿 bits; each of these vectors is fed into a 2𝐿-word LUT (we use 𝐵 + 1 2𝐿-word LUTs 

per filter block). Finally the 𝑁 𝐿⁄  filter block outputs are added in parallel. The following table illustrates the resource savings. 

LUT SPACE COMPARISONS – FULLY PARALLEL IMPLEMENTATION 

Implementation LUT Size Total space required 

No division in filter blocks 2𝑁 × (𝐵 + 1) words 2𝑁 × (𝐵 + 1) words 

Division into 𝑁 𝐿⁄  filter blocks 2𝐿 × (𝐵 + 1) words  2𝐿 × (𝐵 + 1) × (𝑁 𝐿⁄ )  words 

Add: b≠ B

Sub: b = Bx[0] :

x[N-1] :

x1xB x0

xB[0] ... x1[0] x0[0]

xB[N-1] x1[N-1] x0[N-1]...

x[1] : xB[1] ... x1[1] x0[1]
2

N
-word

LUT

2
-1

y

2
N
-w ord

LUT

xB

N

-2
B

2
N
-w ord

LUT

xB-1

N

2
B-1

2
N
-w ord

LUT

x1

N

2
1

2
N
-w ord

LUT

x0

N

2
0

+

y

0

L

1

L

+ 2

L

+ N/L-1

L

+ +

N
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Fully Parallel Modified DA Architecture 

As an example, consider N = 32, L = 4, B = 11. Then the original DA uses 232 × (11 + 1) = 48𝐺 𝑤𝑜𝑟 𝑠, while the Modified 

DA uses ( ) words1536
4

32
11124 =+ . This is vast improvement. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
▪ Fixed-point considerations: The 

format of every stage differs from 
that of the input. 

 
▪ Applications: non-symmetric, 

symmetric, anti-symmetric FIR 
filters, DCT, HEVC Transform. 

Iterative Modified DA Implementation. 

x[0] :

x[L-1] :

x1xB x0

xB[0] ... x1[0] x0[0]

xB[L-1] x1[L-1] x0[L-1]...

x[L] :

x[2L-1] :

x1xB x0

xB[L] ... x1[L] x0[L]

xB[2L-1] x1[2L-1] x0[2L-1]...

x[N-L] :

x[N-1] :

x1xB x0

xB[3L] ... x1[3L] x0[3L]

xB[N-1] x1[N-1] x0[N-1]...

2
L
-word

LUT

2
L
-word

LUT

2
L
-word

LUT

Add: b≠ B

Sub: b = B

2
-1

y

x[0] :

x[L-1] :

x1xB x0

xB[0] ... x1[0] x0[0]

xB[L-1] x1[L-1] x0[L-1]...

x[L] :

x[2L-1] :

x1xB x0

xB[L] ... x1[L] x0[L]

xB[2L-1] x1[2L-1] x0[2L-1]...

x[N-L] :

x[N-1] :

x1xB x0

xB[3L] ... x1[3L] x0[3L]

xB[N-1] x1[N-1] x0[N-1]...

2L-w ord

LUT

-2B

L
xB

2L-w ord

LUT

20

L
x0

2L-w ord

LUT

-2B

L
xB

2L-w ord

LUT

20

L
x0

2L-w ord

LUT

-2B

L
xB

2L-w ord

LUT

20

L
x0

y


