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Abstract—  This work presents FPGA architecture to calculate 

power operation based on hyperbolic CORDIC   floating point 

format.  The system is implemented on Zynq-7000 ARM/FPGA 

SoC Development Board.  The system is implemented using 

IEEE-754 standard single precision computations. An IP is 

created and interfaced to Zybo board ARM processor via AXI-

FULL interface. Simulation results and real implementation 

experiment are conducted with successful convergence to 

expected values.  

I. INTRODUCTION 

A power is an exponent to which a given quantity is raised. 
It involves two numbers, the base x and the exponent y and its 
written as 𝑥𝑦.  Powering is broadly used in wide rang of fields 
like  economics, biology, chemistry, physics, and computer 
science, with applications such as compound interest, 
population growth, chemical reaction kinetics, wave behavior, 
and public-key cryptography.  

The high cost of powering computation in addition to 
showing our deep understanding of problem solving and 
ability to design embedded systems design using FPGA were 
the motivations behind this project. 

The rest of the papers is organized as follows, single 
precision floating point number system is introduced in 
sections 2, the expanded hyperbolic CORDIC is explained in 
section 3,  Section 4 of this report explains the methodology 
adopted in order to implement and complete this project. In 
sections 4 and 5 the experimental setup and result are 
discussed  and after that the paper is concluded. 

 

II.  SINGLE PRECISION FLOATING POINT NUMBER 

SYSTEM 

Single-precision binary floating-point is used due to its 

wider range over fixed point compared to the same bit-width. 

It’s an IEEE standard arithmetic that requires 32-bit word as 

in Figure 1 [1], with 8 bit reserved as the exponential and 23 

for the fraction part and the last bit for the sign. It is 

represented as follows: 

 𝑋 = ±1. 𝑓 𝑥𝑒 (1) 

 

Where 𝑒 = 𝐸𝑥𝑝𝑜𝑛𝑒𝑛𝑡 − 127, and 𝑓 is the Mantissa. 

Equation (1) applies for Ordinary numbers where the range 

of 𝑒 is [−𝑒𝐸𝑥𝑝𝑜𝑛𝑒𝑛𝑡−1 + 2, 𝑒𝐸𝑥𝑝𝑜𝑛𝑒𝑛𝑡−1 − 1. 

 
Figure 1 IEEE 754 a 32 bit 

When the Exponent field is a string of ones and the Mantissa 

is zero, the represented number is ±∞, the sign is determined 

based on the sign  bit. Not a Number (NaN) case is when the 

exponent is a string of ones and the Mantissa is not equal to 

zero. Zero case is when the Exponent and Mantissa both 

equal to zero. 

     Equation (2) is used when the Exponent equal zero and 

mantissa  is anything. This case is known as Denormalized 

Numbers. 

  

 𝑋 = ±0. 𝑓 𝑥𝑒 (2) 

 

III.  EXPANDED HYPERBLIC CORDIC 

Hyperbolic CORDIC is used to compute hyperbolic 

functions in efficient and fast way. The problem is it has very 

limited range [2] which can be extended using negative 

iterations to produce what called Extended Hyperbolic 

CORDIC [3]. Equations (3) and (4) show the algorithm 

equations: 

  

𝑖 ≤ 0 ∶  {

𝑥𝑖+1 = 𝑥𝑖 + 𝛿𝑖𝑦𝑖(1 − 2
𝑖−2)

𝑦𝑖+1 = 𝑦𝑖 + 𝛿𝑖𝑥𝑖(1 − 2
𝑖−2)

𝑧𝑖+1 = 𝑧𝑖 − 𝛿𝑖𝜃𝑖 ,   𝜃𝑖 = 𝑇𝑎𝑛ℎ
−1(1 − 2𝑖−2)

 (3) 

 

𝑖 > 0 ∶  {

𝑥𝑖+1 = 𝑥𝑖 + 𝛿𝑖𝑦𝑖2
−𝑖

𝑦𝑖+1 = 𝑦𝑖 + 𝛿𝑖𝑥𝑖2
−𝑖

𝑧𝑖+1 = 𝑧𝑖 − 𝛿𝑖𝜃𝑖 ,   𝜃𝑖 = 𝑇𝑎𝑛ℎ
−1(2−𝑖)

 (4) 

 

Equation (3) shows the negative iteration for 𝑀+1 
iterations (𝑖=−𝑀,…,−1,0). While 4 applied for 𝑁 iterations 

with positive indices ( 𝑖=1,2,…,𝑁), To ensure the 

convergence, iteration 4,13,40,…,𝑘,3𝑘+1  must  be repeated. 

