Dual Fixed Point Calculator

ECE 5900 ST: RECONFIGURABLE COMPUTING, FALL 2017 PROFESSOR: DANIEL LLAMOCCA

PROJECT by Furzana AbdulRahim; Jing Wu; Zhongda Gan

Introduction

- Dual Fixed Point(DFX) is new compared to Fixed Point(FX) and Floating Point(FP).
- Uses less resources compared to FP.
- Higher precision compared to FX.
- Applied the knowledge acquired in class in designing the DFX calculator

Operations in DFX Calculator

- Multiplication
- Division
- Expanded Hyperbolic

Features

- DMA transaction on AXI full- multiple data writes and reads.
- Pipeline architecture There is an initial latency and then results are seen continuously.
- Signed 32 bit operand support.

Block Diagram

Interface Block

Due to different number of inputs in operations, we have maintained 4 inputs and outputs for simplicity.

m DO

Input State Machine

Output State Machine

Pipelined Divider

Pipelined Divider

For $i \leq 0, i = -M, -m + 1, \dots, 0$. Here we choose M=4

$$\begin{cases} x_{i+1} = x_i - \delta y_i (1 - 2^{i-2}) \\ y_{i+1} = y_i - \delta x_i (1 - 2^{i-2}) \\ z_{i+1} = z_i + \delta tanh^{-1} (1 - 2^{i-2}) \end{cases}$$

For i > 0, i = 0, 1, 2, ..., N

$$\begin{cases} x_{i+1} = x_i - \delta y_i 2^{-i} \\ y_{i+1} = y_i - \delta x_i 2^{-i} \\ z_{i+1} = z_i + \delta tanh^{-1} 2^{-i} \end{cases}$$

for i = 4,13, we need to repeat it.

In rotation mode:

$$\delta = \begin{cases} +1, if \ z_i \le 0\\ -1, if \ z_i > 0 \end{cases}$$

$$\begin{cases} x_{n+1} = A_n(x_{in} \cosh(z_{in}) + y_{in} \sinh(z_{in})) \\ y_{n+1} = A_n(x_{in} \sinh(z_{in}) + y_{in} \cosh(z_{in})) \\ z_{n+1} = 0 \end{cases}$$

Then convergence range is: $|z_{in}| \le 9.66581$

In vector mode:

$$\delta = \begin{cases} +1, if \ x_i y_i \ge 0\\ -1, if \ x_i y_i < 0 \end{cases}$$
$$\begin{cases} x_{n+1} = A_n \sqrt{x_{in}^2 - y_{in}^2}\\ y_{n+1} = 0\\ z_{n+1} = Z_{in} + tanh^{-1}(y_{in}/x_{in}) \end{cases}$$

Then convergence range is: $|tanh^{-1}(y_{in}/x_{in})| \le 9.66581$

	sigma	xin	yin	zin	
ector	1	1	0.01	0	
	-1	0.990156	-0.97438	2.422094	
	-1	0.04623	-0.01516	0.350526	
	1	0.032017	0.02818	-1.36647	
	1	0.007359	0.000165	-0.01244	
	-1	0.007236	-0.00535	0.960513	
	-1	0.004558	-0.00174	0.411207	
	-1	0.004124	-0.0006	0.155794	
	-1	0.00405	-8.2E-05	0.030137	
	1	0.004044	0.000172	-0.03244	
	1	0.004039	4.52E-05	-0.00118	
	-1	0.004038	-1.8E-05	0.014441	
	1	0.004038	1.36E-05	0.006629	
	-1	0.004038	-2.2E-06	0.010535	
	1	0.004038	5.73E-06	0.008582	
	1	0.004038	1.78E-06	0.009559	
	-1	0.004038	-1.9E-07	0.010047	
	1	0.004038	7.98E-07	0.009803	
	1	0.004038	3.05E-07	0.009925	
	1	0.004038	5.89E-08	0.009986	
	-1	0.004038	-6.4E-08	0.010016	
	-1	0.004038	-2.7E-09	0.010001	

v

input: xin = 1/an yin = 1/an zin = x

Pipelined Multiplier

Arithmetic

- 1. Signed number to unsigned number.
- 2. Two DFX inputs with N bits.
- 3. After multiplication, the result is 2N-2 bits.
- 4. Three situations: n0 × n0, n0 × n1, n1 × n1 which has 2p0, p0+p1, 2p1 fractional bits respectively.
- 5. Use range detector to determine if the result is n0 or n1.
- 6. Unsigned to signed.

Pipelined Multiplier

Behavioral Simulation - Functional - sim_1 - tb_dfxmul													
🔞 tb_dfxmul.vhd 🗙 🧱 Untitled 1* 🗙											?	ъъ×	
ope	÷								985.008 ns				^
Se	1	Name	Value										
		30			965 ns	970 ns	975 ns	980 ns	985 ns	990 ns	995 ns	1,000 ns	1,005 ns
			0					0					
60		Vet clock	1										
ect	<u> </u>	Ver resetn	1										
8	٦	Here E	1										
		aone	1										
			0 625					0.625					
	12	■	9.375					9.375					
	⇒r	u dfx_p[31:0]	5.859375				5	.859375					
		1G N	32					32					
		1 2 p0	18					18					
	1944	10 P1	5					5					
	-	🕮 – 🌌 P [61:0]	5.859375				5	.859375					
	<u>zı</u>												
	-												
													<u> </u>
			< >	<									>

Pipelined Multiplier

Project Management

Effort

- Furzana : Divider, FSM
- Jing : Expanded Hyperbolic, MATLAB scripts
- Zhongda : Multiplier

Conclusion

- Apply the knowledge of DFX arithmetic in coding.
- Apply the knowledge of different interfaces between FIFO and IP.

Future Work

- Increase the operations supported such as power and exponent.
- Test more dual fixed format to find out the most suitable one.