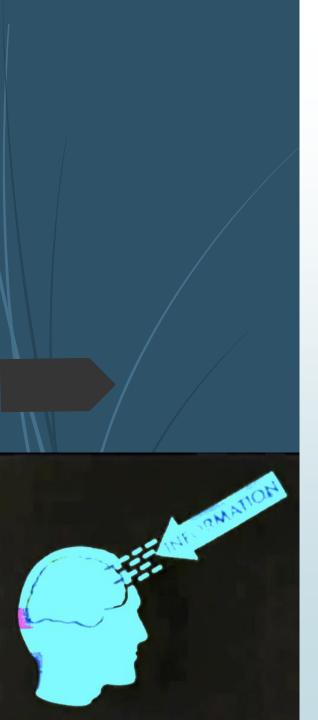
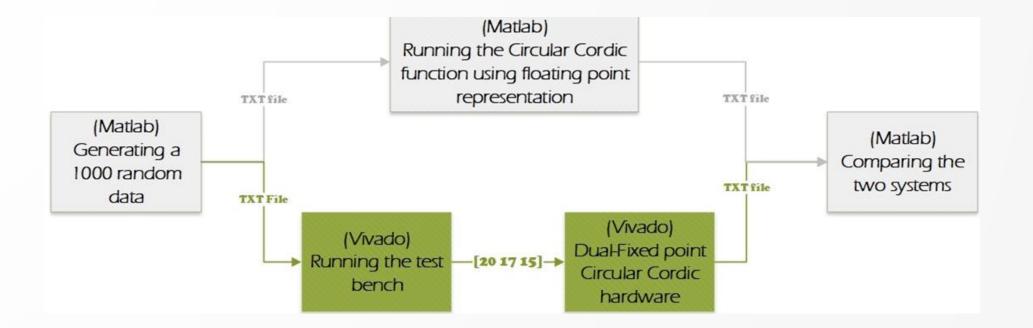
Circular iterative CORDIC using Dual Fixed-Point Arithmetic

OU

Oakland University


By:Daniyah Alaswad, Yazen Alali.


Introduction:

• All DSP tasks can be efficiently implemented using processing elements performing vector rotations .The Coordinate Rotation Digital Computer algorithm CORDIC offers the opportunity to calculate all the desired functions in a rather simple and elegant way.

Motivation:

- It combines the simplicity of a fixed-point system with the wider dynamic range offered by a floating point system.
- Using a single bit exponent which selects two different fixed-point representations, it allows dynamic scaling of signals throughout the system.
- Less Resources.
- Higher precision than FX.
- Not Widespread .
- Applied the knowledge acquired in class in designing the DFX CORDIC.

Procedure: Block diagram

MATLAB code:

Random floating point number Generated using rand() for x , y, and z.

We set boundaries for num0 and num1.

•

Set the values to (-8,8) for x and y. (-pi/2, pi/2) for z.

Floating points converted to fixed point format using quantizer based on range.

convert the binary numbers to integers.

