
Circular iterative CORDIC using Dual Fixed-Point Arithmetic

Daniyah Alaswad, Yazen Alali

Electrical and Computer Engineering Department

School of Engineering and Computer Science

Oakland University, Rochester, MI

e-mails: dhalaswa@oakland.edu, yazenalali@oakland.edu

Abstract—This work presents an architecture for

Circular CORDIC computation in binary dual fixed-

point arithmetic that is based on the Circular CORDIC

algorithm. It involves designing an embedded system

using the ZYBO board. The project includes a Digital

system which is the CORDIC, Bus AXI Lite interface,

SDK that considered as a software routine that controls

the digit system by streaming data through UART. The

goal is to be able to get the actual result from dual fixed-

point operations within the CORDIC showing in the

SDK and compare the result to MATLAB result.

I. INTRODUCTION

All Digital Signal Processing tasks can be efficiently

implemented using processing elements performing vector

rotations. The Coordinate Rotation Digital Computer

algorithm CORDIC offers the opportunity to calculate all

the desired functions in a rather elegant and straightforward

way. CORDIC (for Coordinate Rotation Digital Computer),

also known as Volder's algorithm, is a simple and efficient

algorithm to calculate hyperbolic and trigonometric

functions, typically converging with one digit (or bit) per

iteration. Is an iterative algorithm for calculating

trigonometric functions including sine, cosine, magnitude,

and phase? It is particularly suited to hardware

implementations because it does not require any multiplies.

We decided to use Circular CORDIC using Dual Fixed-

point Arithmetic.

The motivation of this project was that Dual fixed point

Athematic combines the simplicity of a fixed-point system

with the wider dynamic range offered by a floating-point

system. Also, by Using a single bit exponent which selects

two different fixed-point representations, it allows dynamic

scaling of signals throughout the system. Another reason is

that there is not enough resources for this Arithmetic and it

not widespread. Although, it has better precision than fixed

point Arithmetic.

We were successfully able to implement circular

CORDIC using fixed point Arithmetic previously, which

gave us experience in how it works. Afterword, we decided

to make a dual fixed-point CORDIC because we would like

to Apply the knowledge acquired in designing the DFX

CORDIC and we have not to work with it before. The report

will cover the procedure, Results, and Challenges of the

project.

II. METHODOLOGY

The design of this project contains six different steps

which are: data generation via MATLAB, the operation, the

CORDIC, the comparison via MATLAB, the AXI-Lite bus

interface, and the SDK software output.

A. Generation Data via Matlab.

The first thing in this project was generating a large amount

of data to test the circuit that we are going to build. We

found out that the best way to approach this is by writing a

MATLAB script to generate a large amount of data. We

wrote the script to be able to produce a 1000 random

number using function rand (). We initialize the dual fix

point representation to [20 17 15] with boundaries for num0

and num1 using the equations.

Moreover, we decided to set the value of Xin and Yin to a

range of (-8,8), and Zin to a range of (-pi/2, pi/2). We

created a function that takes the random floating-point

number and converts it to fixed point number. All this

operation was in binary, but we need it in integer form to

access it easily via testbench. After converting the numbers

from binary to integers, MATLAB will print the data to

three text files for Xin, Yin, and Zin. Below is the chart of

how input data look like.

B. The operation

The second part of the project is doing the operation that

we are going to use in the CORDIC. We decided to do adder

and subtractor. In binary fixed-point arithmetic, we do a

similar process to fixed-point arithmetic, but we need to

consider two more things. We have first to decide if the

number is num0 or num1 then apply range detector to

convert three numbers to duel fixed-point numbers before

doing the operations. Also, we have to consider in mind the

overflow that might happen during the procedure. Here is

the circuit of dual fixed-point adder and subtractor. In

figure1 below, we can see that the circuit required an FSM

and control unit. We have to consider overflow while doing

the FSM if needed.

Figure 1: dual fixed-point adder and subtractor.

