Image Processing using Dynamic Partial Reconfiguration on Zynq 7020

Shruti Karbhari

December 10, 2018

Motivation

- Image processing algorithms can be resource intensive
- Depending on the algorithm, they could require multiple DSP elements and block RAMs.
- > DPR provides the ability to selectively swap algorithms in and out of the PL
 - Done using the PCAP interface
 - Required device size can be reduced in this case

System Overview

Reconfigurable Partition (RP) Overview

- 1 Reconfigurable Partition
- 2 Reconfigurable Modules
- RM1: RGB2gray
 - ► Y=0.21*R + 0.72*G + 0.07*B
- RM2: Edge Detection
 - 2-D convolution using the kernel

 $\begin{bmatrix} -1 & -1 & -1 \\ -1 & 8 & -1 \\ -1 & -1 & -1 \end{bmatrix}$

- The result from 3 channels is averaged to get the final 8-bit value
- MUX is used to select between bypassed image or processed image for debugging purpose

RM2: Edge Detection

2-D convolution using the kernel

-1	-1	-1
-1	8	-1
-1	-1	-1

- Border pixels don't have enough context
 - Output is set to zero
- Negative values after convolution are converted to their absolute values
- The result from 3 channels is averaged to get the final 8-bit value
- If the result of the average is more than 255, it is clipped to 255
- 2 Line Buffers to provide data for context

0	0	0	0	0	0	
0	U	0	0	U	0	-
0	105	102	100	97	96	4
0	103	99	103	101	102	
0	101	98	104	102	100	
0	99	101	106	104	99	7
0	104	104	104	100	98	
				-		

Kernel Matrix

-1

5

-1

0

-1

0				
-1	210	89	111	
0				

Image Input Process

- Input image is 256x256 24-bit RGB
- PS sends one line (256 32-bit words) to PL
 - 24-bit RGB data is padded with zeros
- The almost empty flag of the input FIFO deasserts
 - Almost empty threshold is 256
- One line of data is sent to the RM
- Process continues until all the lines are written

PL: Input Sync Gen FSM

PL: Image Output Process

- Output image is 256x256 8-bit grayscale
- 4 8-bit pixels are latched and combined to make a 32-bit word
 - i.e. one line = 256/4 = 64 words
- The almost full flag of the output FIFO deasserts
 - Almost full threshold is 64
- One line of data is sent from the RM

PL: Image Output FSM

Dynamic Partial Reconfiguration Process

- Start with RGB2Gray bitfile
 - Send image
 - Run image processing
 - Retrieve image
- Transfer Edge Detection bitfile
- Reset the RP
 - Send image
 - Run image processing
 - Retrieve image

- Transfer RGB2Gray bitfile
- Reset the RP
 - Send image
 - Run image processing
 - Retrieve image

Results:RGB2Gray

Matlab reference

HW output

Results: Edge detection

Matlab reference

HW output

Conclusion

- DPR Challenges
 - Floorplanning
 - Selected Pblock should accommodate elements required by all RMs in the least amount of space

- Interface definition
 - ▶ The interface should be common between the two RMs
- Proper reset procedure should be followed to ensure the RP starts from an idle state
- Ability to effectively debug in hardware

Thank You