
Dual Fixed Point Calculator 

Furzana AbdulRahim, Jing Wu, Zhongda Gan 

Electrical and Computer Engineering Department 

School of Engineering and Computer Science 

Oakland University, Rochester, MI 

E-mails: fabdulrahim@oakland.edu, jingwu@oakland.edu, zhongdagan@oakland.edu  

 

 
Abstract—during the calculation, the fixed point and floating 

point has their disadvantages, here the dual fixed point can meet 

the calculation precision and take less resource.  In this project, 

the pipeline was used to make the calculation faster, and better 

for calculating a series of data.   

I. INTRODUCTION 

In data analysis, there are lots of data around us every day, 
the calculator is needed to handle it more precise and fast, the 
hardware computation is a good choice, in hardware 
computation, there are fixed point and floating point formats, 
the former one is precise but limited range, the latter one is 
less precise but with wide range, so the dual fixed point can 
show its advantages now, it can satisfy the precise and the 
widen range at the same time. If a bunch of data was needed 
to be processed at the same time, the pipelined calculator can 
solve it easily. Which explained the reason why this project is 
demonstrated here. 

 In this calculator, three kinds of calculation are shown: 
division, multiplication, expanded hyperbolic. And also you 
can change the dual fixed point format as you need, here the 
format 32 14 5 and 32 18 5 is shown. 

II. METHODOLOGY 

A. Divison 

The algorithm to compute the division for DFX is based 

on the concept of fixed-point number division learnt in class 

[1]. The inputs for this module are the dividend and divisor 

represented in [N p0 p1]. Also, a clock, reset and start signals. 

The outputs of this core are the DFX overflow signal, the 

done signal and the quotient represented in [N p0 p1]. The 

core first gets the positive numbers for the dividend and for 

the divisor. If we need to change the sign of the quotient we 

keep the sign signal. After both operands are positive, it could 

be the case that the dividend is num0 and the divisor is num1 

or the other way around. The alignment is performed and 

precision bit are added. Both the numbers are of the same 

format when fed into the pipelined divider. Figure 1 shows 

the pipelined architecture of the divider. Result is available 

after few cycles.  Since we add alignment bits and precision 

bits, the actual number of cycles after which the result is 

available is much larger than N cycles in DFX divider. 

 
Figure 1 Fully Pipelined Array Divider Architecture 

 

     Output of the pipelined FX divider is fed into range 

detector to check the result is a num0 or num1. In some cases, 

overflow may result when converting the FX to DFX format 

as the bits used in FX divider is larger than in DFX [N p0 p1]. 

Sign change information is passed through the delay circuit 

to match to the time when the result is ready.  

B. Multiplication 

The DFX multiplier basically includes pre-scaler, 
pipelined unsigned multiplier and range detector. The two 
inputs will be converted into unsigned numbers at the 
beginning by pre-scaler, then got multiplied. The number 
coming out of the multiplier will be double than the length of 
the input, the range detector is then used to select whether the 
result is num0 or num1 and set the exponent bit accordingly. 
Finally, the conversion from unsigned number to signed 
number is necessary. 



 
Figure 2 Arithmetic of the pipelined multiplier 

 

The range detection module is responsible of determining 
if there is DFX overflow, slicing the product according to the 
possible outcomes due to the inputs number representation, 
determine if the num1 candidate can be represented as a the 
n0 candidate and changing the sign of the candidates if the 
sign signal is asserted. 

C. Expanded hyperbolic cordic 

The expanded hyperbolic cordic add the negative iteration 
to extend the range. 