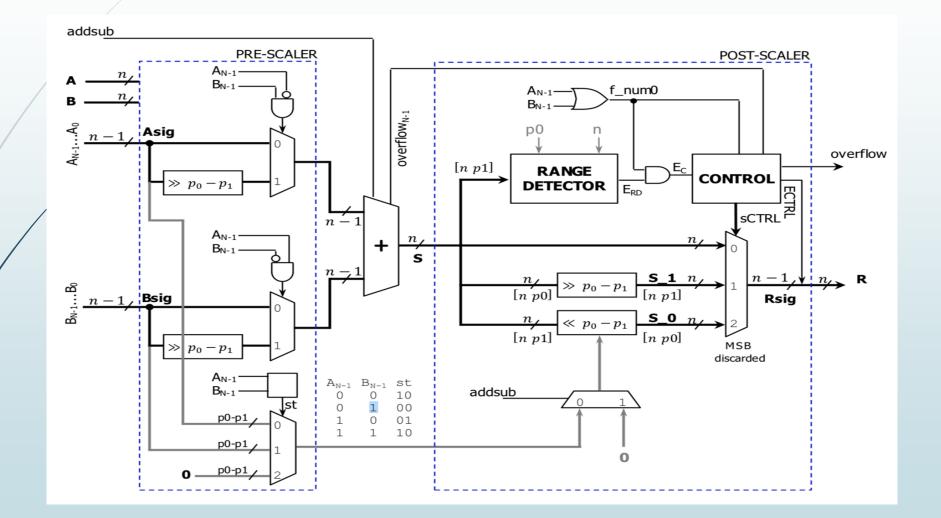
Print files.

```
** generate 1000 data such that the output won't go above 7.9999 and below -8
 i = 1;
- while i <= 1000
     x test = 2^{(n - p1 - 3)} * rand - 2^{(n - p1 - 4)}; % x random number generator
     y test = 2^{(n - p1 - 3)} * rand - 2^{(n - p1 - 4)}; % y random number generator
     z test = pi * rand - (pi/2); % z random number generator
      [xx 0, yy 0, zz 0] = cordic circular esp(x test, y test, z test, 0, 15);
      [xx 1 , yy 1, zz 1] = cordic circular esp(x test, y test, z test, 1,15);
      if (xx 0(18)<7.9999 && xx 0(18)>-8) && (yy 0(18)<7.9999 && yy 0(18)>-8) && (zz 0(18)<7.9999 && zz 0(18)
          if (xx 1(18)<7.9999 && xx 1(18)>-8) && (yy 1(18)<7.9999 && yy 1(18)>-8) && (zz 1(18)<7.9999 && zz 1
              x(i) = x \text{ test};
             y(i) = y \text{ test};
             z(i) = z \text{ test};
             i = i + 1;
          end
      end
 end
```

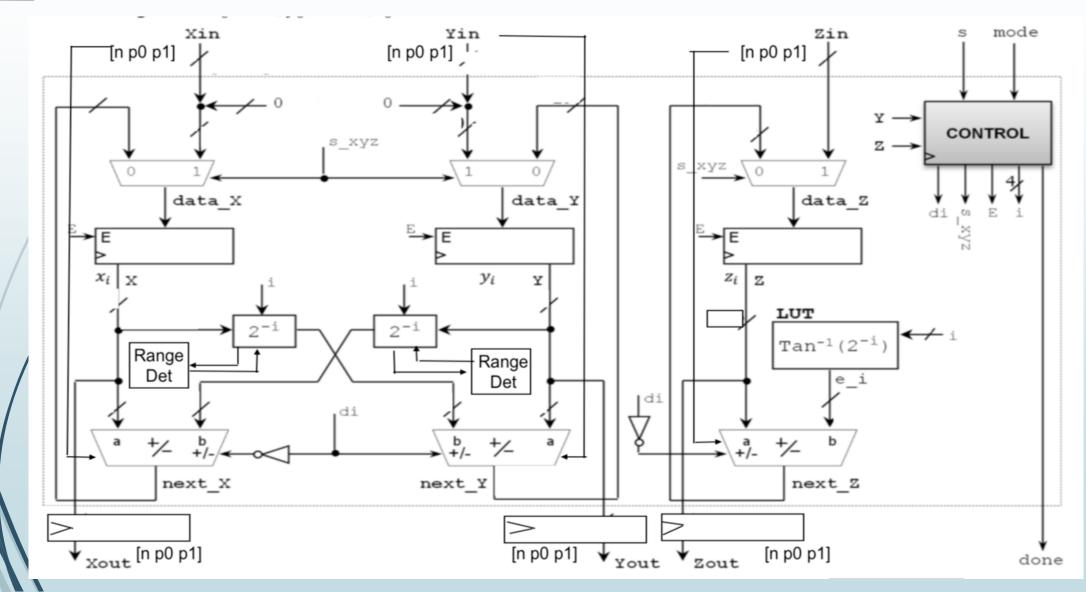
MATLAB Comparison

Take the output file from VHDL code. Convert it to binary. Take the input files. Perform calculation. Compare MATLAB output with VHDL output. Find error percentage.