In this work negative iteration M = 5, and positive iteration 

N = 20 are chosen. The value of 𝛿𝑖 depends on the operation 

mode: 

 
𝑅𝑜𝑡𝑎𝑡𝑖𝑜𝑛: 𝛿𝑖 = −1 𝑖𝑓 𝑧𝑖 < 0; +1 , 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

      𝑉𝑒𝑐𝑡𝑜𝑟𝑖𝑛𝑔: 𝛿𝑖 = −1 𝑖𝑓 𝑥𝑖𝑦𝑖 ≥ 0; +1 , 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 (5) 

The 𝑥𝑛 , 𝑦𝑛 , 𝑧𝑛 converges to the following values depending 

on the operation mode: 

https://en.wikipedia.org/wiki/Fixed-point_arithmetic


𝑅𝑜𝑡𝑎𝑡𝑖𝑛𝑔 ∶  {

𝑥𝑛 = 𝐴𝑛(𝑥0𝑐𝑜𝑠ℎ𝑧0 + 𝑦0𝑠𝑖𝑛ℎ𝑧0)
𝑦𝑛 = 𝐴𝑛(𝑦0𝑐𝑜𝑠ℎ𝑧0 + 𝑥0𝑠𝑖𝑛ℎ𝑧0)

𝑧𝑛 = 0
 (6) 

 

𝑉𝑒𝑐𝑡𝑜𝑟𝑖𝑛𝑔 ∶  

{
 
 

 
 𝑥𝑛 = 𝐴𝑛√𝑥𝑖𝑛

2 + 𝑦𝑖𝑛
2

𝑦𝑛 = 0

𝑧𝑛 = 𝑧𝑖𝑛 + 𝑇𝑎𝑛ℎ
−1
𝑦𝑖𝑛
𝑥𝑖𝑛

   (7) 

    Where  

𝐴𝑛 = (∏ √1− (1 − 2𝑖−2)2 )∏ √1− 2−2𝑖
𝑁

𝑖

0

−𝑀
 (8) 

For the chosen M and N An = 5.038156454149566 * e-4  

By using well chosen values for the input hyperbolic the 

CORDIC could converge to coshx, sinhx and Tanh-1. The 

architecture of the extended hyperbolic CORDIC structure is 

presented in Figure 2, where it consists of two stages , one for 

negative iterations and the second for positive iterations. 

Each stage requires different finite state machine to control  

counters, registers, multiplexers and the adders/subtractors 

units , two floating point shifters, a look-up table and 

multiplexers. The positive iteration stage requires five 

floating point adder/subtractor while the positive stage 

requires three.The used B in our project is 32 bits, 8 for the 

exponent and 23 for fraction part providing a range of  

[1.175×10−38 , 3.403×1038]. Large dynamic range is required 

for the powering operation 𝑥𝑦 since 𝑒𝑥, ln 𝑥 could have huge 

grow or decrease between their inputs and the output due to 

the nature of these function. 

 
Figure 2 Extended Hyperbolic CORDIC Engine 

IV. METHODOLOGY 

A. Powering  xy Archticure 

 
The design aims to compute 𝑥𝑦 , which could be achieved 

by getting  𝑒𝑦𝑙𝑛𝑥 , here we have two functions the exponent 
and the natural logarithm and both can be obtained from 
hyperbolic functions as follows: 

 
 𝑒𝑥 = cosh 𝑥 + 𝑠𝑖𝑛ℎ 𝑥 (9) 

 
Which can be obtained by setting the input to the CORDIC 

algorithm in the rotation mode to  𝑥0 = 𝑦0 =
1

𝐴𝑛
, 𝑧0 = 𝑥 

To obtain  
 

 𝑥𝑛 = cosh 𝑥 + 𝑠𝑖𝑛ℎ 𝑥 (10) 

 
Equation 9  is 𝑒𝑥definition using hyperbolic functions, in 

our case to get 𝑒𝑙𝑛𝑥 we set 𝑧0 = 𝑦𝑙𝑛𝑥 , but to dot that a prior 
stage of CORDIC in vectoring mode is required to get the 
natural logarithm using the math identity in (11) 

 
 

tanh−1𝑥 =
1

2
ln
1 + 𝑥

1 − 𝑥
  

(11) 

 
By setting 𝑥0 = 𝑥 + 1, 𝑦0 = 𝑥 − 1, 𝑧0 = 0,  the output 𝑧𝑛 

converges to 
1

2
𝑙𝑛𝑥 , after that 𝑧𝑛  is multiplied by 2𝑦 to get 

𝑧𝑛 = 𝑦𝑙𝑛𝑥. 
The implementation of 𝑥𝑦using extended CORDIC is 

illustrated Figure 3, a finite stat machine utilizes the Expanded 
CORDIC twice as in the following steps: 

 
1. Use vectoring mode to get 𝑧𝑛 = ln 𝑥/2 by loading 

𝑥0 = 𝑥 + 1, 𝑦0 = 𝑥 − 1, 𝑧0 = 0, this is done using 
the addsub unit on the top left corner and the 
multiplexers at the input stage.  

