
Reconfigurable,

Fixed-Point

Processor in VHDL
DAVID STERN AND BRANDON BUSUTTIL

Overview

 Introduction

 Methodology

 Hardware

 Software

 Demonstration

 Conclusion

Introduction

 16-bit fixed point processor with dynamically reconfigurable ALU

 Partial reconfiguration of an ALU allows your design to implement

more ALU functions in a fixed amount of space

 Our design will consist of two configurations, referred to as BASIC

and ADVANCED

 Basic mode will allow simple operations

 Advanced mode will allow more complex operations

Methodology - Hardware
 The entire processor consists of a mux, four

registers, ALU, and the controller

 Instructions are sent to the controller and
decoded

 ALU can be reconfigured

 Four functions per configuration

Hardware Architecture
 The processor IP core is

wrapped inside an AXI Full

interface.

 Data flow to the IP core is

controlled through an external
FSM which utilizes an input FIFO

and output FIFO

Opcodes

Config Function Opcode Comment

Advanced & Basic Load Reg X 0x0100xxxx Lower 16 data

Advanced & Basic Load Reg Y 0x02000000 X => Y

Advanced & Basic Load Reg Z 0x030xxxxx Cordic only. Bit 16 denotes rotational or
vectoring mode.

Advanced & Basic Reset RM 0xAAAA7777 Reset ALU after DPR

Advanced & Basic End Program 0xFFFFFFFF When processed by the PS, this will exit the loop and

terminate the program

Basic x + y 0xA0000000

Basic x – y 0xB0000000

Basic x * y 0xC0000000

Basic x / y 0xD0000000

Advanced cordic (x, y, z) 0xA1000000 1 Indicates the ALU must be in advanced
mode

Advanced Shift Reg 1 0xB1000000

Advanced Shift Reg 2 0xC1000000

Advanced N/A N/A

Methodology - Software
 Primary goal of the software is exercising the hardware to prove out the design

 Software will control data flow to and from the processor IP core

 Upon initializing:

 The software will read two .bin files from an external SD card and load them into DDR

memory

 The software will load a predefined set of HW specific instructions into an array

structure

 The array structure will be looped until the “End of Program” opcode is reached.

 Software routine keeps track of current ALU configuration. Performs DPR if
necessary.

Software Architecture

Example Program
 0x01000001: Load register 1 with 1

 0x02000000: Duplicate register 1 into register 2

 0x01000005: Load register 1 with 5

 0xB0000000: Perform ALU operation Shift left X by Y

 0x02000000: Duplicate register 1 into register 2

 0x01000035: load register 1 with 0x0035

 0xC0000000: Perform ALU operation X * Y

 0x02000000: Duplicate register 1 into register 2

 0x01001960: Load register 1 with 0x1960

 0xA0000000: Perform ALU operation X + Y

 0xAAAA7777: Reset ALU after reconfiguration

 0x02000000: Duplicate register 1 into register 2

 0x0100ECCC: Load register 1 with 0xECCC

 0x03000000: Load register 3 with 0

 0xA1000000: Cordic

 0xFFFFFFFF: End of program

cordic(x, y, z)

x = .3 or 0x02000

y = -.5 or 0xECCC

z = 0 or 0x0000

Demonstration

Conclusion
 Primary goal of the software is exercising the hardware to prove out the design

 Operations implemented worked over AXI-Full and the partial bit streams

 Microprocessor design is able to handle any equation with set of operations

 Further development of functions would increase usability without needing more

hardware space

 pblock placement is annoyingly difficult