C. The CORDIC

The original circular CORDIC algorithm is described by the

following iterative equations, where 𝑖 is the index of the

iteration. Depending on the mode of operation.

Here is the equation of Circular CORDIC.

For Rotational mode we used these equations:

For vectoring mode, we used these equations:

After successfully doing the adder and subtractor for

dual fixed point and testing the code via behavior simulation

and testbench. We can start connecting our adder and

subtractor to the CORDIC. We need to do the mapping and

parallel shifter which would be a bit challenging. The

parallel shifter would affect the data going through the

CORDIC. There is two mode in CORDIC which is

rotational mode and vectoring more. We need to create a

testbench for both cases. The testbench will read the data

from the text files generated by MATLAB in the previous

step, and it will generate output files for Xin, Yin, and Zin.

In the figure below, we need to add a range detector before

adder and subtractor which will help accomplish the goal.

Figure 2: circular fixed point CORDIC circuit.

The output that would be generated by the testbench will

look like this:

D. The Comparison Via MATLAB.

After generating the output of our circuit via VIvado. We

decided to check it by compare it to a MATLAB code and

discover the error percentage. The MATLAB code will read

the data from output text files and convert them to decimal.

Then it will read the input text files generated by the

previous MATLAB and convert them to decimal too. It will

take the input and run it through a CORDIC function in

MATLAB to generate an output. After that, it will take that

output and compare it with Vivado simulation output. When

the comparison is done, MATLAB will Calculate the error

percentages. Here we can see how the error percentages

look like.

E. AXI interface

We used the AXI Lite interface to write vector data from the

embedded processor to a continuous group of registers on

the Programmable Logic IP Core. The AXI Write block

only supports the AXI-Lite protocol, allowing for simple,

low-throughput memory-mapped communication. Typical

uses for this protocol include writing to control and status

registers. After finishing the CORDIC we connected it to

AXI Lite interface with eight registers three for inputs, three

for outputs, one for done, and one for mode and start. We

needed to create and modify the IP of the project and using

our top file of the CORDIC and assign the number of bits to

twenty. Then we implemented a block diagram of the

project, so we would be able to generate a bitstream for it.

Figure3: AXI LITE fixed point CORDIC.

F. SDK OUTPUT

When we were successfully able to generate bitstream we

can launch SDK. We have to write a c code that will test

rotational and vectoring cases we would like to check.

We can test the code multiple times and compare it to the

behavior simulation of dual fixed-point CORDIC in order

to make sure that the answer is correct and that it is

working on hardware.

III. Experimental Setup

In the experiment we are going to use ZYBO board to

test the result which will communicate with the SDK

software, the main part will be done in VIVADO 2018

software using VHDL and C language.

IV. Results/ Challenges

Some of the challenges we faced was generating a large

amount of data in short time and deciding how many

registers do we need for the interface. Also, we encountered

some problem with the parallel shifter.

After comparing the outputs from MATLAB with our

simulation, we had results that could give us the indication

of how much accurate our hardware is. Comparing these

two output is actually comparing floating point values with

dual-fixed point values. Table below shows the maximum

errors we got in X, Y and Z values.

Output

Values

X Y Z

Max

error in %

0.026% 0.022% 0.0085%

 Table: Maximum error in X, Y and Z

V. Conclusions

We were successfully able to Apply the knowledge of DFX

arithmetic in coding. Also, it is evident that DFX does

almost give accurate results compared with floating

numbers with much less operation time. We did Apply the

knowledge of different interfaces such as AXI Bus and IP.

for future work, and we could Increase the number of data.

Moreover, Test more dual fixed format to find out the most

suitable one. We could Also do a partial configuration that

changes hardware format as needed. Also we could use the

idea of reading the data from SD card to SDK.

REFERENCES

[1] Llamocca, Daniel. “Embedded System Design for

Zynq SoC “.” Reconfigurable Computing Research

Laboratory. N.p., n.d. Web. 8 Mar 2018.