For 𝑖 ≤ 0, 𝑖 = −𝑀,−𝑚 + 1,… ,0. Here we choose M=4 

{

𝑥𝑖+1 = 𝑥𝑖 − 𝛿𝑦𝑖(1 − 2
𝑖−2)

𝑦𝑖+1 = 𝑦𝑖 − 𝛿𝑥𝑖(1 − 2
𝑖−2)

𝑧𝑖+1 = 𝑧𝑖 + 𝛿𝑡𝑎𝑛ℎ
−1(1 − 2𝑖−2)

     

  

For 𝑖 > 0, 𝑖 = 0,1,2, … , 𝑁 

{

𝑥𝑖+1 = 𝑥𝑖 − 𝛿𝑦𝑖2
−𝑖

𝑦𝑖+1 = 𝑦𝑖 − 𝛿𝑥𝑖2
−𝑖

𝑧𝑖+1 = 𝑧𝑖 + 𝛿𝑡𝑎𝑛ℎ
−12−𝑖

 

In rotation mode: 

𝛿 = {
+1, 𝑖𝑓 𝑧𝑖 ≤ 0
−1, 𝑖𝑓 𝑧𝑖 > 0

 

{

𝑥𝑛+1 = 𝐴𝑛(𝑥𝑖𝑛 cosh(𝑧𝑖𝑛) + 𝑦𝑖𝑛sinh (𝑧𝑖𝑛))

𝑦𝑛+1 = 𝐴𝑛(𝑥𝑖𝑛 sinh(𝑧𝑖𝑛) + 𝑦𝑖𝑛cosh (𝑧𝑖𝑛))
𝑧𝑛+1 = 0

 

Then convergence range is: |𝑧𝑖𝑛| ≤ 9.66581 

In vector mode: 

𝛿 = {
+1, 𝑖𝑓 𝑥𝑖𝑦𝑖 ≥ 0
−1, 𝑖𝑓 𝑥𝑖𝑦𝑖 < 0

 

{
 

 𝑥𝑛+1 = 𝐴𝑛√𝑥𝑖𝑛
2 − 𝑦𝑖𝑛

2

𝑦𝑛+1 = 0

𝑧𝑛+1 = 𝑍𝑖𝑛 + 𝑡𝑎𝑛ℎ
−1(𝑦𝑖𝑛/𝑥𝑖𝑛)

 

Then convergence range is:|𝑡𝑎𝑛ℎ−1(𝑦𝑖𝑛/𝑥𝑖𝑛)| ≤ 9.66581. 

In figure 3 and figure 4 shows how to latch every internal 

signal. 

 
Figure 3 Negative iteration, -4 to 0 

 
Figure 4 Positive iteration, 1 to 16 

D. Input and Output Interface 

     Difference in the number of inputs for cordic and other 

two operations results in wasting few cycles in acquiring 

the input and loading the output into the FIFO. Four 

cycles are used in both cases. Figure 5 show the input and 

output interface structure and state machine used.     

          Figure 5 Input and Output Interface, State machine 



III. EXPERIMENTAL SETUP 

     Vivado simulator is used for functional simulation. 

Testing is done for each number combinations (n0-n0, n0-

n1,n1-n0,n1-n1) from the numbers obtained from MATLAB 

for [32 14 5]format. Initially, individual blocks (divider, 

multiplier, cordic) are tested for basic functionality. Then 

random DFX numbers generated by MATLAB is used as 

input to the test bench in a text file. Results are collected in a 

text file and plotted to see the accuracy. After few 

calculations, we decided [32 18 5] had better accuracy than 

[32 14 5] format. Final results are plotted using [32 18 5] 

format. After this, blocks are combined and tested. Final 

verification is done with SDK initiating memory writes and 

reads from the testcase.  

Except VHDL test bench and MATLAB Verification, we 

also set up a hardware implementation using the ZYBO board 

connected to the AXI bus. We programmed the FPGA with 

the bitstream of the project including the configuration of the 

Zynq. Afterwards we programmed the compiled software 

using the UART interface. Figure 6 shows the architecture of 

DFX calculator connected to the AXI full bus.  