Figure 3 Powering xy implementation 



2. To get  𝑦𝑙𝑛 𝑥 , first 𝑧𝑛 is multiplied by 2 using the 
shifter , then  the floating point multiplier is used  to 
multiply 2𝑧𝑛 output by y to get 𝑦𝑙𝑛 𝑥. 
3. Use the current output of 𝑧𝑛 as the next input to the 
CORDIC block in rotating mode. With 𝑥0 = 𝑦0 =
1/𝐴𝑛 , this is again done using the multiplexers at the 

input stages. The output 𝑥𝑛 = 𝑒
𝑦𝑙𝑛𝑥 = 𝑥𝑦is obtained in 

OutReg.  
  

B. AXI4 Interface 

In order to interface our hyperbolic CORDIC IP to AXI 

the 32 bits iFIFO, two registers are implemented to buffer 

the required 64 bits input to the CORDIC engine, as in 

Figure 4, the out is directly buffered to the oFIFO, the 

whole process is controlled using the red FSM illustrated in 

Figure 5.    

 

 
Figure 4 AXI4,FIFO and Power Interface 

Red is designed to insure proper reading for the inputs x,y 

and the output of the powering block, after reset state, the 

FSM will check for data availability in iFIFO twice to load x 

and y, after that powering block is activated, the output ready 

signal and empty oFIFO required to to pass the data out to 

oFIFO. 

  

 
Figure 5 Red FSM Design 

V. EXPERIMENTAL SETUP 

Each sub-system was tested and verified at every stage of 

the development of powering system using Vivado. 

MATLAB was used to verify the test examples which were 

hardcoded into the SDK code which tested and verified with 

combination of our expanded CORDIC implementation 

using the Digilent ZYBO board. The board hosts a Xilinx 

Zynq Z-7010 SoC, 512 MB of DDR3 RAM, and several IO 

interfaces, i.a., an SD card slot. The Zynq-7000 SoC 

combines an Xilinx 7-series field programmable gate array 

(FPGA) and a state-of-the-art hard macro comprising a 650-

MHz dual-core ARM Cortex-A9 processor, IO modules, and 

memory controllers  

After the system was verified larger set of inputs is used 

and fed to the system using text file on SD card, the results 

also were written to text file and compared with MATLAB 

results.  

    

VI. RESULTS 

The powering operation was simulated validated. The 

output was ready in 60 cycles,  Figure 6 shows 

1376.76269523125^0.1 example, the result was 2.056071, 

while in MATLAB  it is 2.0600886.  

 

The error could be referred to the nature of CORDIC itself 

where it gives approximate value and to the number of bits 

used in the design. Figure 7 shows the error defined as in (12) 

for input range of  0 ≤ 𝑥 < 1500 and 0 ≤ 𝑦 ≤ 1 

The whole used range of output 𝑥𝑦 is plotted in figure 8.  

   

𝑟𝑒𝑙𝑎𝑡𝑖𝑣𝑒 𝑒𝑟𝑟𝑜𝑟 =
𝑀𝑎𝑡𝑙𝑎𝑏 𝑅𝑒𝑠𝑢𝑙𝑡 − 𝐶𝑂𝑅𝐷𝐼𝐶 𝑅𝑒𝑠𝑢𝑙𝑡

𝑀𝑎𝑡𝑙𝑎𝑏 𝑅𝑒𝑠𝑢𝑙𝑡
 (12) 

 

 

Figure 7 1376.76269523125^0.1 example 



Figure 7 Relative error based on MATLAB results  

 
Figure 8 3-D plot for 𝒙𝒚  

 

CONCLUSIONS 

In this project, a powering architecture for single 
precision for 𝑥𝑦 was presented and implemented on Zybo 
7000 board. The use of floating point arithmetic in addition 
to expanded CORDIC approach provides higher accuracy 
and larger dynamics range. The extra phase of negative 
iterations in the expanded hyperbolic CORDIC increases 
the accuracy in a noticeable way.    

Overall, this project was a satisfying experience where 
we implemented our understanding of what we learned in 
the course.  
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