
Image Processing using Dynamic Partial Reconfiguration on Zynq 7020

Shruti Karbhari

Electrical and Computer Engineering Department

School of Engineering and Computer Science

Oakland University, Rochester, MI

e-mail: skarbhari@oakland.edu

Abstract—This project demonstrates the use of Dynamic

Partial Reconfiguration in the Xilinx Zynq 7020 for image

processing. The PCAP interface is used to selectively load two

image processing modules – color space conversion (rgb2gray)

or edge detection (2D convolution).

I. INTRODUCTION

Complex image processing algorithms are often
resource-intensive when embedded in FPGAs or
programmable logic. As a result, multiple algorithms may
not fit in the resources available in a given device. If such
algorithms don’t need to reside in the PL at the same time,
they can be selectively swapped in and out. This project
demonstrates the Dynamic Partial Reconfiguration (DPR)
methodology provided by Xilinx for the Zynq SOCs. These
SOCs provide a PCAP interface to reconfigure portions of
the Zynq PL. This interface can be controlled from the PS.

II. SYSTEM OVERVIEW

The basic block diagram of the project is shown below.
PS

oFIFO

512*32

RGB2gray

Y=0.21*R +

0.72*G + 0.07*B

Edge Detection

M

U

X

SW0 (F22)
IMG_PROC

_EN

RP

SD card DDR
iFIFO

512*32

AXI-Full

Slave

Interface

Input Sync

Generator

FSM

FV,LV

,DV

AXI-Full

Slave

Interface

irden

24-bit

RGB

data

owren oafull

PL

DDR SD card

RM1

RM2

iaempty

Output FSM
FV,LV,DV

out

8-bit
grayscale

data

AXI Interface

FSM

PR reset

AXI

WDATA

AXI

RDATA

PS

Output

Data

Latch
32-bit
data

latch_data_op

rst

The project outline is as follows:
1. An input image of size 256x256 and format RGB888

is stored in the SD card. The PS reads it from the SD
card into the DDR using the xilffs library.

2. The image data is transferred by the PS from DDR
to the PL over an AXI-full slave interface. This
interface is also used to transfer the image from the
PL to the DDR.

3. The input sync generator FSM generates the frame
valid, line valid and data valid sync signals based on
the iFIFO status signals.

4. The output FSM also controls the data being written
into the oFIFO.

5. The image processing reconfigurable partition
contains two reconfigurable modules. Each of these
modules implement an image processing algorithm.
Both algorithms use the same input interface and the
same output interface. Hence the control FSM does
not need to be in the RP.

III. DYNAMIC PARTIAL RECONFIGURATION IN XILINX

ZYNQ

FPGA technology provides the flexibility of on-site

programming and re-programming without going through

re-fabrication with a modified design. Partial

Reconfiguration (PR) takes this flexibility one step further,

allowing the modification of an operating FPGA design by

loading a partial configuration file, usually a partial BIT file.

After a full BIT file configures the FPGA, partial BIT files

can be downloaded to modify reconfigurable regions in the

FPGA without compromising the integrity of the

applications running on those parts of the device that are not

being reconfigured.

The Device Configuration interface (DevC) provides an

AXI-PCAP bridge for interfacing the PL configuration

logic. The figure below illustrates the device configuration

flow.

The AXI-PCAP bridge converts 32-bit AXI formatted

data to the 32-bit PCAP protocol and vice versa. A transmit

and receive FIFO buffer data between the AXI and the

PCAP interface. A DMA engine moves data between the

FIFOs and a memory device, typically the OCM, the DDR

memory, or one of the peripheral memories. The 32-bit

PCAP interface is clocked at 100 MHz and supports 400

MB/s download throughput for non-secure PL configuration

and 100 MB/s for secure PL configuration where data is

sent only every 4th clock cycle. To transfer data across the

PCAP interface a DevC driver function needs to be called.

The driver will take care of setting the correct PCAP mode

and initiating the DMA transfer. The function call will only

return after both the AXI and the PCAP transfers are

complete.

IV. IMAGE PROCESSING IP OVERVIEW

The main image processing capability is provided by the
image processing IP. A detailed view of this IP is shown in
the figure below.

The IP interfaces to the PS through an AXI4-Full Slave

interface. It decodes the AXI4 transactions and writes
incoming data into an input FIFO and provides outgoing data
from an output FIFO. Both FIFOs are 512 deep and 32-bits
wide.