Run the cordic function in matlab


```
zeros(length(x_unsigned(:,1)),1); % declare the
zeros(length(y_unsigned(:,1)),1); % declare the
zeros(length(z_unsigned(:,1)),1); % declare the
i = 1:length(z_unsigned(:,1))
if i > 500
    mode = 1;
else
    mode = 0;
end
[xx, yy, zz] = cordic_circular_esp(x_DFX(i),y_DFX(i),;
x(i) = xx(18);
y(i) = yy(18);
z(i) = zz(18);
```

Challenges:

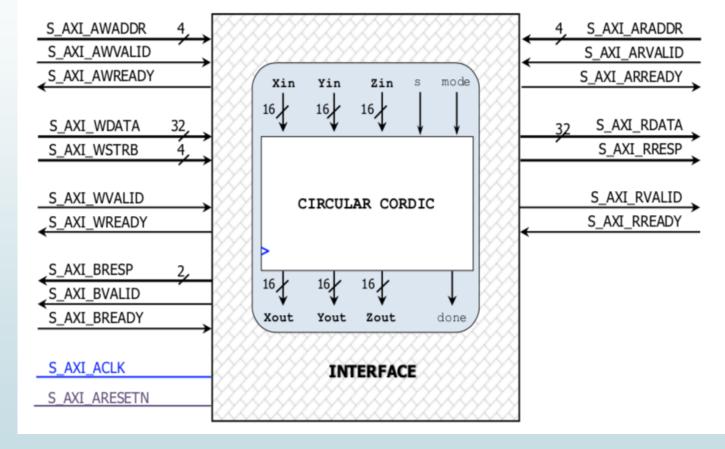

- MATLAB.
- Testbench.
- num0, num1.
- AXI Lite.

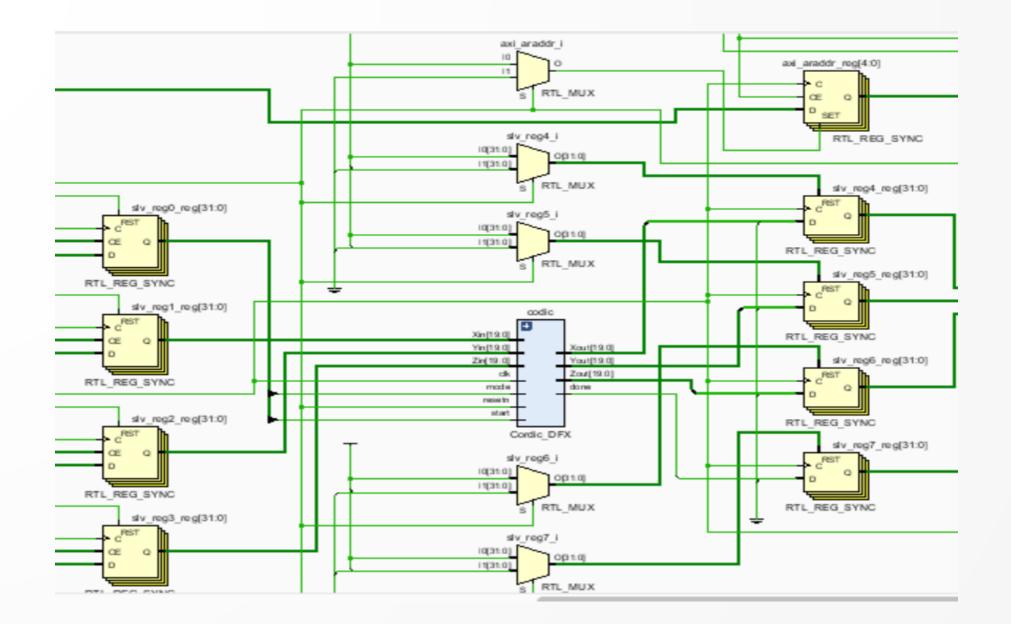
VHDL Implementation.

VHDL (DFX ADD/SUB) design

VHDL (CORDIC Design)


```
-- Calculating X and Y
```


```
if X_num = '0' and Y_num = '1' then
    X <= (Shift_right(X,P0 - P1)) + (Shift_right((Y),i));
    Y <= Y - (Shift_right(X,P0 - P1 + i));
    X_num <= '1';
elsif X_num = '1' and Y_num = '0' then
    X <= X + (Shift_right(Y,P0 - P1 + i));
    Y <= (Shift_right(Y,P0 - P1)) - (Shift_right(X,i));
    Y_num <= '1';
else
    X <= X + (Shift_right((Y),i));
    Y <= Y - (Shift_right((X),i));
end if;</pre>
```


Code:

```
-- Checking the X num0 and num1
if X_num = '0' then
    if X >= Boundary_value0_max or X < Boundary_value0_min then
        X <= (Shift_right(X, P0 - P1));
        X_num <= '1';
    end if;
else
    if X < Boundary_value1_max and X >= Boundary_value1_min then
        X <= (Shift_left(X, P0 - P1));
        X_num <= '0';
    end if;
end if;</pre>
```


- We used 8 registers.
- We used 20 bits for input and outputs.