In expanded hyperbolic cordic, it need to push the y or z 

near to 0, in this process, these small number will make a 

huge difference for the operation for x and y, so the format 

32 18 5 is chosen here. The precision is3.8 ∗ 10−6 , which 

cause the convergence to be 9.65. Which is a little smaller 

than the theory one.  
Using hyperbolic there are 4 common used function can 

be directly computed, sinh, cosh, exponent, atanh. In rotation 

mode, set the input like this,𝑥𝑖𝑛 =
1

𝐴𝑛
, 𝑦𝑖𝑛 =

1

𝐴𝑛
, 𝑧𝑖𝑛 = 𝑥 

then the function exponent is got,  𝑥𝑜𝑢𝑡 = 𝑦𝑜𝑢𝑡 = 𝑒𝑥 , and 
the range of x is|𝑥| ≤ 9.65.  Also in rotation mode, set the 

input as below: 𝑥𝑖𝑛 =
1

𝐴𝑛
, 𝑦𝑖𝑛 = 0 𝑧𝑖𝑛 = 𝑥, the outputs xout 

is cosh (𝑥) , yout is sinh (𝑥), the range of input x is |𝑥| ≤
9.65. In vector mode, choosing the input:  𝑥𝑖𝑛 = 1, 𝑦𝑖𝑛 =
𝑥, 𝑧𝑖𝑛 = 0, the zout is atanh (𝑥), the range of input x is |𝑥| <
1. 

                              Figure 6 Cores with AXI Bus  

 

IV. RESULTS  

Outputs (100 data sets for each case) from the DFX 
calculator is compared with the MATLAB function output. 
The result presented below which perfectly match the 
MATLAB output. Figure 7 shows the results of the divider 

with all possible combination of the operands n0-n0, n0-n1, 
n1-n0, n1-n1. In case of n0/n1, we see a little mismatch as the 
denominator is a large number and the precision of MATLAB 
is much higher than DFX calculator. 

 

 

 

 
Figure 7 MATLAB output for divider with all cases 

 



Figure 8 shows the DFX multiplication result for [32 14 5] 
between two n0 numbers. Figure 9 shows the relative 
difference between VHDL and MATLAB is very small. 

 

 
      Figure 8 MATLAB output between two n0 numbers 

 

 
Figure 9 Comparison between MATLAB and VHDL 

 
As explained before, 100 sets of data are being used to test 

each case. Figure 10 shows the function of 𝑒𝑥. It shows the 
two lines almost the same, and the difference is below 0.2, in  

 
Figure 10 Exponential function 

most of cases, the relative difference is below 2%, but at some 
points it is 12%, in that points, during the convergence, the 

demanded precision is higher than is 3.8 ∗ 10−6 , the 
difference between the cordic results and the functional results 
is smaller than at this area is smaller than 3.8 ∗ 10−6, which 
is affordable. 
         Figure 11 and 12 shows the function of  cosh (𝑥) and 
sinh(𝑥)  respectly. The relative differences are below 
0.014%, which looks very good. 
 

                              Figure 11 Function of cosh(x) 

Figure 12 Function of sinh(x) 

 

 Figure 13 shows the function of atanh (𝑥), it is difficult to 

distinguish the two lines, they are almost as one. in most cases, 

the relative difference is below 2%, and the difference 

between the cordic results and the functional results is smaller 

than 6 ∗ 10−3. 

           Figure 13 Function of atanh(x) 



CONCLUSIONS 

In this project, we used large number of inputs to verify 
our DFX calculator in [32 18 5] and [32 14 5] two different 
configurations. The result shows that the design is perfectly 
done based on pipelined multiplication, division and 
expanded hyperbolic cordic. The program logic clock in our 
design is 60MHz which means the calculator can compute 
60M numbers in 1 second theoretically. Based on this 
character, our pipelined calculator can process a mess amount 
of input numbers and do the operation in a very short time. 
For the two configurations we used in the calculator, [32 18 5] 
provides higher precision, but [32 14 5] can contain bigger 
range of input and output numbers.  

Future work will focus on adding more operations and 
more effective input and output interfaces. DMA can be used 

to write and read the data from the IP. Higher the precision, 
smaller the range will be. We would like to find out the 
equilibrium point between the precision and the range of 
numbers.  
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