The image processing algorithms are contained in the
reconfigurable partition (RP). This partition has two
reconfigurable modules (RM). The two algorithms being
used are RGB to grayscale conversion and 2D convolution
(used as edge detection). Both algorithms use the same input
interface (24-bit RGB, frame valid (FV), line valid (LV) and
data valid (DV)) and the same output interface (8-bit
grayscale, frame valid (FV), line valid (LV) and data valid
(DV)).

An input sync generator FSM reads data from the input
FIFO and provides it to the RM. It monitors the almost
empty flag from the input FIFO. The threshold is 256. This
means that the almost empty flag de-asserts when it has at
least 256 words (or a line of the input image) in the FIFO.
When this flag de-asserts, the FSM generates sync signals
FV, LV and DV for one line (or 256 pixels). The 24-bit pixel
data is also sent along with these control signals to the RM.
This process continues until all the lines in the image are sent
to the RM. The input FSM is shown below.

SOF

IDLE

iempty=1

IN_LINE

irden=1

fv,lv,dv=1

pcnt++

iaempty=0

pcnt<256

BLANK_HOR

irden=0

lv,dv=0

pcnt++

pcnt<270

WAIT_SOL

lcnt++

pcnt=0

START_BLAN

K_VER

fv=0

lv=dv=1

pcnt=0

lcnt<256

iaempty=0

lcnt=256

IN_LINE_BLA

NK_VER

dv=1

pcnt++

pcnt<256

BLANK_HOR_

VER

pcnt++

lv=1

pcnt<270

lcnt<270

lcnt=270
The output FSM writes data to the output FIFO based on

the sync signals from the RM. Four 8-bit grayscale pixels are
combined to create a 32-bit word which is written into the
FIFO. The flag to latch the 4 pixels and the flag to write the
word into the output FIFO is also created by the output FSM.
The FSM monitors the almost full flag from the output FIFO.
The threshold is 64 (since one line is 64 words on the
output). When this flag deasserts, the FSM writes the data
words into the FIFO based on signals FV, LV and DV for
one line. This process continues until all the lines are written
to the output FIFO. The output FSM is shown in detail
below.

LATCH_DATA_1

latch_op=001

pcnt++

IDLE

oafull=0 &

fv=lv=dv=1

LATCH_DATA_2

latch_op=010

pcnt++

fv=lv=dv=1

LATCH_DATA_3

latch_op=100

pcnt++

owren=1

fv=lv=dv=1

CHK_PCNT

latch_op=000

owren=0

fv=lv=dv=1

pcnt<256

V. RECONFIGURABLE MODULE 1: RGB2GRAY

The RGB to grayscale conversion is done using the
formula:

Y=0.21*R + 0.72*G + 0.07*B
Since the calculation is done in fixed-point format U0.8,

the coefficients are converted as follows:
0.21 is expressed as 0.00110101 = X"35"
0.72 is expressed as 0.10111000 = X"B8"
0.07 is expressed as 0.00010001 = X"11"

After the addition, the fractional part is ignored by

dropping the lower 8 bits. The module has a latency of 3
clock cycles.

VI. RECONFIGURABLE MODULE 2: EDGE DETECTION

The edge detection module is a 2D-convolution with the

kernel
-1 -1 -1
-1 8 -1
-1 -1 -1

The 2D convolution process on an image is basically the
process of adding each element of the image to its local
neighbors, weighted by the kernel. The kernel is overlaid on
top of the image, the center of the kernel being on the pixel
of interest. Each element of the kernel is multiplied with the
corresponding pixel. All these are summed together to get a
final value for the pixel of interest. An example is shown
below.

The value for pixel (2,1) is calculated as:

210 = 0*0 + 105*-1 + 102*0 + 0*-1 + 103*5 + 99*-1 + 0*0

+ 101*-1 + 98*0

For our use case, the image size is 256x256. The pixels

on the border (row 0 and 255 and pixel 0 and 255 in each

row) do not have all the required pixels to do the

convolution. For these pixels, the output from the module is

set to zero.