SDK

- Create a C code that perform the operation to test it. We tested all modes.
- This is done also to verify that the Dual-Fixed point Cordic hardware is correctly running on a real board.

🗈 system.hdf 🛛 🖬 system.mss 🛛 🖻 helloworld.c 🖄		
<pre>// slv_reg1(19 to 0) = Xin // slv_reg2(19 to 0) = Yin</pre>		^
$// slv_reg3(19 to 0) = Zin$		
		ADDR, MYIP_CORDIC_S00_AXI_SLV_REG1_OFFSET, 0x00034065);
MYIP_CORDIC_mWriteReg(XPAR_MYIP_CORDIC_0_S00_AXI_BASEADDR, MYIP_CORDIC_S00_AXI_SLV_REG2_OFFSET, 0x00072437); MYIP_CORDIC_mWriteReg(XPAR_MYIP_CORDIC_0_S00_AXI_BASEADDR, MYIP_CORDIC_S00_AXI_SLV_REG3_OFFSET, 0x000503bb);		
<pre>// Start bit0, mode bit4(rotation) MYIP_CORDIC_mWriteReg(XPAR_MYIP_CORDIC_0_S00_AXI_BASEADDR, MYIP_CORDIC_S00_AXI_SLV_REG0_OFFSET, 0x00000000);</pre>		
<pre>// Start bit0(1), mode bit4(rotation)</pre>		
<pre>MYIP_CORDIC_mWriteReg(XPAR_MYIP_CORDIC_0_S00_AXI_BASEADDR, MYIP_CORDIC_S00_AXI_SLV_REG0_OFFSET, 0x00000001); // Start bit0(0), mode bit4(rotation)</pre>		
MYIP_CORDIC_mWriteReg(XPAR_MYIP_CORDIC_0_S00_AXI_BASEADDR, MYIP_CORDIC_S00_AXI_SLV_REG0_OFFSET, 0x00000000);		
	_	
😰 Problems 🖷 Tasks 📮 Console 🗉 Properties 📮 SDK Terminal 😂 🛛 🗣 🗶 🖻		🗈 SDK Log 🛛
Connected to: Serial (COM11, 115200, 0, 8)		15:55:48 INFO : Context for processor 'ps7_cortexa9_0' is
X = 60438	^	15:55:49 INFO : Processor reset is completed for 'ps7_cort
Y = D4699		15:55:49 INFO : Context for processor 'ps7_cortexa9_0' is 15:55:49 INFO : The application 'C:/Users/dhalaswa/Desktop
1 - 04099		15:55:49 INFO : 'configparams force-mem-access 0' command
Z = 7FFF9		15:55:49 INFO :XSDB Script connect -url tcp:127.0.0.1:3121
		<pre>source C:/Users/dhalaswa/Desktop/recproject/jj/project_1/pro</pre>
test2, mode = 0		targets -set -nocase -filter {name =~"APU*" && jtag_cable_name == "APU*" && jtag_cable_name == 1
X = DE38A		<pre>loadhw -hw C:/Users/dhalaswa/Desktop/recproject/jj/project_1 configparams force-mem-access 1</pre>
		targets -set -nocase -filter {name =~"APU*" && jtag_cable_na
Y = 952BA		stop ps7_init
Z = 7FFF9		ps7_post_config
	~	<pre>targets -set -nocase -filter {name =~ "ARM*#0" && jtag_cable</pre>
<		rst -processor targets -set -nocase -filter {name =~ "ARM*#0" && jtag cable ❤
Send Cle	ear	< >

Results:

- These results are taken from 1000 data tested values.
- Maximum error of all X, Y and Z values after the comparison between our hardware and the CORDIC function in MATLAB.

Conclusion:

- Apply the knowledge of DFX arithmetic in coding.
- It is obvious that DFX does almost give accurate results compared with floating numbers with much less operation time.
- Apply the knowledge of different interfaces such as AXI Bus and IP.

Future work:

- Increase the the number of data.
- Test more dual fixed format to find out the most suitable one.
- Do a partial configuration that changes hardware format as needed.

Any Questions?