Given the negative values in our kernel, it is possible that

some pixels result in a negative value. In such a case, the

value is converted to its absolute value. Since the input

image has 3 channels, we get three edge results after the

convolution is complete. The output of the RM needs to be

8-bit grayscale so these three values are averaged to get one

value. After the averaging step, in case the output exceeds

255, it is saturated to 255.

VII. IMAGE INPUT/OUTPUT PROCESS IN PS

The PS transfers the image data from the SD card to

DDR using the xilffs library. xilffs is a generic FAT

file system that is primarily added for use with SD/eMMC

driver.

The input image is stored as the R channel followed by

the G channel followed by the B channel, all in one binary

file. The PS application combines the three channels

together to get words with all three channels.

The input image in our case is 256x256 RGB. The output

image is 256x256 grayscale. The PS sends one line i.e. 256

32-bit words at one time to the IP. For subsequent lines, it

sends one line into the IP and reads one line i.e. 64 32-bit

words out of the IP. This continues until all the lines are

sent. At the end, the last line is read out to flush out the

output FIFO.

VIII. DYNAMIC PARTIAL RECONFIGURATION PROCESS ON

THE PS

The basic flow followed by the PS application is:

1. Program the FPGA with the RGB2Gray bitstream.

2. Send the image, run image processing, retrieve the

image, write to SD card.

3. Transfer the edge detection bitstream to the PL.

4. Reset the RP.

5. Send the image, run image processing, retrieve the

image, write to SD card.

6. Transfer the RGB2Gray bitstream to the PL.

7. Reset the RP.

8. Send the image, run image processing, retrieve the

image, write to SD card.

The important thing to remember is to reset the RP after the

partial bitstream has been transferred to the PL. This ensures

that the input and output FIFOs are reset and the FSMs and

RMs start from the idle state. This is done via a simple

software command (we write the word 0xAA995577 onto

address 101100).

IX. RESULTS

The dynamic partial reconfiguration process worked in

principle and the application was able to swap the bitstreams

in and out of the PL. The RP reset logic worked correctly

and the results were evident with both RMs (RGB2Gray and

Edge Detection).

The hardware output of RGB2Gray before and after PR

matched perfectly. It also closely matched the Matlab

reference. The images are shown below.

The hardware output of Edge Detection before and after

PR matched each other perfectly. However, there is some

problem with the overall Edge Detection design when the

dynamic bitstream is created. The images are shown below

to illustrate the problem.

The following debug steps were taken to root cause this

issue:

1. The image processing IP was instantiated in a static

design and the bitstream was flashed on to the

FPGA. The PS application of the static design was

used. This gave an image which closely matched the

Matlab reference image.

2. The image processing IP was instantiated in a static

design and the bitstream was flashed on to the

FPGA. The PS application of the dynamic design

(with the PR reset) was used. This gave an image

which closely matched the Matlab reference image.

3. The image processing IP was used in the dynamic

design and the edge detection configuration

bitstream was flashed on to the FPGA. The PS

application of the dynamic design was used. This

resulted in the incorrect shifted image. The same

result was obtained after partial reconfiguration was

done.

This means that the issue is with the Edge Detection in

the DPR flow. It is also most likely on the output side as the

input side is the same for color conversion. The next step

would be to put an ILA instance in the IP and examine the

signals related to the output FIFO.

X. CONCLUSION

The DPR methodology has its advantages but the

following challenges need to be addressed:

1. Floorplanning: The selected Pblock should

accommodate elements required by all RMs in the

least amount of space.

2. Interface definition: The interface should be common

between the different RMs in a given RP.

3. Proper reset procedure should be followed to ensure

the RP starts from an idle state

4. Due to the TCL flow that is used to set up the

dynamic design, the ability to include ILA cores in

the design is hampered. Care should be taken to

bring out relevant signals from the IP into the block

design so they can be viewed in the hardware.

XI. REFERENCES

[1] https://en.wikipedia.org/wiki/Grayscale

[2] https://www.xilinx.com/support/documentation/sw_manuals/xilinx20
15_4/ug909-vivado-partial-reconfiguration.pdf

https://en.wikipedia.org/wiki/Grayscale
https://www.xilinx.com/support/documentation/sw_manuals/xilinx2015_4/ug909-vivado-partial-reconfiguration.pdf
https://www.xilinx.com/support/documentation/sw_manuals/xilinx2015_4/ug909-vivado-partial-reconfiguration.pdf

